
Shishi API Reference Manual i

Shishi API Reference Manual

Shishi API Reference Manual ii

COLLABORATORS

TITLE :

Shishi API Reference Manual

ACTION NAME DATE SIGNATURE

WRITTEN BY April 3, 2013

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Shishi API Reference Manual iii

Contents

1 Shishi API Reference Manual 1

1.1 shishi . 2

2 Index 243

Shishi API Reference Manual iv

List of Figures

1.1 Source code layout of Shishi . 2

Shishi API Reference Manual 1 / 249

Chapter 1

Shishi API Reference Manual

Shishi is an implementation of the Kerberos 5 network authentication system, as specified in RFC 4120. Shishi can be used to
authenticate users in distributed systems.

Shishi contains a library (’libshishi’) that can be used by application developers to add support for Kerberos 5. Shishi contains a
command line utility (’shishi’) that is used by users to acquire and manage tickets (and more). The server side, a Key Distribution
Center, is implemented by ’shishid’. Of course, a manual documenting usage aspects as well as the programming API is included.

Shishi currently supports AS/TGS exchanges for acquiring tickets, pre-authentication, the AP exchange for performing client
and server authentication, and SAFE/PRIV for integrity/privacy protected application data exchanges.

Shishi is internationalized; error and status messages can be translated into the users’ language; user name and passwords
can be converted into any available character set (normally including ISO-8859-1 and UTF-8) and also be processed using an
experimental Stringprep profile.

Most, if not all, of the widely used encryption and checksum types are supported, such as 3DES, AES, ARCFOUR and HMAC-
SHA1.

Shishi is developed for the GNU/Linux system, but runs on over 20 platforms including most major Unix platforms and Windows,
and many kind of devices including iPAQ handhelds and S/390 mainframes.

Shishi is free software licensed under the GNU General Public License version 3.0 (or later).

Shishi API Reference Manual 2 / 249

Figure 1.1: Source code layout of Shishi

1.1 shishi

shishi —

Synopsis

#define SHISHI_DNS_IN
#define SHISHI_DNS_SRV
#define SHISHI_DNS_TXT
#define SHISHI_GENERALIZEDTIMEZ_LENGTH
#define SHISHI_GENERALIZEDTIME_LENGTH
#define SHISHI_VERSION
typedef Shishi;
enum Shishi_KDCOptions;
typedef Shishi_ap;
enum Shishi_apoptions;
typedef Shishi_as;
typedef Shishi_asn1;
enum Shishi_authorization;
enum Shishi_cksumtype;
typedef Shishi_crypto;
typedef Shishi_dns;
typedef Shishi_dns_srv;

Shishi API Reference Manual 3 / 249

enum Shishi_etype;
enum Shishi_filetype;
typedef Shishi_key;
typedef Shishi_keys;
enum Shishi_keyusage;
enum Shishi_krb_error;
enum Shishi_lrtype;
enum Shishi_msgtype;
enum Shishi_name_type;
enum Shishi_outputtype;
enum Shishi_padata_type;
typedef Shishi_priv;
enum Shishi_rc;
typedef Shishi_safe;
typedef Shishi_tgs;
enum Shishi_ticketflags;
typedef Shishi_tkt;
typedef Shishi_tkts;
typedef Shishi_tkts_hint;
enum Shishi_tkts_hintflags;
enum Shishi_tr_type;
Shishi * shishi (void);
int shishi_3des (Shishi *handle,

int decryptp,
const char key[24],
const char iv[8],
char *ivout[8],
const char *in,
size_t inlen,
char **out);

int shishi_aes_cts (Shishi *handle,
int decryptp,
const char *key,
size_t keylen,
const char iv[16],
char *ivout[16],
const char *in,
size_t inlen,
char **out);

void (*shishi_alloc_fail_function) (void);
int shishi_ap (Shishi *handle,

Shishi_ap **ap);
Shishi_asn1 shishi_ap_authenticator (Shishi_ap *ap);
int shishi_ap_authenticator_cksumdata (Shishi_ap *ap,

char *out,
size_t *len);

void shishi_ap_authenticator_cksumdata_set
(Shishi_ap *ap,
const char *authenticatorcksumdata,
size_t authenticatorcksumdatalen);

void shishi_ap_authenticator_cksumraw_set
(Shishi_ap *ap,
int32_t authenticatorcksumtype,
const char *authenticatorcksumraw,
size_t authenticatorcksumrawlen);

int32_t shishi_ap_authenticator_cksumtype (Shishi_ap *ap);
void shishi_ap_authenticator_cksumtype_set

Shishi API Reference Manual 4 / 249

(Shishi_ap *ap,
int32_t cksumtype);

void shishi_ap_authenticator_set (Shishi_ap *ap,
Shishi_asn1 authenticator);

void shishi_ap_done (Shishi_ap *ap);
Shishi_asn1 shishi_ap_encapreppart (Shishi_ap *ap);
void shishi_ap_encapreppart_set (Shishi_ap *ap,

Shishi_asn1 encapreppart);
int shishi_ap_etype (Shishi *handle,

Shishi_ap **ap,
int etype);

int shishi_ap_etype_tktoptionsdata (Shishi *handle,
Shishi_ap **ap,
int32_t etype,
Shishi_tkt *tkt,
int options,
const char *data,
size_t len);

Shishi_key * shishi_ap_key (Shishi_ap *ap);
int shishi_ap_nosubkey (Shishi *handle,

Shishi_ap **ap);
const char * shishi_ap_option2string (Shishi_apoptions option);
Shishi_asn1 shishi_ap_rep (Shishi_ap *ap);
int shishi_ap_rep_asn1 (Shishi_ap *ap,

Shishi_asn1 *aprep);
int shishi_ap_rep_build (Shishi_ap *ap);
int shishi_ap_rep_der (Shishi_ap *ap,

char **out,
size_t *outlen);

int shishi_ap_rep_der_set (Shishi_ap *ap,
char *der,
size_t derlen);

void shishi_ap_rep_set (Shishi_ap *ap,
Shishi_asn1 aprep);

int shishi_ap_rep_verify (Shishi_ap *ap);
int shishi_ap_rep_verify_asn1 (Shishi_ap *ap,

Shishi_asn1 aprep);
int shishi_ap_rep_verify_der (Shishi_ap *ap,

char *der,
size_t derlen);

Shishi_asn1 shishi_ap_req (Shishi_ap *ap);
int shishi_ap_req_asn1 (Shishi_ap *ap,

Shishi_asn1 *apreq);
int shishi_ap_req_build (Shishi_ap *ap);
int shishi_ap_req_decode (Shishi_ap *ap);
int shishi_ap_req_der (Shishi_ap *ap,

char **out,
size_t *outlen);

int shishi_ap_req_der_set (Shishi_ap *ap,
char *der,
size_t derlen);

int shishi_ap_req_process (Shishi_ap *ap,
Shishi_key *key);

int shishi_ap_req_process_keyusage (Shishi_ap *ap,
Shishi_key *key,
int32_t keyusage);

void shishi_ap_req_set (Shishi_ap *ap,

Shishi API Reference Manual 5 / 249

Shishi_asn1 apreq);
int shishi_ap_set_tktoptions (Shishi_ap *ap,

Shishi_tkt *tkt,
int options);

int shishi_ap_set_tktoptionsasn1usage (Shishi_ap *ap,
Shishi_tkt *tkt,
int options,
Shishi_asn1 node,
const char *field,
int authenticatorcksumkeyusage,
int authenticatorkeyusage);

int shishi_ap_set_tktoptionsdata (Shishi_ap *ap,
Shishi_tkt *tkt,
int options,
const char *data,
size_t len);

int shishi_ap_set_tktoptionsraw (Shishi_ap *ap,
Shishi_tkt *tkt,
int options,
int32_t cksumtype,
const char *data,
size_t len);

Shishi_apoptions shishi_ap_string2option (const char *str);
Shishi_tkt * shishi_ap_tkt (Shishi_ap *ap);
void shishi_ap_tkt_set (Shishi_ap *ap,

Shishi_tkt *tkt);
int shishi_ap_tktoptions (Shishi *handle,

Shishi_ap **ap,
Shishi_tkt *tkt,
int options);

int shishi_ap_tktoptionsasn1usage (Shishi *handle,
Shishi_ap **ap,
Shishi_tkt *tkt,
int options,
Shishi_asn1 node,
const char *field,
int authenticatorcksumkeyusage,
int authenticatorkeyusage);

int shishi_ap_tktoptionsdata (Shishi *handle,
Shishi_ap **ap,
Shishi_tkt *tkt,
int options,
const char *data,
size_t len);

int shishi_ap_tktoptionsraw (Shishi *handle,
Shishi_ap **ap,
Shishi_tkt *tkt,
int options,
int32_t cksumtype,
const char *data,
size_t len);

Shishi_asn1 shishi_aprep (Shishi *handle);
int shishi_aprep_decrypt (Shishi *handle,

Shishi_asn1 aprep,
Shishi_key *key,
int keyusage,
Shishi_asn1 *encapreppart);

Shishi API Reference Manual 6 / 249

int shishi_aprep_enc_part_add (Shishi *handle,
Shishi_asn1 aprep,
Shishi_asn1 encticketpart,
Shishi_asn1 encapreppart);

int shishi_aprep_enc_part_make (Shishi *handle,
Shishi_asn1 aprep,
Shishi_asn1 encapreppart,
Shishi_asn1 authenticator,
Shishi_asn1 encticketpart);

int shishi_aprep_enc_part_set (Shishi *handle,
Shishi_asn1 aprep,
int etype,
const char *buf,
size_t buflen);

int shishi_aprep_from_file (Shishi *handle,
Shishi_asn1 *aprep,
int filetype,
const char *filename);

int shishi_aprep_get_enc_part_etype (Shishi *handle,
Shishi_asn1 aprep,
int32_t *etype);

int shishi_aprep_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *aprep);

int shishi_aprep_print (Shishi *handle,
FILE *fh,
Shishi_asn1 aprep);

int shishi_aprep_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *aprep);

int shishi_aprep_save (Shishi *handle,
FILE *fh,
Shishi_asn1 aprep);

int shishi_aprep_to_file (Shishi *handle,
Shishi_asn1 aprep,
int filetype,
const char *filename);

int shishi_aprep_verify (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_asn1 encapreppart);

Shishi_asn1 shishi_apreq (Shishi *handle);
int shishi_apreq_add_authenticator (Shishi *handle,

Shishi_asn1 apreq,
Shishi_key *key,
int keyusage,
Shishi_asn1 authenticator);

int shishi_apreq_decrypt (Shishi *handle,
Shishi_asn1 apreq,
Shishi_key *key,
int keyusage,
Shishi_asn1 *authenticator);

int shishi_apreq_from_file (Shishi *handle,
Shishi_asn1 *apreq,
int filetype,
const char *filename);

int shishi_apreq_get_authenticator_etype
(Shishi *handle,

Shishi API Reference Manual 7 / 249

Shishi_asn1 apreq,
int32_t *etype);

int shishi_apreq_get_ticket (Shishi *handle,
Shishi_asn1 apreq,
Shishi_asn1 *ticket);

int shishi_apreq_mutual_required_p (Shishi *handle,
Shishi_asn1 apreq);

int shishi_apreq_options (Shishi *handle,
Shishi_asn1 apreq,
uint32_t *flags);

int shishi_apreq_options_add (Shishi *handle,
Shishi_asn1 apreq,
uint32_t option);

int shishi_apreq_options_remove (Shishi *handle,
Shishi_asn1 apreq,
uint32_t option);

int shishi_apreq_options_set (Shishi *handle,
Shishi_asn1 apreq,
uint32_t options);

int shishi_apreq_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *apreq);

int shishi_apreq_print (Shishi *handle,
FILE *fh,
Shishi_asn1 apreq);

int shishi_apreq_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *apreq);

int shishi_apreq_save (Shishi *handle,
FILE *fh,
Shishi_asn1 apreq);

int shishi_apreq_set_authenticator (Shishi *handle,
Shishi_asn1 apreq,
int32_t etype,
uint32_t kvno,
const char *buf,
size_t buflen);

int shishi_apreq_set_ticket (Shishi *handle,
Shishi_asn1 apreq,
Shishi_asn1 ticket);

int shishi_apreq_to_file (Shishi *handle,
Shishi_asn1 apreq,
int filetype,
const char *filename);

int shishi_apreq_use_session_key_p (Shishi *handle,
Shishi_asn1 apreq);

int shishi_arcfour (Shishi *handle,
int decryptp,
const char *key,
size_t keylen,
const char iv[258],
char *ivout[258],
const char *in,
size_t inlen,
char **out);

int shishi_as (Shishi *handle,
Shishi_as **as);

Shishi API Reference Manual 8 / 249

int shishi_as_check_cname (Shishi *handle,
Shishi_asn1 asreq,
Shishi_asn1 asrep);

int shishi_as_check_crealm (Shishi *handle,
Shishi_asn1 asreq,
Shishi_asn1 asrep);

int shishi_as_derive_salt (Shishi *handle,
Shishi_asn1 asreq,
Shishi_asn1 asrep,
char **salt,
size_t *saltlen);

void shishi_as_done (Shishi_as *as);
Shishi_asn1 shishi_as_krberror (Shishi_as *as);
int shishi_as_krberror_der (Shishi_as *as,

char **out,
size_t *outlen);

void shishi_as_krberror_set (Shishi_as *as,
Shishi_asn1 krberror);

int shishi_as_process (Shishi *handle,
Shishi_asn1 asreq,
Shishi_asn1 asrep,
const char *string,
Shishi_asn1 *enckdcreppart);

Shishi_asn1 shishi_as_rep (Shishi_as *as);
int shishi_as_rep_build (Shishi_as *as,

Shishi_key *key);
int shishi_as_rep_der (Shishi_as *as,

char **out,
size_t *outlen);

int shishi_as_rep_der_set (Shishi_as *as,
char *der,
size_t derlen);

int shishi_as_rep_process (Shishi_as *as,
Shishi_key *key,
const char *password);

void shishi_as_rep_set (Shishi_as *as,
Shishi_asn1 asrep);

Shishi_asn1 shishi_as_req (Shishi_as *as);
int shishi_as_req_build (Shishi_as *as);
int shishi_as_req_der (Shishi_as *as,

char **out,
size_t *outlen);

int shishi_as_req_der_set (Shishi_as *as,
char *der,
size_t derlen);

void shishi_as_req_set (Shishi_as *as,
Shishi_asn1 asreq);

int shishi_as_sendrecv (Shishi_as *as);
int shishi_as_sendrecv_hint (Shishi_as *as,

Shishi_tkts_hint *hint);
Shishi_tkt * shishi_as_tkt (Shishi_as *as);
void shishi_as_tkt_set (Shishi_as *as,

Shishi_tkt *tkt);
Shishi_asn1 shishi_asn1_aprep (Shishi *handle);
Shishi_asn1 shishi_asn1_apreq (Shishi *handle);
Shishi_asn1 shishi_asn1_asrep (Shishi *handle);
Shishi_asn1 shishi_asn1_asreq (Shishi *handle);

Shishi API Reference Manual 9 / 249

Shishi_asn1 shishi_asn1_authenticator (Shishi *handle);
void shishi_asn1_done (Shishi *handle,

Shishi_asn1 node);
int shishi_asn1_empty_p (Shishi *handle,

Shishi_asn1 node,
const char *field);

Shishi_asn1 shishi_asn1_encapreppart (Shishi *handle);
Shishi_asn1 shishi_asn1_encasreppart (Shishi *handle);
Shishi_asn1 shishi_asn1_enckdcreppart (Shishi *handle);
Shishi_asn1 shishi_asn1_encprivpart (Shishi *handle);
Shishi_asn1 shishi_asn1_encrypteddata (Shishi *handle);
Shishi_asn1 shishi_asn1_encticketpart (Shishi *handle);
Shishi_asn1 shishi_asn1_etype_info (Shishi *handle);
Shishi_asn1 shishi_asn1_etype_info2 (Shishi *handle);
Shishi_asn1 shishi_asn1_krberror (Shishi *handle);
Shishi_asn1 shishi_asn1_krbsafe (Shishi *handle);
Shishi_asn1 shishi_asn1_methoddata (Shishi *handle);
Shishi_msgtype shishi_asn1_msgtype (Shishi *handle,

Shishi_asn1 node);
int shishi_asn1_number_of_elements (Shishi *handle,

Shishi_asn1 node,
const char *field,
size_t *n);

Shishi_asn1 shishi_asn1_pa_enc_ts_enc (Shishi *handle);
Shishi_asn1 shishi_asn1_padata (Shishi *handle);
void shishi_asn1_print (Shishi *handle,

Shishi_asn1 node,
FILE *fh);

Shishi_asn1 shishi_asn1_priv (Shishi *handle);
int shishi_asn1_read (Shishi *handle,

Shishi_asn1 node,
const char *field,
char **data,
size_t *datalen);

int shishi_asn1_read_bitstring (Shishi *handle,
Shishi_asn1 node,
const char *field,
uint32_t *flags);

int shishi_asn1_read_inline (Shishi *handle,
Shishi_asn1 node,
const char *field,
char *data,
size_t *datalen);

int shishi_asn1_read_int32 (Shishi *handle,
Shishi_asn1 node,
const char *field,
int32_t *i);

int shishi_asn1_read_integer (Shishi *handle,
Shishi_asn1 node,
const char *field,
int *i);

int shishi_asn1_read_optional (Shishi *handle,
Shishi_asn1 node,
const char *field,
char **data,
size_t *datalen);

int shishi_asn1_read_uint32 (Shishi *handle,

Shishi API Reference Manual 10 / 249

Shishi_asn1 node,
const char *field,
uint32_t *i);

Shishi_asn1 shishi_asn1_tgsrep (Shishi *handle);
Shishi_asn1 shishi_asn1_tgsreq (Shishi *handle);
Shishi_asn1 shishi_asn1_ticket (Shishi *handle);
int shishi_asn1_to_der (Shishi *handle,

Shishi_asn1 node,
char **der,
size_t *len);

int shishi_asn1_to_der_field (Shishi *handle,
Shishi_asn1 node,
const char *field,
char **der,
size_t *len);

int shishi_asn1_write (Shishi *handle,
Shishi_asn1 node,
const char *field,
const char *data,
size_t datalen);

int shishi_asn1_write_bitstring (Shishi *handle,
Shishi_asn1 node,
const char *field,
uint32_t flags);

int shishi_asn1_write_int32 (Shishi *handle,
Shishi_asn1 node,
const char *field,
int32_t n);

int shishi_asn1_write_integer (Shishi *handle,
Shishi_asn1 node,
const char *field,
int n);

int shishi_asn1_write_uint32 (Shishi *handle,
Shishi_asn1 node,
const char *field,
uint32_t n);

Shishi_asn1 shishi_asrep (Shishi *handle);
Shishi_asn1 shishi_asreq (Shishi *handle);
int shishi_asreq_clientrealm (Shishi *handle,

Shishi_asn1 asreq,
char **client,
size_t *clientlen);

Shishi_asn1 shishi_asreq_rsc (Shishi *handle,
char *realm,
char *server,
char *client);

Shishi_asn1 shishi_authenticator (Shishi *handle);
int shishi_authenticator_add_authorizationdata

(Shishi *handle,
Shishi_asn1 authenticator,
int32_t adtype,
const char *addata,
size_t addatalen);

int shishi_authenticator_add_cksum (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_key *key,
int keyusage,

Shishi API Reference Manual 11 / 249

char *data,
size_t datalen);

int shishi_authenticator_add_cksum_type (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_key *key,
int keyusage,
int cksumtype,
char *data,
size_t datalen);

int shishi_authenticator_add_random_subkey
(Shishi *handle,
Shishi_asn1 authenticator);

int shishi_authenticator_add_random_subkey_etype
(Shishi *handle,
Shishi_asn1 authenticator,
int etype);

int shishi_authenticator_add_subkey (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_key *subkey);

int shishi_authenticator_authorizationdata
(Shishi *handle,
Shishi_asn1 authenticator,
int32_t *adtype,
char **addata,
size_t *addatalen,
size_t nth);

int shishi_authenticator_cksum (Shishi *handle,
Shishi_asn1 authenticator,
int32_t *cksumtype,
char **cksum,
size_t *cksumlen);

int shishi_authenticator_clear_authorizationdata
(Shishi *handle,
Shishi_asn1 authenticator);

int shishi_authenticator_client (Shishi *handle,
Shishi_asn1 authenticator,
char **client,
size_t *clientlen);

int shishi_authenticator_client_set (Shishi *handle,
Shishi_asn1 authenticator,
const char *client);

int shishi_authenticator_clientrealm (Shishi *handle,
Shishi_asn1 authenticator,
char **client,
size_t *clientlen);

int shishi_authenticator_ctime (Shishi *handle,
Shishi_asn1 authenticator,
char **t);

int shishi_authenticator_ctime_set (Shishi *handle,
Shishi_asn1 authenticator,
const char *t);

int shishi_authenticator_cusec_get (Shishi *handle,
Shishi_asn1 authenticator,
uint32_t *cusec);

int shishi_authenticator_cusec_set (Shishi *handle,
Shishi_asn1 authenticator,
uint32_t cusec);

Shishi API Reference Manual 12 / 249

int shishi_authenticator_from_file (Shishi *handle,
Shishi_asn1 *authenticator,
int filetype,
const char *filename);

int shishi_authenticator_get_subkey (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_key **subkey);

int shishi_authenticator_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *authenticator);

int shishi_authenticator_print (Shishi *handle,
FILE *fh,
Shishi_asn1 authenticator);

int shishi_authenticator_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *authenticator);

int shishi_authenticator_remove_cksum (Shishi *handle,
Shishi_asn1 authenticator);

int shishi_authenticator_remove_subkey (Shishi *handle,
Shishi_asn1 authenticator);

int shishi_authenticator_save (Shishi *handle,
FILE *fh,
Shishi_asn1 authenticator);

int shishi_authenticator_seqnumber_get (Shishi *handle,
Shishi_asn1 authenticator,
uint32_t *seqnumber);

int shishi_authenticator_seqnumber_remove
(Shishi *handle,
Shishi_asn1 authenticator);

int shishi_authenticator_seqnumber_set (Shishi *handle,
Shishi_asn1 authenticator,
uint32_t seqnumber);

int shishi_authenticator_set_cksum (Shishi *handle,
Shishi_asn1 authenticator,
int cksumtype,
char *cksum,
size_t cksumlen);

int shishi_authenticator_set_cname (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_name_type name_type,
const char *cname[]);

int shishi_authenticator_set_crealm (Shishi *handle,
Shishi_asn1 authenticator,
const char *crealm);

int shishi_authenticator_set_subkey (Shishi *handle,
Shishi_asn1 authenticator,
int32_t subkeytype,
const char *subkey,
size_t subkeylen);

Shishi_asn1 shishi_authenticator_subkey (Shishi *handle);
int shishi_authenticator_to_file (Shishi *handle,

Shishi_asn1 authenticator,
int filetype,
const char *filename);

int shishi_authorization_parse (const char *authorization);
int shishi_authorize_k5login (Shishi *handle,

const char *principal,

Shishi API Reference Manual 13 / 249

const char *authzname);
int shishi_authorize_strcmp (Shishi *handle,

const char *principal,
const char *authzname);

int shishi_authorized_p (Shishi *handle,
Shishi_tkt *tkt,
const char *authzname);

int shishi_cfg (Shishi *handle,
const char *option);

int shishi_cfg_authorizationtype_set (Shishi *handle,
char *value);

int shishi_cfg_clientkdcetype (Shishi *handle,
int32_t **etypes);

int32_t shishi_cfg_clientkdcetype_fast (Shishi *handle);
int shishi_cfg_clientkdcetype_set (Shishi *handle,

char *value);
const char * shishi_cfg_default_systemfile (Shishi *handle);
const char * shishi_cfg_default_userdirectory (Shishi *handle);
const char * shishi_cfg_default_userfile (Shishi *handle);
int shishi_cfg_from_file (Shishi *handle,

const char *cfg);
int shishi_cfg_print (Shishi *handle,

FILE *fh);
char * shishi_cfg_userdirectory_file (Shishi *handle,

const char *file);
const char * shishi_check_version (const char *req_version);
int shishi_checksum (Shishi *handle,

Shishi_key *key,
int keyusage,
int32_t cksumtype,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

size_t shishi_checksum_cksumlen (int32_t type);
const char * shishi_checksum_name (int32_t type);
int shishi_checksum_parse (const char *checksum);
int shishi_checksum_supported_p (int32_t type);
int shishi_cipher_blocksize (int type);
int shishi_cipher_confoundersize (int type);
int shishi_cipher_defaultcksumtype (int32_t type);
size_t shishi_cipher_keylen (int type);
const char * shishi_cipher_name (int type);
int shishi_cipher_parse (const char *cipher);
size_t shishi_cipher_randomlen (int type);
int shishi_cipher_supported_p (int type);
int shishi_crc (Shishi *handle,

const char *in,
size_t inlen,
char *out[4]);

Shishi_crypto * shishi_crypto (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *iv,
size_t ivlen);

void shishi_crypto_close (Shishi_crypto *ctx);

Shishi API Reference Manual 14 / 249

int shishi_crypto_decrypt (Shishi_crypto *ctx,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_crypto_encrypt (Shishi_crypto *ctx,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_ctime (Shishi *handle,
Shishi_asn1 node,
const char *field,
time_t *t);

int shishi_decrypt (Shishi *handle,
Shishi_key *key,
int keyusage,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_decrypt_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_decrypt_iv (Shishi *handle,
Shishi_key *key,
int keyusage,
const char *iv,
size_t ivlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_decrypt_iv_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *iv,
size_t ivlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_decrypt_ivupdate (Shishi *handle,
Shishi_key *key,
int keyusage,
const char *iv,
size_t ivlen,
char **ivout,
size_t *ivoutlen,
const char *in,
size_t inlen,

Shishi API Reference Manual 15 / 249

char **out,
size_t *outlen);

int shishi_decrypt_ivupdate_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *iv,
size_t ivlen,
char **ivout,
size_t *ivoutlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Shishi_asn1 shishi_der2asn1 (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_aprep (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_apreq (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_asrep (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_asreq (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_authenticator (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_encapreppart (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_encasreppart (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_enckdcreppart (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_encprivpart (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_enctgsreppart (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_encticketpart (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_etype_info (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_etype_info2 (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_kdcrep (Shishi *handle,

Shishi API Reference Manual 16 / 249

const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_kdcreq (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_krberror (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_krbsafe (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_methoddata (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_padata (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_priv (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_tgsrep (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_tgsreq (Shishi *handle,
const char *der,
size_t derlen);

Shishi_asn1 shishi_der2asn1_ticket (Shishi *handle,
const char *der,
size_t derlen);

Shishi_msgtype shishi_der_msgtype (Shishi *handle,
const char *der,
size_t derlen);

int shishi_derive_default_salt (Shishi *handle,
const char *name,
char **salt);

int shishi_des (Shishi *handle,
int decryptp,
const char key[8],
const char iv[8],
char *ivout[8],
const char *in,
size_t inlen,
char **out);

int shishi_des_cbc_mac (Shishi *handle,
const char key[8],
const char iv[8],
const char *in,
size_t inlen,
char *out[8]);

int shishi_dk (Shishi *handle,
Shishi_key *key,
const char *prfconstant,
size_t prfconstantlen,
Shishi_key *derivedkey);

void shishi_done (Shishi *handle);
int shishi_dr (Shishi *handle,

Shishi_key *key,

Shishi API Reference Manual 17 / 249

const char *prfconstant,
size_t prfconstantlen,
char *derivedrandom,
size_t derivedrandomlen);

Shishi_asn1 shishi_encapreppart (Shishi *handle);
int shishi_encapreppart_ctime (Shishi *handle,

Shishi_asn1 encapreppart,
char **t);

int shishi_encapreppart_ctime_set (Shishi *handle,
Shishi_asn1 encapreppart,
const char *t);

int shishi_encapreppart_cusec_get (Shishi *handle,
Shishi_asn1 encapreppart,
uint32_t *cusec);

int shishi_encapreppart_cusec_set (Shishi *handle,
Shishi_asn1 encapreppart,
uint32_t cusec);

int shishi_encapreppart_from_file (Shishi *handle,
Shishi_asn1 *encapreppart,
int filetype,
const char *filename);

int shishi_encapreppart_get_key (Shishi *handle,
Shishi_asn1 encapreppart,
Shishi_key **key);

int shishi_encapreppart_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *encapreppart);

int shishi_encapreppart_print (Shishi *handle,
FILE *fh,
Shishi_asn1 encapreppart);

int shishi_encapreppart_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *encapreppart);

int shishi_encapreppart_save (Shishi *handle,
FILE *fh,
Shishi_asn1 encapreppart);

int shishi_encapreppart_seqnumber_get (Shishi *handle,
Shishi_asn1 encapreppart,
uint32_t *seqnumber);

int shishi_encapreppart_seqnumber_remove
(Shishi *handle,
Shishi_asn1 encapreppart);

int shishi_encapreppart_seqnumber_set (Shishi *handle,
Shishi_asn1 encapreppart,
uint32_t seqnumber);

int shishi_encapreppart_time_copy (Shishi *handle,
Shishi_asn1 encapreppart,
Shishi_asn1 authenticator);

int shishi_encapreppart_to_file (Shishi *handle,
Shishi_asn1 encapreppart,
int filetype,
const char *filename);

Shishi_asn1 shishi_encasreppart (Shishi *handle);
Shishi_asn1 shishi_enckdcreppart (Shishi *handle);
int shishi_enckdcreppart_authtime_set (Shishi *handle,

Shishi_asn1 enckdcreppart,
const char *authtime);

Shishi API Reference Manual 18 / 249

int shishi_enckdcreppart_endtime_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *endtime);

int shishi_enckdcreppart_flags_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
int flags);

int shishi_enckdcreppart_get_key (Shishi *handle,
Shishi_asn1 enckdcreppart,
Shishi_key **key);

int shishi_enckdcreppart_key_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
Shishi_key *key);

int shishi_enckdcreppart_nonce_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
uint32_t nonce);

int shishi_enckdcreppart_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *enckdcreppart);

int shishi_enckdcreppart_populate_encticketpart
(Shishi *handle,
Shishi_asn1 enckdcreppart,
Shishi_asn1 encticketpart);

int shishi_enckdcreppart_print (Shishi *handle,
FILE *fh,
Shishi_asn1 enckdcreppart);

int shishi_enckdcreppart_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *enckdcreppart);

int shishi_enckdcreppart_renew_till_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *renew_till);

int shishi_enckdcreppart_save (Shishi *handle,
FILE *fh,
Shishi_asn1 enckdcreppart);

int shishi_enckdcreppart_server_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *server);

int shishi_enckdcreppart_sname_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
Shishi_name_type name_type,
char *sname[]);

int shishi_enckdcreppart_srealm_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *srealm);

int shishi_enckdcreppart_srealmserver_set
(Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *srealm,
const char *server);

int shishi_enckdcreppart_starttime_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *starttime);

int shishi_encprivpart_set_user_data (Shishi *handle,
Shishi_asn1 encprivpart,
const char *userdata,
size_t userdatalen);

int shishi_encprivpart_user_data (Shishi *handle,

Shishi API Reference Manual 19 / 249

Shishi_asn1 encprivpart,
char **userdata,
size_t *userdatalen);

int shishi_encrypt (Shishi *handle,
Shishi_key *key,
int keyusage,
char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_encrypt_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_encrypt_iv (Shishi *handle,
Shishi_key *key,
int keyusage,
const char *iv,
size_t ivlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_encrypt_iv_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *iv,
size_t ivlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_encrypt_ivupdate (Shishi *handle,
Shishi_key *key,
int keyusage,
const char *iv,
size_t ivlen,
char **ivout,
size_t *ivoutlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

int shishi_encrypt_ivupdate_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *iv,
size_t ivlen,
char **ivout,
size_t *ivoutlen,
const char *in,

Shishi API Reference Manual 20 / 249

size_t inlen,
char **out,
size_t *outlen);

Shishi_asn1 shishi_encticketpart (Shishi *handle);
time_t shishi_encticketpart_authctime (Shishi *handle,

Shishi_asn1 encticketpart);
int shishi_encticketpart_authtime (Shishi *handle,

Shishi_asn1 encticketpart,
char *authtime,
size_t *authtimelen);

int shishi_encticketpart_authtime_set (Shishi *handle,
Shishi_asn1 encticketpart,
const char *authtime);

int shishi_encticketpart_client (Shishi *handle,
Shishi_asn1 encticketpart,
char **client,
size_t *clientlen);

int shishi_encticketpart_clientrealm (Shishi *handle,
Shishi_asn1 encticketpart,
char **client,
size_t *clientlen);

int shishi_encticketpart_cname_set (Shishi *handle,
Shishi_asn1 encticketpart,
Shishi_name_type name_type,
const char *principal);

int shishi_encticketpart_crealm (Shishi *handle,
Shishi_asn1 encticketpart,
char **crealm,
size_t *crealmlen);

int shishi_encticketpart_crealm_set (Shishi *handle,
Shishi_asn1 encticketpart,
const char *realm);

int shishi_encticketpart_endtime_set (Shishi *handle,
Shishi_asn1 encticketpart,
const char *endtime);

int shishi_encticketpart_flags_set (Shishi *handle,
Shishi_asn1 encticketpart,
int flags);

int shishi_encticketpart_get_key (Shishi *handle,
Shishi_asn1 encticketpart,
Shishi_key **key);

int shishi_encticketpart_key_set (Shishi *handle,
Shishi_asn1 encticketpart,
Shishi_key *key);

int shishi_encticketpart_print (Shishi *handle,
FILE *fh,
Shishi_asn1 encticketpart);

int shishi_encticketpart_transited_set (Shishi *handle,
Shishi_asn1 encticketpart,
int32_t trtype,
const char *trdata,
size_t trdatalen);

const char * shishi_error (Shishi *handle);
void shishi_error_clear (Shishi *handle);
int shishi_error_outputtype (Shishi *handle);
void shishi_error_printf (Shishi *handle,

const char *format,

Shishi API Reference Manual 21 / 249

...);
void shishi_error_set (Shishi *handle,

const char *errstr);
void shishi_error_set_outputtype (Shishi *handle,

int type);
int shishi_etype_info2_print (Shishi *handle,

FILE *fh,
Shishi_asn1 etypeinfo2);

int shishi_etype_info_print (Shishi *handle,
FILE *fh,
Shishi_asn1 etypeinfo);

time_t shishi_generalize_ctime (Shishi *handle,
const char *t);

const char * shishi_generalize_now (Shishi *handle);
const char * shishi_generalize_time (Shishi *handle,

time_t t);
time_t shishi_get_date (const char *p,

const time_t *now);
int shishi_hmac_md5 (Shishi *handle,

const char *key,
size_t keylen,
const char *in,
size_t inlen,
char *outhash[16]);

int shishi_hmac_sha1 (Shishi *handle,
const char *key,
size_t keylen,
const char *in,
size_t inlen,
char *outhash[20]);

const char * shishi_hostkeys_default_file (Shishi *handle);
void shishi_hostkeys_default_file_set (Shishi *handle,

const char *hostkeysfile);
Shishi_key * shishi_hostkeys_for_localservice (Shishi *handle,

const char *service);
Shishi_key * shishi_hostkeys_for_localservicerealm

(Shishi *handle,
const char *service,
const char *realm);

Shishi_key * shishi_hostkeys_for_server (Shishi *handle,
const char *server);

Shishi_key * shishi_hostkeys_for_serverrealm (Shishi *handle,
const char *server,
const char *realm);

void shishi_info (Shishi *handle,
const char *format,
...);

int shishi_init (Shishi **handle);
int shishi_init_server (Shishi **handle);
int shishi_init_server_with_paths (Shishi **handle,

const char *systemcfgfile);
int shishi_init_with_paths (Shishi **handle,

const char *tktsfile,
const char *systemcfgfile,
const char *usercfgfile);

int shishi_kdc_check_nonce (Shishi *handle,
Shishi_asn1 kdcreq,

Shishi API Reference Manual 22 / 249

Shishi_asn1 enckdcreppart);
int shishi_kdc_copy_cname (Shishi *handle,

Shishi_asn1 kdcrep,
Shishi_asn1 encticketpart);

int shishi_kdc_copy_crealm (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_asn1 encticketpart);

int shishi_kdc_copy_nonce (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 enckdcreppart);

int shishi_kdc_print (Shishi *handle,
FILE *fh,
Shishi_asn1 asreq,
Shishi_asn1 asrep,
Shishi_asn1 encasreppart);

int shishi_kdc_process (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 kdcrep,
Shishi_key *key,
int keyusage,
Shishi_asn1 *enckdcreppart);

int shishi_kdc_sendrecv (Shishi *handle,
const char *realm,
const char *indata,
size_t inlen,
char **outdata,
size_t *outlen);

int shishi_kdc_sendrecv_hint (Shishi *handle,
const char *realm,
const char *indata,
size_t inlen,
char **outdata,
size_t *outlen,
Shishi_tkts_hint *hint);

int shishi_kdcrep_add_enc_part (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_key *key,
int keyusage,
Shishi_asn1 enckdcreppart);

int shishi_kdcrep_clear_padata (Shishi *handle,
Shishi_asn1 kdcrep);

int shishi_kdcrep_client_set (Shishi *handle,
Shishi_asn1 kdcrep,
const char *client);

int shishi_kdcrep_cname_set (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_name_type name_type,
const char *cname[]);

int shishi_kdcrep_crealm_set (Shishi *handle,
Shishi_asn1 kdcrep,
const char *crealm);

int shishi_kdcrep_crealmserver_set (Shishi *handle,
Shishi_asn1 kdcrep,
const char *crealm,
const char *client);

int shishi_kdcrep_decrypt (Shishi *handle,
Shishi_asn1 kdcrep,

Shishi API Reference Manual 23 / 249

Shishi_key *key,
int keyusage,
Shishi_asn1 *enckdcreppart);

int shishi_kdcrep_from_file (Shishi *handle,
Shishi_asn1 *kdcrep,
int filetype,
const char *filename);

int shishi_kdcrep_get_enc_part_etype (Shishi *handle,
Shishi_asn1 kdcrep,
int32_t *etype);

int shishi_kdcrep_get_ticket (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_asn1 *ticket);

int shishi_kdcrep_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *kdcrep);

int shishi_kdcrep_print (Shishi *handle,
FILE *fh,
Shishi_asn1 kdcrep);

int shishi_kdcrep_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *kdcrep);

int shishi_kdcrep_save (Shishi *handle,
FILE *fh,
Shishi_asn1 kdcrep);

int shishi_kdcrep_set_enc_part (Shishi *handle,
Shishi_asn1 kdcrep,
int32_t etype,
uint32_t kvno,
const char *buf,
size_t buflen);

int shishi_kdcrep_set_ticket (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_asn1 ticket);

int shishi_kdcrep_to_file (Shishi *handle,
Shishi_asn1 kdcrep,
int filetype,
const char *filename);

int shishi_kdcreq (Shishi *handle,
char *realm,
char *service,
Shishi_asn1 *req);

int shishi_kdcreq_add_padata (Shishi *handle,
Shishi_asn1 kdcreq,
int padatatype,
const char *data,
size_t datalen);

int shishi_kdcreq_add_padata_preauth (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_key *key);

int shishi_kdcreq_add_padata_tgs (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 apreq);

int shishi_kdcreq_allow_postdate_p (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_build (Shishi *handle,
Shishi_asn1 kdcreq);

Shishi API Reference Manual 24 / 249

int shishi_kdcreq_clear_padata (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_client (Shishi *handle,
Shishi_asn1 kdcreq,
char **client,
size_t *clientlen);

int shishi_kdcreq_disable_transited_check_p
(Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_enc_tkt_in_skey_p (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_etype (Shishi *handle,
Shishi_asn1 kdcreq,
int32_t *etype,
int netype);

int shishi_kdcreq_forwardable_p (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_forwarded_p (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_from_file (Shishi *handle,
Shishi_asn1 *kdcreq,
int filetype,
const char *filename);

int shishi_kdcreq_get_padata (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_padata_type padatatype,
char **out,
size_t *outlen);

int shishi_kdcreq_get_padata_tgs (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 *apreq);

int shishi_kdcreq_nonce (Shishi *handle,
Shishi_asn1 kdcreq,
uint32_t *nonce);

int shishi_kdcreq_nonce_set (Shishi *handle,
Shishi_asn1 kdcreq,
uint32_t nonce);

int shishi_kdcreq_options (Shishi *handle,
Shishi_asn1 kdcreq,
uint32_t *flags);

int shishi_kdcreq_options_add (Shishi *handle,
Shishi_asn1 kdcreq,
uint32_t option);

int shishi_kdcreq_options_set (Shishi *handle,
Shishi_asn1 kdcreq,
uint32_t options);

int shishi_kdcreq_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *kdcreq);

int shishi_kdcreq_postdated_p (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_print (Shishi *handle,
FILE *fh,
Shishi_asn1 kdcreq);

int shishi_kdcreq_proxiable_p (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_proxy_p (Shishi *handle,

Shishi API Reference Manual 25 / 249

Shishi_asn1 kdcreq);
int shishi_kdcreq_read (Shishi *handle,

FILE *fh,
Shishi_asn1 *kdcreq);

int shishi_kdcreq_realm (Shishi *handle,
Shishi_asn1 kdcreq,
char **realm,
size_t *realmlen);

int shishi_kdcreq_realm_get (Shishi *handle,
Shishi_asn1 kdcreq,
char **realm,
size_t *realmlen);

int shishi_kdcreq_renew_p (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_renewable_ok_p (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_renewable_p (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_kdcreq_save (Shishi *handle,
FILE *fh,
Shishi_asn1 kdcreq);

int shishi_kdcreq_sendrecv (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 *kdcrep);

int shishi_kdcreq_sendrecv_hint (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 *kdcrep,
Shishi_tkts_hint *hint);

int shishi_kdcreq_server (Shishi *handle,
Shishi_asn1 kdcreq,
char **server,
size_t *serverlen);

int shishi_kdcreq_set_cname (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_name_type name_type,
const char *principal);

int shishi_kdcreq_set_etype (Shishi *handle,
Shishi_asn1 kdcreq,
int32_t *etype,
int netype);

int shishi_kdcreq_set_realm (Shishi *handle,
Shishi_asn1 kdcreq,
const char *realm);

int shishi_kdcreq_set_realmserver (Shishi *handle,
Shishi_asn1 req,
char *realm,
char *service);

int shishi_kdcreq_set_server (Shishi *handle,
Shishi_asn1 req,
const char *service);

int shishi_kdcreq_set_sname (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_name_type name_type,
const char *sname[]);

int shishi_kdcreq_till (Shishi *handle,
Shishi_asn1 kdcreq,
char **till,

Shishi API Reference Manual 26 / 249

size_t *tilllen);
time_t shishi_kdcreq_tillc (Shishi *handle,

Shishi_asn1 kdcreq);
int shishi_kdcreq_to_file (Shishi *handle,

Shishi_asn1 kdcreq,
int filetype,
const char *filename);

int shishi_kdcreq_validate_p (Shishi *handle,
Shishi_asn1 kdcreq);

int shishi_key (Shishi *handle,
Shishi_key **key);

void shishi_key_copy (Shishi_key *dstkey,
Shishi_key *srckey);

void shishi_key_done (Shishi_key *key);
int shishi_key_from_base64 (Shishi *handle,

int32_t type,
const char *value,
Shishi_key **key);

int shishi_key_from_name (Shishi *handle,
int32_t type,
const char *name,
const char *password,
size_t passwordlen,
const char *parameter,
Shishi_key **outkey);

int shishi_key_from_random (Shishi *handle,
int32_t type,
const char *rnd,
size_t rndlen,
Shishi_key **outkey);

int shishi_key_from_string (Shishi *handle,
int32_t type,
const char *password,
size_t passwordlen,
const char *salt,
size_t saltlen,
const char *parameter,
Shishi_key **outkey);

int shishi_key_from_value (Shishi *handle,
int32_t type,
const char *value,
Shishi_key **key);

size_t shishi_key_length (const Shishi_key *key);
const char * shishi_key_name (Shishi_key *key);
int shishi_key_parse (Shishi *handle,

FILE *fh,
Shishi_key **key);

const char * shishi_key_principal (const Shishi_key *key);
void shishi_key_principal_set (Shishi_key *key,

const char *principal);
int shishi_key_print (Shishi *handle,

FILE *fh,
const Shishi_key *key);

int shishi_key_random (Shishi *handle,
int32_t type,
Shishi_key **key);

const char * shishi_key_realm (const Shishi_key *key);

Shishi API Reference Manual 27 / 249

void shishi_key_realm_set (Shishi_key *key,
const char *realm);

time_t shishi_key_timestamp (const Shishi_key *key);
void shishi_key_timestamp_set (Shishi_key *key,

time_t timestamp);
int shishi_key_to_file (Shishi *handle,

const char *filename,
Shishi_key *key);

int shishi_key_type (const Shishi_key *key);
void shishi_key_type_set (Shishi_key *key,

int32_t type);
const char * shishi_key_value (const Shishi_key *key);
void shishi_key_value_set (Shishi_key *key,

const char *value);
uint32_t shishi_key_version (const Shishi_key *key);
void shishi_key_version_set (Shishi_key *key,

uint32_t kvno);
int shishi_keys (Shishi *handle,

Shishi_keys **keys);
int shishi_keys_add (Shishi_keys *keys,

Shishi_key *key);
int shishi_keys_add_keytab_file (Shishi *handle,

const char *filename,
Shishi_keys *keys);

int shishi_keys_add_keytab_mem (Shishi *handle,
const char *data,
size_t len,
Shishi_keys *keys);

void shishi_keys_done (Shishi_keys **keys);
Shishi_key * shishi_keys_for_localservicerealm_in_file

(Shishi *handle,
const char *filename,
const char *service,
const char *realm);

Shishi_key * shishi_keys_for_server_in_file (Shishi *handle,
const char *filename,
const char *server);

Shishi_key * shishi_keys_for_serverrealm_in_file (Shishi *handle,
const char *filename,
const char *server,
const char *realm);

int shishi_keys_from_file (Shishi_keys *keys,
const char *filename);

int shishi_keys_from_keytab_file (Shishi *handle,
const char *filename,
Shishi_keys **outkeys);

int shishi_keys_from_keytab_mem (Shishi *handle,
const char *data,
size_t len,
Shishi_keys **outkeys);

const Shishi_key * shishi_keys_nth (Shishi_keys *keys,
int keyno);

int shishi_keys_print (Shishi_keys *keys,
FILE *fh);

void shishi_keys_remove (Shishi_keys *keys,
int keyno);

int shishi_keys_size (Shishi_keys *keys);

Shishi API Reference Manual 28 / 249

int shishi_keys_to_file (Shishi *handle,
const char *filename,
Shishi_keys *keys);

int shishi_keys_to_keytab_file (Shishi *handle,
Shishi_keys *keys,
const char *filename);

int shishi_keys_to_keytab_mem (Shishi *handle,
Shishi_keys *keys,
char **out,
size_t *len);

Shishi_asn1 shishi_krberror (Shishi *handle);
int shishi_krberror_build (Shishi *handle,

Shishi_asn1 krberror);
int shishi_krberror_client (Shishi *handle,

Shishi_asn1 krberror,
char **client,
size_t *clientlen);

int shishi_krberror_client_set (Shishi *handle,
Shishi_asn1 krberror,
const char *client);

int shishi_krberror_crealm (Shishi *handle,
Shishi_asn1 krberror,
char **realm,
size_t *realmlen);

int shishi_krberror_ctime (Shishi *handle,
Shishi_asn1 krberror,
char **t);

int shishi_krberror_ctime_set (Shishi *handle,
Shishi_asn1 krberror,
const char *t);

int shishi_krberror_cusec (Shishi *handle,
Shishi_asn1 krberror,
uint32_t *cusec);

int shishi_krberror_cusec_set (Shishi *handle,
Shishi_asn1 krberror,
uint32_t cusec);

int shishi_krberror_der (Shishi *handle,
Shishi_asn1 krberror,
char **out,
size_t *outlen);

int shishi_krberror_edata (Shishi *handle,
Shishi_asn1 krberror,
char **edata,
size_t *edatalen);

int shishi_krberror_errorcode (Shishi *handle,
Shishi_asn1 krberror,
int *errorcode);

int shishi_krberror_errorcode_fast (Shishi *handle,
Shishi_asn1 krberror);

const char * shishi_krberror_errorcode_message (Shishi *handle,
int errorcode);

int shishi_krberror_errorcode_set (Shishi *handle,
Shishi_asn1 krberror,
int errorcode);

int shishi_krberror_etext (Shishi *handle,
Shishi_asn1 krberror,
char **etext,

Shishi API Reference Manual 29 / 249

size_t *etextlen);
int shishi_krberror_from_file (Shishi *handle,

Shishi_asn1 *krberror,
int filetype,
const char *filename);

const char * shishi_krberror_message (Shishi *handle,
Shishi_asn1 krberror);

int shishi_krberror_methoddata (Shishi *handle,
Shishi_asn1 krberror,
Shishi_asn1 *methoddata);

int shishi_krberror_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *krberror);

int shishi_krberror_pretty_print (Shishi *handle,
FILE *fh,
Shishi_asn1 krberror);

int shishi_krberror_print (Shishi *handle,
FILE *fh,
Shishi_asn1 krberror);

int shishi_krberror_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *krberror);

int shishi_krberror_realm (Shishi *handle,
Shishi_asn1 krberror,
char **realm,
size_t *realmlen);

int shishi_krberror_remove_cname (Shishi *handle,
Shishi_asn1 krberror);

int shishi_krberror_remove_crealm (Shishi *handle,
Shishi_asn1 krberror);

int shishi_krberror_remove_ctime (Shishi *handle,
Shishi_asn1 krberror);

int shishi_krberror_remove_cusec (Shishi *handle,
Shishi_asn1 krberror);

int shishi_krberror_remove_edata (Shishi *handle,
Shishi_asn1 krberror);

int shishi_krberror_remove_etext (Shishi *handle,
Shishi_asn1 krberror);

int shishi_krberror_remove_sname (Shishi *handle,
Shishi_asn1 krberror);

int shishi_krberror_save (Shishi *handle,
FILE *fh,
Shishi_asn1 krberror);

int shishi_krberror_server (Shishi *handle,
Shishi_asn1 krberror,
char **server,
size_t *serverlen);

int shishi_krberror_server_set (Shishi *handle,
Shishi_asn1 krberror,
const char *server);

int shishi_krberror_set_cname (Shishi *handle,
Shishi_asn1 krberror,
Shishi_name_type name_type,
const char *cname[]);

int shishi_krberror_set_crealm (Shishi *handle,
Shishi_asn1 krberror,
const char *crealm);

Shishi API Reference Manual 30 / 249

int shishi_krberror_set_edata (Shishi *handle,
Shishi_asn1 krberror,
const char *edata);

int shishi_krberror_set_etext (Shishi *handle,
Shishi_asn1 krberror,
const char *etext);

int shishi_krberror_set_realm (Shishi *handle,
Shishi_asn1 krberror,
const char *realm);

int shishi_krberror_set_sname (Shishi *handle,
Shishi_asn1 krberror,
Shishi_name_type name_type,
const char *sname[]);

int shishi_krberror_stime (Shishi *handle,
Shishi_asn1 krberror,
char **t);

int shishi_krberror_stime_set (Shishi *handle,
Shishi_asn1 krberror,
const char *t);

int shishi_krberror_susec (Shishi *handle,
Shishi_asn1 krberror,
uint32_t *susec);

int shishi_krberror_susec_set (Shishi *handle,
Shishi_asn1 krberror,
uint32_t susec);

int shishi_krberror_to_file (Shishi *handle,
Shishi_asn1 krberror,
int filetype,
const char *filename);

int shishi_md4 (Shishi *handle,
const char *in,
size_t inlen,
char *out[16]);

int shishi_md5 (Shishi *handle,
const char *in,
size_t inlen,
char *out[16]);

int shishi_methoddata_print (Shishi *handle,
FILE *fh,
Shishi_asn1 methoddata);

int shishi_n_fold (Shishi *handle,
const char *in,
size_t inlen,
char *out,
size_t outlen);

int shishi_padata_print (Shishi *handle,
FILE *fh,
Shishi_asn1 padata);

int shishi_parse_name (Shishi *handle,
const char *name,
char **principal,
char **realm);

int shishi_pbkdf2_sha1 (Shishi *handle,
const char *P,
size_t Plen,
const char *S,
size_t Slen,

Shishi API Reference Manual 31 / 249

unsigned int c,
unsigned int dkLen,
char *DK);

const char * shishi_principal_default (Shishi *handle);
char * shishi_principal_default_guess (void);
void shishi_principal_default_set (Shishi *handle,

const char *principal);
int shishi_principal_name (Shishi *handle,

Shishi_asn1 namenode,
const char *namefield,
char **out,
size_t *outlen);

int shishi_principal_name_realm (Shishi *handle,
Shishi_asn1 namenode,
const char *namefield,
Shishi_asn1 realmnode,
const char *realmfield,
char **out,
size_t *outlen);

int shishi_principal_name_set (Shishi *handle,
Shishi_asn1 namenode,
const char *namefield,
Shishi_name_type name_type,
const char *name[]);

int shishi_principal_set (Shishi *handle,
Shishi_asn1 namenode,
const char *namefield,
const char *name);

int shishi_priv (Shishi *handle,
Shishi_priv **priv);

int shishi_priv_build (Shishi_priv *priv,
Shishi_key *key);

void shishi_priv_done (Shishi_priv *priv);
int shishi_priv_enc_part_etype (Shishi *handle,

Shishi_asn1 priv,
int32_t *etype);

Shishi_asn1 shishi_priv_encprivpart (Shishi_priv *priv);
int shishi_priv_encprivpart_der (Shishi_priv *priv,

char **out,
size_t *outlen);

int shishi_priv_encprivpart_der_set (Shishi_priv *priv,
char *der,
size_t derlen);

void shishi_priv_encprivpart_set (Shishi_priv *priv,
Shishi_asn1 asn1encprivpart);

int shishi_priv_from_file (Shishi *handle,
Shishi_asn1 *priv,
int filetype,
const char *filename);

Shishi_key * shishi_priv_key (Shishi_priv *priv);
void shishi_priv_key_set (Shishi_priv *priv,

Shishi_key *key);
int shishi_priv_parse (Shishi *handle,

FILE *fh,
Shishi_asn1 *priv);

int shishi_priv_print (Shishi *handle,
FILE *fh,

Shishi API Reference Manual 32 / 249

Shishi_asn1 priv);
Shishi_asn1 shishi_priv_priv (Shishi_priv *priv);
int shishi_priv_priv_der (Shishi_priv *priv,

char **out,
size_t *outlen);

int shishi_priv_priv_der_set (Shishi_priv *priv,
char *der,
size_t derlen);

void shishi_priv_priv_set (Shishi_priv *priv,
Shishi_asn1 asn1priv);

int shishi_priv_process (Shishi_priv *priv,
Shishi_key *key);

int shishi_priv_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *priv);

int shishi_priv_save (Shishi *handle,
FILE *fh,
Shishi_asn1 priv);

int shishi_priv_set_enc_part (Shishi *handle,
Shishi_asn1 priv,
int32_t etype,
const char *encpart,
size_t encpartlen);

int shishi_priv_to_file (Shishi *handle,
Shishi_asn1 priv,
int filetype,
const char *filename);

int shishi_prompt_password (Shishi *handle,
char **s,
const char *format,
...);

shishi_prompt_password_func shishi_prompt_password_callback_get
(Shishi *handle);

void shishi_prompt_password_callback_set (Shishi *handle,
shishi_prompt_password_func cb);

int (*shishi_prompt_password_func) (Shishi *handle,
char **s,
const char *format,
va_list ap);

int shishi_random_to_key (Shishi *handle,
int32_t keytype,
const char *rnd,
size_t rndlen,
Shishi_key *outkey);

int shishi_randomize (Shishi *handle,
int strong,
void *data,
size_t datalen);

const char * shishi_realm_default (Shishi *handle);
char * shishi_realm_default_guess (void);
void shishi_realm_default_set (Shishi *handle,

const char *realm);
char * shishi_realm_for_server (Shishi *handle,

char *server);
char * shishi_realm_for_server_dns (Shishi *handle,

char *server);
char * shishi_realm_for_server_file (Shishi *handle,

Shishi API Reference Manual 33 / 249

char *server);
Shishi_dns shishi_resolv (const char *zone,

uint16_t querytype);
void shishi_resolv_free (Shishi_dns rrs);
int shishi_safe (Shishi *handle,

Shishi_safe **safe);
int shishi_safe_build (Shishi_safe *safe,

Shishi_key *key);
int shishi_safe_cksum (Shishi *handle,

Shishi_asn1 safe,
int32_t *cksumtype,
char **cksum,
size_t *cksumlen);

void shishi_safe_done (Shishi_safe *safe);
int shishi_safe_from_file (Shishi *handle,

Shishi_asn1 *safe,
int filetype,
const char *filename);

Shishi_key * shishi_safe_key (Shishi_safe *safe);
void shishi_safe_key_set (Shishi_safe *safe,

Shishi_key *key);
int shishi_safe_parse (Shishi *handle,

FILE *fh,
Shishi_asn1 *safe);

int shishi_safe_print (Shishi *handle,
FILE *fh,
Shishi_asn1 safe);

int shishi_safe_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *safe);

Shishi_asn1 shishi_safe_safe (Shishi_safe *safe);
int shishi_safe_safe_der (Shishi_safe *safe,

char **out,
size_t *outlen);

int shishi_safe_safe_der_set (Shishi_safe *safe,
char *der,
size_t derlen);

void shishi_safe_safe_set (Shishi_safe *safe,
Shishi_asn1 asn1safe);

int shishi_safe_save (Shishi *handle,
FILE *fh,
Shishi_asn1 safe);

int shishi_safe_set_cksum (Shishi *handle,
Shishi_asn1 safe,
int32_t cksumtype,
const char *cksum,
size_t cksumlen);

int shishi_safe_set_user_data (Shishi *handle,
Shishi_asn1 safe,
const char *userdata,
size_t userdatalen);

int shishi_safe_to_file (Shishi *handle,
Shishi_asn1 safe,
int filetype,
const char *filename);

int shishi_safe_user_data (Shishi *handle,
Shishi_asn1 safe,

Shishi API Reference Manual 34 / 249

char **userdata,
size_t *userdatalen);

int shishi_safe_verify (Shishi_safe *safe,
Shishi_key *key);

Shishi * shishi_server (void);
char * shishi_server_for_local_service (Shishi *handle,

const char *service);
const char * shishi_strerror (int err);
int shishi_string_to_key (Shishi *handle,

int32_t keytype,
const char *password,
size_t passwordlen,
const char *salt,
size_t saltlen,
const char *parameter,
Shishi_key *outkey);

int shishi_tgs (Shishi *handle,
Shishi_tgs **tgs);

Shishi_ap * shishi_tgs_ap (Shishi_tgs *tgs);
void shishi_tgs_done (Shishi_tgs *tgs);
Shishi_asn1 shishi_tgs_krberror (Shishi_tgs *tgs);
int shishi_tgs_krberror_der (Shishi_tgs *tgs,

char **out,
size_t *outlen);

void shishi_tgs_krberror_set (Shishi_tgs *tgs,
Shishi_asn1 krberror);

int shishi_tgs_process (Shishi *handle,
Shishi_asn1 tgsreq,
Shishi_asn1 tgsrep,
Shishi_asn1 authenticator,
Shishi_asn1 oldenckdcreppart,
Shishi_asn1 *enckdcreppart);

Shishi_asn1 shishi_tgs_rep (Shishi_tgs *tgs);
int shishi_tgs_rep_build (Shishi_tgs *tgs,

int keyusage,
Shishi_key *key);

int shishi_tgs_rep_der (Shishi_tgs *tgs,
char **out,
size_t *outlen);

int shishi_tgs_rep_process (Shishi_tgs *tgs);
Shishi_asn1 shishi_tgs_req (Shishi_tgs *tgs);
int shishi_tgs_req_build (Shishi_tgs *tgs);
int shishi_tgs_req_der (Shishi_tgs *tgs,

char **out,
size_t *outlen);

int shishi_tgs_req_der_set (Shishi_tgs *tgs,
char *der,
size_t derlen);

int shishi_tgs_req_process (Shishi_tgs *tgs);
void shishi_tgs_req_set (Shishi_tgs *tgs,

Shishi_asn1 tgsreq);
int shishi_tgs_sendrecv (Shishi_tgs *tgs);
int shishi_tgs_sendrecv_hint (Shishi_tgs *tgs,

Shishi_tkts_hint *hint);
int shishi_tgs_set_realm (Shishi_tgs *tgs,

const char *realm);
int shishi_tgs_set_realmserver (Shishi_tgs *tgs,

Shishi API Reference Manual 35 / 249

const char *realm,
const char *server);

int shishi_tgs_set_server (Shishi_tgs *tgs,
const char *server);

Shishi_tkt * shishi_tgs_tgtkt (Shishi_tgs *tgs);
void shishi_tgs_tgtkt_set (Shishi_tgs *tgs,

Shishi_tkt *tgtkt);
Shishi_tkt * shishi_tgs_tkt (Shishi_tgs *tgs);
void shishi_tgs_tkt_set (Shishi_tgs *tgs,

Shishi_tkt *tkt);
Shishi_asn1 shishi_tgsrep (Shishi *handle);
Shishi_asn1 shishi_tgsreq (Shishi *handle);
Shishi_asn1 shishi_tgsreq_rst (Shishi *handle,

char *realm,
char *server,
Shishi_tkt *tkt);

Shishi_asn1 shishi_ticket (Shishi *handle);
int shishi_ticket_add_enc_part (Shishi *handle,

Shishi_asn1 ticket,
Shishi_key *key,
Shishi_asn1 encticketpart);

int shishi_ticket_decrypt (Shishi *handle,
Shishi_asn1 ticket,
Shishi_key *key,
Shishi_asn1 *encticketpart);

int shishi_ticket_get_enc_part_etype (Shishi *handle,
Shishi_asn1 ticket,
int32_t *etype);

int shishi_ticket_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *ticket);

int shishi_ticket_print (Shishi *handle,
FILE *fh,
Shishi_asn1 ticket);

int shishi_ticket_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *ticket);

int shishi_ticket_realm_get (Shishi *handle,
Shishi_asn1 ticket,
char **realm,
size_t *realmlen);

int shishi_ticket_realm_set (Shishi *handle,
Shishi_asn1 ticket,
const char *realm);

int shishi_ticket_save (Shishi *handle,
FILE *fh,
Shishi_asn1 ticket);

int shishi_ticket_server (Shishi *handle,
Shishi_asn1 ticket,
char **server,
size_t *serverlen);

int shishi_ticket_set_enc_part (Shishi *handle,
Shishi_asn1 ticket,
int32_t etype,
uint32_t kvno,
const char *buf,
size_t buflen);

Shishi API Reference Manual 36 / 249

int shishi_ticket_set_server (Shishi *handle,
Shishi_asn1 ticket,
const char *server);

int shishi_ticket_sname_set (Shishi *handle,
Shishi_asn1 ticket,
Shishi_name_type name_type,
char *sname[]);

int shishi_ticket_srealmserver_set (Shishi *handle,
Shishi_asn1 ticket,
const char *realm,
const char *server);

int shishi_time (Shishi *handle,
Shishi_asn1 node,
const char *field,
char **t);

int shishi_tkt (Shishi *handle,
Shishi_tkt **tkt);

Shishi_tkt * shishi_tkt2 (Shishi *handle,
Shishi_asn1 ticket,
Shishi_asn1 enckdcreppart,
Shishi_asn1 kdcrep);

time_t shishi_tkt_authctime (Shishi_tkt *tkt);
int shishi_tkt_authtime (Shishi_tkt *tkt,

char **authtime,
size_t *authtimelen);

int shishi_tkt_build (Shishi_tkt *tkt,
Shishi_key *key);

int shishi_tkt_client (Shishi_tkt *tkt,
char **client,
size_t *clientlen);

int shishi_tkt_client_p (Shishi_tkt *tkt,
const char *client);

int shishi_tkt_clientrealm (Shishi_tkt *tkt,
char **client,
size_t *clientlen);

int shishi_tkt_clientrealm_p (Shishi_tkt *tkt,
const char *client);

int shishi_tkt_clientrealm_set (Shishi_tkt *tkt,
const char *realm,
const char *client);

int shishi_tkt_decrypt (Shishi_tkt *tkt,
Shishi_key *key);

void shishi_tkt_done (Shishi_tkt *tkt);
Shishi_asn1 shishi_tkt_enckdcreppart (Shishi_tkt *tkt);
void shishi_tkt_enckdcreppart_set (Shishi_tkt *tkt,

Shishi_asn1 enckdcreppart);
Shishi_asn1 shishi_tkt_encticketpart (Shishi_tkt *tkt);
void shishi_tkt_encticketpart_set (Shishi_tkt *tkt,

Shishi_asn1 encticketpart);
time_t shishi_tkt_endctime (Shishi_tkt *tkt);
int shishi_tkt_endtime (Shishi_tkt *tkt,

char **endtime,
size_t *endtimelen);

int shishi_tkt_expired_p (Shishi_tkt *tkt);
int shishi_tkt_flags (Shishi_tkt *tkt,

uint32_t *flags);
int shishi_tkt_flags_add (Shishi_tkt *tkt,

Shishi API Reference Manual 37 / 249

uint32_t flag);
int shishi_tkt_flags_set (Shishi_tkt *tkt,

uint32_t flags);
int shishi_tkt_forwardable_p (Shishi_tkt *tkt);
int shishi_tkt_forwarded_p (Shishi_tkt *tkt);
int shishi_tkt_hw_authent_p (Shishi_tkt *tkt);
int shishi_tkt_initial_p (Shishi_tkt *tkt);
int shishi_tkt_invalid_p (Shishi_tkt *tkt);
Shishi_asn1 shishi_tkt_kdcrep (Shishi_tkt *tkt);
Shishi_key * shishi_tkt_key (Shishi_tkt *tkt);
int shishi_tkt_key_set (Shishi_tkt *tkt,

Shishi_key *key);
int shishi_tkt_keytype (Shishi_tkt *tkt,

int32_t *etype);
int32_t shishi_tkt_keytype_fast (Shishi_tkt *tkt);
int shishi_tkt_keytype_p (Shishi_tkt *tkt,

int32_t etype);
int shishi_tkt_lastreq (Shishi_tkt *tkt,

char **lrtime,
size_t *lrtimelen,
int32_t lrtype);

void shishi_tkt_lastreq_pretty_print (Shishi_tkt *tkt,
FILE *fh);

time_t shishi_tkt_lastreqc (Shishi_tkt *tkt,
Shishi_lrtype lrtype);

int shishi_tkt_match_p (Shishi_tkt *tkt,
Shishi_tkts_hint *hint);

int shishi_tkt_may_postdate_p (Shishi_tkt *tkt);
int shishi_tkt_ok_as_delegate_p (Shishi_tkt *tkt);
int shishi_tkt_postdated_p (Shishi_tkt *tkt);
int shishi_tkt_pre_authent_p (Shishi_tkt *tkt);
void shishi_tkt_pretty_print (Shishi_tkt *tkt,

FILE *fh);
int shishi_tkt_proxiable_p (Shishi_tkt *tkt);
int shishi_tkt_proxy_p (Shishi_tkt *tkt);
int shishi_tkt_realm (Shishi_tkt *tkt,

char **realm,
size_t *realmlen);

int shishi_tkt_renew_till (Shishi_tkt *tkt,
char **renewtilltime,
size_t *renewtilllen);

time_t shishi_tkt_renew_tillc (Shishi_tkt *tkt);
int shishi_tkt_renewable_p (Shishi_tkt *tkt);
int shishi_tkt_server (Shishi_tkt *tkt,

char **server,
size_t *serverlen);

int shishi_tkt_server_p (Shishi_tkt *tkt,
const char *server);

int shishi_tkt_serverrealm_set (Shishi_tkt *tkt,
const char *realm,
const char *server);

time_t shishi_tkt_startctime (Shishi_tkt *tkt);
int shishi_tkt_starttime (Shishi_tkt *tkt,

char **starttime,
size_t *starttimelen);

Shishi_asn1 shishi_tkt_ticket (Shishi_tkt *tkt);
void shishi_tkt_ticket_set (Shishi_tkt *tkt,

Shishi API Reference Manual 38 / 249

Shishi_asn1 ticket);
int shishi_tkt_transited_policy_checked_p

(Shishi_tkt *tkt);
int shishi_tkt_valid_at_time_p (Shishi_tkt *tkt,

time_t now);
int shishi_tkt_valid_now_p (Shishi_tkt *tkt);
int shishi_tkts (Shishi *handle,

Shishi_tkts **tkts);
int shishi_tkts_add (Shishi_tkts *tkts,

Shishi_tkt *tkt);
int shishi_tkts_add_ccache_file (Shishi *handle,

const char *filename,
Shishi_tkts *tkts);

int shishi_tkts_add_ccache_mem (Shishi *handle,
const char *data,
size_t len,
Shishi_tkts *tkts);

Shishi_tkts * shishi_tkts_default (Shishi *handle);
const char * shishi_tkts_default_ccache (Shishi *handle);
char * shishi_tkts_default_ccache_guess (Shishi *handle);
void shishi_tkts_default_ccache_set (Shishi *handle,

const char *ccache);
const char * shishi_tkts_default_file (Shishi *handle);
char * shishi_tkts_default_file_guess (Shishi *handle);
void shishi_tkts_default_file_set (Shishi *handle,

const char *tktsfile);
int shishi_tkts_default_to_file (Shishi_tkts *tkts);
void shishi_tkts_done (Shishi_tkts **tkts);
int shishi_tkts_expire (Shishi_tkts *tkts);
Shishi_tkt * shishi_tkts_find (Shishi_tkts *tkts,

Shishi_tkts_hint *hint);
Shishi_tkt * shishi_tkts_find_for_clientserver (Shishi_tkts *tkts,

const char *client,
const char *server);

Shishi_tkt * shishi_tkts_find_for_server (Shishi_tkts *tkts,
const char *server);

int shishi_tkts_from_ccache_file (Shishi *handle,
const char *filename,
Shishi_tkts **outtkts);

int shishi_tkts_from_ccache_mem (Shishi *handle,
const char *data,
size_t len,
Shishi_tkts **outtkts);

int shishi_tkts_from_file (Shishi_tkts *tkts,
const char *filename);

Shishi_tkt * shishi_tkts_get (Shishi_tkts *tkts,
Shishi_tkts_hint *hint);

Shishi_tkt * shishi_tkts_get_for_clientserver (Shishi_tkts *tkts,
const char *client,
const char *server);

Shishi_tkt * shishi_tkts_get_for_localservicepasswd
(Shishi_tkts *tkts,
const char *service,
const char *passwd);

Shishi_tkt * shishi_tkts_get_for_server (Shishi_tkts *tkts,
const char *server);

Shishi_tkt * shishi_tkts_get_tgs (Shishi_tkts *tkts,

Shishi API Reference Manual 39 / 249

Shishi_tkts_hint *hint,
Shishi_tkt *tgt);

Shishi_tkt * shishi_tkts_get_tgt (Shishi_tkts *tkts,
Shishi_tkts_hint *hint);

int shishi_tkts_new (Shishi_tkts *tkts,
Shishi_asn1 ticket,
Shishi_asn1 enckdcreppart,
Shishi_asn1 kdcrep);

Shishi_tkt * shishi_tkts_nth (Shishi_tkts *tkts,
int ticketno);

int shishi_tkts_print (Shishi_tkts *tkts,
FILE *fh);

int shishi_tkts_print_for_service (Shishi_tkts *tkts,
FILE *fh,
const char *service);

int shishi_tkts_read (Shishi_tkts *tkts,
FILE *fh);

int shishi_tkts_remove (Shishi_tkts *tkts,
int ticketno);

int shishi_tkts_size (Shishi_tkts *tkts);
int shishi_tkts_to_file (Shishi_tkts *tkts,

const char *filename);
int shishi_tkts_write (Shishi_tkts *tkts,

FILE *fh);
void shishi_verbose (Shishi *handle,

const char *format,
...);

int shishi_verify (Shishi *handle,
Shishi_key *key,
int keyusage,
int cksumtype,
const char *in,
size_t inlen,
const char *cksum,
size_t cksumlen);

void shishi_warn (Shishi *handle,
const char *format,
...);

const char * shishi_x509ca_default_file (Shishi *handle);
char * shishi_x509ca_default_file_guess (Shishi *handle);
void shishi_x509ca_default_file_set (Shishi *handle,

const char *x509cafile);
const char * shishi_x509cert_default_file (Shishi *handle);
char * shishi_x509cert_default_file_guess (Shishi *handle);
void shishi_x509cert_default_file_set (Shishi *handle,

const char *x509certfile);
const char * shishi_x509key_default_file (Shishi *handle);
char * shishi_x509key_default_file_guess (Shishi *handle);
void shishi_x509key_default_file_set (Shishi *handle,

const char *x509keyfile);
void shishi_xalloc_die (void);

Shishi API Reference Manual 40 / 249

Description

Details

SHISHI_DNS_IN

#define SHISHI_DNS_IN 1

SHISHI_DNS_SRV

#define SHISHI_DNS_SRV 33

SHISHI_DNS_TXT

#define SHISHI_DNS_TXT 16

SHISHI_GENERALIZEDTIMEZ_LENGTH

#define SHISHI_GENERALIZEDTIMEZ_LENGTH (SHISHI_GENERALIZEDTIME_LENGTH + 1)

SHISHI_GENERALIZEDTIME_LENGTH

#define SHISHI_GENERALIZEDTIME_LENGTH 15

SHISHI_VERSION

#define SHISHI_VERSION "1.0.2"

Shishi

typedef struct Shishi Shishi;

enum Shishi_KDCOptions

typedef enum {
SHISHI_KDCOPTIONS_RESERVED = 0x1,~/* bit 0 */
SHISHI_KDCOPTIONS_FORWARDABLE = 0x2,~/* bit 1 */
SHISHI_KDCOPTIONS_FORWARDED = 0x4,~/* bit 2 */
SHISHI_KDCOPTIONS_PROXIABLE = 0x8,~/* bit 3 */
SHISHI_KDCOPTIONS_PROXY = 0x10,~/* bit 4 */
SHISHI_KDCOPTIONS_ALLOW_POSTDATE = 0x20,~/* bit 5 */
SHISHI_KDCOPTIONS_POSTDATED = 0x40,~/* bit 6 */
SHISHI_KDCOPTIONS_UNUSED7 = 0x80,~/* bit 7 */
SHISHI_KDCOPTIONS_RENEWABLE = 0x100,~/* bit 8 */
SHISHI_KDCOPTIONS_UNUSED9 = 0x200,~/* bit 9 */
SHISHI_KDCOPTIONS_UNUSED10 = 0x400,~/* bit 10 */
SHISHI_KDCOPTIONS_UNUSED11 = 0x800~/* bit 11 */

#define SHISHI_KDCOPTIONS_DISABLE_TRANSITED_CHECK 0x4000000~/* bit 26 */

Shishi API Reference Manual 41 / 249

#define SHISHI_KDCOPTIONS_RENEWABLE_OK 0x8000000~/* bit 27 */
#define SHISHI_KDCOPTIONS_ENC_TKT_IN_SKEY 0x10000000~/* bit 28 */
#define SHISHI_KDCOPTIONS_RENEW 0x40000000~/* bit 30 */
#define SHISHI_KDCOPTIONS_VALIDATE 0x80000000~/* bit 31 */
} Shishi_KDCOptions;

Shishi_ap

typedef struct Shishi_ap Shishi_ap;

enum Shishi_apoptions

typedef enum {
SHISHI_APOPTIONS_RESERVED = 0x1,~/* bit 0 */
SHISHI_APOPTIONS_USE_SESSION_KEY = 0x2,~/* bit 1 */
SHISHI_APOPTIONS_MUTUAL_REQUIRED = 0x4~/* bit 2 */

} Shishi_apoptions;

Shishi_as

typedef struct Shishi_as Shishi_as;

Shishi_asn1

typedef ASN1_TYPE Shishi_asn1;

enum Shishi_authorization

typedef enum {
SHISHI_AUTHORIZATION_BASIC = 0,
SHISHI_AUTHORIZATION_K5LOGIN

} Shishi_authorization;

enum Shishi_cksumtype

typedef enum {
SHISHI_CRC32 = 1,
SHISHI_RSA_MD4 = 2,
SHISHI_RSA_MD4_DES = 3,
SHISHI_DES_MAC = 4,
SHISHI_DES_MAC_K = 5,
SHISHI_RSA_MD4_DES_K = 6,
SHISHI_RSA_MD5 = 7,
SHISHI_RSA_MD5_DES = 8,
SHISHI_RSA_MD5_DES_GSS = 9,~/* XXX */
SHISHI_HMAC_SHA1_DES3_KD = 12,
SHISHI_HMAC_SHA1_96_AES128 = 15,
SHISHI_HMAC_SHA1_96_AES256 = 16,
SHISHI_ARCFOUR_HMAC_MD5 = -138,
SHISHI_KRB5_GSSAPI_CKSUM = 8003,
SHISHI_NO_CKSUMTYPE = -1

} Shishi_cksumtype;

Shishi API Reference Manual 42 / 249

Shishi_crypto

typedef struct Shishi_crypto Shishi_crypto;

Shishi_dns

typedef struct Shishi_dns_st *Shishi_dns;

Shishi_dns_srv

typedef struct Shishi_dns_srv_st *Shishi_dns_srv;

enum Shishi_etype

typedef enum {
SHISHI_NULL = 0,
SHISHI_DES_CBC_CRC = 1,
SHISHI_DES_CBC_MD4 = 2,
SHISHI_DES_CBC_MD5 = 3,
SHISHI_DES_CBC_NONE = 4,
SHISHI_DES3_CBC_NONE = 6,
SHISHI_DES3_CBC_HMAC_SHA1_KD = 16,
SHISHI_AES128_CTS_HMAC_SHA1_96 = 17,
SHISHI_AES256_CTS_HMAC_SHA1_96 = 18,
SHISHI_ARCFOUR_HMAC = 23,
SHISHI_ARCFOUR_HMAC_EXP = 24

} Shishi_etype;

enum Shishi_filetype

typedef enum {
SHISHI_FILETYPE_TEXT = 0,
SHISHI_FILETYPE_DER,
SHISHI_FILETYPE_HEX,
SHISHI_FILETYPE_BASE64,
SHISHI_FILETYPE_BINARY

} Shishi_filetype;

Shishi_key

typedef struct Shishi_key Shishi_key;

Shishi_keys

typedef struct Shishi_keys Shishi_keys;

Shishi API Reference Manual 43 / 249

enum Shishi_keyusage

typedef enum {
/* 1. AS-REQ PA-ENC-TIMESTAMP padata timestamp, encrypted with the

client key */
SHISHI_KEYUSAGE_ASREQ_PA_ENC_TIMESTAMP = 1,
/* 2. AS-REP Ticket and TGS-REP Ticket (includes TGS session key or

application session key), encrypted with the service key */
SHISHI_KEYUSAGE_ENCTICKETPART = 2,
/* 3. AS-REP encrypted part (includes TGS session key or application

session key), encrypted with the client key */
SHISHI_KEYUSAGE_ENCASREPPART = 3,
/* 4. TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with the TGS

session key */
SHISHI_KEYUSAGE_TGSREQ_AUTHORIZATIONDATA_TGS_SESSION_KEY = 4,
/* 5. TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with the TGS

authenticator subkey (section 5.4.1) */
SHISHI_KEYUSAGE_TGSREQ_AUTHORIZATIONDATA_TGS_AUTHENTICATOR_KEY = 5,
/* 6. TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator cksum, keyed with the

TGS session key */
SHISHI_KEYUSAGE_TGSREQ_APREQ_AUTHENTICATOR_CKSUM = 6,
/* 7. TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator (includes TGS

authenticator subkey), encrypted with the TGS session key */
SHISHI_KEYUSAGE_TGSREQ_APREQ_AUTHENTICATOR = 7,
/* 8. TGS-REP encrypted part (includes application session key), encrypted

with the TGS session key */
SHISHI_KEYUSAGE_ENCTGSREPPART_SESSION_KEY = 8,
/* 9. TGS-REP encrypted part (includes application session key), encrypted

with the TGS authenticator subkey */
SHISHI_KEYUSAGE_ENCTGSREPPART_AUTHENTICATOR_KEY = 9,
/* 10. AP-REQ Authenticator cksum, keyed with the application

session key */
SHISHI_KEYUSAGE_APREQ_AUTHENTICATOR_CKSUM = 10,
/* 11. AP-REQ Authenticator (includes application authenticator subkey),

encrypted with the application session key */
SHISHI_KEYUSAGE_APREQ_AUTHENTICATOR = 11,
/* 12. AP-REP encrypted part (includes application session subkey),

encrypted with the application session key */
SHISHI_KEYUSAGE_ENCAPREPPART = 12,
/* 13. KRB-PRIV encrypted part, encrypted with a key chosen by the

application */
SHISHI_KEYUSAGE_KRB_PRIV = 13,
/* 14. KRB-CRED encrypted part, encrypted with a key chosen by the

application */
SHISHI_KEYUSAGE_KRB_CRED = 14,
/* 15. KRB-SAFE cksum, keyed with a key chosen by the application */
SHISHI_KEYUSAGE_KRB_SAFE = 15,
/* 18. KRB-ERROR checksum (e-cksum) */
SHISHI_KEYUSAGE_KRB_ERROR = 18,
/* 19. AD-KDCIssued checksum (ad-checksum) */
SHISHI_KEYUSAGE_AD_KDCISSUED = 19,
/* 20. Checksum for Mandatory Ticket Extensions */
SHISHI_KEYUSAGE_TICKET_EXTENSION = 20,
/* 21. Checksum in Authorization Data in Ticket Extensions */
SHISHI_KEYUSAGE_TICKET_EXTENSION_AUTHORIZATION = 21,
/* 22-24. Reserved for use in GSSAPI mechanisms derived from RFC 1964.

(raeburn/MIT) */
SHISHI_KEYUSAGE_GSS_R1 = 22,
SHISHI_KEYUSAGE_GSS_R2 = 23,
SHISHI_KEYUSAGE_GSS_R3 = 24,
/* draft-ietf-krb-wg-gssapi-cfx */
SHISHI_KEYUSAGE_ACCEPTOR_SEAL = 22,

Shishi API Reference Manual 44 / 249

SHISHI_KEYUSAGE_ACCEPTOR_SIGN = 23,
SHISHI_KEYUSAGE_INITIATOR_SEAL = 24,
SHISHI_KEYUSAGE_INITIATOR_SIGN = 25,
/* 16-18,20-21,25-511. Reserved for future use. */
/* 512-1023. Reserved for uses internal implementations. */
/* 1024. Encryption for application use in protocols that

do not specify key usage values */
/* 1025. Checksums for application use in protocols that

do not specify key usage values */
/* 1026-2047. Reserved for application use.

1026,1028,1030,1032,1034 used in KCMD protocol */
SHISHI_KEYUSAGE_KCMD_DES = 1026,
SHISHI_KEYUSAGE_KCMD_INPUT = 1028,
SHISHI_KEYUSAGE_KCMD_OUTPUT = 1030,
SHISHI_KEYUSAGE_KCMD_STDERR_INPUT = 1032,
SHISHI_KEYUSAGE_KCMD_STDERR_OUTPUT = 1034

} Shishi_keyusage;

enum Shishi_krb_error

typedef enum {
/* No error */
SHISHI_KDC_ERR_NONE = 0,
/* Client’s entry in database has expired */
SHISHI_KDC_ERR_NAME_EXP = 1,
/* Server’s entry in database has expired */
SHISHI_KDC_ERR_SERVICE_EXP = 2,
/* Requested protocol version number - not supported */
SHISHI_KDC_ERR_BAD_PVNO = 3,
/* Client’s key encrypted in old master key */
SHISHI_KDC_ERR_C_OLD_MAST_KVNO = 4,
/* Server’s key encrypted in old master key */
SHISHI_KDC_ERR_S_OLD_MAST_KVNO = 5,
/* Client not found in database */
SHISHI_KDC_ERR_C_PRINCIPAL_UNKNOWN = 6,
/* Server not found in database */
SHISHI_KDC_ERR_S_PRINCIPAL_UNKNOWN = 7,
/* Multiple principal entries in database */
SHISHI_KDC_ERR_PRINCIPAL_NOT_UNIQUE = 8,
/* The client or server has a null key */
SHISHI_KDC_ERR_NULL_KEY = 9,
/* Ticket not eligible for postdating */
SHISHI_KDC_ERR_CANNOT_POSTDATE = 10,
/* Requested start time is later than end time */
SHISHI_KDC_ERR_NEVER_VALID = 11,
/* KDC policy rejects request */
SHISHI_KDC_ERR_POLICY = 12,
/* KDC cannot accommodate requested option */
SHISHI_KDC_ERR_BADOPTION = 13,
/* KDC has no support for encryption type */
SHISHI_KDC_ERR_ETYPE_NOSUPP = 14,
/* KDC has no support for checksum type */
SHISHI_KDC_ERR_SUMTYPE_NOSUPP = 15,
/* KDC has no support for padata type */
SHISHI_KDC_ERR_PADATA_TYPE_NOSUPP = 16,
/* KDC has no support for transited type */
SHISHI_KDC_ERR_TRTYPE_NOSUPP = 17,
/* Clients credentials have been revoked */
SHISHI_KDC_ERR_CLIENT_REVOKED = 18,
/* Credentials for server have been revoked */

Shishi API Reference Manual 45 / 249

SHISHI_KDC_ERR_SERVICE_REVOKED = 19,
/* TGT has been revoked */
SHISHI_KDC_ERR_TGT_REVOKED = 20,
/* Client not yet valid - try again later */
SHISHI_KDC_ERR_CLIENT_NOTYET = 21,
/* Server not yet valid - try again later */
SHISHI_KDC_ERR_SERVICE_NOTYET = 22,
/* Password has expired - change password to reset */
SHISHI_KDC_ERR_KEY_EXPIRED = 23,
/* Pre-authentication information was invalid */
SHISHI_KDC_ERR_PREAUTH_FAILED = 24,
/* Additional pre-authenticationrequired */
SHISHI_KDC_ERR_PREAUTH_REQUIRED = 25,
/* Requested server and ticket don’t match */
SHISHI_KDC_ERR_SERVER_NOMATCH = 26,
/* Server principal valid for user = 2,user only */
SHISHI_KDC_ERR_MUST_USE_USER2USER = 27,
/* KDC Policy rejects transited path */
SHISHI_KDC_ERR_PATH_NOT_ACCPETED = 28,
/* A service is not available */
SHISHI_KDC_ERR_SVC_UNAVAILABLE = 29,
/* Integrity check on decrypted field failed */
SHISHI_KRB_AP_ERR_BAD_INTEGRITY = 31,
/* Ticket expired */
SHISHI_KRB_AP_ERR_TKT_EXPIRED = 32,
/* Ticket not yet valid */
SHISHI_KRB_AP_ERR_TKT_NYV = 33,
/* Request is a replay */
SHISHI_KRB_AP_ERR_REPEAT = 34,
/* The ticket isn’t for us */
SHISHI_KRB_AP_ERR_NOT_US = 35,
/* Ticket and authenticator don’t match */
SHISHI_KRB_AP_ERR_BADMATCH = 36,
/* Clock skew too great */
SHISHI_KRB_AP_ERR_SKEW = 37,
/* Incorrect net address */
SHISHI_KRB_AP_ERR_BADADDR = 38,
/* Protocol version mismatch */
SHISHI_KRB_AP_ERR_BADVERSION = 39,
/* Invalid msg type */
SHISHI_KRB_AP_ERR_MSG_TYPE = 40,
/* Message stream modified */
SHISHI_KRB_AP_ERR_MODIFIED = 41,
/* Message out of order */
SHISHI_KRB_AP_ERR_BADORDER = 42,
/* Specified version of key is not available */
SHISHI_KRB_AP_ERR_BADKEYVER = 44,
/* Service key not available */
SHISHI_KRB_AP_ERR_NOKEY = 45,
/* Mutual authentication failed */
SHISHI_KRB_AP_ERR_MUT_FAIL = 46,
/* Incorrect message direction */
SHISHI_KRB_AP_ERR_BADDIRECTION = 47,
/* Alternative authentication method required */
SHISHI_KRB_AP_ERR_METHOD = 48,
/* Incorrect sequence number in message */
SHISHI_KRB_AP_ERR_BADSEQ = 49,
/* Inappropriate type of checksum in message */
SHISHI_KRB_AP_ERR_INAPP_CKSUM = 50,
/* Policy rejects transited path */
SHISHI_KRB_AP_PATH_NOT_ACCEPTED = 51,
/* Response too big for UDP, retry with TCP */

Shishi API Reference Manual 46 / 249

SHISHI_KRB_ERR_RESPONSE_TOO_BIG = 52,
/* Generic error (description in e-text) */
SHISHI_KRB_ERR_GENERIC = 60,
/* Field is too long for this implementation */
SHISHI_KRB_ERR_FIELD_TOOLONG = 61,
/* Reserved for PKINIT */
SHISHI_KDC_ERROR_CLIENT_NOT_TRUSTED = 62,
/* Reserved for PKINIT */
SHISHI_KDC_ERROR_KDC_NOT_TRUSTED = 63,
/* Reserved for PKINIT */
SHISHI_KDC_ERROR_INVALID_SIG = 64,
/* Reserved for PKINIT */
SHISHI_KDC_ERR_KEY_TOO_WEAK = 65,
/* Reserved for PKINIT */
SHISHI_KDC_ERR_CERTIFICATE_MISMATCH = 66,
/* No TGT available to validate USER-TO-USER */
SHISHI_KRB_AP_ERR_NO_TGT = 67,
/* USER-TO-USER TGT issued different KDC */
SHISHI_KDC_ERR_WRONG_REALM = 68,
/* Ticket must be for USER-TO-USER */
SHISHI_KRB_AP_ERR_USER_TO_USER_REQUIRED = 69,
/* Reserved for PKINIT */
SHISHI_KDC_ERR_CANT_VERIFY_CERTIFICATE = 70,
/* Reserved for PKINIT */
SHISHI_KDC_ERR_INVALID_CERTIFICATE = 71,
/* Reserved for PKINIT */
SHISHI_KDC_ERR_REVOKED_CERTIFICATE = 72,
/* Reserved for PKINIT */
SHISHI_KDC_ERR_REVOCATION_STATUS_UNKNOWN = 73,
/* Reserved for PKINIT */
SHISHI_KDC_ERR_REVOCATION_STATUS_UNAVAILABLE = 74,
/* Reserved for PKINIT */
SHISHI_KDC_ERR_CLIENT_NAME_MISMATCH = 75,
/* Reserved for PKINIT */
SHISHI_KDC_ERR_KDC_NAME_MISMATCH = 76,
SHISHI_LAST_ERROR_CODE = 76

} Shishi_krb_error;

enum Shishi_lrtype

typedef enum {
SHISHI_LRTYPE_LAST_INITIAL_TGT_REQUEST = 1,
SHISHI_LRTYPE_LAST_INITIAL_REQUEST = 2,
SHISHI_LRTYPE_NEWEST_TGT_ISSUE = 3,
SHISHI_LRTYPE_LAST_RENEWAL = 4,
SHISHI_LRTYPE_LAST_REQUEST = 5

} Shishi_lrtype;

enum Shishi_msgtype

typedef enum {
/* 0 unused */
/* 1 Ticket PDU */
/* 2 Authenticator non-PDU */
/* 3 EncTicketPart non-PDU */
/* 4-9 unused */
/* Request for initial authentication */
SHISHI_MSGTYPE_AS_REQ = 10,

Shishi API Reference Manual 47 / 249

/* Response to SHISHI_MSGTYPE_AS_REQ request */
SHISHI_MSGTYPE_AS_REP = 11,
/* Request for authentication based on TGT */
SHISHI_MSGTYPE_TGS_REQ = 12,
/* Response to SHISHI_MSGTYPE_TGS_REQ request */
SHISHI_MSGTYPE_TGS_REP = 13,
/* application request to server */
SHISHI_MSGTYPE_AP_REQ = 14,
/* Response to SHISHI_MSGTYPE_AP_REQ_MUTUAL */
SHISHI_MSGTYPE_AP_REP = 15,
/* Reserved for user-to-user krb_tgt_request */
SHISHI_MSGTYPE_RESERVED16 = 16,
/* Reserved for user-to-user krb_tgt_reply */
SHISHI_MSGTYPE_RESERVED17 = 17,
/* 18-19 unused */
/* Safe (checksummed) application message */
SHISHI_MSGTYPE_SAFE = 20,
/* Private (encrypted) application message */
SHISHI_MSGTYPE_PRIV = 21,
/* Private (encrypted) message to forward credentials */
SHISHI_MSGTYPE_CRED = 22,
/* 23-24 unused */
/* 25 EncASRepPart non-PDU */
/* 26 EncTGSRepPart non-PDU */
/* 27 EncApRepPart non-PDU */
/* 28 EncKrbPrivPart non-PDU */
/* 29 EncKrbCredPart non-PDU */
/* Error response */
SHISHI_MSGTYPE_ERROR = 30

} Shishi_msgtype;

enum Shishi_name_type

typedef enum {
/* Name type not known */
SHISHI_NT_UNKNOWN = 0,
/* Just the name of the principal as in DCE, or for users */
SHISHI_NT_PRINCIPAL = 1,
/* Service and other unique instance (krbtgt) */
SHISHI_NT_SRV_INST = 2,
/* Service with host name as instance (telnet, rcommands) */
SHISHI_NT_SRV_HST = 3,
/* Service with host as remaining components */
SHISHI_NT_SRV_XHST = 4,
/* Unique ID */
SHISHI_NT_UID = 5,
/* Encoded X.509 Distingished name [RFC 2253] */
SHISHI_NT_X500_PRINCIPAL = 6,
/* Name in form of SMTP email name (e.g. user@foo.com) */
SHISHI_NT_SMTP_NAME = 7,
/* Enterprise name - may be mapped to principal name */
SHISHI_NT_ENTERPRISE = 10

} Shishi_name_type;

enum Shishi_outputtype

typedef enum {
SHISHI_OUTPUTTYPE_NULL = 0,

Shishi API Reference Manual 48 / 249

SHISHI_OUTPUTTYPE_STDERR,
SHISHI_OUTPUTTYPE_SYSLOG

} Shishi_outputtype;

enum Shishi_padata_type

typedef enum {
SHISHI_PA_TGS_REQ = 1,
SHISHI_PA_ENC_TIMESTAMP = 2,
SHISHI_PA_PW_SALT = 3,
SHISHI_PA_RESERVED = 4,
SHISHI_PA_ENC_UNIX_TIME = 5,~/* (deprecated) */
SHISHI_PA_SANDIA_SECUREID = 6,
SHISHI_PA_SESAME = 7,
SHISHI_PA_OSF_DCE = 8,
SHISHI_PA_CYBERSAFE_SECUREID = 9,
SHISHI_PA_AFS3_SALT = 10,
SHISHI_PA_ETYPE_INFO = 11,
SHISHI_PA_SAM_CHALLENGE = 12,~/* (sam/otp) */
SHISHI_PA_SAM_RESPONSE = 13,~/* (sam/otp) */
SHISHI_PA_PK_AS_REQ = 14,~/* (pkinit) */
SHISHI_PA_PK_AS_REP = 15,~/* (pkinit) */
SHISHI_PA_ETYPE_INFO2 = 19,~/* (replaces pa_etype_info) */
SHISHI_PA_USE_SPECIFIED_KVNO = 20,
SHISHI_PA_SAM_REDIRECT = 21,~/* (sam/otp) */
SHISHI_PA_GET_FROM_TYPED_DATA = 22,~/* (embedded in typed data) */
SHISHI_TD_PADATA = 22,~/* (embeds padata) */
SHISHI_PA_SAM_ETYPE_INFO = 23,~/* (sam/otp) */
SHISHI_PA_ALT_PRINC = 24,~/* (crawdad@fnal.gov) */
SHISHI_PA_SAM_CHALLENGE2 = 30,~/* (kenh@pobox.com) */
SHISHI_PA_SAM_RESPONSE2 = 31,~/* (kenh@pobox.com) */
SHISHI_PA_EXTRA_TGT = 41,~/* Reserved extra TGT */
SHISHI_TD_PKINIT_CMS_CERTIFICATES = 101,~/* CertificateSet from CMS */
SHISHI_TD_KRB_PRINCIPAL = 102,~/* PrincipalName */
SHISHI_TD_KRB_REALM = 103,~/* Realm */
SHISHI_TD_TRUSTED_CERTIFIERS = 104,~/* from PKINIT */
SHISHI_TD_CERTIFICATE_INDEX = 105,~/* from PKINIT */
SHISHI_TD_APP_DEFINED_ERROR = 106,~/* application specific */
SHISHI_TD_REQ_NONCE = 107,~/* INTEGER */
SHISHI_TD_REQ_SEQ = 108,~/* INTEGER */
SHISHI_PA_PAC_REQUEST = 128~/* (jbrezak@exchange.microsoft.com) */

} Shishi_padata_type;

Shishi_priv

typedef struct Shishi_priv Shishi_priv;

enum Shishi_rc

typedef enum {
SHISHI_OK = 0,
SHISHI_ASN1_ERROR = 1,
SHISHI_FOPEN_ERROR = 2,
SHISHI_IO_ERROR = 3,
SHISHI_MALLOC_ERROR = 4,
SHISHI_BASE64_ERROR = 5,

Shishi API Reference Manual 49 / 249

SHISHI_REALM_MISMATCH = 6,
SHISHI_CNAME_MISMATCH = 7,
SHISHI_NONCE_MISMATCH = 8,
SHISHI_TGSREP_BAD_KEYTYPE = 9,
SHISHI_KDCREP_BAD_KEYTYPE = 10,
SHISHI_APREP_BAD_KEYTYPE = 11,
SHISHI_APREP_VERIFY_FAILED = 12,
SHISHI_APREQ_BAD_KEYTYPE = 13,
SHISHI_TOO_SMALL_BUFFER = 14,
SHISHI_DERIVEDKEY_TOO_SMALL = 15,
SHISHI_KEY_TOO_LARGE = 16,
SHISHI_CRYPTO_ERROR = 17,
SHISHI_CRYPTO_INTERNAL_ERROR = 18,
SHISHI_SOCKET_ERROR = 19,
SHISHI_BIND_ERROR = 20,
SHISHI_SENDTO_ERROR = 21,
SHISHI_RECVFROM_ERROR = 22,
SHISHI_CLOSE_ERROR = 23,
SHISHI_KDC_TIMEOUT = 24,
SHISHI_KDC_NOT_KNOWN_FOR_REALM = 25,
SHISHI_TTY_ERROR = 26,
SHISHI_GOT_KRBERROR = 27,
SHISHI_HANDLE_ERROR = 28,
SHISHI_INVALID_TKTS = 29,
SHISHI_TICKET_BAD_KEYTYPE = 30,
SHISHI_INVALID_KEY = 31,
SHISHI_APREQ_DECRYPT_FAILED = 32,
SHISHI_TICKET_DECRYPT_FAILED = 33,
SHISHI_INVALID_TICKET = 34,
SHISHI_OUT_OF_RANGE = 35,
SHISHI_ASN1_NO_ELEMENT = 36,
SHISHI_SAFE_BAD_KEYTYPE = 37,
SHISHI_SAFE_VERIFY_FAILED = 38,
SHISHI_PKCS5_INVALID_PRF = 39,
SHISHI_PKCS5_INVALID_ITERATION_COUNT = 40,
SHISHI_PKCS5_INVALID_DERIVED_KEY_LENGTH = 41,
SHISHI_PKCS5_DERIVED_KEY_TOO_LONG = 42,
SHISHI_INVALID_PRINCIPAL_NAME = 43,
SHISHI_INVALID_ARGUMENT = 44,
SHISHI_ASN1_NO_VALUE = 45,
SHISHI_CONNECT_ERROR = 46,
SHISHI_VERIFY_FAILED = 47,
SHISHI_PRIV_BAD_KEYTYPE = 48,
SHISHI_FILE_ERROR = 49,
SHISHI_ENCAPREPPART_BAD_KEYTYPE = 50,
SHISHI_GETTIMEOFDAY_ERROR = 51,
SHISHI_KEYTAB_ERROR = 52,
SHISHI_CCACHE_ERROR = 53,
SHISHI_LAST_ERROR = 53

} Shishi_rc;

Shishi_safe

typedef struct Shishi_safe Shishi_safe;

Shishi_tgs

typedef struct Shishi_tgs Shishi_tgs;

Shishi API Reference Manual 50 / 249

enum Shishi_ticketflags

typedef enum {
SHISHI_TICKETFLAGS_RESERVED = 0x1,~/* bit 0 */
SHISHI_TICKETFLAGS_FORWARDABLE = 0x2,~/* bit 1 */
SHISHI_TICKETFLAGS_FORWARDED = 0x4,~/* bit 2 */
SHISHI_TICKETFLAGS_PROXIABLE = 0x8,~/* bit 3 */
SHISHI_TICKETFLAGS_PROXY = 0x10,~/* bit 4 */
SHISHI_TICKETFLAGS_MAY_POSTDATE = 0x20,~/* bit 5 */
SHISHI_TICKETFLAGS_POSTDATED = 0x40,~/* bit 6 */
SHISHI_TICKETFLAGS_INVALID = 0x80,~/* bit 7 */
SHISHI_TICKETFLAGS_RENEWABLE = 0x100,~/* bit 8 */
SHISHI_TICKETFLAGS_INITIAL = 0x200,~/* bit 9 */
SHISHI_TICKETFLAGS_PRE_AUTHENT = 0x400,~/* bit 10 */
SHISHI_TICKETFLAGS_HW_AUTHENT = 0x800,~/* bit 11 */
SHISHI_TICKETFLAGS_TRANSITED_POLICY_CHECKED = 0x1000,~/* bit 12 */
SHISHI_TICKETFLAGS_OK_AS_DELEGATE = 0x2000~/* bit 13 */

} Shishi_ticketflags;

Shishi_tkt

typedef struct Shishi_tkt Shishi_tkt;

Shishi_tkts

typedef struct Shishi_tkts Shishi_tkts;

Shishi_tkts_hint

typedef struct Shishi_tkts_hint Shishi_tkts_hint;

enum Shishi_tkts_hintflags

typedef enum {
SHISHI_TKTSHINTFLAGS_ACCEPT_EXPIRED = 1,
SHISHI_TKTSHINTFLAGS_NON_INTERACTIVE = 2

} Shishi_tkts_hintflags;

enum Shishi_tr_type

typedef enum {
SHISHI_TR_DOMAIN_X500_COMPRESS = 1

} Shishi_tr_type;

shishi ()

Shishi * shishi (void);

Initializes the Shishi library, and set up, using shishi_error_set_outputtype(), the library so that future warnings and informational
messages are printed to stderr. If this function fails, it may print diagnostic errors to stderr.

Returns : Returns Shishi library handle, or NULL on error.

Shishi API Reference Manual 51 / 249

shishi_3des ()

int shishi_3des (Shishi *handle,
int decryptp,
const char key[24],
const char iv[8],
char *ivout[8],
const char *in,
size_t inlen,
char **out);

Encrypt or decrypt data (depending on decryptp) using 3DES in CBC mode. The out buffer must be deallocated by the caller.

handle : shishi handle as allocated by shishi_init().

decryptp : 0 to indicate encryption, non-0 to indicate decryption.

key : input character array with key to use.

iv : input character array with initialization vector to use, or NULL.

ivout : output character array with updated initialization vector, or NULL.

in : input character array of data to encrypt/decrypt.

inlen : length of input character array of data to encrypt/decrypt.

out : newly allocated character array with encrypted/decrypted data.

Returns : Returns SHISHI_OK iff successful.

shishi_aes_cts ()

int shishi_aes_cts (Shishi *handle,
int decryptp,
const char *key,
size_t keylen,
const char iv[16],
char *ivout[16],
const char *in,
size_t inlen,
char **out);

Encrypt or decrypt data (depending on decryptp) using AES in CBC-CTS mode. The length of the key, keylen, decide if AES
128 or AES 256 should be used. The out buffer must be deallocated by the caller.

handle : shishi handle as allocated by shishi_init().

decryptp : 0 to indicate encryption, non-0 to indicate decryption.

key : input character array with key to use.

keylen : length of input character array with key to use.

iv : input character array with initialization vector to use, or NULL.

ivout : output character array with updated initialization vector, or NULL.

in : input character array of data to encrypt/decrypt.

inlen : length of input character array of data to encrypt/decrypt.

out : newly allocated character array with encrypted/decrypted data.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 52 / 249

shishi_alloc_fail_function ()

void (*shishi_alloc_fail_function) (void);

shishi_ap ()

int shishi_ap (Shishi *handle,
Shishi_ap **ap);

Create a new AP exchange with a random subkey of the default encryption type from configuration. Note that there is no
guarantee that the receiver will understand that key type, you should probably use shishi_ap_etype() or shishi_ap_nosubkey()
instead. In the future, this function will likely behave as shishi_ap_nosubkey() and shishi_ap_nosubkey() will be removed.

handle : shishi handle as allocated by shishi_init().

ap : pointer to new structure that holds information about AP exchange

Returns : Returns SHISHI_OK iff successful.

shishi_ap_authenticator ()

Shishi_asn1 shishi_ap_authenticator (Shishi_ap *ap);

Get ASN.1 Authenticator structure from AP exchange.

ap : structure that holds information about AP exchange

Returns : Returns the Authenticator from the AP exchange, or NULL if not yet set or an error occured.

shishi_ap_authenticator_cksumdata ()

int shishi_ap_authenticator_cksumdata (Shishi_ap *ap,
char *out,
size_t *len);

Get checksum data from Authenticator.

ap : structure that holds information about AP exchange

out : output array that holds authenticator checksum data.

len : on input, maximum length of output array that holds authenticator checksum data, on output actual length of output array
that holds authenticator checksum data.

Returns : Returns SHISHI_OK if successful, or SHISHI_TOO_SMALL_BUFFER if buffer provided was too small (then len

will hold necessary buffer size).

Shishi API Reference Manual 53 / 249

shishi_ap_authenticator_cksumdata_set ()

void shishi_ap_authenticator_cksumdata_set
(Shishi_ap *ap,
const char *authenticatorcksumdata ←↩

,
size_t authenticatorcksumdatalen);

Set the Authenticator Checksum Data in the AP exchange. This is the data that will be checksumed, and the checksum placed in
the checksum field. It is not the actual checksum field. See also shishi_ap_authenticator_cksumraw_set.

ap : structure that holds information about AP exchange

authenticatorcksumdata : input array with data to compute checksum on and store in Authenticator in AP-REQ.

authenticatorcksumdatalen : length of input array with data to compute checksum on and store in Authenticator in AP-
REQ.

shishi_ap_authenticator_cksumraw_set ()

void shishi_ap_authenticator_cksumraw_set
(Shishi_ap *ap,
int32_t authenticatorcksumtype,
const char *authenticatorcksumraw,
size_t authenticatorcksumrawlen);

Set the Authenticator Checksum Data in the AP exchange. This is the actual checksum field, not data to compute checksum on
and then store in the checksum field. See also shishi_ap_authenticator_cksumdata_set.

ap : structure that holds information about AP exchange

authenticatorcksumtype : authenticator checksum type to set in AP.

authenticatorcksumraw : input array with authenticator checksum field value to set in Authenticator in AP-REQ.

authenticatorcksumrawlen : length of input array with authenticator checksum field value to set in Authenticator in AP-
REQ.

shishi_ap_authenticator_cksumtype ()

int32_t shishi_ap_authenticator_cksumtype (Shishi_ap *ap);

Get the Authenticator Checksum Type in the AP exchange.

ap : structure that holds information about AP exchange

Returns : Return the authenticator checksum type.

shishi_ap_authenticator_cksumtype_set ()

void shishi_ap_authenticator_cksumtype_set
(Shishi_ap *ap,
int32_t cksumtype);

Set the Authenticator Checksum Type in the AP exchange.

ap : structure that holds information about AP exchange

cksumtype : authenticator checksum type to set in AP.

Shishi API Reference Manual 54 / 249

shishi_ap_authenticator_set ()

void shishi_ap_authenticator_set (Shishi_ap *ap,
Shishi_asn1 authenticator);

Set the Authenticator in the AP exchange.

ap : structure that holds information about AP exchange

authenticator : authenticator to store in AP.

shishi_ap_done ()

void shishi_ap_done (Shishi_ap *ap);

Deallocate resources associated with AP exchange. This should be called by the application when it no longer need to utilize the
AP exchange handle.

ap : structure that holds information about AP exchange

shishi_ap_encapreppart ()

Shishi_asn1 shishi_ap_encapreppart (Shishi_ap *ap);

Get ASN.1 EncAPRepPart structure from AP exchange.

ap : structure that holds information about AP exchange

Returns : Returns the EncAPREPPart from the AP exchange, or NULL if not yet set or an error occured.

shishi_ap_encapreppart_set ()

void shishi_ap_encapreppart_set (Shishi_ap *ap,
Shishi_asn1 encapreppart);

Set the EncAPRepPart in the AP exchange.

ap : structure that holds information about AP exchange

encapreppart : EncAPRepPart to store in AP.

shishi_ap_etype ()

int shishi_ap_etype (Shishi *handle,
Shishi_ap **ap,
int etype);

Create a new AP exchange with a random subkey of indicated encryption type.

handle : shishi handle as allocated by shishi_init().

ap : pointer to new structure that holds information about AP exchange

etype : encryption type of newly generated random subkey.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 55 / 249

shishi_ap_etype_tktoptionsdata ()

int shishi_ap_etype_tktoptionsdata (Shishi *handle,
Shishi_ap **ap,
int32_t etype,
Shishi_tkt *tkt,
int options,
const char *data,
size_t len);

Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions and the Authenticator checksum data using
shishi_ap_set_tktoptionsdata(). A random session key is added to the authenticator, using the same keytype as the ticket.

handle : shishi handle as allocated by shishi_init().

ap : pointer to new structure that holds information about AP exchange

etype : encryption type of newly generated random subkey.

tkt : ticket to set in newly created AP.

options : AP-REQ options to set in newly created AP.

data : input array with data to checksum in Authenticator.

len : length of input array with data to checksum in Authenticator.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_key ()

Shishi_key * shishi_ap_key (Shishi_ap *ap);

Extract the application key from AP. If subkeys are used, it is taken from the Authenticator, otherwise the session key is used.

ap : structure that holds information about AP exchange

Returns : Return application key from AP.

shishi_ap_nosubkey ()

int shishi_ap_nosubkey (Shishi *handle,
Shishi_ap **ap);

Create a new AP exchange without subkey in authenticator.

handle : shishi handle as allocated by shishi_init().

ap : pointer to new structure that holds information about AP exchange

Returns : Returns SHISHI_OK iff successful.

shishi_ap_option2string ()

const char * shishi_ap_option2string (Shishi_apoptions option);

Convert AP-Option type to AP-Option name string. Note that option must be just one of the AP-Option types, it cannot be an
binary ORed indicating several AP-Options.

option : enumerated AP-Option type, see Shishi_apoptions.

Returns : Returns static string with name of AP-Option that must not be deallocated, or "unknown" if AP-Option was not
understood.

Shishi API Reference Manual 56 / 249

shishi_ap_rep ()

Shishi_asn1 shishi_ap_rep (Shishi_ap *ap);

Get ASN.1 AP-REP structure from AP exchange.

ap : structure that holds information about AP exchange

Returns : Returns the AP-REP from the AP exchange, or NULL if not yet set or an error occured.

shishi_ap_rep_asn1 ()

int shishi_ap_rep_asn1 (Shishi_ap *ap,
Shishi_asn1 *aprep);

Build AP-REP using shishi_ap_rep_build() and return it.

ap : structure that holds information about AP exchange

aprep : output AP-REP variable.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_rep_build ()

int shishi_ap_rep_build (Shishi_ap *ap);

Checksum data in authenticator and add ticket and authenticator to AP-REP.

ap : structure that holds information about AP exchange

Returns : Returns SHISHI_OK iff successful.

shishi_ap_rep_der ()

int shishi_ap_rep_der (Shishi_ap *ap,
char **out,
size_t *outlen);

Build AP-REP using shishi_ap_rep_build() and DER encode it. out is allocated by this function, and it is the responsibility of
caller to deallocate it.

ap : structure that holds information about AP exchange

out : output array with newly allocated DER encoding of AP-REP.

outlen : length of output array with DER encoding of AP-REP.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 57 / 249

shishi_ap_rep_der_set ()

int shishi_ap_rep_der_set (Shishi_ap *ap,
char *der,
size_t derlen);

DER decode AP-REP and set it AP exchange. If decoding fails, the AP-REP in the AP exchange remains.

ap : structure that holds information about AP exchange

der : input array with DER encoded AP-REP.

derlen : length of input array with DER encoded AP-REP.

Returns : Returns SHISHI_OK.

shishi_ap_rep_set ()

void shishi_ap_rep_set (Shishi_ap *ap,
Shishi_asn1 aprep);

Set the AP-REP in the AP exchange.

ap : structure that holds information about AP exchange

aprep : aprep to store in AP.

shishi_ap_rep_verify ()

int shishi_ap_rep_verify (Shishi_ap *ap);

Verify AP-REP compared to Authenticator.

ap : structure that holds information about AP exchange

Returns : Returns SHISHI_OK, SHISHI_APREP_VERIFY_FAILED or an error.

shishi_ap_rep_verify_asn1 ()

int shishi_ap_rep_verify_asn1 (Shishi_ap *ap,
Shishi_asn1 aprep);

Set the AP-REP in the AP exchange using shishi_ap_rep_set() and verify it using shishi_ap_rep_verify().

ap : structure that holds information about AP exchange

aprep : input AP-REP.

Returns : Returns SHISHI_OK, SHISHI_APREP_VERIFY_FAILED or an error.

Shishi API Reference Manual 58 / 249

shishi_ap_rep_verify_der ()

int shishi_ap_rep_verify_der (Shishi_ap *ap,
char *der,
size_t derlen);

DER decode AP-REP and set it in AP exchange using shishi_ap_rep_der_set() and verify it using shishi_ap_rep_verify().

ap : structure that holds information about AP exchange

der : input array with DER encoded AP-REP.

derlen : length of input array with DER encoded AP-REP.

Returns : Returns SHISHI_OK, SHISHI_APREP_VERIFY_FAILED or an error.

shishi_ap_req ()

Shishi_asn1 shishi_ap_req (Shishi_ap *ap);

Get ASN.1 AP-REQ structure from AP exchange.

ap : structure that holds information about AP exchange

Returns : Returns the AP-REQ from the AP exchange, or NULL if not yet set or an error occured.

shishi_ap_req_asn1 ()

int shishi_ap_req_asn1 (Shishi_ap *ap,
Shishi_asn1 *apreq);

Build AP-REQ using shishi_ap_req_build() and return it.

ap : structure that holds information about AP exchange

apreq : output AP-REQ variable.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_req_build ()

int shishi_ap_req_build (Shishi_ap *ap);

Checksum data in authenticator and add ticket and authenticator to AP-REQ.

ap : structure that holds information about AP exchange

Returns : Returns SHISHI_OK iff successful.

shishi_ap_req_decode ()

int shishi_ap_req_decode (Shishi_ap *ap);

Decode ticket in AP-REQ and set the Ticket fields in the AP exchange.

ap : structure that holds information about AP exchange

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 59 / 249

shishi_ap_req_der ()

int shishi_ap_req_der (Shishi_ap *ap,
char **out,
size_t *outlen);

Build AP-REQ using shishi_ap_req_build() and DER encode it. out is allocated by this function, and it is the responsibility of
caller to deallocate it.

ap : structure that holds information about AP exchange

out : pointer to output array with der encoding of AP-REQ.

outlen : pointer to length of output array with der encoding of AP-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_req_der_set ()

int shishi_ap_req_der_set (Shishi_ap *ap,
char *der,
size_t derlen);

DER decode AP-REQ and set it AP exchange. If decoding fails, the AP-REQ in the AP exchange is lost.

ap : structure that holds information about AP exchange

der : input array with DER encoded AP-REQ.

derlen : length of input array with DER encoded AP-REQ.

Returns : Returns SHISHI_OK.

shishi_ap_req_process ()

int shishi_ap_req_process (Shishi_ap *ap,
Shishi_key *key);

Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ using key in decrypted ticket, and on success
set the Ticket and Authenticator fields in the AP exchange.

ap : structure that holds information about AP exchange

key : cryptographic key used to decrypt ticket in AP-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_req_process_keyusage ()

int shishi_ap_req_process_keyusage (Shishi_ap *ap,
Shishi_key *key,
int32_t keyusage);

Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ using key in decrypted ticket, and on success
set the Ticket and Authenticator fields in the AP exchange.

ap : structure that holds information about AP exchange

Shishi API Reference Manual 60 / 249

key : cryptographic key used to decrypt ticket in AP-REQ.

keyusage : key usage to use during decryption, for normal AP-REQ’s this is normally SHISHI_KEYUSAGE_APREQ_AUTHENTICATOR,
for AP-REQ’s part of TGS-REQ’s, this is normally SHISHI_KEYUSAGE_TGSREQ_APREQ_AUTHENTICATOR.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_req_set ()

void shishi_ap_req_set (Shishi_ap *ap,
Shishi_asn1 apreq);

Set the AP-REQ in the AP exchange.

ap : structure that holds information about AP exchange

apreq : apreq to store in AP.

shishi_ap_set_tktoptions ()

int shishi_ap_set_tktoptions (Shishi_ap *ap,
Shishi_tkt *tkt,
int options);

Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see shishi_apreq_options_set()).

ap : structure that holds information about AP exchange

tkt : ticket to set in AP.

options : AP-REQ options to set in AP.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_set_tktoptionsasn1usage ()

int shishi_ap_set_tktoptionsasn1usage (Shishi_ap *ap,
Shishi_tkt *tkt,
int options,
Shishi_asn1 node,
const char *field,
int authenticatorcksumkeyusage,
int authenticatorkeyusage);

Set ticket, options and authenticator checksum data using shishi_ap_set_tktoptionsdata(). The authenticator checksum data is the
DER encoding of the ASN.1 field provided.

ap : structure that holds information about AP exchange

tkt : ticket to set in AP.

options : AP-REQ options to set in AP.

node : input ASN.1 structure to store as authenticator checksum data.

field : field in ASN.1 structure to use.

authenticatorcksumkeyusage : key usage for checksum in authenticator.

authenticatorkeyusage : key usage for authenticator.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 61 / 249

shishi_ap_set_tktoptionsdata ()

int shishi_ap_set_tktoptionsdata (Shishi_ap *ap,
Shishi_tkt *tkt,
int options,
const char *data,
size_t len);

Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see shishi_apreq_options_set()) and set the Authenticator
checksum data.

ap : structure that holds information about AP exchange

tkt : ticket to set in AP.

options : AP-REQ options to set in AP.

data : input array with data to checksum in Authenticator.

len : length of input array with data to checksum in Authenticator.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_set_tktoptionsraw ()

int shishi_ap_set_tktoptionsraw (Shishi_ap *ap,
Shishi_tkt *tkt,
int options,
int32_t cksumtype,
const char *data,
size_t len);

Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see shishi_apreq_options_set()) and set the raw Authenti-
cator checksum data.

ap : structure that holds information about AP exchange

tkt : ticket to set in AP.

options : AP-REQ options to set in AP.

cksumtype : authenticator checksum type to set in AP.

data : input array with data to store in checksum field in Authenticator.

len : length of input array with data to store in checksum field in Authenticator.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_string2option ()

Shishi_apoptions shishi_ap_string2option (const char *str);

Convert AP-Option name to AP-Option type.

str : zero terminated character array with name of AP-Option, e.g. "use-session-key".

Returns : Returns enumerated type member corresponding to AP-Option, or 0 if string was not understood.

Shishi API Reference Manual 62 / 249

shishi_ap_tkt ()

Shishi_tkt * shishi_ap_tkt (Shishi_ap *ap);

Get Ticket from AP exchange.

ap : structure that holds information about AP exchange

Returns : Returns the ticket from the AP exchange, or NULL if not yet set or an error occured.

shishi_ap_tkt_set ()

void shishi_ap_tkt_set (Shishi_ap *ap,
Shishi_tkt *tkt);

Set the Ticket in the AP exchange.

ap : structure that holds information about AP exchange

tkt : ticket to store in AP.

shishi_ap_tktoptions ()

int shishi_ap_tktoptions (Shishi *handle,
Shishi_ap **ap,
Shishi_tkt *tkt,
int options);

Create a new AP exchange using shishi_ap(), and set the ticket and AP-REQ apoptions using shishi_ap_set_tktoptions(). A
random session key is added to the authenticator, using the same keytype as the ticket.

handle : shishi handle as allocated by shishi_init().

ap : pointer to new structure that holds information about AP exchange

tkt : ticket to set in newly created AP.

options : AP-REQ options to set in newly created AP.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_tktoptionsasn1usage ()

int shishi_ap_tktoptionsasn1usage (Shishi *handle,
Shishi_ap **ap,
Shishi_tkt *tkt,
int options,
Shishi_asn1 node,
const char *field,
int authenticatorcksumkeyusage,
int authenticatorkeyusage);

Create a new AP exchange using shishi_ap(), and set ticket, options and authenticator checksum data from the DER encoding of
the ASN.1 field using shishi_ap_set_tktoptionsasn1usage(). A random session key is added to the authenticator, using the same
keytype as the ticket.

handle : shishi handle as allocated by shishi_init().

Shishi API Reference Manual 63 / 249

ap : pointer to new structure that holds information about AP exchange

tkt : ticket to set in newly created AP.

options : AP-REQ options to set in newly created AP.

node : input ASN.1 structure to store as authenticator checksum data.

field : field in ASN.1 structure to use.

authenticatorcksumkeyusage : key usage for checksum in authenticator.

authenticatorkeyusage : key usage for authenticator.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_tktoptionsdata ()

int shishi_ap_tktoptionsdata (Shishi *handle,
Shishi_ap **ap,
Shishi_tkt *tkt,
int options,
const char *data,
size_t len);

Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions and the Authenticator checksum data using
shishi_ap_set_tktoptionsdata(). A random session key is added to the authenticator, using the same keytype as the ticket.

handle : shishi handle as allocated by shishi_init().

ap : pointer to new structure that holds information about AP exchange

tkt : ticket to set in newly created AP.

options : AP-REQ options to set in newly created AP.

data : input array with data to checksum in Authenticator.

len : length of input array with data to checksum in Authenticator.

Returns : Returns SHISHI_OK iff successful.

shishi_ap_tktoptionsraw ()

int shishi_ap_tktoptionsraw (Shishi *handle,
Shishi_ap **ap,
Shishi_tkt *tkt,
int options,
int32_t cksumtype,
const char *data,
size_t len);

Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions and the raw Authenticator checksum data
field using shishi_ap_set_tktoptionsraw(). A random session key is added to the authenticator, using the same keytype as the
ticket.

handle : shishi handle as allocated by shishi_init().

ap : pointer to new structure that holds information about AP exchange

tkt : ticket to set in newly created AP.

Shishi API Reference Manual 64 / 249

options : AP-REQ options to set in newly created AP.

cksumtype : authenticator checksum type to set in AP.

data : input array with data to store in checksum field in Authenticator.

len : length of input array with data to store in checksum field in Authenticator.

Returns : Returns SHISHI_OK iff successful.

shishi_aprep ()

Shishi_asn1 shishi_aprep (Shishi *handle);

This function creates a new AP-REP, populated with some default values.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the authenticator or NULL on failure.

shishi_aprep_decrypt ()

int shishi_aprep_decrypt (Shishi *handle,
Shishi_asn1 aprep,
Shishi_key *key,
int keyusage,
Shishi_asn1 *encapreppart);

shishi_aprep_enc_part_add ()

int shishi_aprep_enc_part_add (Shishi *handle,
Shishi_asn1 aprep,
Shishi_asn1 encticketpart,
Shishi_asn1 encapreppart);

shishi_aprep_enc_part_make ()

int shishi_aprep_enc_part_make (Shishi *handle,
Shishi_asn1 aprep,
Shishi_asn1 encapreppart,
Shishi_asn1 authenticator,
Shishi_asn1 encticketpart);

shishi_aprep_enc_part_set ()

int shishi_aprep_enc_part_set (Shishi *handle,
Shishi_asn1 aprep,
int etype,
const char *buf,
size_t buflen);

Shishi API Reference Manual 65 / 249

shishi_aprep_from_file ()

int shishi_aprep_from_file (Shishi *handle,
Shishi_asn1 *aprep,
int filetype,
const char *filename);

Read AP-REP from file in specified TYPE.

handle : shishi handle as allocated by shishi_init().

aprep : output variable with newly allocated AP-REP.

filetype : input variable specifying type of file to be read, see Shishi_filetype.

filename : input variable with filename to read from.

Returns : Returns SHISHI_OK iff successful.

shishi_aprep_get_enc_part_etype ()

int shishi_aprep_get_enc_part_etype (Shishi *handle,
Shishi_asn1 aprep,
int32_t *etype);

Extract AP-REP.enc-part.etype.

handle : shishi handle as allocated by shishi_init().

aprep : AP-REP variable to get value from.

etype : output variable that holds the value.

Returns : Returns SHISHI_OK iff successful.

shishi_aprep_parse ()

int shishi_aprep_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *aprep);

Read ASCII armored DER encoded AP-REP from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

aprep : output variable with newly allocated AP-REP.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 66 / 249

shishi_aprep_print ()

int shishi_aprep_print (Shishi *handle,
FILE *fh,
Shishi_asn1 aprep);

Print ASCII armored DER encoding of AP-REP to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

aprep : AP-REP to print.

Returns : Returns SHISHI_OK iff successful.

shishi_aprep_read ()

int shishi_aprep_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *aprep);

Read DER encoded AP-REP from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

aprep : output variable with newly allocated AP-REP.

Returns : Returns SHISHI_OK iff successful.

shishi_aprep_save ()

int shishi_aprep_save (Shishi *handle,
FILE *fh,
Shishi_asn1 aprep);

Save DER encoding of AP-REP to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

aprep : AP-REP to save.

Returns : Returns SHISHI_OK iff successful.

shishi_aprep_to_file ()

int shishi_aprep_to_file (Shishi *handle,
Shishi_asn1 aprep,
int filetype,
const char *filename);

Write AP-REP to file in specified TYPE. The file will be truncated if it exists.

handle : shishi handle as allocated by shishi_init().

Shishi API Reference Manual 67 / 249

aprep : AP-REP to save.

filetype : input variable specifying type of file to be written, see Shishi_filetype.

filename : input variable with filename to write to.

Returns : Returns SHISHI_OK iff successful.

shishi_aprep_verify ()

int shishi_aprep_verify (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_asn1 encapreppart);

shishi_apreq ()

Shishi_asn1 shishi_apreq (Shishi *handle);

This function creates a new AP-REQ, populated with some default values.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the AP-REQ or NULL on failure.

shishi_apreq_add_authenticator ()

int shishi_apreq_add_authenticator (Shishi *handle,
Shishi_asn1 apreq,
Shishi_key *key,
int keyusage,
Shishi_asn1 authenticator);

Encrypts DER encoded authenticator using key and store it in the AP-REQ.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ to add authenticator field to.

key : key to to use for encryption.

keyusage : cryptographic key usage value to use in encryption.

authenticator : authenticator as allocated by shishi_authenticator().

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_decrypt ()

int shishi_apreq_decrypt (Shishi *handle,
Shishi_asn1 apreq,
Shishi_key *key,
int keyusage,
Shishi_asn1 *authenticator);

Shishi API Reference Manual 68 / 249

shishi_apreq_from_file ()

int shishi_apreq_from_file (Shishi *handle,
Shishi_asn1 *apreq,
int filetype,
const char *filename);

Read AP-REQ from file in specified TYPE.

handle : shishi handle as allocated by shishi_init().

apreq : output variable with newly allocated AP-REQ.

filetype : input variable specifying type of file to be read, see Shishi_filetype.

filename : input variable with filename to read from.

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_get_authenticator_etype ()

int shishi_apreq_get_authenticator_etype
(Shishi *handle,
Shishi_asn1 apreq,
int32_t *etype);

Extract AP-REQ.authenticator.etype.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ variable to get value from.

etype : output variable that holds the value.

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_get_ticket ()

int shishi_apreq_get_ticket (Shishi *handle,
Shishi_asn1 apreq,
Shishi_asn1 *ticket);

Extract ticket from AP-REQ.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ variable to get ticket from.

ticket : output variable to hold extracted ticket.

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_mutual_required_p ()

int shishi_apreq_mutual_required_p (Shishi *handle,
Shishi_asn1 apreq);

Return non-0 iff the "Mutual required" option is set in the AP-REQ.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ as allocated by shishi_apreq().

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 69 / 249

shishi_apreq_options ()

int shishi_apreq_options (Shishi *handle,
Shishi_asn1 apreq,
uint32_t *flags);

Extract the AP-Options from AP-REQ into output integer.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ to get options from.

flags : Output integer containing options from AP-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_options_add ()

int shishi_apreq_options_add (Shishi *handle,
Shishi_asn1 apreq,
uint32_t option);

Add the AP-Options in AP-REQ. Options not set in input parameter option are preserved in the AP-REQ.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ as allocated by shishi_apreq().

option : Options to add in AP-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_options_remove ()

int shishi_apreq_options_remove (Shishi *handle,
Shishi_asn1 apreq,
uint32_t option);

Remove the AP-Options from AP-REQ. Options not set in input parameter option are preserved in the AP-REQ.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ as allocated by shishi_apreq().

option : Options to remove from AP-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_options_set ()

int shishi_apreq_options_set (Shishi *handle,
Shishi_asn1 apreq,
uint32_t options);

Set the AP-Options in AP-REQ to indicate integer.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ as allocated by shishi_apreq().

options : Options to set in AP-REQ.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 70 / 249

shishi_apreq_parse ()

int shishi_apreq_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *apreq);

Read ASCII armored DER encoded AP-REQ from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

apreq : output variable with newly allocated AP-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_print ()

int shishi_apreq_print (Shishi *handle,
FILE *fh,
Shishi_asn1 apreq);

Print ASCII armored DER encoding of AP-REQ to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

apreq : AP-REQ to print.

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_read ()

int shishi_apreq_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *apreq);

Read DER encoded AP-REQ from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

apreq : output variable with newly allocated AP-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_save ()

int shishi_apreq_save (Shishi *handle,
FILE *fh,
Shishi_asn1 apreq);

Save DER encoding of AP-REQ to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

apreq : AP-REQ to save.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 71 / 249

shishi_apreq_set_authenticator ()

int shishi_apreq_set_authenticator (Shishi *handle,
Shishi_asn1 apreq,
int32_t etype,
uint32_t kvno,
const char *buf,
size_t buflen);

Set the encrypted authenticator field in the AP-REP. The encrypted data is usually created by calling shishi_encrypt() on the
DER encoded authenticator. To save time, you may want to use shishi_apreq_add_authenticator() instead, which calculates the
encrypted data and calls this function in one step.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ to add authenticator field to.

etype : encryption type used to encrypt authenticator.

kvno : version of the key used to encrypt authenticator.

buf : input array with encrypted authenticator.

buflen : size of input array with encrypted authenticator.

Returns : Returns SHISHI_OK on success.

shishi_apreq_set_ticket ()

int shishi_apreq_set_ticket (Shishi *handle,
Shishi_asn1 apreq,
Shishi_asn1 ticket);

Copy ticket into AP-REQ.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ to add ticket field to.

ticket : input ticket to copy into AP-REQ ticket field.

Returns : Returns SHISHI_OK iff successful.

shishi_apreq_to_file ()

int shishi_apreq_to_file (Shishi *handle,
Shishi_asn1 apreq,
int filetype,
const char *filename);

Write AP-REQ to file in specified TYPE. The file will be truncated if it exists.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ to save.

filetype : input variable specifying type of file to be written, see Shishi_filetype.

filename : input variable with filename to write to.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 72 / 249

shishi_apreq_use_session_key_p ()

int shishi_apreq_use_session_key_p (Shishi *handle,
Shishi_asn1 apreq);

Return non-0 iff the "Use session key" option is set in the AP-REQ.

handle : shishi handle as allocated by shishi_init().

apreq : AP-REQ as allocated by shishi_apreq().

Returns : Returns SHISHI_OK iff successful.

shishi_arcfour ()

int shishi_arcfour (Shishi *handle,
int decryptp,
const char *key,
size_t keylen,
const char iv[258],
char *ivout[258],
const char *in,
size_t inlen,
char **out);

Encrypt or decrypt data (depending on decryptp) using ARCFOUR. The out buffer must be deallocated by the caller.

The "initialization vector" used here is the concatenation of the sbox and i and j, and is thus always of size 256 + 1 + 1. This is a
slight abuse of terminology, and assumes you know what you are doing. Don’t use it if you can avoid to.

handle : shishi handle as allocated by shishi_init().

decryptp : 0 to indicate encryption, non-0 to indicate decryption.

key : input character array with key to use.

keylen : length of input key array.

iv : input character array with initialization vector to use, or NULL.

ivout : output character array with updated initialization vector, or NULL.

in : input character array of data to encrypt/decrypt.

inlen : length of input character array of data to encrypt/decrypt.

out : newly allocated character array with encrypted/decrypted data.

Returns : Returns SHISHI_OK iff successful.

shishi_as ()

int shishi_as (Shishi *handle,
Shishi_as **as);

Allocate a new AS exchange variable.

handle : shishi handle as allocated by shishi_init().

as : holds pointer to newly allocate Shishi_as structure.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 73 / 249

shishi_as_check_cname ()

int shishi_as_check_cname (Shishi *handle,
Shishi_asn1 asreq,
Shishi_asn1 asrep);

Verify that AS-REQ.req-body.realm and AS-REP.crealm fields matches. This is one of the steps that has to be performed when
processing a AS-REQ and AS-REP exchange, see shishi_kdc_process().

handle : shishi handle as allocated by shishi_init().

asreq : AS-REQ to compare client name field in.

asrep : AS-REP to compare client name field in.

Returns : Returns SHISHI_OK if successful, SHISHI_CNAME_MISMATCH if the values differ, or an error code.

shishi_as_check_crealm ()

int shishi_as_check_crealm (Shishi *handle,
Shishi_asn1 asreq,
Shishi_asn1 asrep);

Verify that AS-REQ.req-body.realm and AS-REP.crealm fields matches. This is one of the steps that has to be performed when
processing a AS-REQ and AS-REP exchange, see shishi_kdc_process().

handle : shishi handle as allocated by shishi_init().

asreq : AS-REQ to compare realm field in.

asrep : AS-REP to compare realm field in.

Returns : Returns SHISHI_OK if successful, SHISHI_REALM_MISMATCH if the values differ, or an error code.

shishi_as_derive_salt ()

int shishi_as_derive_salt (Shishi *handle,
Shishi_asn1 asreq,
Shishi_asn1 asrep,
char **salt,
size_t *saltlen);

Derive the salt that should be used when deriving a key via shishi_string_to_key() for an AS exchange. Currently this searches
for PA-DATA of type SHISHI_PA_PW_SALT in the AS-REP and returns it if found, otherwise the salt is derived from the client
name and realm in AS-REQ.

handle : shishi handle as allocated by shishi_init().

asreq : input AS-REQ variable.

asrep : input AS-REP variable.

salt : newly allocated output array with salt.

saltlen : holds actual size of output array with salt.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 74 / 249

shishi_as_done ()

void shishi_as_done (Shishi_as *as);

Deallocate resources associated with AS exchange. This should be called by the application when it no longer need to utilize the
AS exchange handle.

as : structure that holds information about AS exchange

shishi_as_krberror ()

Shishi_asn1 shishi_as_krberror (Shishi_as *as);

Get ASN.1 KRB-ERROR structure from AS exchange.

as : structure that holds information about AS exchange

Returns : Returns the received KRB-ERROR packet from the AS exchange, or NULL if not yet set or an error occured.

shishi_as_krberror_der ()

int shishi_as_krberror_der (Shishi_as *as,
char **out,
size_t *outlen);

DER encode KRB-ERROR. out is allocated by this function, and it is the responsibility of caller to deallocate it.

as : structure that holds information about AS exchange

out : output array with newly allocated DER encoding of KRB-ERROR.

outlen : length of output array with DER encoding of KRB-ERROR.

Returns : Returns SHISHI_OK iff successful.

shishi_as_krberror_set ()

void shishi_as_krberror_set (Shishi_as *as,
Shishi_asn1 krberror);

Set the KRB-ERROR in the AS exchange.

as : structure that holds information about AS exchange

krberror : krberror to store in AS.

shishi_as_process ()

int shishi_as_process (Shishi *handle,
Shishi_asn1 asreq,
Shishi_asn1 asrep,
const char *string,
Shishi_asn1 *enckdcreppart);

Process an AS client exchange and output decrypted EncKDCRepPart which holds details for the new ticket received. This
function simply derives the encryption key from the password and calls shishi_kdc_process(), which see.

Shishi API Reference Manual 75 / 249

handle : shishi handle as allocated by shishi_init().

asreq : input variable that holds the sent KDC-REQ.

asrep : input variable that holds the received KDC-REP.

string : input variable with zero terminated password.

enckdcreppart : output variable that holds new EncKDCRepPart.

Returns : Returns SHISHI_OK iff the AS client exchange was successful.

shishi_as_rep ()

Shishi_asn1 shishi_as_rep (Shishi_as *as);

Get ASN.1 AS-REP structure from AS exchange.

as : structure that holds information about AS exchange

Returns : Returns the received AS-REP packet from the AS exchange, or NULL if not yet set or an error occured.

shishi_as_rep_build ()

int shishi_as_rep_build (Shishi_as *as,
Shishi_key *key);

Build AS-REP.

as : structure that holds information about AS exchange

key : user’s key, used to encrypt the encrypted part of the AS-REP.

Returns : Returns SHISHI_OK iff successful.

shishi_as_rep_der ()

int shishi_as_rep_der (Shishi_as *as,
char **out,
size_t *outlen);

DER encode AS-REP. out is allocated by this function, and it is the responsibility of caller to deallocate it.

as : structure that holds information about AS exchange

out : output array with newly allocated DER encoding of AS-REP.

outlen : length of output array with DER encoding of AS-REP.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 76 / 249

shishi_as_rep_der_set ()

int shishi_as_rep_der_set (Shishi_as *as,
char *der,
size_t derlen);

DER decode AS-REP and set it AS exchange. If decoding fails, the AS-REP in the AS exchange remains.

as : structure that holds information about AS exchange

der : input array with DER encoded AP-REP.

derlen : length of input array with DER encoded AP-REP.

Returns : Returns SHISHI_OK.

shishi_as_rep_process ()

int shishi_as_rep_process (Shishi_as *as,
Shishi_key *key,
const char *password);

Process new AS-REP and set ticket. The key is used to decrypt the AP-REP. If both key and password is NULL, the user is
queried for it.

as : structure that holds information about AS exchange

key : user’s key, used to encrypt the encrypted part of the AS-REP.

password : user’s password, used if key is NULL.

Returns : Returns SHISHI_OK iff successful.

shishi_as_rep_set ()

void shishi_as_rep_set (Shishi_as *as,
Shishi_asn1 asrep);

Set the AS-REP in the AS exchange.

as : structure that holds information about AS exchange

asrep : asrep to store in AS.

shishi_as_req ()

Shishi_asn1 shishi_as_req (Shishi_as *as);

Get ASN.1 AS-REQ structure from AS exchange.

as : structure that holds information about AS exchange

Returns : Returns the generated AS-REQ packet from the AS exchange, or NULL if not yet set or an error occured.

Shishi API Reference Manual 77 / 249

shishi_as_req_build ()

int shishi_as_req_build (Shishi_as *as);

Possibly remove unset fields (e.g., rtime).

as : structure that holds information about AS exchange

Returns : Returns SHISHI_OK iff successful.

shishi_as_req_der ()

int shishi_as_req_der (Shishi_as *as,
char **out,
size_t *outlen);

DER encode AS-REQ. out is allocated by this function, and it is the responsibility of caller to deallocate it.

as : structure that holds information about AS exchange

out : output array with newly allocated DER encoding of AS-REQ.

outlen : length of output array with DER encoding of AS-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_as_req_der_set ()

int shishi_as_req_der_set (Shishi_as *as,
char *der,
size_t derlen);

DER decode AS-REQ and set it AS exchange. If decoding fails, the AS-REQ in the AS exchange remains.

as : structure that holds information about AS exchange

der : input array with DER encoded AP-REQ.

derlen : length of input array with DER encoded AP-REQ.

Returns : Returns SHISHI_OK.

shishi_as_req_set ()

void shishi_as_req_set (Shishi_as *as,
Shishi_asn1 asreq);

Set the AS-REQ in the AS exchange.

as : structure that holds information about AS exchange

asreq : asreq to store in AS.

Shishi API Reference Manual 78 / 249

shishi_as_sendrecv ()

int shishi_as_sendrecv (Shishi_as *as);

Send AS-REQ and receive AS-REP or KRB-ERROR. This is the initial authentication, usually used to acquire a Ticket Granting
Ticket.

as : structure that holds information about AS exchange

Returns : Returns SHISHI_OK iff successful.

shishi_as_sendrecv_hint ()

int shishi_as_sendrecv_hint (Shishi_as *as,
Shishi_tkts_hint *hint);

Send AS-REQ and receive AS-REP or KRB-ERROR. This is the initial authentication, usually used to acquire a Ticket Granting
Ticket. The hint structure can be used to set, e.g., parameters for TLS authentication.

as : structure that holds information about AS exchange

hint : additional parameters that modify connection behaviour, or NULL.

Returns : Returns SHISHI_OK iff successful.

shishi_as_tkt ()

Shishi_tkt * shishi_as_tkt (Shishi_as *as);

Get Ticket in AS exchange.

as : structure that holds information about AS exchange

Returns : Returns the newly acquired tkt from the AS exchange, or NULL if not yet set or an error occured.

shishi_as_tkt_set ()

void shishi_as_tkt_set (Shishi_as *as,
Shishi_tkt *tkt);

Set the Tkt in the AS exchange.

as : structure that holds information about AS exchange

tkt : tkt to store in AS.

shishi_asn1_aprep ()

Shishi_asn1 shishi_asn1_aprep (Shishi *handle);

Create new ASN.1 structure for AP-REP.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

Shishi API Reference Manual 79 / 249

shishi_asn1_apreq ()

Shishi_asn1 shishi_asn1_apreq (Shishi *handle);

Create new ASN.1 structure for AP-REQ.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_asrep ()

Shishi_asn1 shishi_asn1_asrep (Shishi *handle);

Create new ASN.1 structure for AS-REP.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_asreq ()

Shishi_asn1 shishi_asn1_asreq (Shishi *handle);

Create new ASN.1 structure for AS-REQ.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_authenticator ()

Shishi_asn1 shishi_asn1_authenticator (Shishi *handle);

Create new ASN.1 structure for Authenticator.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_done ()

void shishi_asn1_done (Shishi *handle,
Shishi_asn1 node);

Deallocate resources associated with ASN.1 structure. Note that the node must not be used after this call.

handle : shishi handle as allocated by shishi_init().

node : ASN.1 node to dellocate.

Shishi API Reference Manual 80 / 249

shishi_asn1_empty_p ()

int shishi_asn1_empty_p (Shishi *handle,
Shishi_asn1 node,
const char *field);

shishi_asn1_encapreppart ()

Shishi_asn1 shishi_asn1_encapreppart (Shishi *handle);

Create new ASN.1 structure for AP-REP.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_encasreppart ()

Shishi_asn1 shishi_asn1_encasreppart (Shishi *handle);

Create new ASN.1 structure for EncASRepPart.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_enckdcreppart ()

Shishi_asn1 shishi_asn1_enckdcreppart (Shishi *handle);

Create new ASN.1 structure for EncKDCRepPart.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_encprivpart ()

Shishi_asn1 shishi_asn1_encprivpart (Shishi *handle);

Create new ASN.1 structure for EncKrbPrivPart.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_encrypteddata ()

Shishi_asn1 shishi_asn1_encrypteddata (Shishi *handle);

Create new ASN.1 structure for EncryptedData

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

Shishi API Reference Manual 81 / 249

shishi_asn1_encticketpart ()

Shishi_asn1 shishi_asn1_encticketpart (Shishi *handle);

Create new ASN.1 structure for EncTicketPart.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_etype_info ()

Shishi_asn1 shishi_asn1_etype_info (Shishi *handle);

Create new ASN.1 structure for ETYPE-INFO.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_etype_info2 ()

Shishi_asn1 shishi_asn1_etype_info2 (Shishi *handle);

Create new ASN.1 structure for ETYPE-INFO2.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_krberror ()

Shishi_asn1 shishi_asn1_krberror (Shishi *handle);

Create new ASN.1 structure for KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_krbsafe ()

Shishi_asn1 shishi_asn1_krbsafe (Shishi *handle);

Create new ASN.1 structure for KRB-SAFE.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

Shishi API Reference Manual 82 / 249

shishi_asn1_methoddata ()

Shishi_asn1 shishi_asn1_methoddata (Shishi *handle);

Create new ASN.1 structure for METHOD-DATA.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_msgtype ()

Shishi_msgtype shishi_asn1_msgtype (Shishi *handle,
Shishi_asn1 node);

Determine msg-type of ASN.1 type of a packet. Currently this uses the msg-type field instead of the APPLICATION tag, but this
may be changed in the future.

handle : shishi handle as allocated by shishi_init().

node : ASN.1 type to get msg type for.

Returns : Returns msg-type of ASN.1 type, 0 on failure.

shishi_asn1_number_of_elements ()

int shishi_asn1_number_of_elements (Shishi *handle,
Shishi_asn1 node,
const char *field,
size_t *n);

shishi_asn1_pa_enc_ts_enc ()

Shishi_asn1 shishi_asn1_pa_enc_ts_enc (Shishi *handle);

Create new ASN.1 structure for PA-ENC-TS-ENC.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_padata ()

Shishi_asn1 shishi_asn1_padata (Shishi *handle);

Create new ASN.1 structure for PA-DATA.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

Shishi API Reference Manual 83 / 249

shishi_asn1_print ()

void shishi_asn1_print (Shishi *handle,
Shishi_asn1 node,
FILE *fh);

Print ASN.1 structure in human readable form, typically for debugging purposes.

handle : shishi handle as allocated by shishi_init().

node : ASN.1 data that have field to extract.

fh : file descriptor to print to, e.g. stdout.

shishi_asn1_priv ()

Shishi_asn1 shishi_asn1_priv (Shishi *handle);

Create new ASN.1 structure for KRB-PRIV.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_read ()

int shishi_asn1_read (Shishi *handle,
Shishi_asn1 node,
const char *field,
char **data,
size_t *datalen);

Extract data stored in a ASN.1 field into a newly allocated buffer. The buffer will always be zero terminated, even though
datalen will not include the added zero.

handle : shishi handle as allocated by shishi_init().

node : ASN.1 variable to read field from.

field : name of field in node to read.

data : newly allocated output buffer that will hold ASN.1 field data.

datalen : actual size of output buffer.

Returns : Returns SHISHI_OK if successful, SHISHI_ASN1_NO_ELEMENT if the element do not exist, SHISHI_ASN1_NO_VALUE
if the field has no value, ot SHISHI_ASN1_ERROR otherwise.

shishi_asn1_read_bitstring ()

int shishi_asn1_read_bitstring (Shishi *handle,
Shishi_asn1 node,
const char *field,
uint32_t *flags);

Shishi API Reference Manual 84 / 249

shishi_asn1_read_inline ()

int shishi_asn1_read_inline (Shishi *handle,
Shishi_asn1 node,
const char *field,
char *data,
size_t *datalen);

Extract data stored in a ASN.1 field into a fixed size buffer allocated by caller.

Note that since it is difficult to predict the length of the field, it is often better to use shishi_asn1_read() instead.

handle : shishi handle as allocated by shishi_init().

node : ASN.1 variable to read field from.

field : name of field in node to read.

data : pre-allocated output buffer that will hold ASN.1 field data.

datalen : on input, maximum size of output buffer, on output, actual size of output buffer.

Returns : Returns SHISHI_OK if successful, SHISHI_ASN1_NO_ELEMENT if the element do not exist, SHISHI_ASN1_NO_VALUE
if the field has no value, ot SHISHI_ASN1_ERROR otherwise.

shishi_asn1_read_int32 ()

int shishi_asn1_read_int32 (Shishi *handle,
Shishi_asn1 node,
const char *field,
int32_t *i);

shishi_asn1_read_integer ()

int shishi_asn1_read_integer (Shishi *handle,
Shishi_asn1 node,
const char *field,
int *i);

shishi_asn1_read_optional ()

int shishi_asn1_read_optional (Shishi *handle,
Shishi_asn1 node,
const char *field,
char **data,
size_t *datalen);

Extract data stored in a ASN.1 field into a newly allocated buffer. If the field does not exist (i.e., SHISHI_ASN1_NO_ELEMENT),
this function set datalen to 0 and succeeds. Can be useful to read ASN.1 fields which are marked OPTIONAL in the grammar, if
you want to avoid special error handling in your code.

handle : shishi handle as allocated by shishi_init().

node : ASN.1 variable to read field from.

field : name of field in node to read.

Shishi API Reference Manual 85 / 249

data : newly allocated output buffer that will hold ASN.1 field data.

datalen : actual size of output buffer.

Returns : Returns SHISHI_OK if successful, SHISHI_ASN1_NO_VALUE if the field has no value, ot SHISHI_ASN1_ERROR
otherwise.

shishi_asn1_read_uint32 ()

int shishi_asn1_read_uint32 (Shishi *handle,
Shishi_asn1 node,
const char *field,
uint32_t *i);

shishi_asn1_tgsrep ()

Shishi_asn1 shishi_asn1_tgsrep (Shishi *handle);

Create new ASN.1 structure for TGS-REP.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_tgsreq ()

Shishi_asn1 shishi_asn1_tgsreq (Shishi *handle);

Create new ASN.1 structure for TGS-REQ.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_ticket ()

Shishi_asn1 shishi_asn1_ticket (Shishi *handle);

Create new ASN.1 structure for Ticket.

handle : shishi handle as allocated by shishi_init().

Returns : Returns ASN.1 structure.

shishi_asn1_to_der ()

int shishi_asn1_to_der (Shishi *handle,
Shishi_asn1 node,
char **der,
size_t *len);

Extract newly allocated DER representation of specified ASN.1 data.

handle : shishi handle as allocated by shishi_init().

Shishi API Reference Manual 86 / 249

node : ASN.1 data to convert to DER.

der : output array that holds DER encoding of node.

len : output variable with length of der output array.

Returns : Returns SHISHI_OK if successful, or SHISHI_ASN1_ERROR if DER encoding fails (common reasons for this is
that the ASN.1 is missing required values).

shishi_asn1_to_der_field ()

int shishi_asn1_to_der_field (Shishi *handle,
Shishi_asn1 node,
const char *field,
char **der,
size_t *len);

Extract newly allocated DER representation of specified ASN.1 field.

handle : shishi handle as allocated by shishi_init().

node : ASN.1 data that have field to extract.

field : name of field in node to extract.

der : output array that holds DER encoding of field in node.

len : output variable with length of der output array.

Returns : Returns SHISHI_OK if successful, or SHISHI_ASN1_ERROR if DER encoding fails (common reasons for this is
that the ASN.1 is missing required values).

shishi_asn1_write ()

int shishi_asn1_write (Shishi *handle,
Shishi_asn1 node,
const char *field,
const char *data,
size_t datalen);

shishi_asn1_write_bitstring ()

int shishi_asn1_write_bitstring (Shishi *handle,
Shishi_asn1 node,
const char *field,
uint32_t flags);

shishi_asn1_write_int32 ()

int shishi_asn1_write_int32 (Shishi *handle,
Shishi_asn1 node,
const char *field,
int32_t n);

Shishi API Reference Manual 87 / 249

shishi_asn1_write_integer ()

int shishi_asn1_write_integer (Shishi *handle,
Shishi_asn1 node,
const char *field,
int n);

shishi_asn1_write_uint32 ()

int shishi_asn1_write_uint32 (Shishi *handle,
Shishi_asn1 node,
const char *field,
uint32_t n);

shishi_asrep ()

Shishi_asn1 shishi_asrep (Shishi *handle);

This function creates a new AS-REP, populated with some default values.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the AS-REP or NULL on failure.

shishi_asreq ()

Shishi_asn1 shishi_asreq (Shishi *handle);

This function creates a new AS-REQ, populated with some default values.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the AS-REQ or NULL on failure.

shishi_asreq_clientrealm ()

int shishi_asreq_clientrealm (Shishi *handle,
Shishi_asn1 asreq,
char **client,
size_t *clientlen);

Convert cname and realm fields from AS-REQ to printable principal name format. The string is allocate by this function, and it
is the responsibility of the caller to deallocate it. Note that the output length clientlen does not include the terminating zero.

handle : Shishi library handle create by shishi_init().

asreq : AS-REQ variable to get client name and realm from.

client : pointer to newly allocated zero terminated string containing principal name and realm. May be NULL (to only
populate clientlen).

clientlen : pointer to length of client on output, excluding terminating zero. May be NULL (to only populate client).

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 88 / 249

shishi_asreq_rsc ()

Shishi_asn1 shishi_asreq_rsc (Shishi *handle,
char *realm,
char *server,
char *client);

shishi_authenticator ()

Shishi_asn1 shishi_authenticator (Shishi *handle);

This function creates a new Authenticator, populated with some default values. It uses the current time as returned by the system
for the ctime and cusec fields.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the authenticator or NULL on failure.

shishi_authenticator_add_authorizationdata ()

int shishi_authenticator_add_authorizationdata
(Shishi *handle,
Shishi_asn1 authenticator,
int32_t adtype,
const char *addata,
size_t addatalen);

Add authorization data to authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

adtype : input authorization data type to add.

addata : input authorization data to add.

addatalen : size of input authorization data to add.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_add_cksum ()

int shishi_authenticator_add_cksum (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_key *key,
int keyusage,
char *data,
size_t datalen);

Calculate checksum for data and store it in the authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

key : key to to use for encryption.

Shishi API Reference Manual 89 / 249

keyusage : cryptographic key usage value to use in encryption.

data : input array with data to calculate checksum on.

datalen : size of input array with data to calculate checksum on.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_add_cksum_type ()

int shishi_authenticator_add_cksum_type (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_key *key,
int keyusage,
int cksumtype,
char *data,
size_t datalen);

Calculate checksum for data and store it in the authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

key : key to to use for encryption.

keyusage : cryptographic key usage value to use in encryption.

cksumtype : checksum to type to calculate checksum.

data : input array with data to calculate checksum on.

datalen : size of input array with data to calculate checksum on.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_add_random_subkey ()

int shishi_authenticator_add_random_subkey
(Shishi *handle,
Shishi_asn1 authenticator);

Generate random subkey, of the default encryption type from configuration, and store it in the authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_add_random_subkey_etype ()

int shishi_authenticator_add_random_subkey_etype
(Shishi *handle,
Shishi_asn1 authenticator,
int etype);

Generate random subkey of indicated encryption type, and store it in the authenticator.

Shishi API Reference Manual 90 / 249

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

etype : encryption type of random key to generate.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_add_subkey ()

int shishi_authenticator_add_subkey (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_key *subkey);

Store subkey in the authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

subkey : subkey to add to authenticator.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_authorizationdata ()

int shishi_authenticator_authorizationdata
(Shishi *handle,
Shishi_asn1 authenticator,
int32_t *adtype,
char **addata,
size_t *addatalen,
size_t nth);

Extract n:th authorization data from authenticator. The first field is 1.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

adtype : output authorization data type.

addata : newly allocated output authorization data.

addatalen : on output, actual size of newly allocated authorization data.

nth : element number of authorization-data to extract.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_cksum ()

int shishi_authenticator_cksum (Shishi *handle,
Shishi_asn1 authenticator,
int32_t *cksumtype,
char **cksum,
size_t *cksumlen);

Read checksum value from authenticator. cksum is allocated by this function, and it is the responsibility of caller to deallocate
it.

Shishi API Reference Manual 91 / 249

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

cksumtype : output checksum type.

cksum : newly allocated output checksum data from authenticator.

cksumlen : on output, actual size of allocated output checksum data buffer.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_clear_authorizationdata ()

int shishi_authenticator_clear_authorizationdata
(Shishi *handle,
Shishi_asn1 authenticator);

Remove the authorization-data field from Authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : Authenticator as allocated by shishi_authenticator().

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_client ()

int shishi_authenticator_client (Shishi *handle,
Shishi_asn1 authenticator,
char **client,
size_t *clientlen);

Represent client principal name in Authenticator as zero-terminated string. The string is allocate by this function, and it is the
responsibility of the caller to deallocate it. Note that the output length clientlen does not include the terminating zero.

handle : Shishi library handle create by shishi_init().

authenticator : Authenticator variable to get client name from.

client : pointer to newly allocated zero terminated string containing principal name. May be NULL (to only populate clien
tlen).

clientlen : pointer to length of client on output, excluding terminating zero. May be NULL (to only populate client).

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_client_set ()

int shishi_authenticator_client_set (Shishi *handle,
Shishi_asn1 authenticator,
const char *client);

Set the client name field in the Authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : Authenticator to set client name field in.

client : zero-terminated string with principal name on RFC 1964 form.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 92 / 249

shishi_authenticator_clientrealm ()

int shishi_authenticator_clientrealm (Shishi *handle,
Shishi_asn1 authenticator,
char **client,
size_t *clientlen);

Convert cname and realm fields from Authenticator to printable principal name format. The string is allocate by this function,
and it is the responsibility of the caller to deallocate it. Note that the output length clientlen does not include the terminating
zero.

handle : Shishi library handle create by shishi_init().

authenticator : Authenticator variable to get client name and realm from.

client : pointer to newly allocated zero terminated string containing principal name and realm. May be NULL (to only
populate clientlen).

clientlen : pointer to length of client on output, excluding terminating zero. May be NULL (to only populate client).

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_ctime ()

int shishi_authenticator_ctime (Shishi *handle,
Shishi_asn1 authenticator,
char **t);

Extract client time from Authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : Authenticator as allocated by shishi_authenticator().

t : newly allocated zero-terminated character array with client time.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_ctime_set ()

int shishi_authenticator_ctime_set (Shishi *handle,
Shishi_asn1 authenticator,
const char *t);

Store client time in Authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : Authenticator as allocated by shishi_authenticator().

t : string with generalized time value to store in Authenticator.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 93 / 249

shishi_authenticator_cusec_get ()

int shishi_authenticator_cusec_get (Shishi *handle,
Shishi_asn1 authenticator,
uint32_t *cusec);

Extract client microseconds field from Authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : Authenticator as allocated by shishi_authenticator().

cusec : output integer with client microseconds field.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_cusec_set ()

int shishi_authenticator_cusec_set (Shishi *handle,
Shishi_asn1 authenticator,
uint32_t cusec);

Set the cusec field in the Authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

cusec : client microseconds to set in authenticator, 0-999999.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_from_file ()

int shishi_authenticator_from_file (Shishi *handle,
Shishi_asn1 *authenticator,
int filetype,
const char *filename);

Read Authenticator from file in specified TYPE.

handle : shishi handle as allocated by shishi_init().

authenticator : output variable with newly allocated Authenticator.

filetype : input variable specifying type of file to be read, see Shishi_filetype.

filename : input variable with filename to read from.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 94 / 249

shishi_authenticator_get_subkey ()

int shishi_authenticator_get_subkey (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_key **subkey);

Read subkey value from authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

subkey : output newly allocated subkey from authenticator.

Returns : Returns SHISHI_OK if successful or SHISHI_ASN1_NO_ELEMENT if subkey is not present.

shishi_authenticator_parse ()

int shishi_authenticator_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *authenticator);

Read ASCII armored DER encoded authenticator from file and populate given authenticator variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

authenticator : output variable with newly allocated authenticator.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_print ()

int shishi_authenticator_print (Shishi *handle,
FILE *fh,
Shishi_asn1 authenticator);

Print ASCII armored DER encoding of authenticator to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

authenticator : authenticator as allocated by shishi_authenticator().

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_read ()

int shishi_authenticator_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *authenticator);

Read DER encoded authenticator from file and populate given authenticator variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

authenticator : output variable with newly allocated authenticator.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 95 / 249

shishi_authenticator_remove_cksum ()

int shishi_authenticator_remove_cksum (Shishi *handle,
Shishi_asn1 authenticator);

shishi_authenticator_remove_subkey ()

int shishi_authenticator_remove_subkey (Shishi *handle,
Shishi_asn1 authenticator);

Remove subkey from the authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_save ()

int shishi_authenticator_save (Shishi *handle,
FILE *fh,
Shishi_asn1 authenticator);

Save DER encoding of authenticator to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

authenticator : authenticator as allocated by shishi_authenticator().

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_seqnumber_get ()

int shishi_authenticator_seqnumber_get (Shishi *handle,
Shishi_asn1 authenticator,
uint32_t *seqnumber);

Extract sequence number field from Authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

seqnumber : output integer with sequence number field.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 96 / 249

shishi_authenticator_seqnumber_remove ()

int shishi_authenticator_seqnumber_remove
(Shishi *handle,
Shishi_asn1 authenticator);

Remove sequence number field in Authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_seqnumber_set ()

int shishi_authenticator_seqnumber_set (Shishi *handle,
Shishi_asn1 authenticator,
uint32_t seqnumber);

Store sequence number field in Authenticator.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

seqnumber : integer with sequence number field to store in Authenticator.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_set_cksum ()

int shishi_authenticator_set_cksum (Shishi *handle,
Shishi_asn1 authenticator,
int cksumtype,
char *cksum,
size_t cksumlen);

Store checksum value in authenticator. A checksum is usually created by calling shishi_checksum() on some application specific
data using the key from the ticket that is being used. To save time, you may want to use shishi_authenticator_add_cksum()
instead, which calculates the checksum and calls this function in one step.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

cksumtype : input checksum type to store in authenticator.

cksum : input checksum data to store in authenticator.

cksumlen : size of input checksum data to store in authenticator.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 97 / 249

shishi_authenticator_set_cname ()

int shishi_authenticator_set_cname (Shishi *handle,
Shishi_asn1 authenticator,
Shishi_name_type name_type,
const char *cname[]);

Set principal field in authenticator to specified value.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

name_type : type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.

cname : input array with principal name.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_set_crealm ()

int shishi_authenticator_set_crealm (Shishi *handle,
Shishi_asn1 authenticator,
const char *crealm);

Set realm field in authenticator to specified value.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

crealm : input array with realm.

Returns : Returns SHISHI_OK iff successful.

shishi_authenticator_set_subkey ()

int shishi_authenticator_set_subkey (Shishi *handle,
Shishi_asn1 authenticator,
int32_t subkeytype,
const char *subkey,
size_t subkeylen);

Store subkey value in authenticator. A subkey is usually created by calling shishi_key_random() using the default encryption
type of the key from the ticket that is being used. To save time, you may want to use shishi_authenticator_add_subkey() instead,
which calculates the subkey and calls this function in one step.

handle : shishi handle as allocated by shishi_init().

authenticator : authenticator as allocated by shishi_authenticator().

subkeytype : input subkey type to store in authenticator.

subkey : input subkey data to store in authenticator.

subkeylen : size of input subkey data to store in authenticator.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 98 / 249

shishi_authenticator_subkey ()

Shishi_asn1 shishi_authenticator_subkey (Shishi *handle);

This function creates a new Authenticator, populated with some default values. It uses the current time as returned by the system
for the ctime and cusec fields. It adds a random subkey.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the authenticator or NULL on failure.

shishi_authenticator_to_file ()

int shishi_authenticator_to_file (Shishi *handle,
Shishi_asn1 authenticator,
int filetype,
const char *filename);

Write Authenticator to file in specified TYPE. The file will be truncated if it exists.

handle : shishi handle as allocated by shishi_init().

authenticator : Authenticator to save.

filetype : input variable specifying type of file to be written, see Shishi_filetype.

filename : input variable with filename to write to.

Returns : Returns SHISHI_OK iff successful.

shishi_authorization_parse ()

int shishi_authorization_parse (const char *authorization);

Parse authorization type name.

authorization : name of authorization type, "basic" or "k5login".

Returns : Returns authorization type corresponding to a string.

shishi_authorize_k5login ()

int shishi_authorize_k5login (Shishi *handle,
const char *principal,
const char *authzname);

Authorization of authzname against desired principal in accordance with the MIT/Heimdal authorization method.

handle : shishi handle allocated by shishi_init().

principal : string with desired principal name and realm.

authzname : authorization name.

Returns : Returns 1 if authzname is authorized for services by principal, and returns 0 otherwise.

Shishi API Reference Manual 99 / 249

shishi_authorize_strcmp ()

int shishi_authorize_strcmp (Shishi *handle,
const char *principal,
const char *authzname);

Authorization of authzname against desired principal according to "basic" authentication, i.e., testing for identical strings.

handle : shishi handle allocated by shishi_init().

principal : string with desired principal name.

authzname : authorization name.

Returns : Returns 1 if authzname is authorized for services by the encrypted principal, and 0 otherwise.

shishi_authorized_p ()

int shishi_authorized_p (Shishi *handle,
Shishi_tkt *tkt,
const char *authzname);

Simplistic authorization of authzname against encrypted client principal name inside ticket. For "basic" authentication type, the
principal name must coincide with authzname. The "k5login" authentication type attempts the MIT/Heimdal method of parsing
the file "~/.k5login" for additional equivalence names.

handle : shishi handle allocated by shishi_init().

tkt : input variable with ticket info.

authzname : authorization name.

Returns : Returns 1 if authzname is authorized for services by the encrypted principal, and 0 otherwise.

shishi_cfg ()

int shishi_cfg (Shishi *handle,
const char *option);

Configure shishi library with given option.

handle : Shishi library handle create by shishi_init().

option : string with shishi library option.

Returns : Returns SHISHI_OK if option was valid.

shishi_cfg_authorizationtype_set ()

int shishi_cfg_authorizationtype_set (Shishi *handle,
char *value);

Set the "authorization-types" configuration option from given string. The string contains authorization types (integer or names)
separated by comma or whitespace, e.g. "basic k5login".

handle : Shishi library handle created by shishi_init().

value : string with authorization types.

Returns : Returns SHISHI_OK if successful.

Shishi API Reference Manual 100 / 249

shishi_cfg_clientkdcetype ()

int shishi_cfg_clientkdcetype (Shishi *handle,
int32_t **etypes);

Set the etypes variable to the array of preferred client etypes.

handle : Shishi library handle create by shishi_init().

etypes : output array with encryption types.

Returns : Return the number of encryption types in the array, 0 means none.

shishi_cfg_clientkdcetype_fast ()

int32_t shishi_cfg_clientkdcetype_fast (Shishi *handle);

Extract the default etype from the list of preferred client etypes.

handle : Shishi library handle create by shishi_init().

Returns : Return the default encryption types.

shishi_cfg_clientkdcetype_set ()

int shishi_cfg_clientkdcetype_set (Shishi *handle,
char *value);

Set the "client-kdc-etypes" configuration option from given string. The string contains encryption types (integer or names)
separated by comma or whitespace, e.g. "aes256-cts-hmac-sha1-96 des3-cbc-sha1-kd des-cbc-md5".

handle : Shishi library handle created by shishi_init().

value : string with encryption types.

Returns : Returns SHISHI_OK if successful.

shishi_cfg_default_systemfile ()

const char * shishi_cfg_default_systemfile (Shishi *handle);

The system configuration file name is decided at compile-time, but may be overridden by the environment variable SHISHI_CONFIG.

handle : Shishi library handle create by shishi_init().

Returns : Return system configuration file name.

shishi_cfg_default_userdirectory ()

const char * shishi_cfg_default_userdirectory (Shishi *handle);

The default user directory (used for, e.g. Shishi ticket cache) is normally computed by appending BASE_DIR ("/.shishi") to the
content of the environment variable $HOME, but can be overridden by specifying the complete path in the environment variable
SHISHI_HOME.

handle : Shishi library handle create by shishi_init().

Returns : Return directory with configuration files etc.

Shishi API Reference Manual 101 / 249

shishi_cfg_default_userfile ()

const char * shishi_cfg_default_userfile (Shishi *handle);

Get filename of default user configuration file, typically $HOME/shishi.conf.

handle : Shishi library handle create by shishi_init().

Returns : Return user configuration filename.

shishi_cfg_from_file ()

int shishi_cfg_from_file (Shishi *handle,
const char *cfg);

Configure shishi library using configuration file.

handle : Shishi library handle create by shishi_init().

cfg : filename to read configuration from.

Returns : Returns SHISHI_OK iff successful.

shishi_cfg_print ()

int shishi_cfg_print (Shishi *handle,
FILE *fh);

Print library configuration status, mostly for debugging purposes.

handle : Shishi library handle create by shishi_init().

fh : file descriptor opened for writing.

Returns : Returns SHISHI_OK.

shishi_cfg_userdirectory_file ()

char * shishi_cfg_userdirectory_file (Shishi *handle,
const char *file);

Get the full path to specified file in the users’ configuration directory.

handle : Shishi library handle create by shishi_init().

file : basename of file to find in user directory.

Returns : Return full path to given relative filename, relative to the user specific Shishi configuration directory as returned by
shishi_cfg_default_userdirectory() (typically $HOME/.shishi).

shishi_check_version ()

const char * shishi_check_version (const char *req_version);

Check that the version of the library is at minimum the one given as a string in req_version.

req_version : version string to compare with, or NULL

Returns : the actual version string of the library; NULL if the condition is not met. If NULL is passed to this function no check
is done and only the version string is returned.

Shishi API Reference Manual 102 / 249

shishi_checksum ()

int shishi_checksum (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t cksumtype,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Integrity protect data using key, possibly altered by supplied key usage. If key usage is 0, no key derivation is used. The OUT
buffer must be deallocated by the caller.

handle : shishi handle as allocated by shishi_init().

key : key to compute checksum with.

keyusage : integer specifying what this key is used for.

cksumtype : the checksum algorithm to use.

in : input array with data to integrity protect.

inlen : size of input array with data to integrity protect.

out : output array with newly allocated integrity protected data.

outlen : output variable with length of output array with checksum.

Returns : Returns SHISHI_OK iff successful.

shishi_checksum_cksumlen ()

size_t shishi_checksum_cksumlen (int32_t type);

Get length of checksum output.

type : checksum type, see Shishi_cksumtype.

Returns : Return length of checksum used for the checksum type, as defined in the standards.

shishi_checksum_name ()

const char * shishi_checksum_name (int32_t type);

Get name of checksum.

type : checksum type, see Shishi_cksumtype.

Returns : Return name of checksum type, e.g. "hmac-sha1-96-aes256", as defined in the standards.

shishi_checksum_parse ()

int shishi_checksum_parse (const char *checksum);

Get checksum number by parsing a string.

checksum : name of checksum type, e.g. "hmac-sha1-96-aes256".

Returns : Return checksum type, see Shishi_cksumtype, corresponding to a string.

Shishi API Reference Manual 103 / 249

shishi_checksum_supported_p ()

int shishi_checksum_supported_p (int32_t type);

Find out whether checksum is supported.

type : checksum type, see Shishi_cksumtype.

Returns : Return 0 iff checksum is unsupported.

shishi_cipher_blocksize ()

int shishi_cipher_blocksize (int type);

Get block size for cipher.

type : encryption type, see Shishi_etype.

Returns : Return block size for encryption type, as defined in the standards.

shishi_cipher_confoundersize ()

int shishi_cipher_confoundersize (int type);

Get length of confounder for cipher.

type : encryption type, see Shishi_etype.

Returns : Returns the size of the confounder (random data) for encryption type, as defined in the standards, or (size_t)-1 on error
(e.g., unsupported encryption type).

shishi_cipher_defaultcksumtype ()

int shishi_cipher_defaultcksumtype (int32_t type);

Get the default checksum associated with cipher.

type : encryption type, see Shishi_etype.

Returns : Return associated checksum mechanism for the encryption type, as defined in the standards.

shishi_cipher_keylen ()

size_t shishi_cipher_keylen (int type);

Get key length for cipher.

type : encryption type, see Shishi_etype.

Returns : Return length of key used for the encryption type, as defined in the standards.

Shishi API Reference Manual 104 / 249

shishi_cipher_name ()

const char * shishi_cipher_name (int type);

Read humanly readable string for cipher.

type : encryption type, see Shishi_etype.

Returns : Return name of encryption type, e.g. "des3-cbc-sha1-kd", as defined in the standards.

shishi_cipher_parse ()

int shishi_cipher_parse (const char *cipher);

Get cipher number by parsing string.

cipher : name of encryption type, e.g. "des3-cbc-sha1-kd".

Returns : Return encryption type corresponding to a string.

shishi_cipher_randomlen ()

size_t shishi_cipher_randomlen (int type);

Get length of random data for cipher.

type : encryption type, see Shishi_etype.

Returns : Return length of random used for the encryption type, as defined in the standards, or (size_t)-1 on error (e.g., unsup-
ported encryption type).

shishi_cipher_supported_p ()

int shishi_cipher_supported_p (int type);

Find out if cipher is supported.

type : encryption type, see Shishi_etype.

Returns : Return 0 iff cipher is unsupported.

shishi_crc ()

int shishi_crc (Shishi *handle,
const char *in,
size_t inlen,
char *out[4]);

Compute checksum of data using CRC32 modified according to RFC 1510. The out buffer must be deallocated by the caller.

The modifications compared to standard CRC32 is that no initial and final XOR is performed, and that the output is returned in
LSB-first order.

handle : shishi handle as allocated by shishi_init().

in : input character array of data to checksum.

inlen : length of input character array of data to checksum.

out : newly allocated character array with checksum of data.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 105 / 249

shishi_crypto ()

Shishi_crypto * shishi_crypto (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *iv,
size_t ivlen);

Initialize a crypto context. This store a key, keyusage, encryption type and initialization vector in a "context", and the caller
can then use this context to perform encryption via shishi_crypto_encrypt() and decryption via shishi_crypto_encrypt() without
supplying all those details again. The functions also takes care of propagating the IV between calls.

When the application no longer need to use the context, it should deallocate resources associated with it by calling shishi_crypto_close().

handle : shishi handle as allocated by shishi_init().

key : key to encrypt with.

keyusage : integer specifying what this key will encrypt/decrypt.

etype : integer specifying what cipher to use.

iv : input array with initialization vector

ivlen : size of input array with initialization vector.

Returns : Return a newly allocated crypto context.

shishi_crypto_close ()

void shishi_crypto_close (Shishi_crypto *ctx);

Deallocate resources associated with the crypto context.

ctx : crypto context as returned by shishi_crypto().

shishi_crypto_decrypt ()

int shishi_crypto_decrypt (Shishi_crypto *ctx,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Decrypt data, using information (e.g., key and initialization vector) from context. The IV is updated inside the context after this
call.

When the application no longer need to use the context, it should deallocate resources associated with it by calling shishi_crypto_close().

ctx : crypto context as returned by shishi_crypto().

in : input array with data to decrypt.

inlen : size of input array with data to decrypt.

out : output array with newly allocated decrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 106 / 249

shishi_crypto_encrypt ()

int shishi_crypto_encrypt (Shishi_crypto *ctx,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Encrypt data, using information (e.g., key and initialization vector) from context. The IV is updated inside the context after this
call.

When the application no longer need to use the context, it should deallocate resources associated with it by calling shishi_crypto_close().

ctx : crypto context as returned by shishi_crypto().

in : input array with data to encrypt.

inlen : size of input array with data to encrypt.

out : output array with newly allocated encrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

shishi_ctime ()

int shishi_ctime (Shishi *handle,
Shishi_asn1 node,
const char *field,
time_t *t);

Extract time from ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

node : ASN.1 variable to read field from.

field : name of field in node to read.

t : pointer to time field to set.

Returns : Returns SHISHI_OK if successful, SHISHI_ASN1_NO_ELEMENT if the element do not exist, SHISHI_ASN1_NO_VALUE
if the field has no value, ot SHISHI_ASN1_ERROR otherwise.

shishi_decrypt ()

int shishi_decrypt (Shishi *handle,
Shishi_key *key,
int keyusage,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Decrypts data specified key. The key actually used is derived using the key usage. If key usage is 0, no key derivation is used.
The OUT buffer must be deallocated by the caller. The default IV is used, see shishi_decrypt_iv if you need to alter it. The next
IV is lost, see shishi_decrypt_ivupdate if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

Shishi API Reference Manual 107 / 249

handle : shishi handle as allocated by shishi_init().

key : key to decrypt with.

keyusage : integer specifying what this key is decrypting.

in : input array with data to decrypt.

inlen : size of input array with data to decrypt.

out : output array with newly allocated decrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

shishi_decrypt_etype ()

int shishi_decrypt_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Decrypts data as per encryption method using specified key. The key actually used is derived using the key usage. If key usage is
0, no key derivation is used. The OUT buffer must be deallocated by the caller. The default IV is used, see shishi_decrypt_iv_etype
if you need to alter it. The next IV is lost, see shishi_decrypt_ivupdate_etype if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

handle : shishi handle as allocated by shishi_init().

key : key to decrypt with.

keyusage : integer specifying what this key is decrypting.

etype : integer specifying what cipher to use.

in : input array with data to decrypt.

inlen : size of input array with data to decrypt.

out : output array with newly allocated decrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 108 / 249

shishi_decrypt_iv ()

int shishi_decrypt_iv (Shishi *handle,
Shishi_key *key,
int keyusage,
const char *iv,
size_t ivlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Decrypts data using specified initialization vector and key. The key actually used is derived using the key usage. If key usage is 0,
no key derivation is used. The OUT buffer must be deallocated by the caller. The next IV is lost, see shishi_decrypt_ivupdate_etype
if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

handle : shishi handle as allocated by shishi_init().

key : key to decrypt with.

keyusage : integer specifying what this key is decrypting.

iv : input array with initialization vector

ivlen : size of input array with initialization vector.

in : input array with data to decrypt.

inlen : size of input array with data to decrypt.

out : output array with newly allocated decrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

shishi_decrypt_iv_etype ()

int shishi_decrypt_iv_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *iv,
size_t ivlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Decrypts data as per encryption method using specified initialization vector and key. The key actually used is derived using the
key usage. If key usage is 0, no key derivation is used. The OUT buffer must be deallocated by the caller. The next IV is lost,
see shishi_decrypt_ivupdate_etype if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

Shishi API Reference Manual 109 / 249

handle : shishi handle as allocated by shishi_init().

key : key to decrypt with.

keyusage : integer specifying what this key is decrypting.

etype : integer specifying what cipher to use.

iv : input array with initialization vector

ivlen : size of input array with initialization vector.

in : input array with data to decrypt.

inlen : size of input array with data to decrypt.

out : output array with newly allocated decrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

shishi_decrypt_ivupdate ()

int shishi_decrypt_ivupdate (Shishi *handle,
Shishi_key *key,
int keyusage,
const char *iv,
size_t ivlen,
char **ivout,
size_t *ivoutlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Decrypts data using specified initialization vector and key. The key actually used is derived using the key usage. If key usage is
0, no key derivation is used. The OUT buffer must be deallocated by the caller. If IVOUT or IVOUTLEN is NULL, the updated
IV is not saved anywhere.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

handle : shishi handle as allocated by shishi_init().

key : key to decrypt with.

keyusage : integer specifying what this key is decrypting.

iv : input array with initialization vector

ivlen : size of input array with initialization vector.

ivout : output array with newly allocated updated initialization vector.

ivoutlen : size of output array with updated initialization vector.

in : input array with data to decrypt.

inlen : size of input array with data to decrypt.

out : output array with newly allocated decrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 110 / 249

shishi_decrypt_ivupdate_etype ()

int shishi_decrypt_ivupdate_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *iv,
size_t ivlen,
char **ivout,
size_t *ivoutlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Decrypts data as per encryption method using specified initialization vector and key. The key actually used is derived using
the key usage. If key usage is 0, no key derivation is used. The OUT buffer must be deallocated by the caller. If IVOUT or
IVOUTLEN is NULL, the updated IV is not saved anywhere.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

handle : shishi handle as allocated by shishi_init().

key : key to decrypt with.

keyusage : integer specifying what this key is decrypting.

etype : integer specifying what cipher to use.

iv : input array with initialization vector

ivlen : size of input array with initialization vector.

ivout : output array with newly allocated updated initialization vector.

ivoutlen : size of output array with updated initialization vector.

in : input array with data to decrypt.

inlen : size of input array with data to decrypt.

out : output array with newly allocated decrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

shishi_der2asn1 ()

Shishi_asn1 shishi_der2asn1 (Shishi *handle,
const char *der,
size_t derlen);

Convert arbitrary DER data of a packet to a ASN.1 type.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns newly allocate ASN.1 corresponding to DER data, or NULL on failure.

Shishi API Reference Manual 111 / 249

shishi_der2asn1_aprep ()

Shishi_asn1 shishi_der2asn1_aprep (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of AP-REP and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_apreq ()

Shishi_asn1 shishi_der2asn1_apreq (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of AP-REQ and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_asrep ()

Shishi_asn1 shishi_der2asn1_asrep (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of AS-REP and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_asreq ()

Shishi_asn1 shishi_der2asn1_asreq (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of AS-REQ and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

Shishi API Reference Manual 112 / 249

shishi_der2asn1_authenticator ()

Shishi_asn1 shishi_der2asn1_authenticator (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of Authenticator and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_encapreppart ()

Shishi_asn1 shishi_der2asn1_encapreppart (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of EncAPRepPart and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_encasreppart ()

Shishi_asn1 shishi_der2asn1_encasreppart (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of EncASRepPart and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_enckdcreppart ()

Shishi_asn1 shishi_der2asn1_enckdcreppart (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of EncKDCRepPart and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

Shishi API Reference Manual 113 / 249

shishi_der2asn1_encprivpart ()

Shishi_asn1 shishi_der2asn1_encprivpart (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of EncKrbPrivPart and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_enctgsreppart ()

Shishi_asn1 shishi_der2asn1_enctgsreppart (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of EncTGSRepPart and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_encticketpart ()

Shishi_asn1 shishi_der2asn1_encticketpart (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of EncTicketPart and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_etype_info ()

Shishi_asn1 shishi_der2asn1_etype_info (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of ETYPE-INFO and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

Shishi API Reference Manual 114 / 249

shishi_der2asn1_etype_info2 ()

Shishi_asn1 shishi_der2asn1_etype_info2 (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of ETYPE-INFO2 and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_kdcrep ()

Shishi_asn1 shishi_der2asn1_kdcrep (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of KDC-REP and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_kdcreq ()

Shishi_asn1 shishi_der2asn1_kdcreq (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of AS-REQ, TGS-REQ or KDC-REQ and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_krberror ()

Shishi_asn1 shishi_der2asn1_krberror (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of KRB-ERROR and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

Shishi API Reference Manual 115 / 249

shishi_der2asn1_krbsafe ()

Shishi_asn1 shishi_der2asn1_krbsafe (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of KRB-SAFE and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_methoddata ()

Shishi_asn1 shishi_der2asn1_methoddata (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of METHOD-DATA and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_padata ()

Shishi_asn1 shishi_der2asn1_padata (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of PA-DATA and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_priv ()

Shishi_asn1 shishi_der2asn1_priv (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of KRB-PRIV and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

Shishi API Reference Manual 116 / 249

shishi_der2asn1_tgsrep ()

Shishi_asn1 shishi_der2asn1_tgsrep (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of TGS-REP and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_tgsreq ()

Shishi_asn1 shishi_der2asn1_tgsreq (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of TGS-REQ and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der2asn1_ticket ()

Shishi_asn1 shishi_der2asn1_ticket (Shishi *handle,
const char *der,
size_t derlen);

Decode DER encoding of Ticket and create a ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns ASN.1 structure corresponding to DER data.

shishi_der_msgtype ()

Shishi_msgtype shishi_der_msgtype (Shishi *handle,
const char *der,
size_t derlen);

Determine msg-type of DER coded data of a packet.

handle : shishi handle as allocated by shishi_init().

der : input character array with DER encoding.

derlen : length of input character array with DER encoding.

Returns : Returns msg-type of DER data, 0 on failure.

Shishi API Reference Manual 117 / 249

shishi_derive_default_salt ()

int shishi_derive_default_salt (Shishi *handle,
const char *name,
char **salt);

Derive the default salt from a principal. The default salt is the concatenation of the decoded realm and the principal.

handle : shishi handle as allocated by shishi_init().

name : principal name of user.

salt : output variable with newly allocated salt string.

Returns : Return SHISHI_OK if successful.

shishi_des ()

int shishi_des (Shishi *handle,
int decryptp,
const char key[8],
const char iv[8],
char *ivout[8],
const char *in,
size_t inlen,
char **out);

Encrypt or decrypt data (depending on decryptp) using DES in CBC mode. The out buffer must be deallocated by the caller.

handle : shishi handle as allocated by shishi_init().

decryptp : 0 to indicate encryption, non-0 to indicate decryption.

key : input character array with key to use.

iv : input character array with initialization vector to use, or NULL.

ivout : output character array with updated initialization vector, or NULL.

in : input character array of data to encrypt/decrypt.

inlen : length of input character array of data to encrypt/decrypt.

out : newly allocated character array with encrypted/decrypted data.

Returns : Returns SHISHI_OK iff successful.

shishi_des_cbc_mac ()

int shishi_des_cbc_mac (Shishi *handle,
const char key[8],
const char iv[8],
const char *in,
size_t inlen,
char *out[8]);

Computed keyed checksum of data using DES-CBC-MAC. The out buffer must be deallocated by the caller.

handle : shishi handle as allocated by shishi_init().

Shishi API Reference Manual 118 / 249

key : input character array with key to use.

iv : input character array with initialization vector to use, can be NULL.

in : input character array of data to hash.

inlen : length of input character array of data to hash.

out : newly allocated character array with keyed hash of data.

Returns : Returns SHISHI_OK iff successful.

shishi_dk ()

int shishi_dk (Shishi *handle,
Shishi_key *key,
const char *prfconstant,
size_t prfconstantlen,
Shishi_key *derivedkey);

Derive a key from a key and a constant thusly: DK(KEY, PRFCONSTANT) = SHISHI_RANDOM-TO-KEY(SHISHI_DR(KEY,
PRFCONSTANT)).

handle : shishi handle as allocated by shishi_init().

key : input cryptographic key to use.

prfconstant : input array with the constant string.

prfconstantlen : size of input array with the constant string.

derivedkey : pointer to derived key (allocated by caller).

Returns : Returns SHISHI_OK iff successful.

shishi_done ()

void shishi_done (Shishi *handle);

Deallocates the shishi library handle. The handle must not be used in any calls to shishi functions after this.

If there is a default tkts, it is written to the default tkts file (call shishi_tkts_default_file_set() to change the default tkts file). If you
do not wish to write the default tkts file, close the default tkts with shishi_tkts_done(handle, NULL) before calling this function.

handle : shishi handle as allocated by shishi_init().

shishi_dr ()

int shishi_dr (Shishi *handle,
Shishi_key *key,
const char *prfconstant,
size_t prfconstantlen,
char *derivedrandom,
size_t derivedrandomlen);

Derive "random" data from a key and a constant thusly: DR(KEY, PRFCONSTANT) = TRUNCATE(DERIVEDRANDOMLEN,
SHISHI_ENCRYPT(KEY, PRFCONSTANT)).

handle : shishi handle as allocated by shishi_init().

Shishi API Reference Manual 119 / 249

key : input array with cryptographic key to use.

prfconstant : input array with the constant string.

prfconstantlen : size of input array with the constant string.

derivedrandom : output array with derived random data.

derivedrandomlen : size of output array with derived random data.

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart ()

Shishi_asn1 shishi_encapreppart (Shishi *handle);

This function creates a new EncAPRepPart, populated with some default values. It uses the current time as returned by the
system for the ctime and cusec fields.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the encapreppart or NULL on failure.

shishi_encapreppart_ctime ()

int shishi_encapreppart_ctime (Shishi *handle,
Shishi_asn1 encapreppart,
char **t);

Extract client time from EncAPRepPart.

handle : shishi handle as allocated by shishi_init().

encapreppart : EncAPRepPart as allocated by shishi_encapreppart().

t : newly allocated zero-terminated character array with client time.

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart_ctime_set ()

int shishi_encapreppart_ctime_set (Shishi *handle,
Shishi_asn1 encapreppart,
const char *t);

Store client time in EncAPRepPart.

handle : shishi handle as allocated by shishi_init().

encapreppart : EncAPRepPart as allocated by shishi_encapreppart().

t : string with generalized time value to store in EncAPRepPart.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 120 / 249

shishi_encapreppart_cusec_get ()

int shishi_encapreppart_cusec_get (Shishi *handle,
Shishi_asn1 encapreppart,
uint32_t *cusec);

Extract client microseconds field from EncAPRepPart.

handle : shishi handle as allocated by shishi_init().

encapreppart : EncAPRepPart as allocated by shishi_encapreppart().

cusec : output integer with client microseconds field.

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart_cusec_set ()

int shishi_encapreppart_cusec_set (Shishi *handle,
Shishi_asn1 encapreppart,
uint32_t cusec);

Set the cusec field in the Authenticator.

handle : shishi handle as allocated by shishi_init().

encapreppart : EncAPRepPart as allocated by shishi_encapreppart().

cusec : client microseconds to set in authenticator, 0-999999.

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart_from_file ()

int shishi_encapreppart_from_file (Shishi *handle,
Shishi_asn1 *encapreppart,
int filetype,
const char *filename);

Read EncAPRepPart from file in specified TYPE.

handle : shishi handle as allocated by shishi_init().

encapreppart : output variable with newly allocated EncAPRepPart.

filetype : input variable specifying type of file to be read, see Shishi_filetype.

filename : input variable with filename to read from.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 121 / 249

shishi_encapreppart_get_key ()

int shishi_encapreppart_get_key (Shishi *handle,
Shishi_asn1 encapreppart,
Shishi_key **key);

Extract the subkey from the encrypted AP-REP part.

handle : shishi handle as allocated by shishi_init().

encapreppart : input EncAPRepPart variable.

key : newly allocated key.

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart_parse ()

int shishi_encapreppart_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *encapreppart);

Read ASCII armored DER encoded EncAPRepPart from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

encapreppart : output variable with newly allocated EncAPRepPart.

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart_print ()

int shishi_encapreppart_print (Shishi *handle,
FILE *fh,
Shishi_asn1 encapreppart);

Print ASCII armored DER encoding of EncAPRepPart to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

encapreppart : EncAPRepPart to print.

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart_read ()

int shishi_encapreppart_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *encapreppart);

Read DER encoded EncAPRepPart from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

encapreppart : output variable with newly allocated EncAPRepPart.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 122 / 249

shishi_encapreppart_save ()

int shishi_encapreppart_save (Shishi *handle,
FILE *fh,
Shishi_asn1 encapreppart);

Save DER encoding of EncAPRepPart to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

encapreppart : EncAPRepPart to save.

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart_seqnumber_get ()

int shishi_encapreppart_seqnumber_get (Shishi *handle,
Shishi_asn1 encapreppart,
uint32_t *seqnumber);

Extract sequence number field from EncAPRepPart.

handle : shishi handle as allocated by shishi_init().

encapreppart : EncAPRepPart as allocated by shishi_encapreppart().

seqnumber : output integer with sequence number field.

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart_seqnumber_remove ()

int shishi_encapreppart_seqnumber_remove
(Shishi *handle,
Shishi_asn1 encapreppart);

Remove sequence number field in EncAPRepPart.

handle : shishi handle as allocated by shishi_init().

encapreppart : encapreppart as allocated by shishi_encapreppart().

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart_seqnumber_set ()

int shishi_encapreppart_seqnumber_set (Shishi *handle,
Shishi_asn1 encapreppart,
uint32_t seqnumber);

Store sequence number field in EncAPRepPart.

handle : shishi handle as allocated by shishi_init().

encapreppart : encapreppart as allocated by shishi_encapreppart().

seqnumber : integer with sequence number field to store in encapreppart.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 123 / 249

shishi_encapreppart_time_copy ()

int shishi_encapreppart_time_copy (Shishi *handle,
Shishi_asn1 encapreppart,
Shishi_asn1 authenticator);

Copy time fields from Authenticator into EncAPRepPart.

handle : shishi handle as allocated by shishi_init().

encapreppart : EncAPRepPart as allocated by shishi_encapreppart().

authenticator : Authenticator to copy time fields from.

Returns : Returns SHISHI_OK iff successful.

shishi_encapreppart_to_file ()

int shishi_encapreppart_to_file (Shishi *handle,
Shishi_asn1 encapreppart,
int filetype,
const char *filename);

Write EncAPRepPart to file in specified TYPE. The file will be truncated if it exists.

handle : shishi handle as allocated by shishi_init().

encapreppart : EncAPRepPart to save.

filetype : input variable specifying type of file to be written, see Shishi_filetype.

filename : input variable with filename to write to.

Returns : Returns SHISHI_OK iff successful.

shishi_encasreppart ()

Shishi_asn1 shishi_encasreppart (Shishi *handle);

shishi_enckdcreppart ()

Shishi_asn1 shishi_enckdcreppart (Shishi *handle);

shishi_enckdcreppart_authtime_set ()

int shishi_enckdcreppart_authtime_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *authtime);

Set the EncTicketPart.authtime to supplied value.

handle : shishi handle as allocated by shishi_init().

enckdcreppart : input EncKDCRepPart variable.

authtime : character buffer containing a generalized time string.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 124 / 249

shishi_enckdcreppart_endtime_set ()

int shishi_enckdcreppart_endtime_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *endtime);

Set the EncTicketPart.endtime to supplied value.

handle : shishi handle as allocated by shishi_init().

enckdcreppart : input EncKDCRepPart variable.

endtime : character buffer containing a generalized time string.

Returns : Returns SHISHI_OK iff successful.

shishi_enckdcreppart_flags_set ()

int shishi_enckdcreppart_flags_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
int flags);

Set the EncKDCRepPart.flags field.

handle : shishi handle as allocated by shishi_init().

enckdcreppart : input EncKDCRepPart variable.

flags : flags to set in EncKDCRepPart.

Returns : Returns SHISHI_OK iff successful.

shishi_enckdcreppart_get_key ()

int shishi_enckdcreppart_get_key (Shishi *handle,
Shishi_asn1 enckdcreppart,
Shishi_key **key);

Extract the key to use with the ticket sent in the KDC-REP associated with the EncKDCRepPart input variable.

handle : shishi handle as allocated by shishi_init().

enckdcreppart : input EncKDCRepPart variable.

key : newly allocated encryption key handle.

Returns : Returns SHISHI_OK iff successful.

shishi_enckdcreppart_key_set ()

int shishi_enckdcreppart_key_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
Shishi_key *key);

Set the EncKDCRepPart.key field to key type and value of supplied key.

handle : shishi handle as allocated by shishi_init().

enckdcreppart : input EncKDCRepPart variable.

key : key handle with information to store in enckdcreppart.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 125 / 249

shishi_enckdcreppart_nonce_set ()

int shishi_enckdcreppart_nonce_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
uint32_t nonce);

Set the EncKDCRepPart.nonce field.

handle : shishi handle as allocated by shishi_init().

enckdcreppart : input EncKDCRepPart variable.

nonce : nonce to set in EncKDCRepPart.

Returns : Returns SHISHI_OK iff successful.

shishi_enckdcreppart_parse ()

int shishi_enckdcreppart_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *enckdcreppart);

shishi_enckdcreppart_populate_encticketpart ()

int shishi_enckdcreppart_populate_encticketpart
(Shishi *handle,
Shishi_asn1 enckdcreppart,
Shishi_asn1 encticketpart);

Set the flags, authtime, starttime, endtime, renew-till and caddr fields of the EncKDCRepPart to the corresponding values in the
EncTicketPart.

handle : shishi handle as allocated by shishi_init().

enckdcreppart : input EncKDCRepPart variable.

encticketpart : input EncTicketPart variable.

Returns : Returns SHISHI_OK iff successful.

shishi_enckdcreppart_print ()

int shishi_enckdcreppart_print (Shishi *handle,
FILE *fh,
Shishi_asn1 enckdcreppart);

shishi_enckdcreppart_read ()

int shishi_enckdcreppart_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *enckdcreppart);

Shishi API Reference Manual 126 / 249

shishi_enckdcreppart_renew_till_set ()

int shishi_enckdcreppart_renew_till_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *renew_till);

Set the EncTicketPart.renew-till to supplied value. Use a NULL value for renew_till to remove the field.

handle : shishi handle as allocated by shishi_init().

enckdcreppart : input EncKDCRepPart variable.

renew_till : character buffer containing a generalized time string.

Returns : Returns SHISHI_OK iff successful.

shishi_enckdcreppart_save ()

int shishi_enckdcreppart_save (Shishi *handle,
FILE *fh,
Shishi_asn1 enckdcreppart);

shishi_enckdcreppart_server_set ()

int shishi_enckdcreppart_server_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *server);

shishi_enckdcreppart_sname_set ()

int shishi_enckdcreppart_sname_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
Shishi_name_type name_type,
char *sname[]);

Set the server name field in the EncKDCRepPart.

handle : shishi handle as allocated by shishi_init().

enckdcreppart : EncKDCRepPart variable to set server name field in.

name_type : type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.

sname : input array with principal name.

Returns : Returns SHISHI_OK iff successful.

shishi_enckdcreppart_srealm_set ()

int shishi_enckdcreppart_srealm_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *srealm);

Set the server realm field in the EncKDCRepPart.

Shishi API Reference Manual 127 / 249

handle : shishi handle as allocated by shishi_init().

enckdcreppart : EncKDCRepPart variable to set realm field in.

srealm : input array with name of realm.

Returns : Returns SHISHI_OK iff successful.

shishi_enckdcreppart_srealmserver_set ()

int shishi_enckdcreppart_srealmserver_set
(Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *srealm,
const char *server);

shishi_enckdcreppart_starttime_set ()

int shishi_enckdcreppart_starttime_set (Shishi *handle,
Shishi_asn1 enckdcreppart,
const char *starttime);

Set the EncTicketPart.starttime to supplied value. Use a NULL value for starttime to remove the field.

handle : shishi handle as allocated by shishi_init().

enckdcreppart : input EncKDCRepPart variable.

starttime : character buffer containing a generalized time string.

Returns : Returns SHISHI_OK iff successful.

shishi_encprivpart_set_user_data ()

int shishi_encprivpart_set_user_data (Shishi *handle,
Shishi_asn1 encprivpart,
const char *userdata,
size_t userdatalen);

Set the application data in PRIV.

handle : shishi handle as allocated by shishi_init().

encprivpart : encprivpart as allocated by shishi_priv().

userdata : input user application to store in PRIV.

userdatalen : size of input user application to store in PRIV.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 128 / 249

shishi_encprivpart_user_data ()

int shishi_encprivpart_user_data (Shishi *handle,
Shishi_asn1 encprivpart,
char **userdata,
size_t *userdatalen);

Read user data value from KRB-PRIV. userdata is allocated by this function, and it is the responsibility of caller to deallocate
it.

handle : shishi handle as allocated by shishi_init().

encprivpart : encprivpart as allocated by shishi_priv().

userdata : output array with newly allocated user data from KRB-PRIV.

userdatalen : output size of output user data buffer.

Returns : Returns SHISHI_OK iff successful.

shishi_encrypt ()

int shishi_encrypt (Shishi *handle,
Shishi_key *key,
int keyusage,
char *in,
size_t inlen,
char **out,
size_t *outlen);

Encrypts data using specified key. The key actually used is derived using the key usage. If key usage is 0, no key derivation is
used. The OUT buffer must be deallocated by the caller. The default IV is used, see shishi_encrypt_iv if you need to alter it. The
next IV is lost, see shishi_encrypt_ivupdate if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

handle : shishi handle as allocated by shishi_init().

key : key to encrypt with.

keyusage : integer specifying what this key is encrypting.

in : input array with data to encrypt.

inlen : size of input array with data to encrypt.

out : output array with newly allocated encrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 129 / 249

shishi_encrypt_etype ()

int shishi_encrypt_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Encrypts data as per encryption method using specified initialization vector and key. The key actually used is derived using the
key usage. If key usage is 0, no key derivation is used. The OUT buffer must be deallocated by the caller. The default IV is used,
see shishi_encrypt_iv_etype if you need to alter it. The next IV is lost, see shishi_encrypt_ivupdate_etype if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

handle : shishi handle as allocated by shishi_init().

key : key to encrypt with.

keyusage : integer specifying what this key is encrypting.

etype : integer specifying what cipher to use.

in : input array with data to encrypt.

inlen : size of input array with data to encrypt.

out : output array with newly allocated encrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

shishi_encrypt_iv ()

int shishi_encrypt_iv (Shishi *handle,
Shishi_key *key,
int keyusage,
const char *iv,
size_t ivlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Encrypts data using specified initialization vector and key. The key actually used is derived using the key usage. If key usage is
0, no key derivation is used. The OUT buffer must be deallocated by the caller. The next IV is lost, see shishi_encrypt_ivupdate
if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

handle : shishi handle as allocated by shishi_init().

Shishi API Reference Manual 130 / 249

key : key to encrypt with.

keyusage : integer specifying what this key is encrypting.

iv : input array with initialization vector

ivlen : size of input array with initialization vector.

in : input array with data to encrypt.

inlen : size of input array with data to encrypt.

out : output array with newly allocated encrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

shishi_encrypt_iv_etype ()

int shishi_encrypt_iv_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *iv,
size_t ivlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Encrypts data as per encryption method using specified initialization vector and key. The key actually used is derived using the
key usage. If key usage is 0, no key derivation is used. The OUT buffer must be deallocated by the caller. The next IV is lost,
see shishi_encrypt_ivupdate_etype if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

handle : shishi handle as allocated by shishi_init().

key : key to encrypt with.

keyusage : integer specifying what this key is encrypting.

etype : integer specifying what cipher to use.

iv : input array with initialization vector

ivlen : size of input array with initialization vector.

in : input array with data to encrypt.

inlen : size of input array with data to encrypt.

out : output array with newly allocated encrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 131 / 249

shishi_encrypt_ivupdate ()

int shishi_encrypt_ivupdate (Shishi *handle,
Shishi_key *key,
int keyusage,
const char *iv,
size_t ivlen,
char **ivout,
size_t *ivoutlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Encrypts data using specified initialization vector and key. The key actually used is derived using the key usage. If key usage is
0, no key derivation is used. The OUT buffer must be deallocated by the caller. If IVOUT or IVOUTLEN is NULL, the updated
IV is not saved anywhere.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

handle : shishi handle as allocated by shishi_init().

key : key to encrypt with.

keyusage : integer specifying what this key is encrypting.

iv : input array with initialization vector

ivlen : size of input array with initialization vector.

ivout : output array with newly allocated updated initialization vector.

ivoutlen : size of output array with updated initialization vector.

in : input array with data to encrypt.

inlen : size of input array with data to encrypt.

out : output array with newly allocated encrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

shishi_encrypt_ivupdate_etype ()

int shishi_encrypt_ivupdate_etype (Shishi *handle,
Shishi_key *key,
int keyusage,
int32_t etype,
const char *iv,
size_t ivlen,
char **ivout,
size_t *ivoutlen,
const char *in,
size_t inlen,
char **out,
size_t *outlen);

Shishi API Reference Manual 132 / 249

Encrypts data as per encryption method using specified initialization vector and key. The key actually used is derived using
the key usage. If key usage is 0, no key derivation is used. The OUT buffer must be deallocated by the caller. If IVOUT or
IVOUTLEN is NULL, the updated IV is not saved anywhere.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly. Some encryption types add pad to make the data
fit into the block size of the encryption algorithm. Furthermore, the pad is not guaranteed to look in any special way, although
existing implementations often pad with the zero byte. This means that you may have to "frame" data, so it is possible to infer
the original length after decryption. Compare ASN.1 DER which contains such information.

handle : shishi handle as allocated by shishi_init().

key : key to encrypt with.

keyusage : integer specifying what this key is encrypting.

etype : integer specifying what cipher to use.

iv : input array with initialization vector

ivlen : size of input array with initialization vector.

ivout : output array with newly allocated updated initialization vector.

ivoutlen : size of output array with updated initialization vector.

in : input array with data to encrypt.

inlen : size of input array with data to encrypt.

out : output array with newly allocated encrypted data.

outlen : output variable with size of newly allocated output array.

Returns : Returns SHISHI_OK iff successful.

shishi_encticketpart ()

Shishi_asn1 shishi_encticketpart (Shishi *handle);

shishi_encticketpart_authctime ()

time_t shishi_encticketpart_authctime (Shishi *handle,
Shishi_asn1 encticketpart);

shishi_encticketpart_authtime ()

int shishi_encticketpart_authtime (Shishi *handle,
Shishi_asn1 encticketpart,
char *authtime,
size_t *authtimelen);

Shishi API Reference Manual 133 / 249

shishi_encticketpart_authtime_set ()

int shishi_encticketpart_authtime_set (Shishi *handle,
Shishi_asn1 encticketpart,
const char *authtime);

Set the EncTicketPart.authtime to supplied value.

handle : shishi handle as allocated by shishi_init().

encticketpart : input EncTicketPart variable.

authtime : character buffer containing a generalized time string.

Returns : Returns SHISHI_OK iff successful.

shishi_encticketpart_client ()

int shishi_encticketpart_client (Shishi *handle,
Shishi_asn1 encticketpart,
char **client,
size_t *clientlen);

Represent client principal name in EncTicketPart as zero-terminated string. The string is allocate by this function, and it is the
responsibility of the caller to deallocate it. Note that the output length clientlen does not include the terminating zero.

handle : Shishi library handle create by shishi_init().

encticketpart : EncTicketPart variable to get client name from.

client : pointer to newly allocated zero terminated string containing principal name. May be NULL (to only populate clien
tlen).

clientlen : pointer to length of client on output, excluding terminating zero. May be NULL (to only populate client).

Returns : Returns SHISHI_OK iff successful.

shishi_encticketpart_clientrealm ()

int shishi_encticketpart_clientrealm (Shishi *handle,
Shishi_asn1 encticketpart,
char **client,
size_t *clientlen);

Convert cname and realm fields from EncTicketPart to printable principal name format. The string is allocate by this function,
and it is the responsibility of the caller to deallocate it. Note that the output length clientlen does not include the terminating
zero.

handle : Shishi library handle create by shishi_init().

encticketpart : EncTicketPart variable to get client name and realm from.

client : pointer to newly allocated zero terminated string containing principal name and realm. May be NULL (to only
populate clientlen).

clientlen : pointer to length of client on output, excluding terminating zero. May be NULL (to only populate client).

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 134 / 249

shishi_encticketpart_cname_set ()

int shishi_encticketpart_cname_set (Shishi *handle,
Shishi_asn1 encticketpart,
Shishi_name_type name_type,
const char *principal);

Set the client name field in the EncTicketPart.

handle : shishi handle as allocated by shishi_init().

encticketpart : input EncTicketPart variable.

name_type : type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.

principal : input array with principal name.

Returns : Returns SHISHI_OK iff successful.

shishi_encticketpart_crealm ()

int shishi_encticketpart_crealm (Shishi *handle,
Shishi_asn1 encticketpart,
char **crealm,
size_t *crealmlen);

shishi_encticketpart_crealm_set ()

int shishi_encticketpart_crealm_set (Shishi *handle,
Shishi_asn1 encticketpart,
const char *realm);

Set the realm field in the KDC-REQ.

handle : shishi handle as allocated by shishi_init().

encticketpart : input EncTicketPart variable.

realm : input array with name of realm.

Returns : Returns SHISHI_OK iff successful.

shishi_encticketpart_endtime_set ()

int shishi_encticketpart_endtime_set (Shishi *handle,
Shishi_asn1 encticketpart,
const char *endtime);

Set the EncTicketPart.endtime to supplied value.

handle : shishi handle as allocated by shishi_init().

encticketpart : input EncTicketPart variable.

endtime : character buffer containing a generalized time string.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 135 / 249

shishi_encticketpart_flags_set ()

int shishi_encticketpart_flags_set (Shishi *handle,
Shishi_asn1 encticketpart,
int flags);

Set the EncTicketPart.flags to supplied value.

handle : shishi handle as allocated by shishi_init().

encticketpart : input EncTicketPart variable.

flags : flags to set in encticketpart.

Returns : Returns SHISHI_OK iff successful.

shishi_encticketpart_get_key ()

int shishi_encticketpart_get_key (Shishi *handle,
Shishi_asn1 encticketpart,
Shishi_key **key);

Extract the session key in the Ticket.

handle : shishi handle as allocated by shishi_init().

encticketpart : input EncTicketPart variable.

key : newly allocated key.

Returns : Returns SHISHI_OK iff successful.

shishi_encticketpart_key_set ()

int shishi_encticketpart_key_set (Shishi *handle,
Shishi_asn1 encticketpart,
Shishi_key *key);

Set the EncTicketPart.key field to key type and value of supplied key.

handle : shishi handle as allocated by shishi_init().

encticketpart : input EncTicketPart variable.

key : key handle with information to store in encticketpart.

Returns : Returns SHISHI_OK iff successful.

shishi_encticketpart_print ()

int shishi_encticketpart_print (Shishi *handle,
FILE *fh,
Shishi_asn1 encticketpart);

Shishi API Reference Manual 136 / 249

shishi_encticketpart_transited_set ()

int shishi_encticketpart_transited_set (Shishi *handle,
Shishi_asn1 encticketpart,
int32_t trtype,
const char *trdata,
size_t trdatalen);

Set the EncTicketPart.transited field to supplied value.

handle : shishi handle as allocated by shishi_init().

encticketpart : input EncTicketPart variable.

trtype : transitedencoding type, e.g. SHISHI_TR_DOMAIN_X500_COMPRESS.

trdata : actual transited realm data.

trdatalen : length of actual transited realm data.

Returns : Returns SHISHI_OK iff successful.

shishi_error ()

const char * shishi_error (Shishi *handle);

Extract detailed error information string. Note that the memory is managed by the Shishi library, so you must not deallocate the
string.

handle : shishi handle as allocated by shishi_init().

Returns : Returns pointer to error information string, that must not be deallocate by caller.

shishi_error_clear ()

void shishi_error_clear (Shishi *handle);

Clear the detailed error information string. See shishi_error() for how to access the error string, and shishi_error_set() and
shishi_error_printf() for how to set the error string. This function is mostly for Shishi internal use, but if you develop an extension
of Shishi, it may be useful to use the same error handling infrastructure.

handle : shishi handle as allocated by shishi_init().

shishi_error_outputtype ()

int shishi_error_outputtype (Shishi *handle);

Get the current output type for logging messages.

handle : shishi handle as allocated by shishi_init().

Returns : Return output type (NULL, stderr or syslog) for informational and warning messages.

Shishi API Reference Manual 137 / 249

shishi_error_printf ()

void shishi_error_printf (Shishi *handle,
const char *format,
...);

Set the detailed error information string to a printf formatted string. This function is mostly for Shishi internal use, but if you
develop an extension of Shishi, it may be useful to use the same error handling infrastructure.

handle : shishi handle as allocated by shishi_init().

format : printf style format string.

... : print style arguments.

shishi_error_set ()

void shishi_error_set (Shishi *handle,
const char *errstr);

Set the detailed error information string to specified string. The string is copied into the Shishi internal structure, so you can
deallocate the string passed to this function after the call. This function is mostly for Shishi internal use, but if you develop an
extension of Shishi, it may be useful to use the same error handling infrastructure.

handle : shishi handle as allocated by shishi_init().

errstr : Zero terminated character array containing error description, or NULL to clear the error description string.

shishi_error_set_outputtype ()

void shishi_error_set_outputtype (Shishi *handle,
int type);

Set output type (NULL, stderr or syslog) for informational and warning messages.

handle : shishi handle as allocated by shishi_init().

type : output type.

shishi_etype_info2_print ()

int shishi_etype_info2_print (Shishi *handle,
FILE *fh,
Shishi_asn1 etypeinfo2);

shishi_etype_info_print ()

int shishi_etype_info_print (Shishi *handle,
FILE *fh,
Shishi_asn1 etypeinfo);

Shishi API Reference Manual 138 / 249

shishi_generalize_ctime ()

time_t shishi_generalize_ctime (Shishi *handle,
const char *t);

Convert KerberosTime to C time.

handle : shishi handle as allocated by shishi_init().

t : KerberosTime to convert.

Returns : Returns C time corresponding to KerberosTime t.

shishi_generalize_now ()

const char * shishi_generalize_now (Shishi *handle);

Convert current time to KerberosTime. The string must not be deallocate by caller.

handle : shishi handle as allocated by shishi_init().

Returns : Return a KerberosTime time string corresponding to current time.

shishi_generalize_time ()

const char * shishi_generalize_time (Shishi *handle,
time_t t);

Convert C time to KerberosTime. The string must not be deallocate by caller.

handle : shishi handle as allocated by shishi_init().

t : C time to convert.

Returns : Return a KerberosTime time string corresponding to C time t.

shishi_get_date ()

time_t shishi_get_date (const char *p,
const time_t *now);

shishi_hmac_md5 ()

int shishi_hmac_md5 (Shishi *handle,
const char *key,
size_t keylen,
const char *in,
size_t inlen,
char *outhash[16]);

Compute keyed checksum of data using HMAC-MD5. The outhash buffer must be deallocated by the caller.

handle : shishi handle as allocated by shishi_init().

key : input character array with key to use.

Shishi API Reference Manual 139 / 249

keylen : length of input character array with key to use.

in : input character array of data to hash.

inlen : length of input character array of data to hash.

outhash : newly allocated character array with keyed hash of data.

Returns : Returns SHISHI_OK iff successful.

shishi_hmac_sha1 ()

int shishi_hmac_sha1 (Shishi *handle,
const char *key,
size_t keylen,
const char *in,
size_t inlen,
char *outhash[20]);

Compute keyed checksum of data using HMAC-SHA1. The outhash buffer must be deallocated by the caller.

handle : shishi handle as allocated by shishi_init().

key : input character array with key to use.

keylen : length of input character array with key to use.

in : input character array of data to hash.

inlen : length of input character array of data to hash.

outhash : newly allocated character array with keyed hash of data.

Returns : Returns SHISHI_OK iff successful.

shishi_hostkeys_default_file ()

const char * shishi_hostkeys_default_file (Shishi *handle);

Get file name of default host key file.

handle : Shishi library handle create by shishi_init().

Returns : Returns the default host key filename used in the library. (Not a copy of it, so don’t modify or deallocate it.)

shishi_hostkeys_default_file_set ()

void shishi_hostkeys_default_file_set (Shishi *handle,
const char *hostkeysfile);

Set the default host key filename used in the library. The string is copied into the library, so you can dispose of the variable
immediately after calling this function.

handle : Shishi library handle create by shishi_init().

hostkeysfile : string with new default hostkeys file name, or NULL to reset to default.

Shishi API Reference Manual 140 / 249

shishi_hostkeys_for_localservice ()

Shishi_key * shishi_hostkeys_for_localservice (Shishi *handle,
const char *service);

Get host key for service on current host in default realm.

handle : Shishi library handle create by shishi_init().

service : service to get key for.

Returns : Returns the key for the server "SERVICE/HOSTNAME" (where HOSTNAME is the current system’s hostname),
read from the default host keys file (see shishi_hostkeys_default_file()), or NULL if no key could be found or an error
encountered.

shishi_hostkeys_for_localservicerealm ()

Shishi_key * shishi_hostkeys_for_localservicerealm
(Shishi *handle,
const char *service,
const char *realm);

Get host key for service on current host in realm.

handle : Shishi library handle create by shishi_init().

service : service to get key for.

realm : realm of server to get key for, or NULL for default realm.

Returns : Returns the key for the server "SERVICE/HOSTNAMEREALM" (where HOSTNAME is the current system’s host-
name), read from the default host keys file (see shishi_hostkeys_default_file()), or NULL if no key could be found or an
error encountered.

shishi_hostkeys_for_server ()

Shishi_key * shishi_hostkeys_for_server (Shishi *handle,
const char *server);

Get host key for server.

handle : Shishi library handle create by shishi_init().

server : server name to get key for

Returns : Returns the key for specific server, read from the default host keys file (see shishi_hostkeys_default_file()), or NULL
if no key could be found or an error encountered.

shishi_hostkeys_for_serverrealm ()

Shishi_key * shishi_hostkeys_for_serverrealm (Shishi *handle,
const char *server,
const char *realm);

Get host key for server in realm.

handle : Shishi library handle create by shishi_init().

Shishi API Reference Manual 141 / 249

server : server name to get key for

realm : realm of server to get key for.

Returns : Returns the key for specific server and realm, read from the default host keys file (see shishi_hostkeys_default_file()),
or NULL if no key could be found or an error encountered.

shishi_info ()

void shishi_info (Shishi *handle,
const char *format,
...);

Print informational message to output as defined in handle.

handle : shishi handle as allocated by shishi_init().

format : printf style format string.

... : print style arguments.

shishi_init ()

int shishi_init (Shishi **handle);

Create a Shishi library handle, using shishi(), and read the system configuration file, user configuration file and user tickets from
their default locations. The paths to the system configuration file is decided at compile time, and is $sysconfdir/shishi.conf. The
user configuration file is $HOME/.shishi/config, and the user ticket file is $HOME/.shishi/ticket.

The handle is allocated regardless of return values, except for SHISHI_HANDLE_ERROR which indicates a problem allocating
the handle. (The other error conditions comes from reading the files.)

handle : pointer to handle to be created.

Returns : Returns SHISHI_OK iff successful.

shishi_init_server ()

int shishi_init_server (Shishi **handle);

Create a Shishi library handle, using shishi_server(), and read the system configuration file. The paths to the system configuration
file is decided at compile time, and is $sysconfdir/shishi.conf.

The handle is allocated regardless of return values, except for SHISHI_HANDLE_ERROR which indicates a problem allocating
the handle. (The other error conditions comes from reading the file.)

handle : pointer to handle to be created.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 142 / 249

shishi_init_server_with_paths ()

int shishi_init_server_with_paths (Shishi **handle,
const char *systemcfgfile);

Create a Shishi library handle, using shishi_server(), and read the system configuration file from specified location. The paths
to the system configuration file is decided at compile time, and is $sysconfdir/shishi.conf. The handle is allocated regardless
of return values, except for SHISHI_HANDLE_ERROR which indicates a problem allocating the handle. (The other error
conditions comes from reading the file.)

handle : pointer to handle to be created.

systemcfgfile : Filename of system configuration, or NULL.

Returns : Returns SHISHI_OK iff successful.

shishi_init_with_paths ()

int shishi_init_with_paths (Shishi **handle,
const char *tktsfile,
const char *systemcfgfile,
const char *usercfgfile);

Create a Shishi library handle, using shishi(), and read the system configuration file, user configuration file, and user tickets from
the specified locations. If any of usercfgfile or systemcfgfile is NULL, the file is read from its default location, which
for the system configuration file is decided at compile time, and is $sysconfdir/shishi.conf, and for the user configuration file is
$HOME/.shishi/config. If the ticket file is NULL, a ticket file is not read at all.

The handle is allocated regardless of return values, except for SHISHI_HANDLE_ERROR which indicates a problem allocating
the handle. (The other error conditions comes from reading the files.)

handle : pointer to handle to be created.

tktsfile : Filename of ticket file, or NULL.

systemcfgfile : Filename of system configuration, or NULL.

usercfgfile : Filename of user configuration, or NULL.

Returns : Returns SHISHI_OK iff successful.

shishi_kdc_check_nonce ()

int shishi_kdc_check_nonce (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 enckdcreppart);

Verify that KDC-REQ.req-body.nonce and EncKDCRepPart.nonce fields matches. This is one of the steps that has to be per-
formed when processing a KDC-REQ and KDC-REP exchange.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ to compare nonce field in.

enckdcreppart : Encrypted KDC-REP part to compare nonce field in.

Returns : Returns SHISHI_OK if successful, SHISHI_NONCE_LENGTH_MISMATCH if the nonces have different lengths
(usually indicates that buggy server truncated nonce to 4 bytes), SHISHI_NONCE_MISMATCH if the values differ, or an
error code.

Shishi API Reference Manual 143 / 249

shishi_kdc_copy_cname ()

int shishi_kdc_copy_cname (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_asn1 encticketpart);

Set cname in KDC-REP to value in EncTicketPart.

handle : shishi handle as allocated by shishi_init().

kdcrep : KDC-REQ to read cname from.

encticketpart : EncTicketPart to set cname in.

Returns : Returns SHISHI_OK if successful.

shishi_kdc_copy_crealm ()

int shishi_kdc_copy_crealm (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_asn1 encticketpart);

Set crealm in KDC-REP to value in EncTicketPart.

handle : shishi handle as allocated by shishi_init().

kdcrep : KDC-REP to read crealm from.

encticketpart : EncTicketPart to set crealm in.

Returns : Returns SHISHI_OK if successful.

shishi_kdc_copy_nonce ()

int shishi_kdc_copy_nonce (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 enckdcreppart);

Set nonce in EncKDCRepPart to value in KDC-REQ.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ to read nonce from.

enckdcreppart : EncKDCRepPart to set nonce in.

Returns : Returns SHISHI_OK if successful.

shishi_kdc_print ()

int shishi_kdc_print (Shishi *handle,
FILE *fh,
Shishi_asn1 asreq,
Shishi_asn1 asrep,
Shishi_asn1 encasreppart);

Shishi API Reference Manual 144 / 249

shishi_kdc_process ()

int shishi_kdc_process (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 kdcrep,
Shishi_key *key,
int keyusage,
Shishi_asn1 *enckdcreppart);

Process a KDC client exchange and output decrypted EncKDCRepPart which holds details for the new ticket received. Use
shishi_kdcrep_get_ticket() to extract the ticket. This function verifies the various conditions that must hold if the response is to
be considered valid, specifically it compares nonces (shishi_kdc_check_nonce()) and if the exchange was a AS exchange, it also
compares cname and crealm (shishi_as_check_cname() and shishi_as_check_crealm()).

Usually the shishi_as_process() and shishi_tgs_process() functions should be used instead, since they simplify the decryption
key computation.

handle : shishi handle as allocated by shishi_init().

kdcreq : input variable that holds the sent KDC-REQ.

kdcrep : input variable that holds the received KDC-REP.

key : input array with key to decrypt encrypted part of KDC-REP with.

keyusage : kereros key usage value.

enckdcreppart : output variable that holds new EncKDCRepPart.

Returns : Returns SHISHI_OK iff the KDC client exchange was successful.

shishi_kdc_sendrecv ()

int shishi_kdc_sendrecv (Shishi *handle,
const char *realm,
const char *indata,
size_t inlen,
char **outdata,
size_t *outlen);

Send packet to KDC for realm and receive response. The code finds KDC addresses from configuration file, then by querying
for SRV records for the realm, and finally by using the realm name as a hostname.

handle : Shishi library handle create by shishi_init().

realm : string with realm name.

indata : Packet to send to KDC.

inlen : Length of indata.

outdata : Newly allocated string with data returned from KDC.

outlen : Length of outdata.

Returns : SHISHI_OK on success, SHISHI_KDC_TIMEOUT if a timeout was reached, or other errors.

Shishi API Reference Manual 145 / 249

shishi_kdc_sendrecv_hint ()

int shishi_kdc_sendrecv_hint (Shishi *handle,
const char *realm,
const char *indata,
size_t inlen,
char **outdata,
size_t *outlen,
Shishi_tkts_hint *hint);

Send packet to KDC for realm and receive response. The code finds KDC addresses from configuration file, then by querying
for SRV records for the realm, and finally by using the realm name as a hostname.

handle : Shishi library handle create by shishi_init().

realm : string with realm name.

indata : Packet to send to KDC.

inlen : Length of indata.

outdata : Newly allocated string with data returned from KDC.

outlen : Length of outdata.

hint : a Shishi_tkts_hint structure with flags.

Returns : SHISHI_OK on success, SHISHI_KDC_TIMEOUT if a timeout was reached, or other errors.

shishi_kdcrep_add_enc_part ()

int shishi_kdcrep_add_enc_part (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_key *key,
int keyusage,
Shishi_asn1 enckdcreppart);

Encrypts DER encoded EncKDCRepPart using key and stores it in the KDC-REP.

handle : shishi handle as allocated by shishi_init().

kdcrep : KDC-REP to add enc-part field to.

key : key used to encrypt enc-part.

keyusage : key usage to use, normally SHISHI_KEYUSAGE_ENCASREPPART, SHISHI_KEYUSAGE_ENCTGSREPPART_SESSION_KEY
or SHISHI_KEYUSAGE_ENCTGSREPPART_AUTHENTICATOR_KEY.

enckdcreppart : EncKDCRepPart to add.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_clear_padata ()

int shishi_kdcrep_clear_padata (Shishi *handle,
Shishi_asn1 kdcrep);

Remove the padata field from KDC-REP.

handle : shishi handle as allocated by shishi_init().

kdcrep : KDC-REP to remove PA-DATA from.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 146 / 249

shishi_kdcrep_client_set ()

int shishi_kdcrep_client_set (Shishi *handle,
Shishi_asn1 kdcrep,
const char *client);

Set the client name field in the KDC-REP.

handle : shishi handle as allocated by shishi_init().

kdcrep : Kdcrep variable to set server name field in.

client : zero-terminated string with principal name on RFC 1964 form.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_cname_set ()

int shishi_kdcrep_cname_set (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_name_type name_type,
const char *cname[]);

Set the client name field in the KDC-REP.

handle : shishi handle as allocated by shishi_init().

kdcrep : Kdcrep variable to set server name field in.

name_type : type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.

cname : input array with principal name.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_crealm_set ()

int shishi_kdcrep_crealm_set (Shishi *handle,
Shishi_asn1 kdcrep,
const char *crealm);

Set the client realm field in the KDC-REP.

handle : shishi handle as allocated by shishi_init().

kdcrep : Kdcrep variable to set realm field in.

crealm : input array with name of realm.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_crealmserver_set ()

int shishi_kdcrep_crealmserver_set (Shishi *handle,
Shishi_asn1 kdcrep,
const char *crealm,
const char *client);

Shishi API Reference Manual 147 / 249

shishi_kdcrep_decrypt ()

int shishi_kdcrep_decrypt (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_key *key,
int keyusage,
Shishi_asn1 *enckdcreppart);

shishi_kdcrep_from_file ()

int shishi_kdcrep_from_file (Shishi *handle,
Shishi_asn1 *kdcrep,
int filetype,
const char *filename);

Read KDC-REP from file in specified TYPE.

handle : shishi handle as allocated by shishi_init().

kdcrep : output variable with newly allocated KDC-REP.

filetype : input variable specifying type of file to be read, see Shishi_filetype.

filename : input variable with filename to read from.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_get_enc_part_etype ()

int shishi_kdcrep_get_enc_part_etype (Shishi *handle,
Shishi_asn1 kdcrep,
int32_t *etype);

Extract KDC-REP.enc-part.etype.

handle : shishi handle as allocated by shishi_init().

kdcrep : KDC-REP variable to get value from.

etype : output variable that holds the value.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_get_ticket ()

int shishi_kdcrep_get_ticket (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_asn1 *ticket);

Extract ticket from KDC-REP.

handle : shishi handle as allocated by shishi_init().

kdcrep : KDC-REP variable to get ticket from.

ticket : output variable to hold extracted ticket.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 148 / 249

shishi_kdcrep_parse ()

int shishi_kdcrep_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *kdcrep);

Read ASCII armored DER encoded KDC-REP from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

kdcrep : output variable with newly allocated KDC-REP.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_print ()

int shishi_kdcrep_print (Shishi *handle,
FILE *fh,
Shishi_asn1 kdcrep);

Print ASCII armored DER encoding of KDC-REP to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

kdcrep : KDC-REP to print.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_read ()

int shishi_kdcrep_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *kdcrep);

Read DER encoded KDC-REP from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

kdcrep : output variable with newly allocated KDC-REP.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_save ()

int shishi_kdcrep_save (Shishi *handle,
FILE *fh,
Shishi_asn1 kdcrep);

Print DER encoding of KDC-REP to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

kdcrep : KDC-REP to save.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 149 / 249

shishi_kdcrep_set_enc_part ()

int shishi_kdcrep_set_enc_part (Shishi *handle,
Shishi_asn1 kdcrep,
int32_t etype,
uint32_t kvno,
const char *buf,
size_t buflen);

Set the encrypted enc-part field in the KDC-REP. The encrypted data is usually created by calling shishi_encrypt() on the DER
encoded enc-part. To save time, you may want to use shishi_kdcrep_add_enc_part() instead, which calculates the encrypted data
and calls this function in one step.

handle : shishi handle as allocated by shishi_init().

kdcrep : KDC-REP to add enc-part field to.

etype : encryption type used to encrypt enc-part.

kvno : key version number.

buf : input array with encrypted enc-part.

buflen : size of input array with encrypted enc-part.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_set_ticket ()

int shishi_kdcrep_set_ticket (Shishi *handle,
Shishi_asn1 kdcrep,
Shishi_asn1 ticket);

Copy ticket into KDC-REP.

handle : shishi handle as allocated by shishi_init().

kdcrep : KDC-REP to add ticket field to.

ticket : input ticket to copy into KDC-REP ticket field.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcrep_to_file ()

int shishi_kdcrep_to_file (Shishi *handle,
Shishi_asn1 kdcrep,
int filetype,
const char *filename);

Write KDC-REP to file in specified TYPE. The file will be truncated if it exists.

handle : shishi handle as allocated by shishi_init().

kdcrep : KDC-REP to save.

filetype : input variable specifying type of file to be written, see Shishi_filetype.

filename : input variable with filename to write to.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 150 / 249

shishi_kdcreq ()

int shishi_kdcreq (Shishi *handle,
char *realm,
char *service,
Shishi_asn1 *req);

shishi_kdcreq_add_padata ()

int shishi_kdcreq_add_padata (Shishi *handle,
Shishi_asn1 kdcreq,
int padatatype,
const char *data,
size_t datalen);

Add new pre authentication data (PA-DATA) to KDC-REQ. This is used to pass various information to KDC, such as in case of a
SHISHI_PA_TGS_REQ padatatype the AP-REQ that authenticates the user to get the ticket. (But also see shishi_kdcreq_add_padata_tgs()
which takes an AP-REQ directly.)

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ to add PA-DATA to.

padatatype : type of PA-DATA, see Shishi_padata_type.

data : input array with PA-DATA value.

datalen : size of input array with PA-DATA value.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_add_padata_preauth ()

int shishi_kdcreq_add_padata_preauth (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_key *key);

Add pre-authentication data to KDC-REQ.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ to add pre-authentication data to.

key : Key used to encrypt pre-auth data.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_add_padata_tgs ()

int shishi_kdcreq_add_padata_tgs (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 apreq);

Add TGS pre-authentication data to KDC-REQ. The data is an AP-REQ that authenticates the request. This functions simply
DER encodes the AP-REQ and calls shishi_kdcreq_add_padata() with a SHISHI_PA_TGS_REQ padatatype.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ to add PA-DATA to.

apreq : AP-REQ to add as PA-DATA.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 151 / 249

shishi_kdcreq_allow_postdate_p ()

int shishi_kdcreq_allow_postdate_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option allow-postdate flag is set.

The ALLOW-POSTDATE option indicates that the ticket to be issued is to have its MAY-POSTDATE flag set. It may only be set
on the initial request, or in a subsequent request if the ticket-granting ticket on which it is based also has its MAY-POSTDATE
flag set.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff allow-postdate flag is set in KDC-REQ.

shishi_kdcreq_build ()

int shishi_kdcreq_build (Shishi *handle,
Shishi_asn1 kdcreq);

shishi_kdcreq_clear_padata ()

int shishi_kdcreq_clear_padata (Shishi *handle,
Shishi_asn1 kdcreq);

Remove the padata field from KDC-REQ.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ to remove PA-DATA from.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_client ()

int shishi_kdcreq_client (Shishi *handle,
Shishi_asn1 kdcreq,
char **client,
size_t *clientlen);

Represent client principal name in KDC-REQ as zero-terminated string. The string is allocate by this function, and it is the
responsibility of the caller to deallocate it. Note that the output length clientlen does not include the terminating zero.

handle : Shishi library handle create by shishi_init().

kdcreq : KDC-REQ variable to get client name from.

client : pointer to newly allocated zero terminated string containing principal name. May be NULL (to only populate clien
tlen).

clientlen : pointer to length of client on output, excluding terminating zero. May be NULL (to only populate client).

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 152 / 249

shishi_kdcreq_disable_transited_check_p ()

int shishi_kdcreq_disable_transited_check_p
(Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option disable-transited-check flag is set.

By default the KDC will check the transited field of a ticket-granting-ticket against the policy of the local realm before it will
issue derivative tickets based on the ticket-granting ticket. If this flag is set in the request, checking of the transited field is
disabled. Tickets issued without the performance of this check will be noted by the reset (0) value of the TRANSITED-POLICY-
CHECKED flag, indicating to the application server that the tranisted field must be checked locally. KDCs are encouraged but
not required to honor the DISABLE-TRANSITED-CHECK option.

This flag is new since RFC 1510

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff disable-transited-check flag is set in KDC-REQ.

shishi_kdcreq_enc_tkt_in_skey_p ()

int shishi_kdcreq_enc_tkt_in_skey_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option enc-tkt-in-skey flag is set.

This option is used only by the ticket-granting service. The ENC-TKT-IN-SKEY option indicates that the ticket for the end
server is to be encrypted in the session key from the additional ticket-granting ticket provided.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff enc-tkt-in-skey flag is set in KDC-REQ.

shishi_kdcreq_etype ()

int shishi_kdcreq_etype (Shishi *handle,
Shishi_asn1 kdcreq,
int32_t *etype,
int netype);

Return the netype:th encryption type from KDC-REQ. The first etype is number 1.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get etype field from.

etype : output encryption type.

netype : element number to return.

Returns : Returns SHISHI_OK iff etype successful set.

Shishi API Reference Manual 153 / 249

shishi_kdcreq_forwardable_p ()

int shishi_kdcreq_forwardable_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option forwardable flag is set.

The FORWARDABLE option indicates that the ticket to be issued is to have its forwardable flag set. It may only be set on the
initial request, or in a subsequent request if the ticket-granting ticket on which it is based is also forwardable.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff forwardable flag is set in KDC-REQ.

shishi_kdcreq_forwarded_p ()

int shishi_kdcreq_forwarded_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option forwarded flag is set.

The FORWARDED option is only specified in a request to the ticket-granting server and will only be honored if the ticket-
granting ticket in the request has its FORWARDABLE bit set. This option indicates that this is a request for forwarding. The
address(es) of the host from which the resulting ticket is to be valid are included in the addresses field of the request.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff forwarded flag is set in KDC-REQ.

shishi_kdcreq_from_file ()

int shishi_kdcreq_from_file (Shishi *handle,
Shishi_asn1 *kdcreq,
int filetype,
const char *filename);

Read KDC-REQ from file in specified TYPE.

handle : shishi handle as allocated by shishi_init().

kdcreq : output variable with newly allocated KDC-REQ.

filetype : input variable specifying type of file to be read, see Shishi_filetype.

filename : input variable with filename to read from.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 154 / 249

shishi_kdcreq_get_padata ()

int shishi_kdcreq_get_padata (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_padata_type padatatype,
char **out,
size_t *outlen);

Get pre authentication data (PA-DATA) from KDC-REQ. Pre authentication data is used to pass various information to KDC,
such as in case of a SHISHI_PA_TGS_REQ padatatype the AP-REQ that authenticates the user to get the ticket.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ to get PA-DATA from.

padatatype : type of PA-DATA, see Shishi_padata_type.

out : output array with newly allocated PA-DATA value.

outlen : size of output array with PA-DATA value.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_get_padata_tgs ()

int shishi_kdcreq_get_padata_tgs (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 *apreq);

Extract TGS pre-authentication data from KDC-REQ. The data is an AP-REQ that authenticates the request. This function call
shishi_kdcreq_get_padata() with a SHISHI_PA_TGS_REQ padatatype and DER decode the result (if any).

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ to get PA-TGS-REQ from.

apreq : Output variable with newly allocated AP-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_nonce ()

int shishi_kdcreq_nonce (Shishi *handle,
Shishi_asn1 kdcreq,
uint32_t *nonce);

shishi_kdcreq_nonce_set ()

int shishi_kdcreq_nonce_set (Shishi *handle,
Shishi_asn1 kdcreq,
uint32_t nonce);

Store nonce number field in KDC-REQ.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to set client name field in.

nonce : integer nonce to store in KDC-REQ.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 155 / 249

shishi_kdcreq_options ()

int shishi_kdcreq_options (Shishi *handle,
Shishi_asn1 kdcreq,
uint32_t *flags);

Extract KDC-Options from KDC-REQ.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

flags : pointer to output integer with flags.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_options_add ()

int shishi_kdcreq_options_add (Shishi *handle,
Shishi_asn1 kdcreq,
uint32_t option);

Add KDC-Option to KDC-REQ. This preserves all existing options.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to set etype field in.

option : integer with options to add in KDC-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_options_set ()

int shishi_kdcreq_options_set (Shishi *handle,
Shishi_asn1 kdcreq,
uint32_t options);

Set options in KDC-REQ. Note that this reset any already existing flags.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to set etype field in.

options : integer with flags to store in KDC-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_parse ()

int shishi_kdcreq_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *kdcreq);

Read ASCII armored DER encoded KDC-REQ from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

kdcreq : output variable with newly allocated KDC-REQ.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 156 / 249

shishi_kdcreq_postdated_p ()

int shishi_kdcreq_postdated_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option postdated flag is set.

The POSTDATED option indicates that this is a request for a postdated ticket. This option will only be honored if the ticket-
granting ticket on which it is based has its MAY-POSTDATE flag set. The resulting ticket will also have its INVALID flag set,
and that flag may be reset by a subsequent request to the KDC after the starttime in the ticket has been reached.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff postdated flag is set in KDC-REQ.

shishi_kdcreq_print ()

int shishi_kdcreq_print (Shishi *handle,
FILE *fh,
Shishi_asn1 kdcreq);

Print ASCII armored DER encoding of KDC-REQ to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

kdcreq : KDC-REQ to print.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_proxiable_p ()

int shishi_kdcreq_proxiable_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option proxiable flag is set.

The PROXIABLE option indicates that the ticket to be issued is to have its proxiable flag set. It may only be set on the initial
request, or in a subsequent request if the ticket-granting ticket on which it is based is also proxiable.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff proxiable flag is set in KDC-REQ.

shishi_kdcreq_proxy_p ()

int shishi_kdcreq_proxy_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option proxy flag is set.

The PROXY option indicates that this is a request for a proxy. This option will only be honored if the ticket-granting ticket in
the request has its PROXIABLE bit set. The address(es) of the host from which the resulting ticket is to be valid are included in
the addresses field of the request.

Shishi API Reference Manual 157 / 249

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff proxy flag is set in KDC-REQ.

shishi_kdcreq_read ()

int shishi_kdcreq_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *kdcreq);

Read DER encoded KDC-REQ from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

kdcreq : output variable with newly allocated KDC-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_realm ()

int shishi_kdcreq_realm (Shishi *handle,
Shishi_asn1 kdcreq,
char **realm,
size_t *realmlen);

Get realm field in KDC-REQ as zero-terminated string. The string is allocate by this function, and it is the responsibility of the
caller to deallocate it. Note that the output length realmlen does not include the terminating zero.

handle : Shishi library handle create by shishi_init().

kdcreq : KDC-REQ variable to get client name from.

realm : pointer to newly allocated zero terminated string containing realm. May be NULL (to only populate realmlen).

realmlen : pointer to length of realm on output, excluding terminating zero. May be NULL (to only populate realmlen).

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_realm_get ()

int shishi_kdcreq_realm_get (Shishi *handle,
Shishi_asn1 kdcreq,
char **realm,
size_t *realmlen);

Shishi API Reference Manual 158 / 249

shishi_kdcreq_renew_p ()

int shishi_kdcreq_renew_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option renew flag is set.

This option is used only by the ticket-granting service. The RENEW option indicates that the present request is for a renewal.
The ticket provided is encrypted in the secret key for the server on which it is valid. This option will only be honored if the ticket
to be renewed has its RENEWABLE flag set and if the time in its renew-till field has not passed. The ticket to be renewed is
passed in the padata field as part of the authentication header.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff renew flag is set in KDC-REQ.

shishi_kdcreq_renewable_ok_p ()

int shishi_kdcreq_renewable_ok_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option renewable-ok flag is set.

The RENEWABLE-OK option indicates that a renewable ticket will be acceptable if a ticket with the requested life cannot
otherwise be provided. If a ticket with the requested life cannot be provided, then a renewable ticket may be issued with a
renew-till equal to the requested endtime. The value of the renew-till field may still be limited by local limits, or limits selected
by the individual principal or server.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff renewable-ok flag is set in KDC-REQ.

shishi_kdcreq_renewable_p ()

int shishi_kdcreq_renewable_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option renewable flag is set.

The RENEWABLE option indicates that the ticket to be issued is to have its RENEWABLE flag set. It may only be set on the
initial request, or when the ticket-granting ticket on which the request is based is also renewable. If this option is requested, then
the rtime field in the request contains the desired absolute expiration time for the ticket.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff renewable flag is set in KDC-REQ.

Shishi API Reference Manual 159 / 249

shishi_kdcreq_save ()

int shishi_kdcreq_save (Shishi *handle,
FILE *fh,
Shishi_asn1 kdcreq);

Print DER encoding of KDC-REQ to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

kdcreq : KDC-REQ to save.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_sendrecv ()

int shishi_kdcreq_sendrecv (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 *kdcrep);

shishi_kdcreq_sendrecv_hint ()

int shishi_kdcreq_sendrecv_hint (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_asn1 *kdcrep,
Shishi_tkts_hint *hint);

shishi_kdcreq_server ()

int shishi_kdcreq_server (Shishi *handle,
Shishi_asn1 kdcreq,
char **server,
size_t *serverlen);

Represent server principal name in KDC-REQ as zero-terminated string. The string is allocate by this function, and it is the
responsibility of the caller to deallocate it. Note that the output length serverlen does not include the terminating zero.

handle : Shishi library handle create by shishi_init().

kdcreq : KDC-REQ variable to get server name from.

server : pointer to newly allocated zero terminated string containing principal name. May be NULL (to only populate serve
rlen).

serverlen : pointer to length of server on output, excluding terminating zero. May be NULL (to only populate server).

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 160 / 249

shishi_kdcreq_set_cname ()

int shishi_kdcreq_set_cname (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_name_type name_type,
const char *principal);

Set the client name field in the KDC-REQ.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to set client name field in.

name_type : type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.

principal : input array with principal name.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_set_etype ()

int shishi_kdcreq_set_etype (Shishi *handle,
Shishi_asn1 kdcreq,
int32_t *etype,
int netype);

Set the list of supported or wanted encryption types in the request. The list should be sorted in priority order.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to set etype field in.

etype : input array with encryption types.

netype : number of elements in input array with encryption types.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_set_realm ()

int shishi_kdcreq_set_realm (Shishi *handle,
Shishi_asn1 kdcreq,
const char *realm);

Set the realm field in the KDC-REQ.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to set realm field in.

realm : input array with name of realm.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_set_realmserver ()

int shishi_kdcreq_set_realmserver (Shishi *handle,
Shishi_asn1 req,
char *realm,
char *service);

Shishi API Reference Manual 161 / 249

shishi_kdcreq_set_server ()

int shishi_kdcreq_set_server (Shishi *handle,
Shishi_asn1 req,
const char *service);

shishi_kdcreq_set_sname ()

int shishi_kdcreq_set_sname (Shishi *handle,
Shishi_asn1 kdcreq,
Shishi_name_type name_type,
const char *sname[]);

Set the server name field in the KDC-REQ.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to set server name field in.

name_type : type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.

sname : input array with principal name.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_till ()

int shishi_kdcreq_till (Shishi *handle,
Shishi_asn1 kdcreq,
char **till,
size_t *tilllen);

Get "till" field (i.e. "endtime") in KDC-REQ, as zero-terminated string. The string is typically 15 characters long. The string is
allocated by this function, and it is the responsibility of the caller to deallocate it. Note that the output length realmlen does not
include the terminating zero.

handle : Shishi library handle create by shishi_init().

kdcreq : KDC-REQ variable to get client name from.

till : pointer to newly allocated zero terminated string containing "till" field with generalized time. May be NULL (to only
populate realmlen).

tilllen : pointer to length of till on output, excluding terminating zero. May be NULL (to only populate tilllen).

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_tillc ()

time_t shishi_kdcreq_tillc (Shishi *handle,
Shishi_asn1 kdcreq);

Extract C time corresponding to the "till" field.

handle : Shishi library handle create by shishi_init().

kdcreq : KDC-REQ variable to get till field from.

Returns : Returns C time interpretation of the "till" field in KDC-REQ.

Shishi API Reference Manual 162 / 249

shishi_kdcreq_to_file ()

int shishi_kdcreq_to_file (Shishi *handle,
Shishi_asn1 kdcreq,
int filetype,
const char *filename);

Write KDC-REQ to file in specified TYPE. The file will be truncated if it exists.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ to save.

filetype : input variable specifying type of file to be written, see Shishi_filetype.

filename : input variable with filename to write to.

Returns : Returns SHISHI_OK iff successful.

shishi_kdcreq_validate_p ()

int shishi_kdcreq_validate_p (Shishi *handle,
Shishi_asn1 kdcreq);

Determine if KDC-Option validate flag is set.

This option is used only by the ticket-granting service. The VALIDATE option indicates that the request is to validate a postdated
ticket. It will only be honored if the ticket presented is postdated, presently has its INVALID flag set, and would be otherwise
usable at this time. A ticket cannot be validated before its starttime. The ticket presented for validation is encrypted in the key of
the server for which it is valid and is passed in the padata field as part of the authentication header.

handle : shishi handle as allocated by shishi_init().

kdcreq : KDC-REQ variable to get kdc-options field from.

Returns : Returns non-0 iff validate flag is set in KDC-REQ.

shishi_key ()

int shishi_key (Shishi *handle,
Shishi_key **key);

Create a new Key information structure.

handle : Shishi library handle create by shishi_init().

key : pointer to structure that will hold newly created key information

Returns : Returns SHISHI_OK iff successful.

shishi_key_copy ()

void shishi_key_copy (Shishi_key *dstkey,
Shishi_key *srckey);

Copies source key into existing allocated destination key.

dstkey : structure that holds destination key information

srckey : structure that holds source key information

Shishi API Reference Manual 163 / 249

shishi_key_done ()

void shishi_key_done (Shishi_key *key);

Deallocates key information structure.

key : pointer to structure that holds key information.

shishi_key_from_base64 ()

int shishi_key_from_base64 (Shishi *handle,
int32_t type,
const char *value,
Shishi_key **key);

Create a new Key information structure, and set the key type and key value. KEY contains a newly allocated structure only if
this function is successful.

handle : Shishi library handle create by shishi_init().

type : type of key.

value : input string with base64 encoded key value, or NULL.

key : pointer to structure that will hold newly created key information

Returns : Returns SHISHI_INVALID_KEY if the base64 encoded key length doesn’t match the key type, and SHISHI_OK on
success.

shishi_key_from_name ()

int shishi_key_from_name (Shishi *handle,
int32_t type,
const char *name,
const char *password,
size_t passwordlen,
const char *parameter,
Shishi_key **outkey);

Create a new Key information structure, and derive the key from principal name and password using shishi_key_from_name().
The salt is derived from the principal name by concatenating the decoded realm and principal.

handle : Shishi library handle create by shishi_init().

type : type of key.

name : principal name of user.

password : input array containing password.

passwordlen : length of input array containing password.

parameter : input array with opaque encryption type specific information.

outkey : pointer to structure that will hold newly created key information

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 164 / 249

shishi_key_from_random ()

int shishi_key_from_random (Shishi *handle,
int32_t type,
const char *rnd,
size_t rndlen,
Shishi_key **outkey);

Create a new Key information structure, and set the key type and key value using shishi_random_to_key(). KEY contains a
newly allocated structure only if this function is successful.

handle : Shishi library handle create by shishi_init().

type : type of key.

rnd : random data.

rndlen : length of random data.

outkey : pointer to structure that will hold newly created key information

Returns : Returns SHISHI_OK iff successful.

shishi_key_from_string ()

int shishi_key_from_string (Shishi *handle,
int32_t type,
const char *password,
size_t passwordlen,
const char *salt,
size_t saltlen,
const char *parameter,
Shishi_key **outkey);

Create a new Key information structure, and set the key type and key value using shishi_string_to_key(). KEY contains a newly
allocated structure only if this function is successful.

handle : Shishi library handle create by shishi_init().

type : type of key.

password : input array containing password.

passwordlen : length of input array containing password.

salt : input array containing salt.

saltlen : length of input array containing salt.

parameter : input array with opaque encryption type specific information.

outkey : pointer to structure that will hold newly created key information

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 165 / 249

shishi_key_from_value ()

int shishi_key_from_value (Shishi *handle,
int32_t type,
const char *value,
Shishi_key **key);

Create a new Key information structure, and set the key type and key value. KEY contains a newly allocated structure only if
this function is successful.

handle : Shishi library handle create by shishi_init().

type : type of key.

value : input array with key value, or NULL.

key : pointer to structure that will hold newly created key information

Returns : Returns SHISHI_OK iff successful.

shishi_key_length ()

size_t shishi_key_length (const Shishi_key *key);

Calls shishi_cipher_keylen for key type.

key : structure that holds key information

Returns : Returns the length of the key value.

shishi_key_name ()

const char * shishi_key_name (Shishi_key *key);

Calls shishi_cipher_name for key type.

key : structure that holds key information

Returns : Return name of key.

shishi_key_parse ()

int shishi_key_parse (Shishi *handle,
FILE *fh,
Shishi_key **key);

shishi_key_principal ()

const char * shishi_key_principal (const Shishi_key *key);

Get the principal part of the key owner principal name, i.e., except the realm.

key : structure that holds key information

Returns : Returns the principal owning the key. (Not a copy of it, so don’t modify or deallocate it.)

Shishi API Reference Manual 166 / 249

shishi_key_principal_set ()

void shishi_key_principal_set (Shishi_key *key,
const char *principal);

Set the principal owning the key. The string is copied into the key, so you can dispose of the variable immediately after calling
this function.

key : structure that holds key information

principal : string with new principal name.

shishi_key_print ()

int shishi_key_print (Shishi *handle,
FILE *fh,
const Shishi_key *key);

Print an ASCII representation of a key structure to file descriptor. Example output:

-----BEGIN SHISHI KEY----- Keytype: 18 (aes256-cts-hmac-sha1-96) Principal: host/latte.josefsson.org Realm: JOSEFS-
SON.ORG Key-Version-Number: 1

P1QdeW/oSiag/bTyVEBAY2msiGSTmgLXlopuCKoppDs= -----END SHISHI KEY-----

handle : shishi handle as allocated by shishi_init().

fh : file handle opened for writing.

key : key to print.

Returns : Returns SHISHI_OK iff successful.

shishi_key_random ()

int shishi_key_random (Shishi *handle,
int32_t type,
Shishi_key **key);

Create a new Key information structure for the key type and some random data. KEY contains a newly allocated structure only
if this function is successful.

handle : Shishi library handle create by shishi_init().

type : type of key.

key : pointer to structure that will hold newly created key information

Returns : Returns SHISHI_OK iff successful.

shishi_key_realm ()

const char * shishi_key_realm (const Shishi_key *key);

Get the realm part of the key owner principal name.

key : structure that holds key information

Returns : Returns the realm for the principal owning the key. (Not a copy of it, so don’t modify or deallocate it.)

Shishi API Reference Manual 167 / 249

shishi_key_realm_set ()

void shishi_key_realm_set (Shishi_key *key,
const char *realm);

Set the realm for the principal owning the key. The string is copied into the key, so you can dispose of the variable immediately
after calling this function.

key : structure that holds key information

realm : string with new realm name.

shishi_key_timestamp ()

time_t shishi_key_timestamp (const Shishi_key *key);

Get the time the key was established. Typically only present when the key was imported from a keytab format.

key : structure that holds key information

Returns : Returns the time the key was established, or (time_t)-1 if not available.

Since 0.0.42

shishi_key_timestamp_set ()

void shishi_key_timestamp_set (Shishi_key *key,
time_t timestamp);

Set the time the key was established. Typically only relevant when exporting the key to keytab format.

key : structure that holds key information

timestamp : new timestamp.

Since 0.0.42

shishi_key_to_file ()

int shishi_key_to_file (Shishi *handle,
const char *filename,
Shishi_key *key);

Print an ASCII representation of a key structure to a file. The file is appended to if it exists. See shishi_key_print() for format of
output.

handle : shishi handle as allocated by shishi_init().

filename : filename to append key to.

key : key to print.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 168 / 249

shishi_key_type ()

int shishi_key_type (const Shishi_key *key);

Get key type.

key : structure that holds key information

Returns : Returns the type of key as an integer as described in the standard.

shishi_key_type_set ()

void shishi_key_type_set (Shishi_key *key,
int32_t type);

Set the type of key in key structure.

key : structure that holds key information

type : type to set in key.

shishi_key_value ()

const char * shishi_key_value (const Shishi_key *key);

Get the raw key bytes.

key : structure that holds key information

Returns : Returns the key value as a pointer which is valid throughout the lifetime of the key structure.

shishi_key_value_set ()

void shishi_key_value_set (Shishi_key *key,
const char *value);

Set the key value and length in key structure. The value is copied into the key (in other words, you can deallocate value right
after calling this function without modifying the value inside the key).

key : structure that holds key information

value : input array with key data.

shishi_key_version ()

uint32_t shishi_key_version (const Shishi_key *key);

Get the "kvno" (key version) of key. It will be UINT32_MAX if the key is not long-lived.

key : structure that holds key information

Returns : Returns the version of key ("kvno").

Shishi API Reference Manual 169 / 249

shishi_key_version_set ()

void shishi_key_version_set (Shishi_key *key,
uint32_t kvno);

Set the version of key ("kvno") in key structure. Use UINT32_MAX for non-ptermanent keys.

key : structure that holds key information

kvno : new version integer.

shishi_keys ()

int shishi_keys (Shishi *handle,
Shishi_keys **keys);

Get a new key set handle.

handle : shishi handle as allocated by shishi_init().

keys : output pointer to newly allocated keys handle.

Returns : Returns SHISHI_OK iff successful.

shishi_keys_add ()

int shishi_keys_add (Shishi_keys *keys,
Shishi_key *key);

Add a key to the key set. A deep copy of the key is stored, so changing key, or deallocating it, will not modify the value stored
in the key set.

keys : key set handle as allocated by shishi_keys().

key : key to be added to key set.

Returns : Returns SHISHI_OK iff successful.

shishi_keys_add_keytab_file ()

int shishi_keys_add_keytab_file (Shishi *handle,
const char *filename,
Shishi_keys *keys);

Read keys from a MIT keytab data structure from a file, and add the keys to the key set.

The format of keytab’s is proprietary, and this function support the 0x0501 and 0x0502 formats. See the section The MIT
Kerberos Keytab Binary File Format in the Shishi manual for a description of the reverse-engineered format.

handle : shishi handle as allocated by shishi_init().

filename : name of file to read.

keys : allocated key set to store keys in.

Returns : Returns SHISHI_IO_ERROR if the file cannot be read, SHISHI_KEYTAB_ERROR if the data cannot be parsed as a
valid keytab structure, and SHISHI_OK on success.

Shishi API Reference Manual 170 / 249

shishi_keys_add_keytab_mem ()

int shishi_keys_add_keytab_mem (Shishi *handle,
const char *data,
size_t len,
Shishi_keys *keys);

Read keys from a MIT keytab data structure, and add them to the key set.

The format of keytab’s is proprietary, and this function support the 0x0501 and 0x0502 formats. See the section The MIT
Kerberos Keytab Binary File Format in the Shishi manual for a description of the reverse-engineered format.

handle : shishi handle as allocated by shishi_init().

data : constant memory buffer with keytab of len size.

len : size of memory buffer with keytab data.

keys : allocated key set to store keys in.

Returns : Returns SHISHI_KEYTAB_ERROR if the data does not represent a valid keytab structure, and SHISHI_OK on
success.

shishi_keys_done ()

void shishi_keys_done (Shishi_keys **keys);

Deallocates all resources associated with key set. The key set handle must not be used in calls to other shishi_keys_*() functions
after this.

keys : key set handle as allocated by shishi_keys().

shishi_keys_for_localservicerealm_in_file ()

Shishi_key * shishi_keys_for_localservicerealm_in_file
(Shishi *handle,
const char *filename,
const char *service,
const char *realm);

Get key for specified service and realm from filename.

handle : Shishi library handle create by shishi_init().

filename : file to read keys from.

service : service to get key for.

realm : realm of server to get key for, or NULL for default realm.

Returns : Returns the key for the server "SERVICE/HOSTNAMEREALM" (where HOSTNAME is the current system’s host-
name), read from the default host keys file (see shishi_hostkeys_default_file()), or NULL if no key could be found or an
error encountered.

Shishi API Reference Manual 171 / 249

shishi_keys_for_server_in_file ()

Shishi_key * shishi_keys_for_server_in_file (Shishi *handle,
const char *filename,
const char *server);

Get key for specified server from filename.

handle : Shishi library handle create by shishi_init().

filename : file to read keys from.

server : server name to get key for.

Returns : Returns the key for specific server, read from the indicated file, or NULL if no key could be found or an error
encountered.

shishi_keys_for_serverrealm_in_file ()

Shishi_key * shishi_keys_for_serverrealm_in_file (Shishi *handle,
const char *filename,
const char *server,
const char *realm);

Get keys that match specified server and realm from the key set file filename.

handle : Shishi library handle create by shishi_init().

filename : file to read keys from.

server : server name to get key for.

realm : realm of server to get key for.

Returns : Returns the key for specific server and realm, read from the indicated file, or NULL if no key could be found or an
error encountered.

shishi_keys_from_file ()

int shishi_keys_from_file (Shishi_keys *keys,
const char *filename);

Read zero or more keys from file filename and append them to the keyset keys. See shishi_key_print() for the format of the
input.

keys : key set handle as allocated by shishi_keys().

filename : filename to read keys from.

Returns : Returns SHISHI_OK iff successful.

Since 0.0.42

Shishi API Reference Manual 172 / 249

shishi_keys_from_keytab_file ()

int shishi_keys_from_keytab_file (Shishi *handle,
const char *filename,
Shishi_keys **outkeys);

Create a new key set populated with keys from a MIT keytab data structure read from a file.

The format of keytab’s is proprietary, and this function support the 0x0501 and 0x0502 formats. See the section The MIT
Kerberos Keytab Binary File Format in the Shishi manual for a description of the reverse-engineered format.

handle : shishi handle as allocated by shishi_init().

filename : name of file to read.

outkeys : pointer to key set that will be allocated and populated, must be deallocated by caller on succes.

Returns : Returns SHISHI_IO_ERROR if the file cannot be read, SHISHI_KEYTAB_ERROR if the data cannot be parsed as a
valid keytab structure, and SHISHI_OK on success.

shishi_keys_from_keytab_mem ()

int shishi_keys_from_keytab_mem (Shishi *handle,
const char *data,
size_t len,
Shishi_keys **outkeys);

Create a new key set populated with keys from a MIT keytab data structure read from a memory block.

The format of keytab’s is proprietary, and this function support the 0x0501 and 0x0502 formats. See the section The MIT
Kerberos Keytab Binary File Format in the Shishi manual for a description of the reverse-engineered format.

handle : shishi handle as allocated by shishi_init().

data : constant memory buffer with keytab of len size.

len : size of memory buffer with keytab data.

outkeys : pointer to key set that will be allocated and populated, must be deallocated by caller on succes.

Returns : Returns SHISHI_KEYTAB_ERROR if the data does not represent a valid keytab structure, and SHISHI_OK on
success.

shishi_keys_nth ()

const Shishi_key * shishi_keys_nth (Shishi_keys *keys,
int keyno);

Get the n:th ticket in key set.

keys : key set handle as allocated by shishi_keys().

keyno : integer indicating requested key in key set.

Returns : Returns a key handle to the keyno:th key in the key set, or NULL if keys is invalid or keyno is out of bounds. The
first key is keyno 0, the second key keyno 1, and so on.

Shishi API Reference Manual 173 / 249

shishi_keys_print ()

int shishi_keys_print (Shishi_keys *keys,
FILE *fh);

Print all keys in set using shishi_key_print.

keys : key set to print.

fh : file handle, open for writing, to print keys to.

Returns : Returns SHISHI_OK on success.

shishi_keys_remove ()

void shishi_keys_remove (Shishi_keys *keys,
int keyno);

Remove a key, indexed by keyno, in given key set.

keys : key set handle as allocated by shishi_keys().

keyno : key number of key in the set to remove. The first key is key number 0.

shishi_keys_size ()

int shishi_keys_size (Shishi_keys *keys);

Get size of key set.

keys : key set handle as allocated by shishi_keys().

Returns : Returns number of keys stored in key set.

shishi_keys_to_file ()

int shishi_keys_to_file (Shishi *handle,
const char *filename,
Shishi_keys *keys);

Print an ASCII representation of a key structure to a file, for each key in the key set. The file is appended to if it exists. See
shishi_key_print() for the format of the output.

handle : shishi handle as allocated by shishi_init().

filename : filename to append key to.

keys : set of keys to print.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 174 / 249

shishi_keys_to_keytab_file ()

int shishi_keys_to_keytab_file (Shishi *handle,
Shishi_keys *keys,
const char *filename);

Write keys to a MIT keytab data structure.

The format of keytab’s is proprietary, and this function writes the 0x0502 format. See the section The MIT Kerberos Keytab
Binary File Format in the Shishi manual for a description of the reverse-engineered format.

handle : shishi handle as allocated by shishi_init().

keys : keyset to write.

filename : name of file to write.

Returns : SHISHI_FOPEN_ERROR if there is a problem opening filename for writing, SHISHI_IO_ERROR if there is prob-
lem writing the file, and SHISHI_OK on success.

Since 0.0.42

shishi_keys_to_keytab_mem ()

int shishi_keys_to_keytab_mem (Shishi *handle,
Shishi_keys *keys,
char **out,
size_t *len);

Write keys to a MIT keytab data structure.

The format of keytab’s is proprietary, and this function writes the 0x0502 format. See the section The MIT Kerberos Keytab
Binary File Format in the Shishi manual for a description of the reverse-engineered format.

handle : shishi handle as allocated by shishi_init().

keys : key set to convert to keytab format.

out : constant memory buffer with keytab of len size.

len : size of memory buffer with keytab data.

Returns : On success SHISHI_OK is returned, otherwise an error code.

Since 0.0.42

shishi_krberror ()

Shishi_asn1 shishi_krberror (Shishi *handle);

This function creates a new KRB-ERROR, populated with some default values.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the KRB-ERROR or NULL on failure.

Shishi API Reference Manual 175 / 249

shishi_krberror_build ()

int shishi_krberror_build (Shishi *handle,
Shishi_asn1 krberror);

Finish KRB-ERROR, called before e.g. shishi_krberror_der. This function removes empty but OPTIONAL fields (such as
cname), and

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_client ()

int shishi_krberror_client (Shishi *handle,
Shishi_asn1 krberror,
char **client,
size_t *clientlen);

Return client principal name in KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

client : pointer to newly allocated zero terminated string containing principal name. May be NULL (to only populate clien
tlen).

clientlen : pointer to length of client on output, excluding terminating zero. May be NULL (to only populate client).

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_client_set ()

int shishi_krberror_client_set (Shishi *handle,
Shishi_asn1 krberror,
const char *client);

Set the client name field in the Krberror.

handle : shishi handle as allocated by shishi_init().

krberror : Krberror to set client name field in.

client : zero-terminated string with principal name on RFC 1964 form.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 176 / 249

shishi_krberror_crealm ()

int shishi_krberror_crealm (Shishi *handle,
Shishi_asn1 krberror,
char **realm,
size_t *realmlen);

Extract client realm from KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

realm : output array with newly allocated name of realm in KRB-ERROR.

realmlen : size of output array.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_ctime ()

int shishi_krberror_ctime (Shishi *handle,
Shishi_asn1 krberror,
char **t);

Extract client time from KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : Krberror to set client name field in.

t : newly allocated zero-terminated output array with client time.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_ctime_set ()

int shishi_krberror_ctime_set (Shishi *handle,
Shishi_asn1 krberror,
const char *t);

Store client time in Krberror.

handle : shishi handle as allocated by shishi_init().

krberror : Krberror as allocated by shishi_krberror().

t : string with generalized time value to store in Krberror.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 177 / 249

shishi_krberror_cusec ()

int shishi_krberror_cusec (Shishi *handle,
Shishi_asn1 krberror,
uint32_t *cusec);

Extract client microseconds field from Krberror.

handle : shishi handle as allocated by shishi_init().

krberror : Krberror as allocated by shishi_krberror().

cusec : output integer with client microseconds field.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_cusec_set ()

int shishi_krberror_cusec_set (Shishi *handle,
Shishi_asn1 krberror,
uint32_t cusec);

Set the cusec field in the Krberror.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

cusec : client microseconds to set in krberror, 0-999999.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_der ()

int shishi_krberror_der (Shishi *handle,
Shishi_asn1 krberror,
char **out,
size_t *outlen);

DER encode KRB-ERROR. The caller must deallocate the OUT buffer.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

out : output array with newly allocated DER encoding of KRB-ERROR.

outlen : length of output array with DER encoding of KRB-ERROR.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 178 / 249

shishi_krberror_edata ()

int shishi_krberror_edata (Shishi *handle,
Shishi_asn1 krberror,
char **edata,
size_t *edatalen);

Extract additional error data from server (possibly empty).

handle : shishi handle as allocated by shishi_init().

krberror : KRB-ERROR structure with error code.

edata : output array with newly allocated error data.

edatalen : output length of error data.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_errorcode ()

int shishi_krberror_errorcode (Shishi *handle,
Shishi_asn1 krberror,
int *errorcode);

Extract error code from KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : KRB-ERROR structure with error code.

errorcode : output integer KRB-ERROR error code.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_errorcode_fast ()

int shishi_krberror_errorcode_fast (Shishi *handle,
Shishi_asn1 krberror);

Get error code from KRB-ERROR, without error checking.

handle : shishi handle as allocated by shishi_init().

krberror : KRB-ERROR structure with error code.

Returns : Return error code (see shishi_krberror_errorcode()) directly, or -1 on error.

shishi_krberror_errorcode_message ()

const char * shishi_krberror_errorcode_message (Shishi *handle,
int errorcode);

Get human readable string describing KRB-ERROR code.

handle : shishi handle as allocated by shishi_init().

errorcode : integer KRB-ERROR error code.

Returns : Return a string describing error code. This function will always return a string even if the error code isn’t known.

Shishi API Reference Manual 179 / 249

shishi_krberror_errorcode_set ()

int shishi_krberror_errorcode_set (Shishi *handle,
Shishi_asn1 krberror,
int errorcode);

Set the error-code field to a new error code.

handle : shishi handle as allocated by shishi_init().

krberror : KRB-ERROR structure with error code to set.

errorcode : new error code to set in krberror.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_etext ()

int shishi_krberror_etext (Shishi *handle,
Shishi_asn1 krberror,
char **etext,
size_t *etextlen);

Extract additional error text from server (possibly empty).

handle : shishi handle as allocated by shishi_init().

krberror : KRB-ERROR structure with error code.

etext : output array with newly allocated error text.

etextlen : output length of error text.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_from_file ()

int shishi_krberror_from_file (Shishi *handle,
Shishi_asn1 *krberror,
int filetype,
const char *filename);

Read KRB-ERROR from file in specified TYPE.

handle : shishi handle as allocated by shishi_init().

krberror : output variable with newly allocated KRB-ERROR.

filetype : input variable specifying type of file to be read, see Shishi_filetype.

filename : input variable with filename to read from.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 180 / 249

shishi_krberror_message ()

const char * shishi_krberror_message (Shishi *handle,
Shishi_asn1 krberror);

Extract error code (see shishi_krberror_errorcode_fast()) and return error message (see shishi_krberror_errorcode_message()).

handle : shishi handle as allocated by shishi_init().

krberror : KRB-ERROR structure with error code.

Returns : Return a string describing error code. This function will always return a string even if the error code isn’t known.

shishi_krberror_methoddata ()

int shishi_krberror_methoddata (Shishi *handle,
Shishi_asn1 krberror,
Shishi_asn1 *methoddata);

Extract METHOD-DATA ASN.1 object from the e-data field. The e-data field will only contain a METHOD-DATA if the
krberror error code is SHISHI_KDC_ERR_PREAUTH_REQUIRED.

handle : shishi handle as allocated by shishi_init().

krberror : KRB-ERROR structure with error code.

methoddata : output ASN.1 METHOD-DATA.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_parse ()

int shishi_krberror_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *krberror);

Read ASCII armored DER encoded KRB-ERROR from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

krberror : output variable with newly allocated KRB-ERROR.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_pretty_print ()

int shishi_krberror_pretty_print (Shishi *handle,
FILE *fh,
Shishi_asn1 krberror);

Print KRB-ERROR error condition and some explanatory text to file descriptor.

handle : shishi handle as allocated by shishi_init().

fh : file handle opened for writing.

krberror : KRB-ERROR structure with error code.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 181 / 249

shishi_krberror_print ()

int shishi_krberror_print (Shishi *handle,
FILE *fh,
Shishi_asn1 krberror);

Print ASCII armored DER encoding of KRB-ERROR to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

krberror : KRB-ERROR to print.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_read ()

int shishi_krberror_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *krberror);

Read DER encoded KRB-ERROR from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

krberror : output variable with newly allocated KRB-ERROR.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_realm ()

int shishi_krberror_realm (Shishi *handle,
Shishi_asn1 krberror,
char **realm,
size_t *realmlen);

Extract (server) realm from KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

realm : output array with newly allocated name of realm in KRB-ERROR.

realmlen : size of output array.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_remove_cname ()

int shishi_krberror_remove_cname (Shishi *handle,
Shishi_asn1 krberror);

Remove client realm field in KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 182 / 249

shishi_krberror_remove_crealm ()

int shishi_krberror_remove_crealm (Shishi *handle,
Shishi_asn1 krberror);

Remove client realm field in KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_remove_ctime ()

int shishi_krberror_remove_ctime (Shishi *handle,
Shishi_asn1 krberror);

Remove client time field in Krberror.

handle : shishi handle as allocated by shishi_init().

krberror : Krberror as allocated by shishi_krberror().

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_remove_cusec ()

int shishi_krberror_remove_cusec (Shishi *handle,
Shishi_asn1 krberror);

Remove client usec field in Krberror.

handle : shishi handle as allocated by shishi_init().

krberror : Krberror as allocated by shishi_krberror().

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_remove_edata ()

int shishi_krberror_remove_edata (Shishi *handle,
Shishi_asn1 krberror);

Remove error text (e-data) field in KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 183 / 249

shishi_krberror_remove_etext ()

int shishi_krberror_remove_etext (Shishi *handle,
Shishi_asn1 krberror);

Remove error text (e-text) field in KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_remove_sname ()

int shishi_krberror_remove_sname (Shishi *handle,
Shishi_asn1 krberror);

Remove server name field in KRB-ERROR. (Since it is not marked OPTIONAL in the ASN.1 profile, what is done is to set the
name-type to UNKNOWN and make sure the name-string sequence is empty.)

handle : shishi handle as allocated by shishi_init().

krberror : Krberror to set server name field in.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_save ()

int shishi_krberror_save (Shishi *handle,
FILE *fh,
Shishi_asn1 krberror);

Save DER encoding of KRB-ERROR to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

krberror : KRB-ERROR to save.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_server ()

int shishi_krberror_server (Shishi *handle,
Shishi_asn1 krberror,
char **server,
size_t *serverlen);

Return server principal name in KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

server : pointer to newly allocated zero terminated string containing server name. May be NULL (to only populate server

len).

serverlen : pointer to length of server on output, excluding terminating zero. May be NULL (to only populate server).

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 184 / 249

shishi_krberror_server_set ()

int shishi_krberror_server_set (Shishi *handle,
Shishi_asn1 krberror,
const char *server);

Set the server name field in the Krberror.

handle : shishi handle as allocated by shishi_init().

krberror : Krberror to set server name field in.

server : zero-terminated string with principal name on RFC 1964 form.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_set_cname ()

int shishi_krberror_set_cname (Shishi *handle,
Shishi_asn1 krberror,
Shishi_name_type name_type,
const char *cname[]);

Set principal field in krberror to specified value.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

name_type : type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.

cname : input array with principal name.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_set_crealm ()

int shishi_krberror_set_crealm (Shishi *handle,
Shishi_asn1 krberror,
const char *crealm);

Set realm field in krberror to specified value.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

crealm : input array with realm.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 185 / 249

shishi_krberror_set_edata ()

int shishi_krberror_set_edata (Shishi *handle,
Shishi_asn1 krberror,
const char *edata);

Set error text (e-data) field in KRB-ERROR to specified value.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

edata : input array with error text to set.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_set_etext ()

int shishi_krberror_set_etext (Shishi *handle,
Shishi_asn1 krberror,
const char *etext);

Set error text (e-text) field in KRB-ERROR to specified value.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

etext : input array with error text to set.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_set_realm ()

int shishi_krberror_set_realm (Shishi *handle,
Shishi_asn1 krberror,
const char *realm);

Set (server) realm field in krberror to specified value.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

realm : input array with (server) realm.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_set_sname ()

int shishi_krberror_set_sname (Shishi *handle,
Shishi_asn1 krberror,
Shishi_name_type name_type,
const char *sname[]);

Set principal field in krberror to specified value.

handle : shishi handle as allocated by shishi_init().

Shishi API Reference Manual 186 / 249

krberror : krberror as allocated by shishi_krberror().

name_type : type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.

sname : input array with principal name.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_stime ()

int shishi_krberror_stime (Shishi *handle,
Shishi_asn1 krberror,
char **t);

Extract server time from KRB-ERROR.

handle : shishi handle as allocated by shishi_init().

krberror : Krberror to set client name field in.

t : newly allocated zero-terminated output array with server time.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_stime_set ()

int shishi_krberror_stime_set (Shishi *handle,
Shishi_asn1 krberror,
const char *t);

Store server time in Krberror.

handle : shishi handle as allocated by shishi_init().

krberror : Krberror as allocated by shishi_krberror().

t : string with generalized time value to store in Krberror.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_susec ()

int shishi_krberror_susec (Shishi *handle,
Shishi_asn1 krberror,
uint32_t *susec);

Extract server microseconds field from Krberror.

handle : shishi handle as allocated by shishi_init().

krberror : Krberror as allocated by shishi_krberror().

susec : output integer with server microseconds field.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 187 / 249

shishi_krberror_susec_set ()

int shishi_krberror_susec_set (Shishi *handle,
Shishi_asn1 krberror,
uint32_t susec);

Set the susec field in the Krberror.

handle : shishi handle as allocated by shishi_init().

krberror : krberror as allocated by shishi_krberror().

susec : server microseconds to set in krberror, 0-999999.

Returns : Returns SHISHI_OK iff successful.

shishi_krberror_to_file ()

int shishi_krberror_to_file (Shishi *handle,
Shishi_asn1 krberror,
int filetype,
const char *filename);

Write KRB-ERROR to file in specified TYPE. The file will be truncated if it exists.

handle : shishi handle as allocated by shishi_init().

krberror : KRB-ERROR to save.

filetype : input variable specifying type of file to be written, see Shishi_filetype.

filename : input variable with filename to write to.

Returns : Returns SHISHI_OK iff successful.

shishi_md4 ()

int shishi_md4 (Shishi *handle,
const char *in,
size_t inlen,
char *out[16]);

Compute hash of data using MD4. The out buffer must be deallocated by the caller.

handle : shishi handle as allocated by shishi_init().

in : input character array of data to hash.

inlen : length of input character array of data to hash.

out : newly allocated character array with hash of data.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 188 / 249

shishi_md5 ()

int shishi_md5 (Shishi *handle,
const char *in,
size_t inlen,
char *out[16]);

Compute hash of data using MD5. The out buffer must be deallocated by the caller.

handle : shishi handle as allocated by shishi_init().

in : input character array of data to hash.

inlen : length of input character array of data to hash.

out : newly allocated character array with hash of data.

Returns : Returns SHISHI_OK iff successful.

shishi_methoddata_print ()

int shishi_methoddata_print (Shishi *handle,
FILE *fh,
Shishi_asn1 methoddata);

shishi_n_fold ()

int shishi_n_fold (Shishi *handle,
const char *in,
size_t inlen,
char *out,
size_t outlen);

Fold data into a fixed length output array, with the intent to give each input bit approximately equal weight in determining the
value of each output bit.

The algorithm is from "A Better Key Schedule For DES-like Ciphers" by Uri Blumenthal and Steven M. Bellovin, http://www.research.att.com/~smb/papers/ides.pdf,
although the sample vectors provided by the paper are incorrect.

handle : shishi handle as allocated by shishi_init().

in : input array with data to decrypt.

inlen : size of input array with data to decrypt ("M").

out : output array with decrypted data.

outlen : size of output array ("N").

Returns : Returns SHISHI_OK iff successful.

shishi_padata_print ()

int shishi_padata_print (Shishi *handle,
FILE *fh,
Shishi_asn1 padata);

Shishi API Reference Manual 189 / 249

shishi_parse_name ()

int shishi_parse_name (Shishi *handle,
const char *name,
char **principal,
char **realm);

Split principal name (e.g., "simon@JOSEFSSON.ORG") into two newly allocated strings, the principal ("simon"), and the
realm ("JOSEFSSON.ORG"). If there is no realm part in name, realm is set to NULL.

handle : Shishi library handle created by shishi_init().

name : input principal name string, e.g. imap/mail.gnu.org@GNU.ORG.

principal : newly allocated output string with principal name.

realm : newly allocated output string with realm name.

Returns : Returns SHISHI_INVALID_PRINCIPAL_NAME if name is NULL or ends with the escape character "\", and SHISHI_OK
if successful.

shishi_pbkdf2_sha1 ()

int shishi_pbkdf2_sha1 (Shishi *handle,
const char *P,
size_t Plen,
const char *S,
size_t Slen,
unsigned int c,
unsigned int dkLen,
char *DK);

Derive key using the PBKDF2 defined in PKCS5. PBKDF2 applies a pseudorandom function to derive keys. The length of the
derived key is essentially unbounded. (However, the maximum effective search space for the derived key may be limited by the
structure of the underlying pseudorandom function, which is this function is always SHA1.)

handle : shishi handle as allocated by shishi_init().

P : input password, an octet string

Plen : length of password, an octet string

S : input salt, an octet string

Slen : length of salt, an octet string

c : iteration count, a positive integer

dkLen : intended length in octets of the derived key, a positive integer, at most (2ˆ32 - 1) * hLen. The DK array must have room
for this many characters.

DK : output derived key, a dkLen-octet string

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 190 / 249

shishi_principal_default ()

const char * shishi_principal_default (Shishi *handle);

The default principal name is the name in the environment variable USER, or LOGNAME for some systems, but it can be
overridden by specifying the environment variable SHISHI_USER.

handle : Shishi library handle created by shishi_init().

Returns : Returns the default principal name used by the library. (Not a copy of it, so don’t modify or deallocate it.)

shishi_principal_default_guess ()

char * shishi_principal_default_guess (void);

Guesses the principal name for the user, looking at environment variables SHISHI_USER, USER and LOGNAME, or if that
fails, returns the string "user".

Returns : Returns guessed default principal for user as a string that has to be deallocated by the caller with free().

shishi_principal_default_set ()

void shishi_principal_default_set (Shishi *handle,
const char *principal);

Set the default principal used by the library. The string is copied into the library, so you can dispose of the variable immediately
after calling this function.

handle : Shishi library handle created by shishi_init().

principal : string with new default principal name, or NULL to reset to default.

shishi_principal_name ()

int shishi_principal_name (Shishi *handle,
Shishi_asn1 namenode,
const char *namefield,
char **out,
size_t *outlen);

Represent principal name in ASN.1 structure as null-terminated string. The string is allocated by this function, and it is the
responsibility of the caller to deallocate it. Note that the output length outlen does not include the terminating null.

handle : Shishi library handle created by shishi_init().

namenode : ASN.1 structure with principal in namefield.

namefield : name of field in namenode containing principal name.

out : pointer to newly allocated, null terminated, string containing principal name. May be NULL (to only populate outlen).

outlen : pointer to length of out on output, excluding terminating null. May be NULL (to only populate out).

Returns : Returns SHISHI_OK if successful.

Shishi API Reference Manual 191 / 249

shishi_principal_name_realm ()

int shishi_principal_name_realm (Shishi *handle,
Shishi_asn1 namenode,
const char *namefield,
Shishi_asn1 realmnode,
const char *realmfield,
char **out,
size_t *outlen);

Represent principal name and realm in ASN.1 structure as null-terminated string. The string is allocated by this function. It is the
responsibility of the caller to deallocate it. Note that the output length outlen does not include the terminating null character.

handle : Shishi library handle created by shishi_init().

namenode : ASN.1 structure with principal name in namefield.

namefield : name of field in namenode containing principal name.

realmnode : ASN.1 structure with principal realm in realmfield.

realmfield : name of field in realmnode containing principal realm.

out : pointer to newly allocated null terminated string containing principal name. May be NULL (to only populate outlen).

outlen : pointer to length of out on output, excluding terminating null. May be NULL (to only populate out).

Returns : Returns SHISHI_OK if successful.

shishi_principal_name_set ()

int shishi_principal_name_set (Shishi *handle,
Shishi_asn1 namenode,
const char *namefield,
Shishi_name_type name_type,
const char *name[]);

Set the given principal name field to the given name.

handle : shishi handle as allocated by shishi_init().

namenode : ASN.1 structure with principal in namefield.

namefield : name of field in namenode containing principal name.

name_type : type of principal, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.

name : null-terminated input array with principal name.

Returns : Returns SHISHI_OK if successful.

shishi_principal_set ()

int shishi_principal_set (Shishi *handle,
Shishi_asn1 namenode,
const char *namefield,
const char *name);

Set principal name field in an ASN.1 structure to the given name.

Shishi API Reference Manual 192 / 249

handle : shishi handle as allocated by shishi_init().

namenode : ASN.1 structure with principal in namefield.

namefield : name of field in namenode containing principal name.

name : null-terminated string with principal name in RFC 1964 form.

Returns : Returns SHISHI_OK if successful.

shishi_priv ()

int shishi_priv (Shishi *handle,
Shishi_priv **priv);

Create a new PRIV exchange.

handle : shishi handle as allocated by shishi_init().

priv : pointer to new structure that holds information about PRIV exchange

Returns : Returns SHISHI_OK iff successful.

shishi_priv_build ()

int shishi_priv_build (Shishi_priv *priv,
Shishi_key *key);

Build checksum and set it in KRB-PRIV. Note that this follows RFC 1510bis and is incompatible with RFC 1510, although
presumably few implementations use the RFC1510 algorithm.

priv : priv as allocated by shishi_priv().

key : key for session, used to encrypt data.

Returns : Returns SHISHI_OK iff successful.

shishi_priv_done ()

void shishi_priv_done (Shishi_priv *priv);

Deallocate resources associated with PRIV exchange. This should be called by the application when it no longer need to utilize
the PRIV exchange handle.

priv : structure that holds information about PRIV exchange

shishi_priv_enc_part_etype ()

int shishi_priv_enc_part_etype (Shishi *handle,
Shishi_asn1 priv,
int32_t *etype);

Extract PRIV.enc-part.etype.

handle : shishi handle as allocated by shishi_init().

priv : PRIV variable to get value from.

etype : output variable that holds the value.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 193 / 249

shishi_priv_encprivpart ()

Shishi_asn1 shishi_priv_encprivpart (Shishi_priv *priv);

Get ASN.1 EncPrivPart structure from PRIV exchange.

priv : structure that holds information about PRIV exchange

Returns : Returns the ASN.1 encprivpart in the PRIV exchange, or NULL if not yet set or an error occured.

shishi_priv_encprivpart_der ()

int shishi_priv_encprivpart_der (Shishi_priv *priv,
char **out,
size_t *outlen);

DER encode ENCPRIVPART structure. out is allocated by this function, and it is the responsibility of caller to deallocate it.

priv : priv as allocated by shishi_priv().

out : output array with newly allocated DER encoding of ENCPRIVPART.

outlen : length of output array with DER encoding of ENCPRIVPART.

Returns : Returns SHISHI_OK iff successful.

shishi_priv_encprivpart_der_set ()

int shishi_priv_encprivpart_der_set (Shishi_priv *priv,
char *der,
size_t derlen);

DER decode ENCPRIVPART and set it PRIV exchange. If decoding fails, the ENCPRIVPART in the PRIV exchange remains.

priv : priv as allocated by shishi_priv().

der : input array with DER encoded ENCPRIVPART.

derlen : length of input array with DER encoded ENCPRIVPART.

Returns : Returns SHISHI_OK.

shishi_priv_encprivpart_set ()

void shishi_priv_encprivpart_set (Shishi_priv *priv,
Shishi_asn1 asn1encprivpart);

Set the ENCPRIVPART in the PRIV exchange.

priv : structure that holds information about PRIV exchange

asn1encprivpart : ENCPRIVPART to store in PRIV exchange.

Shishi API Reference Manual 194 / 249

shishi_priv_from_file ()

int shishi_priv_from_file (Shishi *handle,
Shishi_asn1 *priv,
int filetype,
const char *filename);

Read PRIV from file in specified TYPE.

handle : shishi handle as allocated by shishi_init().

priv : output variable with newly allocated PRIV.

filetype : input variable specifying type of file to be read, see Shishi_filetype.

filename : input variable with filename to read from.

Returns : Returns SHISHI_OK iff successful.

shishi_priv_key ()

Shishi_key * shishi_priv_key (Shishi_priv *priv);

Get key from PRIV exchange.

priv : structure that holds information about PRIV exchange

Returns : Returns the key used in the PRIV exchange, or NULL if not yet set or an error occured.

shishi_priv_key_set ()

void shishi_priv_key_set (Shishi_priv *priv,
Shishi_key *key);

Set the Key in the PRIV exchange.

priv : structure that holds information about PRIV exchange

key : key to store in PRIV.

shishi_priv_parse ()

int shishi_priv_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *priv);

Read ASCII armored DER encoded PRIV from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

priv : output variable with newly allocated PRIV.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 195 / 249

shishi_priv_print ()

int shishi_priv_print (Shishi *handle,
FILE *fh,
Shishi_asn1 priv);

Print ASCII armored DER encoding of PRIV to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

priv : PRIV to print.

Returns : Returns SHISHI_OK iff successful.

shishi_priv_priv ()

Shishi_asn1 shishi_priv_priv (Shishi_priv *priv);

Get ASN.1 PRIV structure in PRIV exchange.

priv : structure that holds information about PRIV exchange

Returns : Returns the ASN.1 priv in the PRIV exchange, or NULL if not yet set or an error occured.

shishi_priv_priv_der ()

int shishi_priv_priv_der (Shishi_priv *priv,
char **out,
size_t *outlen);

DER encode PRIV structure. Typically shishi_priv_build() is used to build the PRIV structure first. out is allocated by this
function, and it is the responsibility of caller to deallocate it.

priv : priv as allocated by shishi_priv().

out : output array with newly allocated DER encoding of PRIV.

outlen : length of output array with DER encoding of PRIV.

Returns : Returns SHISHI_OK iff successful.

shishi_priv_priv_der_set ()

int shishi_priv_priv_der_set (Shishi_priv *priv,
char *der,
size_t derlen);

DER decode KRB-PRIV and set it PRIV exchange. If decoding fails, the KRB-PRIV in the PRIV exchange remains.

priv : priv as allocated by shishi_priv().

der : input array with DER encoded KRB-PRIV.

derlen : length of input array with DER encoded KRB-PRIV.

Returns : Returns SHISHI_OK.

Shishi API Reference Manual 196 / 249

shishi_priv_priv_set ()

void shishi_priv_priv_set (Shishi_priv *priv,
Shishi_asn1 asn1priv);

Set the KRB-PRIV in the PRIV exchange.

priv : structure that holds information about PRIV exchange

asn1priv : KRB-PRIV to store in PRIV exchange.

shishi_priv_process ()

int shishi_priv_process (Shishi_priv *priv,
Shishi_key *key);

Decrypt encrypted data in KRB-PRIV and set the EncPrivPart in the PRIV exchange.

priv : priv as allocated by shishi_priv().

key : key to use to decrypt EncPrivPart.

Returns : Returns SHISHI_OK iff successful, SHISHI_PRIV_BAD_KEYTYPE if an incompatible key type is used, or SHISHI_CRYPTO_ERROR
if the actual decryption failed.

shishi_priv_read ()

int shishi_priv_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *priv);

Read DER encoded PRIV from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

priv : output variable with newly allocated PRIV.

Returns : Returns SHISHI_OK iff successful.

shishi_priv_save ()

int shishi_priv_save (Shishi *handle,
FILE *fh,
Shishi_asn1 priv);

Save DER encoding of PRIV to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

priv : PRIV to save.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 197 / 249

shishi_priv_set_enc_part ()

int shishi_priv_set_enc_part (Shishi *handle,
Shishi_asn1 priv,
int32_t etype,
const char *encpart,
size_t encpartlen);

Store encrypted data in PRIV. The encrypted data is usually created by calling shishi_encrypt() on some application specific data
using the key from the ticket that is being used. To save time, you may want to use shishi_priv_build() instead, which encryptes
the data and calls this function in one step.

handle : shishi handle as allocated by shishi_init().

priv : priv as allocated by shishi_priv().

etype : input encryption type to store in PRIV.

encpart : input encrypted data to store in PRIV.

encpartlen : size of input encrypted data to store in PRIV.

Returns : Returns SHISHI_OK iff successful.

shishi_priv_to_file ()

int shishi_priv_to_file (Shishi *handle,
Shishi_asn1 priv,
int filetype,
const char *filename);

Write PRIV to file in specified TYPE. The file will be truncated if it exists.

handle : shishi handle as allocated by shishi_init().

priv : PRIV to save.

filetype : input variable specifying type of file to be written, see Shishi_filetype.

filename : input variable with filename to write to.

Returns : Returns SHISHI_OK iff successful.

shishi_prompt_password ()

int shishi_prompt_password (Shishi *handle,
char **s,
const char *format,
...);

Format and print a prompt, and read a password from user. The password is possibly converted (e.g., converted from Latin-1 to
UTF-8, or processed using Stringprep profile) following any "stringprocess" keywords in configuration files.

handle : shishi handle as allocated by shishi_init().

s : pointer to newly allocated output string with read password.

format : printf(3) style format string.

... : printf(3) style arguments.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 198 / 249

shishi_prompt_password_callback_get ()

shishi_prompt_password_func shishi_prompt_password_callback_get
(Shishi *handle);

Get the application password prompt function callback as set by shishi_prompt_password_callback_set().

handle : shishi handle as allocated by shishi_init().

Returns : Returns the callback, a shishi_prompt_password_func type, or NULL.

shishi_prompt_password_callback_set ()

void shishi_prompt_password_callback_set (Shishi *handle,
shishi_prompt_password_func cb);

Set a callback function that will be used by shishi_prompt_password() to query the user for a password. The function pointer can
be retrieved using shishi_prompt_password_callback_get().

The cb function should follow the shishi_prompt_password_func prototype:

int prompt_password (Shishi * handle, char **s, const char *format, va_list ap);

If the function returns 0, the s variable should contain a newly allocated string with the password read from the user.

handle : shishi handle as allocated by shishi_init().

cb : function pointer to application password callback, a shishi_prompt_password_func type.

shishi_prompt_password_func ()

int (*shishi_prompt_password_func) (Shishi *handle,
char **s,
const char *format,
va_list ap);

shishi_random_to_key ()

int shishi_random_to_key (Shishi *handle,
int32_t keytype,
const char *rnd,
size_t rndlen,
Shishi_key *outkey);

Derive key from random data for specified key type, and set the type and value in the given key to the computed values.

handle : shishi handle as allocated by shishi_init().

keytype : cryptographic encryption type, see Shishi_etype.

rnd : input array with random data.

rndlen : length of input array with random data.

outkey : allocated key handle that will contain new key.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 199 / 249

shishi_randomize ()

int shishi_randomize (Shishi *handle,
int strong,
void *data,
size_t datalen);

Store cryptographically random data of given size in the provided buffer.

handle : shishi handle as allocated by shishi_init().

strong : 0 iff operation should not block, non-0 for very strong randomness.

data : output array to be filled with random data.

datalen : size of output array.

Returns : Returns SHISHI_OK iff successful.

shishi_realm_default ()

const char * shishi_realm_default (Shishi *handle);

Get name of default realm.

handle : Shishi library handle create by shishi_init().

Returns : Returns the default realm used in the library. (Not a copy of it, so don’t modify or deallocate it.)

shishi_realm_default_guess ()

char * shishi_realm_default_guess (void);

Guesses a realm based on getdomainname() (which really is NIS/YP domain, but if it is set it might be a good guess), or if it
fails, based on gethostname(), or if it fails, the string "could-not-guess-default-realm". Note that the hostname is not trimmed off
of the data returned by gethostname() to get the domain name and use that as the realm.

Returns : Returns guessed realm for host as a string that has to be deallocated with free() by the caller.

shishi_realm_default_set ()

void shishi_realm_default_set (Shishi *handle,
const char *realm);

Set the default realm used in the library. The string is copied into the library, so you can dispose of the variable immediately after
calling this function.

handle : Shishi library handle create by shishi_init().

realm : string with new default realm name, or NULL to reset to default.

Shishi API Reference Manual 200 / 249

shishi_realm_for_server ()

char * shishi_realm_for_server (Shishi *handle,
char *server);

Find realm for a host, using various methods. Currently this includes static configuration files (see shishi_realm_for_server_file())
and DNS (see shishi_realm_for_server_dns()).

handle : Shishi library handle create by shishi_init().

server : hostname to find realm for.

Returns : Returns realm for host, or NULL if not found.

shishi_realm_for_server_dns ()

char * shishi_realm_for_server_dns (Shishi *handle,
char *server);

Find realm for a host using DNS lookups, according to draft-ietf-krb-wg-krb-dns-locate-03.txt. Since DNS lookups may be
spoofed, relying on the realm information may result in a redirection attack. In a single-realm scenario, this only achieves a
denial of service, but with cross-realm trust it may redirect you to a compromised realm. For this reason, Shishi prints a warning,
suggesting that the user should add the proper ’server-realm’ configuration tokens instead.

To illustrate the DNS information used, here is an extract from a zone file for the domain ASDF.COM:

_kerberos.asdf.com. IN TXT "ASDF.COM" _kerberos.mrkserver.asdf.com. IN TXT "MARKETING.ASDF.COM" _kerberos.salesserver.asdf.com.
IN TXT "SALES.ASDF.COM"

Let us suppose that in this case, a client wishes to use a service on the host foo.asdf.com. It would first query:

_kerberos.foo.asdf.com. IN TXT

Finding no match, it would then query:

_kerberos.asdf.com. IN TXT

handle : Shishi library handle create by shishi_init().

server : hostname to find realm for.

Returns : Returns realm for host, or NULL if not found.

shishi_realm_for_server_file ()

char * shishi_realm_for_server_file (Shishi *handle,
char *server);

Find realm for a host using configuration file.

handle : Shishi library handle create by shishi_init().

server : hostname to find realm for.

Returns : Returns realm for host, or NULL if not found.

Shishi API Reference Manual 201 / 249

shishi_resolv ()

Shishi_dns shishi_resolv (const char *zone,
uint16_t querytype);

Query DNS resolver for data of type querytype at owner name zone. Currently TXT and SRV types are supported.

zone : owner name of data, e.g. "EXAMPLE.ORG"

querytype : type of data to query for, e.g., SHISHI_DNS_TXT.

Returns : Returns linked list of DNS records, or NULL if query failed.

shishi_resolv_free ()

void shishi_resolv_free (Shishi_dns rrs);

Deallocate list of DNS RR as returned by shishi_resolv().

rrs : list of DNS RR as returned by shishi_resolv().

shishi_safe ()

int shishi_safe (Shishi *handle,
Shishi_safe **safe);

Create a new SAFE exchange.

handle : shishi handle as allocated by shishi_init().

safe : pointer to new structure that holds information about SAFE exchange

Returns : Returns SHISHI_OK iff successful.

shishi_safe_build ()

int shishi_safe_build (Shishi_safe *safe,
Shishi_key *key);

Build checksum and set it in KRB-SAFE. Note that this follows RFC 1510bis and is incompatible with RFC 1510, although
presumably few implementations use the RFC1510 algorithm.

safe : safe as allocated by shishi_safe().

key : key for session, used to compute checksum.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 202 / 249

shishi_safe_cksum ()

int shishi_safe_cksum (Shishi *handle,
Shishi_asn1 safe,
int32_t *cksumtype,
char **cksum,
size_t *cksumlen);

Read checksum value from KRB-SAFE. cksum is allocated by this function, and it is the responsibility of caller to deallocate it.

handle : shishi handle as allocated by shishi_init().

safe : safe as allocated by shishi_safe().

cksumtype : output checksum type.

cksum : output array with newly allocated checksum data from SAFE.

cksumlen : output size of output checksum data buffer.

Returns : Returns SHISHI_OK iff successful.

shishi_safe_done ()

void shishi_safe_done (Shishi_safe *safe);

Deallocate resources associated with SAFE exchange. This should be called by the application when it no longer need to utilize
the SAFE exchange handle.

safe : structure that holds information about SAFE exchange

shishi_safe_from_file ()

int shishi_safe_from_file (Shishi *handle,
Shishi_asn1 *safe,
int filetype,
const char *filename);

Read SAFE from file in specified TYPE.

handle : shishi handle as allocated by shishi_init().

safe : output variable with newly allocated SAFE.

filetype : input variable specifying type of file to be read, see Shishi_filetype.

filename : input variable with filename to read from.

Returns : Returns SHISHI_OK iff successful.

shishi_safe_key ()

Shishi_key * shishi_safe_key (Shishi_safe *safe);

Get key structured from SAFE exchange.

safe : structure that holds information about SAFE exchange

Returns : Returns the key used in the SAFE exchange, or NULL if not yet set or an error occured.

Shishi API Reference Manual 203 / 249

shishi_safe_key_set ()

void shishi_safe_key_set (Shishi_safe *safe,
Shishi_key *key);

Set the Key in the SAFE exchange.

safe : structure that holds information about SAFE exchange

key : key to store in SAFE.

shishi_safe_parse ()

int shishi_safe_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *safe);

Read ASCII armored DER encoded SAFE from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

safe : output variable with newly allocated SAFE.

Returns : Returns SHISHI_OK iff successful.

shishi_safe_print ()

int shishi_safe_print (Shishi *handle,
FILE *fh,
Shishi_asn1 safe);

Print ASCII armored DER encoding of SAFE to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

safe : SAFE to print.

Returns : Returns SHISHI_OK iff successful.

shishi_safe_read ()

int shishi_safe_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *safe);

Read DER encoded SAFE from file and populate given variable.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for reading.

safe : output variable with newly allocated SAFE.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 204 / 249

shishi_safe_safe ()

Shishi_asn1 shishi_safe_safe (Shishi_safe *safe);

Get ASN.1 SAFE structured from SAFE exchange.

safe : structure that holds information about SAFE exchange

Returns : Returns the ASN.1 safe in the SAFE exchange, or NULL if not yet set or an error occured.

shishi_safe_safe_der ()

int shishi_safe_safe_der (Shishi_safe *safe,
char **out,
size_t *outlen);

DER encode SAFE structure. Typically shishi_safe_build() is used to build the SAFE structure first. out is allocated by this
function, and it is the responsibility of caller to deallocate it.

safe : safe as allocated by shishi_safe().

out : output array with newly allocated DER encoding of SAFE.

outlen : length of output array with DER encoding of SAFE.

Returns : Returns SHISHI_OK iff successful.

shishi_safe_safe_der_set ()

int shishi_safe_safe_der_set (Shishi_safe *safe,
char *der,
size_t derlen);

DER decode KRB-SAFE and set it SAFE exchange. If decoding fails, the KRB-SAFE in the SAFE exchange remains.

safe : safe as allocated by shishi_safe().

der : input array with DER encoded KRB-SAFE.

derlen : length of input array with DER encoded KRB-SAFE.

Returns : Returns SHISHI_OK.

shishi_safe_safe_set ()

void shishi_safe_safe_set (Shishi_safe *safe,
Shishi_asn1 asn1safe);

Set the KRB-SAFE in the SAFE exchange.

safe : structure that holds information about SAFE exchange

asn1safe : KRB-SAFE to store in SAFE exchange.

Shishi API Reference Manual 205 / 249

shishi_safe_save ()

int shishi_safe_save (Shishi *handle,
FILE *fh,
Shishi_asn1 safe);

Save DER encoding of SAFE to file.

handle : shishi handle as allocated by shishi_init().

fh : file handle open for writing.

safe : SAFE to save.

Returns : Returns SHISHI_OK iff successful.

shishi_safe_set_cksum ()

int shishi_safe_set_cksum (Shishi *handle,
Shishi_asn1 safe,
int32_t cksumtype,
const char *cksum,
size_t cksumlen);

Store checksum value in SAFE. A checksum is usually created by calling shishi_checksum() on some application specific data
using the key from the ticket that is being used. To save time, you may want to use shishi_safe_build() instead, which calculates
the checksum and calls this function in one step.

handle : shishi handle as allocated by shishi_init().

safe : safe as allocated by shishi_safe().

cksumtype : input checksum type to store in SAFE.

cksum : input checksum data to store in SAFE.

cksumlen : size of input checksum data to store in SAFE.

Returns : Returns SHISHI_OK iff successful.

shishi_safe_set_user_data ()

int shishi_safe_set_user_data (Shishi *handle,
Shishi_asn1 safe,
const char *userdata,
size_t userdatalen);

Set the application data in SAFE.

handle : shishi handle as allocated by shishi_init().

safe : safe as allocated by shishi_safe().

userdata : input user application to store in SAFE.

userdatalen : size of input user application to store in SAFE.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 206 / 249

shishi_safe_to_file ()

int shishi_safe_to_file (Shishi *handle,
Shishi_asn1 safe,
int filetype,
const char *filename);

Write SAFE to file in specified TYPE. The file will be truncated if it exists.

handle : shishi handle as allocated by shishi_init().

safe : SAFE to save.

filetype : input variable specifying type of file to be written, see Shishi_filetype.

filename : input variable with filename to write to.

Returns : Returns SHISHI_OK iff successful.

shishi_safe_user_data ()

int shishi_safe_user_data (Shishi *handle,
Shishi_asn1 safe,
char **userdata,
size_t *userdatalen);

Read user data value from KRB-SAFE. userdata is allocated by this function, and it is the responsibility of caller to deallocate
it.

handle : shishi handle as allocated by shishi_init().

safe : safe as allocated by shishi_safe().

userdata : output array with newly allocated user data from KRB-SAFE.

userdatalen : output size of output user data buffer.

Returns : Returns SHISHI_OK iff successful.

shishi_safe_verify ()

int shishi_safe_verify (Shishi_safe *safe,
Shishi_key *key);

Verify checksum in KRB-SAFE. Note that this follows RFC 1510bis and is incompatible with RFC 1510, although presumably
few implementations use the RFC1510 algorithm.

safe : safe as allocated by shishi_safe().

key : key for session, used to verify checksum.

Returns : Returns SHISHI_OK iff successful, SHISHI_SAFE_BAD_KEYTYPE if an incompatible key type is used, or SHISHI_SAFE_VERIFY_FAILED
if the actual verification failed.

Shishi API Reference Manual 207 / 249

shishi_server ()

Shishi * shishi_server (void);

Initializes the Shishi library, and set up, using shishi_error_set_outputtype(), the library so that future warnings and informational
messages are printed to the syslog. If this function fails, it may print diagnostic errors to the syslog.

Returns : Returns Shishi library handle, or NULL on error.

shishi_server_for_local_service ()

char * shishi_server_for_local_service (Shishi *handle,
const char *service);

Construct a service principal (e.g., "imap/yxa.extuno.com") based on supplied service name (i.e., "imap") and the system’s
hostname as returned by hostname() (i.e., "yxa.extundo.com"). The string must be deallocated by the caller.

handle : shishi handle as allocated by shishi_init().

service : null terminated string with name of service, e.g., "host".

Returns : Return newly allocated service name string.

shishi_strerror ()

const char * shishi_strerror (int err);

Convert return code to human readable string.

err : shishi error code.

Returns : Returns a pointer to a statically allocated string containing a description of the error with the error value err. This
string can be used to output a diagnostic message to the user.

shishi_string_to_key ()

int shishi_string_to_key (Shishi *handle,
int32_t keytype,
const char *password,
size_t passwordlen,
const char *salt,
size_t saltlen,
const char *parameter,
Shishi_key *outkey);

Derive key from a string (password) and salt (commonly concatenation of realm and principal) for specified key type, and set the
type and value in the given key to the computed values. The parameter value is specific for each keytype, and can be set if the
parameter information is not available.

handle : shishi handle as allocated by shishi_init().

keytype : cryptographic encryption type, see Shishi_etype.

password : input array with password.

passwordlen : length of input array with password.

Shishi API Reference Manual 208 / 249

salt : input array with salt.

saltlen : length of input array with salt.

parameter : input array with opaque encryption type specific information.

outkey : allocated key handle that will contain new key.

Returns : Returns SHISHI_OK iff successful.

shishi_tgs ()

int shishi_tgs (Shishi *handle,
Shishi_tgs **tgs);

Allocate a new TGS exchange variable.

handle : shishi handle as allocated by shishi_init().

tgs : holds pointer to newly allocate Shishi_tgs structure.

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_ap ()

Shishi_ap * shishi_tgs_ap (Shishi_tgs *tgs);

Get the AP from TGS exchange.

tgs : structure that holds information about TGS exchange

Returns : Returns the AP exchange (part of TGS-REQ) from the TGS exchange, or NULL if not yet set or an error occured.

shishi_tgs_done ()

void shishi_tgs_done (Shishi_tgs *tgs);

Deallocate resources associated with TGS exchange. This should be called by the application when it no longer need to utilize
the TGS exchange handle.

tgs : structure that holds information about AS exchange

shishi_tgs_krberror ()

Shishi_asn1 shishi_tgs_krberror (Shishi_tgs *tgs);

Get KRB-ERROR from TGS exchange.

tgs : structure that holds information about TGS exchange

Returns : Returns the received TGS-REP from the TGS exchange, or NULL if not yet set or an error occured.

Shishi API Reference Manual 209 / 249

shishi_tgs_krberror_der ()

int shishi_tgs_krberror_der (Shishi_tgs *tgs,
char **out,
size_t *outlen);

DER encode KRB-ERROR. out is allocated by this function, and it is the responsibility of caller to deallocate it.

tgs : structure that holds information about TGS exchange

out : output array with newly allocated DER encoding of KRB-ERROR.

outlen : length of output array with DER encoding of KRB-ERROR.

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_krberror_set ()

void shishi_tgs_krberror_set (Shishi_tgs *tgs,
Shishi_asn1 krberror);

Set the KRB-ERROR in the TGS exchange.

tgs : structure that holds information about TGS exchange

krberror : krberror to store in TGS.

shishi_tgs_process ()

int shishi_tgs_process (Shishi *handle,
Shishi_asn1 tgsreq,
Shishi_asn1 tgsrep,
Shishi_asn1 authenticator,
Shishi_asn1 oldenckdcreppart,
Shishi_asn1 *enckdcreppart);

Process a TGS client exchange and output decrypted EncKDCRepPart which holds details for the new ticket received. This
function simply derives the encryption key from the ticket used to construct the TGS request and calls shishi_kdc_process(),
which see.

handle : shishi handle as allocated by shishi_init().

tgsreq : input variable that holds the sent KDC-REQ.

tgsrep : input variable that holds the received KDC-REP.

authenticator : input variable with Authenticator from AP-REQ in KDC-REQ.

oldenckdcreppart : input variable with EncKDCRepPart used in request.

enckdcreppart : output variable that holds new EncKDCRepPart.

Returns : Returns SHISHI_OK iff the TGS client exchange was successful.

Shishi API Reference Manual 210 / 249

shishi_tgs_rep ()

Shishi_asn1 shishi_tgs_rep (Shishi_tgs *tgs);

Get TGS-REP from TGS exchange.

tgs : structure that holds information about TGS exchange

Returns : Returns the received TGS-REP from the TGS exchange, or NULL if not yet set or an error occured.

shishi_tgs_rep_build ()

int shishi_tgs_rep_build (Shishi_tgs *tgs,
int keyusage,
Shishi_key *key);

Build TGS-REP.

tgs : structure that holds information about TGS exchange

keyusage : keyusage integer.

key : user’s key, used to encrypt the encrypted part of the TGS-REP.

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_rep_der ()

int shishi_tgs_rep_der (Shishi_tgs *tgs,
char **out,
size_t *outlen);

DER encode TGS-REP. out is allocated by this function, and it is the responsibility of caller to deallocate it.

tgs : structure that holds information about TGS exchange

out : output array with newly allocated DER encoding of TGS-REP.

outlen : length of output array with DER encoding of TGS-REP.

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_rep_process ()

int shishi_tgs_rep_process (Shishi_tgs *tgs);

Process new TGS-REP and set ticket. The key to decrypt the TGS-REP is taken from the EncKDCRepPart of the TGS tgticket.

tgs : structure that holds information about TGS exchange

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 211 / 249

shishi_tgs_req ()

Shishi_asn1 shishi_tgs_req (Shishi_tgs *tgs);

Get the TGS-REQ from TGS exchange.

tgs : structure that holds information about TGS exchange

Returns : Returns the generated TGS-REQ from the TGS exchange, or NULL if not yet set or an error occured.

shishi_tgs_req_build ()

int shishi_tgs_req_build (Shishi_tgs *tgs);

Checksum data in authenticator and add ticket and authenticator to TGS-REQ.

tgs : structure that holds information about TGS exchange

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_req_der ()

int shishi_tgs_req_der (Shishi_tgs *tgs,
char **out,
size_t *outlen);

DER encode TGS-REQ. out is allocated by this function, and it is the responsibility of caller to deallocate it.

tgs : structure that holds information about TGS exchange

out : output array with newly allocated DER encoding of TGS-REQ.

outlen : length of output array with DER encoding of TGS-REQ.

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_req_der_set ()

int shishi_tgs_req_der_set (Shishi_tgs *tgs,
char *der,
size_t derlen);

DER decode TGS-REQ and set it TGS exchange. If decoding fails, the TGS-REQ in the TGS exchange remains.

tgs : structure that holds information about TGS exchange

der : input array with DER encoded AP-REQ.

derlen : length of input array with DER encoded AP-REQ.

Returns : Returns SHISHI_OK.

Shishi API Reference Manual 212 / 249

shishi_tgs_req_process ()

int shishi_tgs_req_process (Shishi_tgs *tgs);

Process new TGS-REQ and set ticket. The key to decrypt the TGS-REQ is taken from the EncKDCReqPart of the TGS tgticket.

tgs : structure that holds information about TGS exchange

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_req_set ()

void shishi_tgs_req_set (Shishi_tgs *tgs,
Shishi_asn1 tgsreq);

Set the TGS-REQ in the TGS exchange.

tgs : structure that holds information about TGS exchange

tgsreq : tgsreq to store in TGS.

shishi_tgs_sendrecv ()

int shishi_tgs_sendrecv (Shishi_tgs *tgs);

Send TGS-REQ and receive TGS-REP or KRB-ERROR. This is the subsequent authentication, usually used to acquire server
tickets.

tgs : structure that holds information about TGS exchange

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_sendrecv_hint ()

int shishi_tgs_sendrecv_hint (Shishi_tgs *tgs,
Shishi_tkts_hint *hint);

Send TGS-REQ and receive TGS-REP or KRB-ERROR. This is the subsequent authentication, usually used to acquire server
tickets. The hint structure can be used to set, e.g., parameters for TLS authentication.

tgs : structure that holds information about TGS exchange

hint : additional parameters that modify connection behaviour, or NULL.

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_set_realm ()

int shishi_tgs_set_realm (Shishi_tgs *tgs,
const char *realm);

Set the server in the TGS-REQ.

tgs : structure that holds information about TGS exchange

realm : indicates the realm to acquire ticket for.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 213 / 249

shishi_tgs_set_realmserver ()

int shishi_tgs_set_realmserver (Shishi_tgs *tgs,
const char *realm,
const char *server);

Set the realm and server in the TGS-REQ.

tgs : structure that holds information about TGS exchange

realm : indicates the realm to acquire ticket for.

server : indicates the server to acquire ticket for.

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_set_server ()

int shishi_tgs_set_server (Shishi_tgs *tgs,
const char *server);

Set the server in the TGS-REQ.

tgs : structure that holds information about TGS exchange

server : indicates the server to acquire ticket for.

Returns : Returns SHISHI_OK iff successful.

shishi_tgs_tgtkt ()

Shishi_tkt * shishi_tgs_tgtkt (Shishi_tgs *tgs);

Get Ticket-granting-ticket from TGS exchange.

tgs : structure that holds information about TGS exchange

Returns : Returns the ticket-granting-ticket used in the TGS exchange, or NULL if not yet set or an error occured.

shishi_tgs_tgtkt_set ()

void shishi_tgs_tgtkt_set (Shishi_tgs *tgs,
Shishi_tkt *tgtkt);

Set the Ticket in the TGS exchange.

tgs : structure that holds information about TGS exchange

tgtkt : ticket granting ticket to store in TGS.

shishi_tgs_tkt ()

Shishi_tkt * shishi_tgs_tkt (Shishi_tgs *tgs);

Get Ticket from TGS exchange.

tgs : structure that holds information about TGS exchange

Returns : Returns the newly acquired ticket from the TGS exchange, or NULL if not yet set or an error occured.

Shishi API Reference Manual 214 / 249

shishi_tgs_tkt_set ()

void shishi_tgs_tkt_set (Shishi_tgs *tgs,
Shishi_tkt *tkt);

Set the Ticket in the TGS exchange.

tgs : structure that holds information about TGS exchange

tkt : ticket to store in TGS.

shishi_tgsrep ()

Shishi_asn1 shishi_tgsrep (Shishi *handle);

This function creates a new TGS-REP, populated with some default values.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the TGS-REP or NULL on failure.

shishi_tgsreq ()

Shishi_asn1 shishi_tgsreq (Shishi *handle);

This function creates a new TGS-REQ, populated with some default values.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the TGS-REQ or NULL on failure.

shishi_tgsreq_rst ()

Shishi_asn1 shishi_tgsreq_rst (Shishi *handle,
char *realm,
char *server,
Shishi_tkt *tkt);

shishi_ticket ()

Shishi_asn1 shishi_ticket (Shishi *handle);

This function creates a new ASN.1 Ticket, populated with some default values.

handle : shishi handle as allocated by shishi_init().

Returns : Returns the ticket or NULL on failure.

Shishi API Reference Manual 215 / 249

shishi_ticket_add_enc_part ()

int shishi_ticket_add_enc_part (Shishi *handle,
Shishi_asn1 ticket,
Shishi_key *key,
Shishi_asn1 encticketpart);

Encrypts DER encoded EncTicketPart using key and stores it in the Ticket.

handle : shishi handle as allocated by shishi_init().

ticket : Ticket to add enc-part field to.

key : key used to encrypt enc-part.

encticketpart : EncTicketPart to add.

Returns : Returns SHISHI_OK iff successful.

shishi_ticket_decrypt ()

int shishi_ticket_decrypt (Shishi *handle,
Shishi_asn1 ticket,
Shishi_key *key,
Shishi_asn1 *encticketpart);

shishi_ticket_get_enc_part_etype ()

int shishi_ticket_get_enc_part_etype (Shishi *handle,
Shishi_asn1 ticket,
int32_t *etype);

Extract Ticket.enc-part.etype.

handle : shishi handle as allocated by shishi_init().

ticket : Ticket variable to get value from.

etype : output variable that holds the value.

Returns : Returns SHISHI_OK iff successful.

shishi_ticket_parse ()

int shishi_ticket_parse (Shishi *handle,
FILE *fh,
Shishi_asn1 *ticket);

shishi_ticket_print ()

int shishi_ticket_print (Shishi *handle,
FILE *fh,
Shishi_asn1 ticket);

Shishi API Reference Manual 216 / 249

shishi_ticket_read ()

int shishi_ticket_read (Shishi *handle,
FILE *fh,
Shishi_asn1 *ticket);

shishi_ticket_realm_get ()

int shishi_ticket_realm_get (Shishi *handle,
Shishi_asn1 ticket,
char **realm,
size_t *realmlen);

Extract realm from ticket.

handle : shishi handle as allocated by shishi_init().

ticket : input variable with ticket info.

realm : output array with newly allocated name of realm in ticket.

realmlen : size of output array.

Returns : Returns SHISHI_OK iff successful.

shishi_ticket_realm_set ()

int shishi_ticket_realm_set (Shishi *handle,
Shishi_asn1 ticket,
const char *realm);

Set the realm field in the Ticket.

handle : shishi handle as allocated by shishi_init().

ticket : input variable with ticket info.

realm : input array with name of realm.

Returns : Returns SHISHI_OK iff successful.

shishi_ticket_save ()

int shishi_ticket_save (Shishi *handle,
FILE *fh,
Shishi_asn1 ticket);

shishi_ticket_server ()

int shishi_ticket_server (Shishi *handle,
Shishi_asn1 ticket,
char **server,
size_t *serverlen);

Represent server principal name in Ticket as zero-terminated string. The string is allocate by this function, and it is the responsi-
bility of the caller to deallocate it. Note that the output length serverlen does not include the terminating zero.

Shishi API Reference Manual 217 / 249

handle : Shishi library handle create by shishi_init().

ticket : ASN.1 Ticket variable to get server name from.

server : pointer to newly allocated zero terminated string containing principal name. May be NULL (to only populate serve
rlen).

serverlen : pointer to length of server on output, excluding terminating zero. May be NULL (to only populate server).

Returns : Returns SHISHI_OK iff successful.

shishi_ticket_set_enc_part ()

int shishi_ticket_set_enc_part (Shishi *handle,
Shishi_asn1 ticket,
int32_t etype,
uint32_t kvno,
const char *buf,
size_t buflen);

Set the encrypted enc-part field in the Ticket. The encrypted data is usually created by calling shishi_encrypt() on the DER
encoded enc-part. To save time, you may want to use shishi_ticket_add_enc_part() instead, which calculates the encrypted data
and calls this function in one step.

handle : shishi handle as allocated by shishi_init().

ticket : Ticket to add enc-part field to.

etype : encryption type used to encrypt enc-part.

kvno : key version number.

buf : input array with encrypted enc-part.

buflen : size of input array with encrypted enc-part.

Returns : Returns SHISHI_OK iff successful.

shishi_ticket_set_server ()

int shishi_ticket_set_server (Shishi *handle,
Shishi_asn1 ticket,
const char *server);

shishi_ticket_sname_set ()

int shishi_ticket_sname_set (Shishi *handle,
Shishi_asn1 ticket,
Shishi_name_type name_type,
char *sname[]);

Set the server name field in the Ticket.

handle : shishi handle as allocated by shishi_init().

ticket : Ticket variable to set server name field in.

name_type : type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.

sname : input array with principal name.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 218 / 249

shishi_ticket_srealmserver_set ()

int shishi_ticket_srealmserver_set (Shishi *handle,
Shishi_asn1 ticket,
const char *realm,
const char *server);

shishi_time ()

int shishi_time (Shishi *handle,
Shishi_asn1 node,
const char *field,
char **t);

Extract time from ASN.1 structure.

handle : shishi handle as allocated by shishi_init().

node : ASN.1 node to get time from.

field : Name of field in ASN.1 node to get time from.

t : newly allocated output array with zero terminated time string.

Returns : Returns SHISHI_OK iff successful.

shishi_tkt ()

int shishi_tkt (Shishi *handle,
Shishi_tkt **tkt);

Create a new ticket handle.

handle : shishi handle as allocated by shishi_init().

tkt : output variable with newly allocated ticket.

Returns : Returns SHISHI_OK iff successful.

shishi_tkt2 ()

Shishi_tkt * shishi_tkt2 (Shishi *handle,
Shishi_asn1 ticket,
Shishi_asn1 enckdcreppart,
Shishi_asn1 kdcrep);

Create a new ticket handle.

handle : shishi handle as allocated by shishi_init().

ticket : input variable with ticket.

enckdcreppart : input variable with auxiliary ticket information.

kdcrep : input variable with KDC-REP ticket information.

Returns : Returns new ticket handle, or NULL on error.

Shishi API Reference Manual 219 / 249

shishi_tkt_authctime ()

time_t shishi_tkt_authctime (Shishi_tkt *tkt);

Extract C time corresponding to the authtime field. The field holds the time when the original authentication took place that later
resulted in this ticket.

tkt : input variable with ticket info.

Returns : Returns C time interpretation of the endtime in ticket.

shishi_tkt_authtime ()

int shishi_tkt_authtime (Shishi_tkt *tkt,
char **authtime,
size_t *authtimelen);

shishi_tkt_build ()

int shishi_tkt_build (Shishi_tkt *tkt,
Shishi_key *key);

shishi_tkt_client ()

int shishi_tkt_client (Shishi_tkt *tkt,
char **client,
size_t *clientlen);

Represent client principal name in Ticket KDC-REP as zero-terminated string. The string is allocate by this function, and it is
the responsibility of the caller to deallocate it. Note that the output length clientlen does not include the terminating zero.

tkt : input variable with ticket info.

client : pointer to newly allocated zero terminated string containing principal name. May be NULL (to only populate clien
tlen).

clientlen : pointer to length of client on output, excluding terminating zero. May be NULL (to only populate client).

Returns : Returns SHISHI_OK iff successful.

shishi_tkt_client_p ()

int shishi_tkt_client_p (Shishi_tkt *tkt,
const char *client);

Determine if ticket is for specified client.

tkt : input variable with ticket info.

client : client name of ticket.

Returns : Returns non-0 iff ticket is for specified client.

Shishi API Reference Manual 220 / 249

shishi_tkt_clientrealm ()

int shishi_tkt_clientrealm (Shishi_tkt *tkt,
char **client,
size_t *clientlen);

Convert cname and realm fields from AS-REQ to printable principal name format. The string is allocate by this function, and it
is the responsibility of the caller to deallocate it. Note that the output length clientlen does not include the terminating zero.

tkt : input variable with ticket info.

client : pointer to newly allocated zero terminated string containing principal name and realm. May be NULL (to only
populate clientlen).

clientlen : pointer to length of client on output, excluding terminating zero. May be NULL (to only populate client).

Returns : Returns SHISHI_OK iff successful.

shishi_tkt_clientrealm_p ()

int shishi_tkt_clientrealm_p (Shishi_tkt *tkt,
const char *client);

Determine if ticket is for specified client principal.

tkt : input variable with ticket info.

client : principal name (client name and realm) of ticket.

Returns : Returns non-0 iff ticket is for specified client principal.

shishi_tkt_clientrealm_set ()

int shishi_tkt_clientrealm_set (Shishi_tkt *tkt,
const char *realm,
const char *client);

shishi_tkt_decrypt ()

int shishi_tkt_decrypt (Shishi_tkt *tkt,
Shishi_key *key);

shishi_tkt_done ()

void shishi_tkt_done (Shishi_tkt *tkt);

Deallocate resources associated with ticket. The ticket must not be used again after this call.

tkt : input variable with ticket info.

Shishi API Reference Manual 221 / 249

shishi_tkt_enckdcreppart ()

Shishi_asn1 shishi_tkt_enckdcreppart (Shishi_tkt *tkt);

Get ASN.1 EncKDCRepPart structure from ticket.

tkt : input variable with ticket info.

Returns : Returns auxiliary ticket information.

shishi_tkt_enckdcreppart_set ()

void shishi_tkt_enckdcreppart_set (Shishi_tkt *tkt,
Shishi_asn1 enckdcreppart);

Set the EncKDCRepPart in the Ticket.

tkt : structure that holds information about Ticket exchange

enckdcreppart : EncKDCRepPart to store in Ticket.

shishi_tkt_encticketpart ()

Shishi_asn1 shishi_tkt_encticketpart (Shishi_tkt *tkt);

Get ASN.1 EncTicketPart structure from ticket.

tkt : input variable with ticket info.

Returns : Returns EncTicketPart information.

shishi_tkt_encticketpart_set ()

void shishi_tkt_encticketpart_set (Shishi_tkt *tkt,
Shishi_asn1 encticketpart);

Set the EncTicketPart in the Ticket.

tkt : input variable with ticket info.

encticketpart : encticketpart to store in ticket.

shishi_tkt_endctime ()

time_t shishi_tkt_endctime (Shishi_tkt *tkt);

Extract C time corresponding to the endtime field. The field holds the time where the ticket stop being valid.

tkt : input variable with ticket info.

Returns : Returns C time interpretation of the endtime in ticket.

Shishi API Reference Manual 222 / 249

shishi_tkt_endtime ()

int shishi_tkt_endtime (Shishi_tkt *tkt,
char **endtime,
size_t *endtimelen);

shishi_tkt_expired_p ()

int shishi_tkt_expired_p (Shishi_tkt *tkt);

Determine if ticket has expired (i.e., endtime is in the past).

tkt : input variable with ticket info.

Returns : Returns 0 iff ticket has expired.

shishi_tkt_flags ()

int shishi_tkt_flags (Shishi_tkt *tkt,
uint32_t *flags);

Extract flags in ticket (i.e., EncKDCRepPart).

tkt : input variable with ticket info.

flags : pointer to output integer with flags.

Returns : Returns SHISHI_OK iff successful.

shishi_tkt_flags_add ()

int shishi_tkt_flags_add (Shishi_tkt *tkt,
uint32_t flag);

Add ticket flags to Ticket and EncKDCRepPart. This preserves all existing options.

tkt : input variable with ticket info.

flag : integer with flags to store in ticket.

Returns : Returns SHISHI_OK iff successful.

shishi_tkt_flags_set ()

int shishi_tkt_flags_set (Shishi_tkt *tkt,
uint32_t flags);

Set flags in ticket, i.e., both EncTicketPart and EncKDCRepPart. Note that this reset any already existing flags.

tkt : input variable with ticket info.

flags : integer with flags to store in ticket.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 223 / 249

shishi_tkt_forwardable_p ()

int shishi_tkt_forwardable_p (Shishi_tkt *tkt);

Determine if ticket is forwardable.

The FORWARDABLE flag in a ticket is normally only interpreted by the ticket-granting service. It can be ignored by application
servers. The FORWARDABLE flag has an interpretation similar to that of the PROXIABLE flag, except ticket-granting tickets
may also be issued with different network addresses. This flag is reset by default, but users MAY request that it be set by setting
the FORWARDABLE option in the AS request when they request their initial ticket-granting ticket.

tkt : input variable with ticket info.

Returns : Returns non-0 iff forwardable flag is set in ticket.

shishi_tkt_forwarded_p ()

int shishi_tkt_forwarded_p (Shishi_tkt *tkt);

Determine if ticket is forwarded.

The FORWARDED flag is set by the TGS when a client presents a ticket with the FORWARDABLE flag set and requests a
forwarded ticket by specifying the FORWARDED KDC option and supplying a set of addresses for the new ticket. It is also set
in all tickets issued based on tickets with the FORWARDED flag set. Application servers may choose to process FORWARDED
tickets differently than non-FORWARDED tickets.

tkt : input variable with ticket info.

Returns : Returns non-0 iff forwarded flag is set in ticket.

shishi_tkt_hw_authent_p ()

int shishi_tkt_hw_authent_p (Shishi_tkt *tkt);

Determine if ticket is authenticated using a hardware token.

The PRE-AUTHENT and HW-AUTHENT flags provide additional information about the initial authentication, regardless of
whether the current ticket was issued directly (in which case INITIAL will also be set) or issued on the basis of a ticket-granting
ticket (in which case the INITIAL flag is clear, but the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the
ticket-granting ticket).

tkt : input variable with ticket info.

Returns : Returns non-0 iff hw-authent flag is set in ticket.

shishi_tkt_initial_p ()

int shishi_tkt_initial_p (Shishi_tkt *tkt);

Determine if ticket was issued using AS exchange.

The INITIAL flag indicates that a ticket was issued using the AS protocol, rather than issued based on a ticket-granting ticket.
Application servers that want to require the demonstrated knowledge of a client’s secret key (e.g. a password-changing program)
can insist that this flag be set in any tickets they accept, and thus be assured that the client’s key was recently presented to the
application client.

tkt : input variable with ticket info.

Returns : Returns non-0 iff initial flag is set in ticket.

Shishi API Reference Manual 224 / 249

shishi_tkt_invalid_p ()

int shishi_tkt_invalid_p (Shishi_tkt *tkt);

Determine if ticket is invalid.

The INVALID flag indicates that a ticket is invalid. Application servers MUST reject tickets which have this flag set. A postdated
ticket will be issued in this form. Invalid tickets MUST be validated by the KDC before use, by presenting them to the KDC in
a TGS request with the VALIDATE option specified. The KDC will only validate tickets after their starttime has passed. The
validation is required so that postdated tickets which have been stolen before their starttime can be rendered permanently invalid
(through a hot-list mechanism).

tkt : input variable with ticket info.

Returns : Returns non-0 iff invalid flag is set in ticket.

shishi_tkt_kdcrep ()

Shishi_asn1 shishi_tkt_kdcrep (Shishi_tkt *tkt);

Get ASN.1 KDCRep structure from ticket.

tkt : input variable with ticket info.

Returns : Returns KDC-REP information.

shishi_tkt_key ()

Shishi_key * shishi_tkt_key (Shishi_tkt *tkt);

Get key used in ticket, by looking first in EncKDCRepPart and then in EncTicketPart. If key is already populated, it is not
extracted again.

tkt : input variable with ticket info.

Returns : Returns key extracted from EncKDCRepPart or EncTicketPart.

shishi_tkt_key_set ()

int shishi_tkt_key_set (Shishi_tkt *tkt,
Shishi_key *key);

Set the key in the EncTicketPart.

tkt : input variable with ticket info.

key : key to store in ticket.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 225 / 249

shishi_tkt_keytype ()

int shishi_tkt_keytype (Shishi_tkt *tkt,
int32_t *etype);

Extract encryption type of key in ticket (really EncKDCRepPart).

tkt : input variable with ticket info.

etype : pointer to encryption type that is set, see Shishi_etype.

Returns : Returns SHISHI_OK iff successful.

shishi_tkt_keytype_fast ()

int32_t shishi_tkt_keytype_fast (Shishi_tkt *tkt);

Extract encryption type of key in ticket (really EncKDCRepPart).

tkt : input variable with ticket info.

Returns : Returns encryption type of session key in ticket (really EncKDCRepPart), or -1 on error.

shishi_tkt_keytype_p ()

int shishi_tkt_keytype_p (Shishi_tkt *tkt,
int32_t etype);

Determine if key in ticket (really EncKDCRepPart) is of specified key type (really encryption type).

tkt : input variable with ticket info.

etype : encryption type, see Shishi_etype.

Returns : Returns non-0 iff key in ticket is of specified encryption type.

shishi_tkt_lastreq ()

int shishi_tkt_lastreq (Shishi_tkt *tkt,
char **lrtime,
size_t *lrtimelen,
int32_t lrtype);

shishi_tkt_lastreq_pretty_print ()

void shishi_tkt_lastreq_pretty_print (Shishi_tkt *tkt,
FILE *fh);

Print a human readable representation of the various lastreq fields in the ticket (really EncKDCRepPart).

tkt : input variable with ticket info.

fh : file handle open for writing.

Shishi API Reference Manual 226 / 249

shishi_tkt_lastreqc ()

time_t shishi_tkt_lastreqc (Shishi_tkt *tkt,
Shishi_lrtype lrtype);

Extract C time corresponding to given lastreq type field in the ticket.

tkt : input variable with ticket info.

lrtype : lastreq type to extract, see Shishi_lrtype. E.g., SHISHI_LRTYPE_LAST_REQUEST.

Returns : Returns C time interpretation of the specified lastreq field, or (time_t) -1.

shishi_tkt_match_p ()

int shishi_tkt_match_p (Shishi_tkt *tkt,
Shishi_tkts_hint *hint);

Test if a ticket matches specified hints.

tkt : ticket to test hints on.

hint : structure with characteristics of ticket to be found.

Returns : Returns 0 iff ticket fails to match given criteria.

shishi_tkt_may_postdate_p ()

int shishi_tkt_may_postdate_p (Shishi_tkt *tkt);

Determine if ticket may be used to grant postdated tickets.

The MAY-POSTDATE flag in a ticket is normally only interpreted by the ticket-granting service. It can be ignored by application
servers. This flag MUST be set in a ticket-granting ticket in order to issue a postdated ticket based on the presented ticket. It is
reset by default; it MAY be requested by a client by setting the ALLOW- POSTDATE option in the KRB_AS_REQ message. This
flag does not allow a client to obtain a postdated ticket-granting ticket; postdated ticket-granting tickets can only by obtained by
requesting the postdating in the KRB_AS_REQ message. The life (endtime-starttime) of a postdated ticket will be the remaining
life of the ticket-granting ticket at the time of the request, unless the RENEWABLE option is also set, in which case it can be the
full life (endtime-starttime) of the ticket-granting ticket. The KDC MAY limit how far in the future a ticket may be postdated.

tkt : input variable with ticket info.

Returns : Returns non-0 iff may-postdate flag is set in ticket.

shishi_tkt_ok_as_delegate_p ()

int shishi_tkt_ok_as_delegate_p (Shishi_tkt *tkt);

Determine if ticket is ok as delegated ticket.

The copy of the ticket flags in the encrypted part of the KDC reply may have the OK-AS-DELEGATE flag set to indicates to the
client that the server specified in the ticket has been determined by policy of the realm to be a suitable recipient of delegation.
A client can use the presence of this flag to help it make a decision whether to delegate credentials (either grant a proxy or
a forwarded ticket- granting ticket) to this server. It is acceptable to ignore the value of this flag. When setting this flag, an
administrator should consider the security and placement of the server on which the service will run, as well as whether the
service requires the use of delegated credentials.

tkt : input variable with ticket info.

Returns : Returns non-0 iff ok-as-delegate flag is set in ticket.

Shishi API Reference Manual 227 / 249

shishi_tkt_postdated_p ()

int shishi_tkt_postdated_p (Shishi_tkt *tkt);

Determine if ticket is postdated.

The POSTDATED flag indicates that a ticket has been postdated. The application server can check the authtime field in the ticket
to see when the original authentication occurred. Some services MAY choose to reject postdated tickets, or they may only accept
them within a certain period after the original authentication. When the KDC issues a POSTDATED ticket, it will also be marked
as INVALID, so that the application client MUST present the ticket to the KDC to be validated before use.

tkt : input variable with ticket info.

Returns : Returns non-0 iff postdated flag is set in ticket.

shishi_tkt_pre_authent_p ()

int shishi_tkt_pre_authent_p (Shishi_tkt *tkt);

Determine if ticket was pre-authenticated.

The PRE-AUTHENT and HW-AUTHENT flags provide additional information about the initial authentication, regardless of
whether the current ticket was issued directly (in which case INITIAL will also be set) or issued on the basis of a ticket-granting
ticket (in which case the INITIAL flag is clear, but the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the
ticket-granting ticket).

tkt : input variable with ticket info.

Returns : Returns non-0 iff pre-authent flag is set in ticket.

shishi_tkt_pretty_print ()

void shishi_tkt_pretty_print (Shishi_tkt *tkt,
FILE *fh);

Print a human readable representation of a ticket to file handle.

tkt : input variable with ticket info.

fh : file handle open for writing.

shishi_tkt_proxiable_p ()

int shishi_tkt_proxiable_p (Shishi_tkt *tkt);

Determine if ticket is proxiable.

The PROXIABLE flag in a ticket is normally only interpreted by the ticket-granting service. It can be ignored by application
servers. When set, this flag tells the ticket-granting server that it is OK to issue a new ticket (but not a ticket-granting ticket) with
a different network address based on this ticket. This flag is set if requested by the client on initial authentication. By default, the
client will request that it be set when requesting a ticket-granting ticket, and reset when requesting any other ticket.

tkt : input variable with ticket info.

Returns : Returns non-0 iff proxiable flag is set in ticket.

Shishi API Reference Manual 228 / 249

shishi_tkt_proxy_p ()

int shishi_tkt_proxy_p (Shishi_tkt *tkt);

Determine if ticket is proxy ticket.

The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket. Application servers MAY check this flag and at their
option they MAY require additional authentication from the agent presenting the proxy in order to provide an audit trail.

tkt : input variable with ticket info.

Returns : Returns non-0 iff proxy flag is set in ticket.

shishi_tkt_realm ()

int shishi_tkt_realm (Shishi_tkt *tkt,
char **realm,
size_t *realmlen);

Extract realm of server in ticket.

tkt : input variable with ticket info.

realm : pointer to newly allocated character array with realm name.

realmlen : length of newly allocated character array with realm name.

Returns : Returns SHISHI_OK iff successful.

shishi_tkt_renew_till ()

int shishi_tkt_renew_till (Shishi_tkt *tkt,
char **renewtilltime,
size_t *renewtilllen);

shishi_tkt_renew_tillc ()

time_t shishi_tkt_renew_tillc (Shishi_tkt *tkt);

Extract C time corresponding to the renew-till field. The field holds the time where the ticket stop being valid for renewal.

tkt : input variable with ticket info.

Returns : Returns C time interpretation of the renew-till in ticket.

shishi_tkt_renewable_p ()

int shishi_tkt_renewable_p (Shishi_tkt *tkt);

Determine if ticket is renewable.

The RENEWABLE flag in a ticket is normally only interpreted by the ticket-granting service (discussed below in section 3.3). It
can usually be ignored by application servers. However, some particularly careful application servers MAY disallow renewable
tickets.

tkt : input variable with ticket info.

Returns : Returns non-0 iff renewable flag is set in ticket.

Shishi API Reference Manual 229 / 249

shishi_tkt_server ()

int shishi_tkt_server (Shishi_tkt *tkt,
char **server,
size_t *serverlen);

Represent server principal name in Ticket as zero-terminated string. The string is allocate by this function, and it is the responsi-
bility of the caller to deallocate it. Note that the output length serverlen does not include the terminating zero.

tkt : input variable with ticket info.

server : pointer to newly allocated zero terminated string containing principal name. May be NULL (to only populate serve
rlen).

serverlen : pointer to length of server on output, excluding terminating zero. May be NULL (to only populate server).

Returns : Returns SHISHI_OK iff successful.

shishi_tkt_server_p ()

int shishi_tkt_server_p (Shishi_tkt *tkt,
const char *server);

Determine if ticket is for specified server.

tkt : input variable with ticket info.

server : server name of ticket.

Returns : Returns non-0 iff ticket is for specified server.

shishi_tkt_serverrealm_set ()

int shishi_tkt_serverrealm_set (Shishi_tkt *tkt,
const char *realm,
const char *server);

shishi_tkt_startctime ()

time_t shishi_tkt_startctime (Shishi_tkt *tkt);

Extract C time corresponding to the starttime field. The field holds the time where the ticket start to be valid (typically in the
past).

tkt : input variable with ticket info.

Returns : Returns C time interpretation of the endtime in ticket.

shishi_tkt_starttime ()

int shishi_tkt_starttime (Shishi_tkt *tkt,
char **starttime,
size_t *starttimelen);

Shishi API Reference Manual 230 / 249

shishi_tkt_ticket ()

Shishi_asn1 shishi_tkt_ticket (Shishi_tkt *tkt);

Get ASN.1 Ticket structure from ticket.

tkt : input variable with ticket info.

Returns : Returns actual ticket.

shishi_tkt_ticket_set ()

void shishi_tkt_ticket_set (Shishi_tkt *tkt,
Shishi_asn1 ticket);

Set the ASN.1 Ticket in the Ticket.

tkt : input variable with ticket info.

ticket : ASN.1 Ticket to store in ticket.

shishi_tkt_transited_policy_checked_p ()

int shishi_tkt_transited_policy_checked_p
(Shishi_tkt *tkt);

Determine if ticket has been policy checked for transit.

The application server is ultimately responsible for accepting or rejecting authentication and SHOULD check that only suitably
trusted KDCs are relied upon to authenticate a principal. The transited field in the ticket identifies which realms (and thus which
KDCs) were involved in the authentication process and an application server would normally check this field. If any of these are
untrusted to authenticate the indicated client principal (probably determined by a realm-based policy), the authentication attempt
MUST be rejected. The presence of trusted KDCs in this list does not provide any guarantee; an untrusted KDC may have
fabricated the list.

While the end server ultimately decides whether authentication is valid, the KDC for the end server’s realm MAY apply a realm
specific policy for validating the transited field and accepting credentials for cross-realm authentication. When the KDC applies
such checks and accepts such cross-realm authentication it will set the TRANSITED-POLICY-CHECKED flag in the service
tickets it issues based on the cross-realm TGT. A client MAY request that the KDCs not check the transited field by setting the
DISABLE-TRANSITED-CHECK flag. KDCs are encouraged but not required to honor this flag.

Application servers MUST either do the transited-realm checks themselves, or reject cross-realm tickets without TRANSITED-
POLICY- CHECKED set.

tkt : input variable with ticket info.

Returns : Returns non-0 iff transited-policy-checked flag is set in ticket.

shishi_tkt_valid_at_time_p ()

int shishi_tkt_valid_at_time_p (Shishi_tkt *tkt,
time_t now);

Determine if ticket is valid at a specific point in time.

tkt : input variable with ticket info.

now : time to check for.

Returns : Returns non-0 iff ticket is valid (not expired and after starttime) at specified time.

Shishi API Reference Manual 231 / 249

shishi_tkt_valid_now_p ()

int shishi_tkt_valid_now_p (Shishi_tkt *tkt);

Determine if ticket is valid now.

tkt : input variable with ticket info.

Returns : Returns 0 iff ticket is invalid (expired or not yet valid).

shishi_tkts ()

int shishi_tkts (Shishi *handle,
Shishi_tkts **tkts);

Get a new ticket set handle.

handle : shishi handle as allocated by shishi_init().

tkts : output pointer to newly allocated tkts handle.

Returns : Returns SHISHI_OK iff successful.

shishi_tkts_add ()

int shishi_tkts_add (Shishi_tkts *tkts,
Shishi_tkt *tkt);

Add a ticket to the ticket set. Only the pointer is stored, so if you modify tkt, the ticket in the ticket set will also be modified.

tkts : ticket set handle as allocated by shishi_tkts().

tkt : ticket to be added to ticket set.

Returns : Returns SHISHI_OK iff successful.

shishi_tkts_add_ccache_file ()

int shishi_tkts_add_ccache_file (Shishi *handle,
const char *filename,
Shishi_tkts *tkts);

Read tickets from a ccache data structure, and add them to the ticket set.

The ccache format is proprietary, and this function support (at least) the 0x0504 format. See the section The Credential Cache
Binary File Format in the Shishi manual for a description of the file format.

handle : shishi handle as allocated by shishi_init().

filename : name of file to read.

tkts : allocated ticket set to store tickets in.

Returns : Returns SHISHI_IO_ERROR if the file cannot be read, SHISHI_CCACHE_ERROR if the data cannot be parsed as a
valid ccache structure, and SHISHI_OK on success.

Shishi API Reference Manual 232 / 249

shishi_tkts_add_ccache_mem ()

int shishi_tkts_add_ccache_mem (Shishi *handle,
const char *data,
size_t len,
Shishi_tkts *tkts);

Read tickets from a ccache data structure, and add them to the ticket set.

The ccache format is proprietary, and this function support (at least) the 0x0504 format. See the section The Credential Cache
Binary File Format in the Shishi manual for a description of the file format.

handle : shishi handle as allocated by shishi_init().

data : constant memory buffer with ccache of len size.

len : size of memory buffer with ccache data.

tkts : allocated key set to store tickets in.

Returns : Returns SHISHI_CCACHE_ERROR if the data does not represent a valid ccache structure, and SHISHI_OK on
success.

shishi_tkts_default ()

Shishi_tkts * shishi_tkts_default (Shishi *handle);

Get the default ticket set for library handle.

handle : Shishi library handle create by shishi_init().

Returns : Return the handle global ticket set.

shishi_tkts_default_ccache ()

const char * shishi_tkts_default_ccache (Shishi *handle);

Get filename of default ccache filename.

handle : Shishi library handle create by shishi_init().

Returns : Returns the default ccache filename used in the library. The string is not a copy, so don’t modify or deallocate it.

shishi_tkts_default_ccache_guess ()

char * shishi_tkts_default_ccache_guess (Shishi *handle);

Guesses the default ccache ticket filename; it is the contents of the environment variable KRB5CCNAME or /tmp/krb5cc_UID
where UID is the user’s identity in decimal, as returned by getuid().

handle : Shishi library handle create by shishi_init().

Returns : Returns default ccache filename as a string that has to be deallocated with free() by the caller.

Shishi API Reference Manual 233 / 249

shishi_tkts_default_ccache_set ()

void shishi_tkts_default_ccache_set (Shishi *handle,
const char *ccache);

Set the default ccache filename used in the library. The string is copied into the library, so you can dispose of the variable
immediately after calling this function.

handle : Shishi library handle create by shishi_init().

ccache : string with new default ccache filename, or NULL to reset to default.

shishi_tkts_default_file ()

const char * shishi_tkts_default_file (Shishi *handle);

Get filename of default ticket set.

handle : Shishi library handle create by shishi_init().

Returns : Returns the default ticket set filename used in the library. The string is not a copy, so don’t modify or deallocate it.

shishi_tkts_default_file_guess ()

char * shishi_tkts_default_file_guess (Shishi *handle);

Guesses the default ticket filename; it is $SHISHI_TICKETS, $SHISHI_HOME/tickets, or $HOME/.shishi/tickets.

handle : Shishi library handle create by shishi_init().

Returns : Returns default tkts filename as a string that has to be deallocated with free() by the caller.

shishi_tkts_default_file_set ()

void shishi_tkts_default_file_set (Shishi *handle,
const char *tktsfile);

Set the default ticket set filename used in the library. The string is copied into the library, so you can dispose of the variable
immediately after calling this function.

handle : Shishi library handle create by shishi_init().

tktsfile : string with new default tkts file name, or NULL to reset to default.

shishi_tkts_default_to_file ()

int shishi_tkts_default_to_file (Shishi_tkts *tkts);

shishi_tkts_done ()

void shishi_tkts_done (Shishi_tkts **tkts);

Deallocates all resources associated with ticket set. The ticket set handle must not be used in calls to other shishi_tkts_*()
functions after this.

tkts : ticket set handle as allocated by shishi_tkts().

Shishi API Reference Manual 234 / 249

shishi_tkts_expire ()

int shishi_tkts_expire (Shishi_tkts *tkts);

Remove expired tickets from ticket set.

tkts : ticket set handle as allocated by shishi_tkts().

Returns : Returns SHISHI_OK iff successful.

shishi_tkts_find ()

Shishi_tkt * shishi_tkts_find (Shishi_tkts *tkts,
Shishi_tkts_hint *hint);

Search the ticketset sequentially (from ticket number 0 through all tickets in the set) for a ticket that fits the given characteristics.
If a ticket is found, the hint->startpos field is updated to point to the next ticket in the set, so this function can be called repeatedly
with the same hint argument in order to find all tickets matching a certain criterium. Note that if tickets are added to, or removed
from, the ticketset during a query with the same hint argument, the hint->startpos field must be updated appropriately.

Here is how you would typically use this function:

Shishi_tkts_hint hint;

Shishi_tkt tkt;

memset(&hint, 0, sizeof(hint));

hint.server = "imap/mail.example.org";

tkt = shishi_tkts_find (shishi_tkts_default(handle), &hint);

if (!tkt)

printf("No ticket found...\n");

else

do_something_with_ticket (tkt);

tkts : ticket set handle as allocated by shishi_tkts().

hint : structure with characteristics of ticket to be found.

Returns : Returns a ticket if found, or NULL if no further matching tickets could be found.

shishi_tkts_find_for_clientserver ()

Shishi_tkt * shishi_tkts_find_for_clientserver (Shishi_tkts *tkts,
const char *client,
const char *server);

Short-hand function for searching the ticket set for a ticket for the given client and server. See shishi_tkts_find().

tkts : ticket set handle as allocated by shishi_tkts().

client : client name to find ticket for.

server : server name to find ticket for.

Returns : Returns a ticket if found, or NULL.

Shishi API Reference Manual 235 / 249

shishi_tkts_find_for_server ()

Shishi_tkt * shishi_tkts_find_for_server (Shishi_tkts *tkts,
const char *server);

Short-hand function for searching the ticket set for a ticket for the given server using the default client principal. See shishi_tkts_find_for_clientserver()
and shishi_tkts_find().

tkts : ticket set handle as allocated by shishi_tkts().

server : server name to find ticket for.

Returns : Returns a ticket if found, or NULL.

shishi_tkts_from_ccache_file ()

int shishi_tkts_from_ccache_file (Shishi *handle,
const char *filename,
Shishi_tkts **outtkts);

Read tickets from a ccache data structure, and add them to the ticket set.

The ccache format is proprietary, and this function support (at least) the 0x0504 format. See the section The Credential Cache
Binary File Format in the Shishi manual for a description of the file format.

handle : shishi handle as allocated by shishi_init().

filename : name of file to read.

outtkts : pointer to ticket set that will be allocated and populated, must be deallocated by caller on succes.

Returns : Returns SHISHI_IO_ERROR if the file cannot be read, SHISHI_CCACHE_ERROR if the data cannot be parsed as a
valid ccache structure, and SHISHI_OK on success.

shishi_tkts_from_ccache_mem ()

int shishi_tkts_from_ccache_mem (Shishi *handle,
const char *data,
size_t len,
Shishi_tkts **outtkts);

Read tickets from a ccache data structure, and add them to the ticket set.

The ccache format is proprietary, and this function support (at least) the 0x0504 format. See the section The Credential Cache
Binary File Format in the Shishi manual for a description of the file format.

handle : shishi handle as allocated by shishi_init().

data : constant memory buffer with ccache of len size.

len : size of memory buffer with ccache data.

outtkts : pointer to ticket set that will be allocated and populated, must be deallocated by caller on succes.

Returns : Returns SHISHI_CCACHE_ERROR if the data does not represent a valid ccache structure, and SHISHI_OK on
success.

Shishi API Reference Manual 236 / 249

shishi_tkts_from_file ()

int shishi_tkts_from_file (Shishi_tkts *tkts,
const char *filename);

Read tickets from file and add them to the ticket set.

tkts : ticket set handle as allocated by shishi_tkts().

filename : filename to read tickets from.

Returns : Returns SHISHI_OK iff successful.

shishi_tkts_get ()

Shishi_tkt * shishi_tkts_get (Shishi_tkts *tkts,
Shishi_tkts_hint *hint);

Get a ticket matching given characteristics. This function first looks in the ticket set for a ticket, then tries to find a suitable TGT,
possibly via an AS exchange, using shishi_tkts_get_tgt(), and then uses that TGT in a TGS exchange to get the ticket.

Currently this function does not implement cross realm logic.

tkts : ticket set handle as allocated by shishi_tkts().

hint : structure with characteristics of ticket to be found.

Returns : Returns a ticket if found, or NULL if this function is unable to get the ticket.

shishi_tkts_get_for_clientserver ()

Shishi_tkt * shishi_tkts_get_for_clientserver (Shishi_tkts *tkts,
const char *client,
const char *server);

Short-hand function for getting a ticket for the given client and server. See shishi_tkts_get().

tkts : ticket set handle as allocated by shishi_tkts().

client : client name to get ticket for.

server : server name to get ticket for.

Returns : Returns a ticket if found, or NULL.

shishi_tkts_get_for_localservicepasswd ()

Shishi_tkt * shishi_tkts_get_for_localservicepasswd
(Shishi_tkts *tkts,
const char *service,
const char *passwd);

Short-hand function for getting a ticket to the given local service, and for the default principal client. The latter’s password is
given as argument. See shishi_tkts_get().

tkts : ticket set handle as allocated by shishi_tkts().

service : service name to get ticket for.

passwd : password for the default client principal.

Returns : Returns a ticket if found, or NULL otherwise.

Shishi API Reference Manual 237 / 249

shishi_tkts_get_for_server ()

Shishi_tkt * shishi_tkts_get_for_server (Shishi_tkts *tkts,
const char *server);

Short-hand function for getting a ticket to the given server and for the default principal client. See shishi_tkts_get().

tkts : ticket set handle as allocated by shishi_tkts().

server : server name to get ticket for.

Returns : Returns a ticket if found, or NULL.

shishi_tkts_get_tgs ()

Shishi_tkt * shishi_tkts_get_tgs (Shishi_tkts *tkts,
Shishi_tkts_hint *hint,
Shishi_tkt *tgt);

Get a ticket via TGS exchange using specified ticket granting ticket.

This function is used by shishi_tkts_get(), which is probably what you really want to use unless you have special needs.

tkts : ticket set handle as allocated by shishi_tkts().

hint : structure with characteristics of ticket to begot.

tgt : ticket granting ticket to use.

Returns : Returns a ticket if successful, or NULL if this function is unable to acquire on.

shishi_tkts_get_tgt ()

Shishi_tkt * shishi_tkts_get_tgt (Shishi_tkts *tkts,
Shishi_tkts_hint *hint);

Get a ticket granting ticket (TGT) suitable for acquiring ticket matching the hint. I.e., get a TGT for the server realm in the hint
structure (hint->serverrealm), or the default realm if the serverrealm field is NULL. Can result in AS exchange.

Currently this function do not implement cross realm logic.

This function is used by shishi_tkts_get(), which is probably what you really want to use unless you have special needs.

tkts : ticket set handle as allocated by shishi_tkts().

hint : structure with characteristics of ticket to begot.

Returns : Returns a ticket granting ticket if successful, or NULL if this function is unable to acquire on.

shishi_tkts_new ()

int shishi_tkts_new (Shishi_tkts *tkts,
Shishi_asn1 ticket,
Shishi_asn1 enckdcreppart,
Shishi_asn1 kdcrep);

Allocate a new ticket and add it to the ticket set.

Note that ticket, enckdcreppart and kdcrep are stored by reference, so you must not de-allocate them before the ticket is
removed from the ticket set and de-allocated.

Shishi API Reference Manual 238 / 249

tkts : ticket set handle as allocated by shishi_tkts().

ticket : input ticket variable.

enckdcreppart : input ticket detail variable.

kdcrep : input KDC-REP variable.

Returns : Returns SHISHI_OK iff successful.

shishi_tkts_nth ()

Shishi_tkt * shishi_tkts_nth (Shishi_tkts *tkts,
int ticketno);

Get the n:th ticket in ticket set.

tkts : ticket set handle as allocated by shishi_tkts().

ticketno : integer indicating requested ticket in ticket set.

Returns : Returns a ticket handle to the ticketno:th ticket in the ticket set, or NULL if ticket set is invalid or ticketno is out of
bounds. The first ticket is ticketno 0, the second ticketno 1, and so on.

shishi_tkts_print ()

int shishi_tkts_print (Shishi_tkts *tkts,
FILE *fh);

Print description of all tickets to file descriptor.

tkts : ticket set handle as allocated by shishi_tkts().

fh : file descriptor to print to.

Returns : Returns SHISHI_OK iff successful.

shishi_tkts_print_for_service ()

int shishi_tkts_print_for_service (Shishi_tkts *tkts,
FILE *fh,
const char *service);

Print description of tickets for specified service to file descriptor. If service is NULL, all tickets are printed.

tkts : ticket set handle as allocated by shishi_tkts().

fh : file descriptor to print to.

service : service to limit tickets printed to, or NULL.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 239 / 249

shishi_tkts_read ()

int shishi_tkts_read (Shishi_tkts *tkts,
FILE *fh);

Read tickets from file descriptor and add them to the ticket set.

tkts : ticket set handle as allocated by shishi_tkts().

fh : file descriptor to read from.

Returns : Returns SHISHI_OK iff successful.

shishi_tkts_remove ()

int shishi_tkts_remove (Shishi_tkts *tkts,
int ticketno);

Remove a ticket, indexed by ticketno, in ticket set.

tkts : ticket set handle as allocated by shishi_tkts().

ticketno : ticket number of ticket in the set to remove. The first ticket is ticket number 0.

Returns : SHISHI_OK if successful or if ticketno larger than size of ticket set.

shishi_tkts_size ()

int shishi_tkts_size (Shishi_tkts *tkts);

Get size of ticket set.

tkts : ticket set handle as allocated by shishi_tkts().

Returns : Returns number of tickets stored in ticket set.

shishi_tkts_to_file ()

int shishi_tkts_to_file (Shishi_tkts *tkts,
const char *filename);

Write tickets in set to file.

tkts : ticket set handle as allocated by shishi_tkts().

filename : filename to write tickets to.

Returns : Returns SHISHI_OK iff successful.

shishi_tkts_write ()

int shishi_tkts_write (Shishi_tkts *tkts,
FILE *fh);

Write tickets in set to file descriptor.

tkts : ticket set handle as allocated by shishi_tkts().

fh : file descriptor to write tickets to.

Returns : Returns SHISHI_OK iff successful.

Shishi API Reference Manual 240 / 249

shishi_verbose ()

void shishi_verbose (Shishi *handle,
const char *format,
...);

Print a diagnostic message to output as defined in handle.

handle : shishi handle as allocated by shishi_init().

format : printf style format string.

... : print style arguments.

shishi_verify ()

int shishi_verify (Shishi *handle,
Shishi_key *key,
int keyusage,
int cksumtype,
const char *in,
size_t inlen,
const char *cksum,
size_t cksumlen);

Verify checksum of data using key, possibly altered by supplied key usage. If key usage is 0, no key derivation is used.

handle : shishi handle as allocated by shishi_init().

key : key to verify checksum with.

keyusage : integer specifying what this key is used for.

cksumtype : the checksum algorithm to use.

in : input array with data that was integrity protected.

inlen : size of input array with data that was integrity protected.

cksum : input array with alleged checksum of data.

cksumlen : size of input array with alleged checksum of data.

Returns : Returns SHISHI_OK iff successful.

shishi_warn ()

void shishi_warn (Shishi *handle,
const char *format,
...);

Print a warning to output as defined in handle.

handle : shishi handle as allocated by shishi_init().

format : printf style format string.

... : print style arguments.

Shishi API Reference Manual 241 / 249

shishi_x509ca_default_file ()

const char * shishi_x509ca_default_file (Shishi *handle);

Get filename for default X.509 CA certificate.

handle : Shishi library handle create by shishi_init().

Returns : Returns the default X.509 CA certificate filename used in the library. The certificate is used during TLS connections
with the KDC to authenticate the KDC. The string is not a copy, so don’t modify or deallocate it.

shishi_x509ca_default_file_guess ()

char * shishi_x509ca_default_file_guess (Shishi *handle);

Guesses the default X.509 CA certificate filename; it is $HOME/.shishi/client.ca.

handle : Shishi library handle create by shishi_init().

Returns : Returns default X.509 client certificate filename as a string that has to be deallocated with free() by the caller.

shishi_x509ca_default_file_set ()

void shishi_x509ca_default_file_set (Shishi *handle,
const char *x509cafile);

Set the default X.509 CA certificate filename used in the library. The certificate is used during TLS connections with the KDC
to authenticate the KDC. The string is copied into the library, so you can dispose of the variable immediately after calling this
function.

handle : Shishi library handle create by shishi_init().

x509cafile : string with new default x509 client certificate file name, or NULL to reset to default.

shishi_x509cert_default_file ()

const char * shishi_x509cert_default_file (Shishi *handle);

Get filename for default X.509 certificate.

handle : Shishi library handle create by shishi_init().

Returns : Returns the default X.509 client certificate filename used in the library. The certificate is used during TLS connections
with the KDC to authenticate the client. The string is not a copy, so don’t modify or deallocate it.

shishi_x509cert_default_file_guess ()

char * shishi_x509cert_default_file_guess (Shishi *handle);

Guesses the default X.509 client certificate filename; it is $HOME/.shishi/client.certs.

handle : Shishi library handle create by shishi_init().

Returns : Returns default X.509 client certificate filename as a string that has to be deallocated with free() by the caller.

Shishi API Reference Manual 242 / 249

shishi_x509cert_default_file_set ()

void shishi_x509cert_default_file_set (Shishi *handle,
const char *x509certfile);

Set the default X.509 client certificate filename used in the library. The certificate is used during TLS connections with the KDC
to authenticate the client. The string is copied into the library, so you can dispose of the variable immediately after calling this
function.

handle : Shishi library handle create by shishi_init().

x509certfile : string with new default x509 client certificate file name, or NULL to reset to default.

shishi_x509key_default_file ()

const char * shishi_x509key_default_file (Shishi *handle);

Get filename for default X.509 key.

handle : Shishi library handle create by shishi_init().

Returns : Returns the default X.509 client key filename used in the library. The key is used during TLS connections with the
KDC to authenticate the client. The string is not a copy, so don’t modify or deallocate it.

shishi_x509key_default_file_guess ()

char * shishi_x509key_default_file_guess (Shishi *handle);

Guesses the default X.509 client key filename; it is $HOME/.shishi/client.key.

handle : Shishi library handle create by shishi_init().

Returns : Returns default X.509 client key filename as a string that has to be deallocated with free() by the caller.

shishi_x509key_default_file_set ()

void shishi_x509key_default_file_set (Shishi *handle,
const char *x509keyfile);

Set the default X.509 client key filename used in the library. The key is used during TLS connections with the KDC to authenticate
the client. The string is copied into the library, so you can dispose of the variable immediately after calling this function.

handle : Shishi library handle create by shishi_init().

x509keyfile : string with new default x509 client key file name, or NULL to reset to default.

shishi_xalloc_die ()

void shishi_xalloc_die (void);

Shishi API Reference Manual 243 / 249

Chapter 2

Index

S
Shishi, 40
shishi, 50
shishi_3des, 51
shishi_aes_cts, 51
shishi_alloc_fail_function, 52
Shishi_ap, 41
shishi_ap, 52
shishi_ap_authenticator, 52
shishi_ap_authenticator_cksumdata, 52
shishi_ap_authenticator_cksumdata_set, 53
shishi_ap_authenticator_cksumraw_set, 53
shishi_ap_authenticator_cksumtype, 53
shishi_ap_authenticator_cksumtype_set, 53
shishi_ap_authenticator_set, 54
shishi_ap_done, 54
shishi_ap_encapreppart, 54
shishi_ap_encapreppart_set, 54
shishi_ap_etype, 54
shishi_ap_etype_tktoptionsdata, 55
shishi_ap_key, 55
shishi_ap_nosubkey, 55
shishi_ap_option2string, 55
shishi_ap_rep, 56
shishi_ap_rep_asn1, 56
shishi_ap_rep_build, 56
shishi_ap_rep_der, 56
shishi_ap_rep_der_set, 57
shishi_ap_rep_set, 57
shishi_ap_rep_verify, 57
shishi_ap_rep_verify_asn1, 57
shishi_ap_rep_verify_der, 58
shishi_ap_req, 58
shishi_ap_req_asn1, 58
shishi_ap_req_build, 58
shishi_ap_req_decode, 58
shishi_ap_req_der, 59
shishi_ap_req_der_set, 59
shishi_ap_req_process, 59
shishi_ap_req_process_keyusage, 59
shishi_ap_req_set, 60
shishi_ap_set_tktoptions, 60
shishi_ap_set_tktoptionsasn1usage, 60

shishi_ap_set_tktoptionsdata, 61
shishi_ap_set_tktoptionsraw, 61
shishi_ap_string2option, 61
shishi_ap_tkt, 62
shishi_ap_tkt_set, 62
shishi_ap_tktoptions, 62
shishi_ap_tktoptionsasn1usage, 62
shishi_ap_tktoptionsdata, 63
shishi_ap_tktoptionsraw, 63
Shishi_apoptions, 41
shishi_aprep, 64
shishi_aprep_decrypt, 64
shishi_aprep_enc_part_add, 64
shishi_aprep_enc_part_make, 64
shishi_aprep_enc_part_set, 64
shishi_aprep_from_file, 65
shishi_aprep_get_enc_part_etype, 65
shishi_aprep_parse, 65
shishi_aprep_print, 66
shishi_aprep_read, 66
shishi_aprep_save, 66
shishi_aprep_to_file, 66
shishi_aprep_verify, 67
shishi_apreq, 67
shishi_apreq_add_authenticator, 67
shishi_apreq_decrypt, 67
shishi_apreq_from_file, 68
shishi_apreq_get_authenticator_etype, 68
shishi_apreq_get_ticket, 68
shishi_apreq_mutual_required_p, 68
shishi_apreq_options, 69
shishi_apreq_options_add, 69
shishi_apreq_options_remove, 69
shishi_apreq_options_set, 69
shishi_apreq_parse, 70
shishi_apreq_print, 70
shishi_apreq_read, 70
shishi_apreq_save, 70
shishi_apreq_set_authenticator, 71
shishi_apreq_set_ticket, 71
shishi_apreq_to_file, 71
shishi_apreq_use_session_key_p, 72
shishi_arcfour, 72

Shishi API Reference Manual 244 / 249

Shishi_as, 41
shishi_as, 72
shishi_as_check_cname, 73
shishi_as_check_crealm, 73
shishi_as_derive_salt, 73
shishi_as_done, 74
shishi_as_krberror, 74
shishi_as_krberror_der, 74
shishi_as_krberror_set, 74
shishi_as_process, 74
shishi_as_rep, 75
shishi_as_rep_build, 75
shishi_as_rep_der, 75
shishi_as_rep_der_set, 76
shishi_as_rep_process, 76
shishi_as_rep_set, 76
shishi_as_req, 76
shishi_as_req_build, 77
shishi_as_req_der, 77
shishi_as_req_der_set, 77
shishi_as_req_set, 77
shishi_as_sendrecv, 78
shishi_as_sendrecv_hint, 78
shishi_as_tkt, 78
shishi_as_tkt_set, 78
Shishi_asn1, 41
shishi_asn1_aprep, 78
shishi_asn1_apreq, 79
shishi_asn1_asrep, 79
shishi_asn1_asreq, 79
shishi_asn1_authenticator, 79
shishi_asn1_done, 79
shishi_asn1_empty_p, 80
shishi_asn1_encapreppart, 80
shishi_asn1_encasreppart, 80
shishi_asn1_enckdcreppart, 80
shishi_asn1_encprivpart, 80
shishi_asn1_encrypteddata, 80
shishi_asn1_encticketpart, 81
shishi_asn1_etype_info, 81
shishi_asn1_etype_info2, 81
shishi_asn1_krberror, 81
shishi_asn1_krbsafe, 81
shishi_asn1_methoddata, 82
shishi_asn1_msgtype, 82
shishi_asn1_number_of_elements, 82
shishi_asn1_pa_enc_ts_enc, 82
shishi_asn1_padata, 82
shishi_asn1_print, 83
shishi_asn1_priv, 83
shishi_asn1_read, 83
shishi_asn1_read_bitstring, 83
shishi_asn1_read_inline, 84
shishi_asn1_read_int32, 84
shishi_asn1_read_integer, 84
shishi_asn1_read_optional, 84
shishi_asn1_read_uint32, 85

shishi_asn1_tgsrep, 85
shishi_asn1_tgsreq, 85
shishi_asn1_ticket, 85
shishi_asn1_to_der, 85
shishi_asn1_to_der_field, 86
shishi_asn1_write, 86
shishi_asn1_write_bitstring, 86
shishi_asn1_write_int32, 86
shishi_asn1_write_integer, 87
shishi_asn1_write_uint32, 87
shishi_asrep, 87
shishi_asreq, 87
shishi_asreq_clientrealm, 87
shishi_asreq_rsc, 88
shishi_authenticator, 88
shishi_authenticator_add_authorizationdata, 88
shishi_authenticator_add_cksum, 88
shishi_authenticator_add_cksum_type, 89
shishi_authenticator_add_random_subkey, 89
shishi_authenticator_add_random_subkey_etype, 89
shishi_authenticator_add_subkey, 90
shishi_authenticator_authorizationdata, 90
shishi_authenticator_cksum, 90
shishi_authenticator_clear_authorizationdata, 91
shishi_authenticator_client, 91
shishi_authenticator_client_set, 91
shishi_authenticator_clientrealm, 92
shishi_authenticator_ctime, 92
shishi_authenticator_ctime_set, 92
shishi_authenticator_cusec_get, 93
shishi_authenticator_cusec_set, 93
shishi_authenticator_from_file, 93
shishi_authenticator_get_subkey, 94
shishi_authenticator_parse, 94
shishi_authenticator_print, 94
shishi_authenticator_read, 94
shishi_authenticator_remove_cksum, 95
shishi_authenticator_remove_subkey, 95
shishi_authenticator_save, 95
shishi_authenticator_seqnumber_get, 95
shishi_authenticator_seqnumber_remove, 96
shishi_authenticator_seqnumber_set, 96
shishi_authenticator_set_cksum, 96
shishi_authenticator_set_cname, 97
shishi_authenticator_set_crealm, 97
shishi_authenticator_set_subkey, 97
shishi_authenticator_subkey, 98
shishi_authenticator_to_file, 98
Shishi_authorization, 41
shishi_authorization_parse, 98
shishi_authorize_k5login, 98
shishi_authorize_strcmp, 99
shishi_authorized_p, 99
shishi_cfg, 99
shishi_cfg_authorizationtype_set, 99
shishi_cfg_clientkdcetype, 100
shishi_cfg_clientkdcetype_fast, 100

Shishi API Reference Manual 245 / 249

shishi_cfg_clientkdcetype_set, 100
shishi_cfg_default_systemfile, 100
shishi_cfg_default_userdirectory, 100
shishi_cfg_default_userfile, 101
shishi_cfg_from_file, 101
shishi_cfg_print, 101
shishi_cfg_userdirectory_file, 101
shishi_check_version, 101
shishi_checksum, 102
shishi_checksum_cksumlen, 102
shishi_checksum_name, 102
shishi_checksum_parse, 102
shishi_checksum_supported_p, 103
shishi_cipher_blocksize, 103
shishi_cipher_confoundersize, 103
shishi_cipher_defaultcksumtype, 103
shishi_cipher_keylen, 103
shishi_cipher_name, 104
shishi_cipher_parse, 104
shishi_cipher_randomlen, 104
shishi_cipher_supported_p, 104
Shishi_cksumtype, 41
shishi_crc, 104
Shishi_crypto, 42
shishi_crypto, 105
shishi_crypto_close, 105
shishi_crypto_decrypt, 105
shishi_crypto_encrypt, 106
shishi_ctime, 106
shishi_decrypt, 106
shishi_decrypt_etype, 107
shishi_decrypt_iv, 108
shishi_decrypt_iv_etype, 108
shishi_decrypt_ivupdate, 109
shishi_decrypt_ivupdate_etype, 110
shishi_der2asn1, 110
shishi_der2asn1_aprep, 111
shishi_der2asn1_apreq, 111
shishi_der2asn1_asrep, 111
shishi_der2asn1_asreq, 111
shishi_der2asn1_authenticator, 112
shishi_der2asn1_encapreppart, 112
shishi_der2asn1_encasreppart, 112
shishi_der2asn1_enckdcreppart, 112
shishi_der2asn1_encprivpart, 113
shishi_der2asn1_enctgsreppart, 113
shishi_der2asn1_encticketpart, 113
shishi_der2asn1_etype_info, 113
shishi_der2asn1_etype_info2, 114
shishi_der2asn1_kdcrep, 114
shishi_der2asn1_kdcreq, 114
shishi_der2asn1_krberror, 114
shishi_der2asn1_krbsafe, 115
shishi_der2asn1_methoddata, 115
shishi_der2asn1_padata, 115
shishi_der2asn1_priv, 115
shishi_der2asn1_tgsrep, 116

shishi_der2asn1_tgsreq, 116
shishi_der2asn1_ticket, 116
shishi_der_msgtype, 116
shishi_derive_default_salt, 117
shishi_des, 117
shishi_des_cbc_mac, 117
shishi_dk, 118
Shishi_dns, 42
SHISHI_DNS_IN, 40
SHISHI_DNS_SRV, 40
Shishi_dns_srv, 42
SHISHI_DNS_TXT, 40
shishi_done, 118
shishi_dr, 118
shishi_encapreppart, 119
shishi_encapreppart_ctime, 119
shishi_encapreppart_ctime_set, 119
shishi_encapreppart_cusec_get, 120
shishi_encapreppart_cusec_set, 120
shishi_encapreppart_from_file, 120
shishi_encapreppart_get_key, 121
shishi_encapreppart_parse, 121
shishi_encapreppart_print, 121
shishi_encapreppart_read, 121
shishi_encapreppart_save, 122
shishi_encapreppart_seqnumber_get, 122
shishi_encapreppart_seqnumber_remove, 122
shishi_encapreppart_seqnumber_set, 122
shishi_encapreppart_time_copy, 123
shishi_encapreppart_to_file, 123
shishi_encasreppart, 123
shishi_enckdcreppart, 123
shishi_enckdcreppart_authtime_set, 123
shishi_enckdcreppart_endtime_set, 124
shishi_enckdcreppart_flags_set, 124
shishi_enckdcreppart_get_key, 124
shishi_enckdcreppart_key_set, 124
shishi_enckdcreppart_nonce_set, 125
shishi_enckdcreppart_parse, 125
shishi_enckdcreppart_populate_encticketpart, 125
shishi_enckdcreppart_print, 125
shishi_enckdcreppart_read, 125
shishi_enckdcreppart_renew_till_set, 126
shishi_enckdcreppart_save, 126
shishi_enckdcreppart_server_set, 126
shishi_enckdcreppart_sname_set, 126
shishi_enckdcreppart_srealm_set, 126
shishi_enckdcreppart_srealmserver_set, 127
shishi_enckdcreppart_starttime_set, 127
shishi_encprivpart_set_user_data, 127
shishi_encprivpart_user_data, 128
shishi_encrypt, 128
shishi_encrypt_etype, 129
shishi_encrypt_iv, 129
shishi_encrypt_iv_etype, 130
shishi_encrypt_ivupdate, 131
shishi_encrypt_ivupdate_etype, 131

Shishi API Reference Manual 246 / 249

shishi_encticketpart, 132
shishi_encticketpart_authctime, 132
shishi_encticketpart_authtime, 132
shishi_encticketpart_authtime_set, 133
shishi_encticketpart_client, 133
shishi_encticketpart_clientrealm, 133
shishi_encticketpart_cname_set, 134
shishi_encticketpart_crealm, 134
shishi_encticketpart_crealm_set, 134
shishi_encticketpart_endtime_set, 134
shishi_encticketpart_flags_set, 135
shishi_encticketpart_get_key, 135
shishi_encticketpart_key_set, 135
shishi_encticketpart_print, 135
shishi_encticketpart_transited_set, 136
shishi_error, 136
shishi_error_clear, 136
shishi_error_outputtype, 136
shishi_error_printf, 137
shishi_error_set, 137
shishi_error_set_outputtype, 137
Shishi_etype, 42
shishi_etype_info2_print, 137
shishi_etype_info_print, 137
Shishi_filetype, 42
shishi_generalize_ctime, 138
shishi_generalize_now, 138
shishi_generalize_time, 138
SHISHI_GENERALIZEDTIME_LENGTH, 40
SHISHI_GENERALIZEDTIMEZ_LENGTH, 40
shishi_get_date, 138
shishi_hmac_md5, 138
shishi_hmac_sha1, 139
shishi_hostkeys_default_file, 139
shishi_hostkeys_default_file_set, 139
shishi_hostkeys_for_localservice, 140
shishi_hostkeys_for_localservicerealm, 140
shishi_hostkeys_for_server, 140
shishi_hostkeys_for_serverrealm, 140
shishi_info, 141
shishi_init, 141
shishi_init_server, 141
shishi_init_server_with_paths, 142
shishi_init_with_paths, 142
shishi_kdc_check_nonce, 142
shishi_kdc_copy_cname, 143
shishi_kdc_copy_crealm, 143
shishi_kdc_copy_nonce, 143
shishi_kdc_print, 143
shishi_kdc_process, 144
shishi_kdc_sendrecv, 144
shishi_kdc_sendrecv_hint, 145
Shishi_KDCOptions, 40
shishi_kdcrep_add_enc_part, 145
shishi_kdcrep_clear_padata, 145
shishi_kdcrep_client_set, 146
shishi_kdcrep_cname_set, 146

shishi_kdcrep_crealm_set, 146
shishi_kdcrep_crealmserver_set, 146
shishi_kdcrep_decrypt, 147
shishi_kdcrep_from_file, 147
shishi_kdcrep_get_enc_part_etype, 147
shishi_kdcrep_get_ticket, 147
shishi_kdcrep_parse, 148
shishi_kdcrep_print, 148
shishi_kdcrep_read, 148
shishi_kdcrep_save, 148
shishi_kdcrep_set_enc_part, 149
shishi_kdcrep_set_ticket, 149
shishi_kdcrep_to_file, 149
shishi_kdcreq, 150
shishi_kdcreq_add_padata, 150
shishi_kdcreq_add_padata_preauth, 150
shishi_kdcreq_add_padata_tgs, 150
shishi_kdcreq_allow_postdate_p, 151
shishi_kdcreq_build, 151
shishi_kdcreq_clear_padata, 151
shishi_kdcreq_client, 151
shishi_kdcreq_disable_transited_check_p, 152
shishi_kdcreq_enc_tkt_in_skey_p, 152
shishi_kdcreq_etype, 152
shishi_kdcreq_forwardable_p, 153
shishi_kdcreq_forwarded_p, 153
shishi_kdcreq_from_file, 153
shishi_kdcreq_get_padata, 154
shishi_kdcreq_get_padata_tgs, 154
shishi_kdcreq_nonce, 154
shishi_kdcreq_nonce_set, 154
shishi_kdcreq_options, 155
shishi_kdcreq_options_add, 155
shishi_kdcreq_options_set, 155
shishi_kdcreq_parse, 155
shishi_kdcreq_postdated_p, 156
shishi_kdcreq_print, 156
shishi_kdcreq_proxiable_p, 156
shishi_kdcreq_proxy_p, 156
shishi_kdcreq_read, 157
shishi_kdcreq_realm, 157
shishi_kdcreq_realm_get, 157
shishi_kdcreq_renew_p, 158
shishi_kdcreq_renewable_ok_p, 158
shishi_kdcreq_renewable_p, 158
shishi_kdcreq_save, 159
shishi_kdcreq_sendrecv, 159
shishi_kdcreq_sendrecv_hint, 159
shishi_kdcreq_server, 159
shishi_kdcreq_set_cname, 160
shishi_kdcreq_set_etype, 160
shishi_kdcreq_set_realm, 160
shishi_kdcreq_set_realmserver, 160
shishi_kdcreq_set_server, 161
shishi_kdcreq_set_sname, 161
shishi_kdcreq_till, 161
shishi_kdcreq_tillc, 161

Shishi API Reference Manual 247 / 249

shishi_kdcreq_to_file, 162
shishi_kdcreq_validate_p, 162
Shishi_key, 42
shishi_key, 162
shishi_key_copy, 162
shishi_key_done, 163
shishi_key_from_base64, 163
shishi_key_from_name, 163
shishi_key_from_random, 164
shishi_key_from_string, 164
shishi_key_from_value, 165
shishi_key_length, 165
shishi_key_name, 165
shishi_key_parse, 165
shishi_key_principal, 165
shishi_key_principal_set, 166
shishi_key_print, 166
shishi_key_random, 166
shishi_key_realm, 166
shishi_key_realm_set, 167
shishi_key_timestamp, 167
shishi_key_timestamp_set, 167
shishi_key_to_file, 167
shishi_key_type, 168
shishi_key_type_set, 168
shishi_key_value, 168
shishi_key_value_set, 168
shishi_key_version, 168
shishi_key_version_set, 169
Shishi_keys, 42
shishi_keys, 169
shishi_keys_add, 169
shishi_keys_add_keytab_file, 169
shishi_keys_add_keytab_mem, 170
shishi_keys_done, 170
shishi_keys_for_localservicerealm_in_file, 170
shishi_keys_for_server_in_file, 171
shishi_keys_for_serverrealm_in_file, 171
shishi_keys_from_file, 171
shishi_keys_from_keytab_file, 172
shishi_keys_from_keytab_mem, 172
shishi_keys_nth, 172
shishi_keys_print, 173
shishi_keys_remove, 173
shishi_keys_size, 173
shishi_keys_to_file, 173
shishi_keys_to_keytab_file, 174
shishi_keys_to_keytab_mem, 174
Shishi_keyusage, 43
Shishi_krb_error, 44
shishi_krberror, 174
shishi_krberror_build, 175
shishi_krberror_client, 175
shishi_krberror_client_set, 175
shishi_krberror_crealm, 176
shishi_krberror_ctime, 176
shishi_krberror_ctime_set, 176

shishi_krberror_cusec, 177
shishi_krberror_cusec_set, 177
shishi_krberror_der, 177
shishi_krberror_edata, 178
shishi_krberror_errorcode, 178
shishi_krberror_errorcode_fast, 178
shishi_krberror_errorcode_message, 178
shishi_krberror_errorcode_set, 179
shishi_krberror_etext, 179
shishi_krberror_from_file, 179
shishi_krberror_message, 180
shishi_krberror_methoddata, 180
shishi_krberror_parse, 180
shishi_krberror_pretty_print, 180
shishi_krberror_print, 181
shishi_krberror_read, 181
shishi_krberror_realm, 181
shishi_krberror_remove_cname, 181
shishi_krberror_remove_crealm, 182
shishi_krberror_remove_ctime, 182
shishi_krberror_remove_cusec, 182
shishi_krberror_remove_edata, 182
shishi_krberror_remove_etext, 183
shishi_krberror_remove_sname, 183
shishi_krberror_save, 183
shishi_krberror_server, 183
shishi_krberror_server_set, 184
shishi_krberror_set_cname, 184
shishi_krberror_set_crealm, 184
shishi_krberror_set_edata, 185
shishi_krberror_set_etext, 185
shishi_krberror_set_realm, 185
shishi_krberror_set_sname, 185
shishi_krberror_stime, 186
shishi_krberror_stime_set, 186
shishi_krberror_susec, 186
shishi_krberror_susec_set, 187
shishi_krberror_to_file, 187
Shishi_lrtype, 46
shishi_md4, 187
shishi_md5, 188
shishi_methoddata_print, 188
Shishi_msgtype, 46
shishi_n_fold, 188
Shishi_name_type, 47
Shishi_outputtype, 47
shishi_padata_print, 188
Shishi_padata_type, 48
shishi_parse_name, 189
shishi_pbkdf2_sha1, 189
shishi_principal_default, 190
shishi_principal_default_guess, 190
shishi_principal_default_set, 190
shishi_principal_name, 190
shishi_principal_name_realm, 191
shishi_principal_name_set, 191
shishi_principal_set, 191

Shishi API Reference Manual 248 / 249

Shishi_priv, 48
shishi_priv, 192
shishi_priv_build, 192
shishi_priv_done, 192
shishi_priv_enc_part_etype, 192
shishi_priv_encprivpart, 193
shishi_priv_encprivpart_der, 193
shishi_priv_encprivpart_der_set, 193
shishi_priv_encprivpart_set, 193
shishi_priv_from_file, 194
shishi_priv_key, 194
shishi_priv_key_set, 194
shishi_priv_parse, 194
shishi_priv_print, 195
shishi_priv_priv, 195
shishi_priv_priv_der, 195
shishi_priv_priv_der_set, 195
shishi_priv_priv_set, 196
shishi_priv_process, 196
shishi_priv_read, 196
shishi_priv_save, 196
shishi_priv_set_enc_part, 197
shishi_priv_to_file, 197
shishi_prompt_password, 197
shishi_prompt_password_callback_get, 198
shishi_prompt_password_callback_set, 198
shishi_prompt_password_func, 198
shishi_random_to_key, 198
shishi_randomize, 199
Shishi_rc, 48
shishi_realm_default, 199
shishi_realm_default_guess, 199
shishi_realm_default_set, 199
shishi_realm_for_server, 200
shishi_realm_for_server_dns, 200
shishi_realm_for_server_file, 200
shishi_resolv, 201
shishi_resolv_free, 201
Shishi_safe, 49
shishi_safe, 201
shishi_safe_build, 201
shishi_safe_cksum, 202
shishi_safe_done, 202
shishi_safe_from_file, 202
shishi_safe_key, 202
shishi_safe_key_set, 203
shishi_safe_parse, 203
shishi_safe_print, 203
shishi_safe_read, 203
shishi_safe_safe, 204
shishi_safe_safe_der, 204
shishi_safe_safe_der_set, 204
shishi_safe_safe_set, 204
shishi_safe_save, 205
shishi_safe_set_cksum, 205
shishi_safe_set_user_data, 205
shishi_safe_to_file, 206

shishi_safe_user_data, 206
shishi_safe_verify, 206
shishi_server, 207
shishi_server_for_local_service, 207
shishi_strerror, 207
shishi_string_to_key, 207
Shishi_tgs, 49
shishi_tgs, 208
shishi_tgs_ap, 208
shishi_tgs_done, 208
shishi_tgs_krberror, 208
shishi_tgs_krberror_der, 209
shishi_tgs_krberror_set, 209
shishi_tgs_process, 209
shishi_tgs_rep, 210
shishi_tgs_rep_build, 210
shishi_tgs_rep_der, 210
shishi_tgs_rep_process, 210
shishi_tgs_req, 211
shishi_tgs_req_build, 211
shishi_tgs_req_der, 211
shishi_tgs_req_der_set, 211
shishi_tgs_req_process, 212
shishi_tgs_req_set, 212
shishi_tgs_sendrecv, 212
shishi_tgs_sendrecv_hint, 212
shishi_tgs_set_realm, 212
shishi_tgs_set_realmserver, 213
shishi_tgs_set_server, 213
shishi_tgs_tgtkt, 213
shishi_tgs_tgtkt_set, 213
shishi_tgs_tkt, 213
shishi_tgs_tkt_set, 214
shishi_tgsrep, 214
shishi_tgsreq, 214
shishi_tgsreq_rst, 214
shishi_ticket, 214
shishi_ticket_add_enc_part, 215
shishi_ticket_decrypt, 215
shishi_ticket_get_enc_part_etype, 215
shishi_ticket_parse, 215
shishi_ticket_print, 215
shishi_ticket_read, 216
shishi_ticket_realm_get, 216
shishi_ticket_realm_set, 216
shishi_ticket_save, 216
shishi_ticket_server, 216
shishi_ticket_set_enc_part, 217
shishi_ticket_set_server, 217
shishi_ticket_sname_set, 217
shishi_ticket_srealmserver_set, 218
Shishi_ticketflags, 50
shishi_time, 218
Shishi_tkt, 50
shishi_tkt, 218
shishi_tkt2, 218
shishi_tkt_authctime, 219

Shishi API Reference Manual 249 / 249

shishi_tkt_authtime, 219
shishi_tkt_build, 219
shishi_tkt_client, 219
shishi_tkt_client_p, 219
shishi_tkt_clientrealm, 220
shishi_tkt_clientrealm_p, 220
shishi_tkt_clientrealm_set, 220
shishi_tkt_decrypt, 220
shishi_tkt_done, 220
shishi_tkt_enckdcreppart, 221
shishi_tkt_enckdcreppart_set, 221
shishi_tkt_encticketpart, 221
shishi_tkt_encticketpart_set, 221
shishi_tkt_endctime, 221
shishi_tkt_endtime, 222
shishi_tkt_expired_p, 222
shishi_tkt_flags, 222
shishi_tkt_flags_add, 222
shishi_tkt_flags_set, 222
shishi_tkt_forwardable_p, 223
shishi_tkt_forwarded_p, 223
shishi_tkt_hw_authent_p, 223
shishi_tkt_initial_p, 223
shishi_tkt_invalid_p, 224
shishi_tkt_kdcrep, 224
shishi_tkt_key, 224
shishi_tkt_key_set, 224
shishi_tkt_keytype, 225
shishi_tkt_keytype_fast, 225
shishi_tkt_keytype_p, 225
shishi_tkt_lastreq, 225
shishi_tkt_lastreq_pretty_print, 225
shishi_tkt_lastreqc, 226
shishi_tkt_match_p, 226
shishi_tkt_may_postdate_p, 226
shishi_tkt_ok_as_delegate_p, 226
shishi_tkt_postdated_p, 227
shishi_tkt_pre_authent_p, 227
shishi_tkt_pretty_print, 227
shishi_tkt_proxiable_p, 227
shishi_tkt_proxy_p, 228
shishi_tkt_realm, 228
shishi_tkt_renew_till, 228
shishi_tkt_renew_tillc, 228
shishi_tkt_renewable_p, 228
shishi_tkt_server, 229
shishi_tkt_server_p, 229
shishi_tkt_serverrealm_set, 229
shishi_tkt_startctime, 229
shishi_tkt_starttime, 229
shishi_tkt_ticket, 230
shishi_tkt_ticket_set, 230
shishi_tkt_transited_policy_checked_p, 230
shishi_tkt_valid_at_time_p, 230
shishi_tkt_valid_now_p, 231
Shishi_tkts, 50
shishi_tkts, 231

shishi_tkts_add, 231
shishi_tkts_add_ccache_file, 231
shishi_tkts_add_ccache_mem, 232
shishi_tkts_default, 232
shishi_tkts_default_ccache, 232
shishi_tkts_default_ccache_guess, 232
shishi_tkts_default_ccache_set, 233
shishi_tkts_default_file, 233
shishi_tkts_default_file_guess, 233
shishi_tkts_default_file_set, 233
shishi_tkts_default_to_file, 233
shishi_tkts_done, 233
shishi_tkts_expire, 234
shishi_tkts_find, 234
shishi_tkts_find_for_clientserver, 234
shishi_tkts_find_for_server, 235
shishi_tkts_from_ccache_file, 235
shishi_tkts_from_ccache_mem, 235
shishi_tkts_from_file, 236
shishi_tkts_get, 236
shishi_tkts_get_for_clientserver, 236
shishi_tkts_get_for_localservicepasswd, 236
shishi_tkts_get_for_server, 237
shishi_tkts_get_tgs, 237
shishi_tkts_get_tgt, 237
Shishi_tkts_hint, 50
Shishi_tkts_hintflags, 50
shishi_tkts_new, 237
shishi_tkts_nth, 238
shishi_tkts_print, 238
shishi_tkts_print_for_service, 238
shishi_tkts_read, 239
shishi_tkts_remove, 239
shishi_tkts_size, 239
shishi_tkts_to_file, 239
shishi_tkts_write, 239
Shishi_tr_type, 50
shishi_verbose, 240
shishi_verify, 240
SHISHI_VERSION, 40
shishi_warn, 240
shishi_x509ca_default_file, 241
shishi_x509ca_default_file_guess, 241
shishi_x509ca_default_file_set, 241
shishi_x509cert_default_file, 241
shishi_x509cert_default_file_guess, 241
shishi_x509cert_default_file_set, 242
shishi_x509key_default_file, 242
shishi_x509key_default_file_guess, 242
shishi_x509key_default_file_set, 242
shishi_xalloc_die, 242

	Shishi API Reference Manual
	shishi

	Index

