
GNU RCS
for version 5.9.4, 18 January 2015

Thien-Thi Nguyen

This manual is for GNU RCS (version 5.9.4, 18 January 2015).

Copyright c© 2010–2015 Thien-Thi Nguyen

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the appendix entitled “GNU Free Documentation License”.

i

Table of Contents

1 Overview . 1
1.1 Credits . 1
1.2 Concepts . 1

1.2.1 Interaction model . 1
1.2.2 Working file . 2
1.2.3 RCS file . 2
1.2.4 Fundamental operations . 3
1.2.5 Keywords . 3

1.3 Quick tour . 4

2 Usage . 7
2.1 Common elements . 7

2.1.1 Revision options . 7
2.1.2 Date option . 8
2.1.3 Description option . 8
2.1.4 Substitution mode option . 8
2.1.5 Log message option . 9
2.1.6 Misc common options . 9
2.1.7 Environment . 10

2.2 Invoking ci . 11
2.3 Invoking co . 12
2.4 Invoking ident . 13
2.5 Invoking merge . 14
2.6 Invoking rcs . 14

2.6.1 modern . 14
2.6.2 legacy . 15

2.7 Invoking rcsclean . 16
2.8 Invoking rcsdiff . 17
2.9 Invoking rcsmerge . 17
2.10 Invoking rlog . 18

3 Hacking . 20
3.1 File format . 20

3.1.1 File format grammar . 20
3.1.2 Additional particulars of the file format 21

3.2 Still missing . 23
3.3 Reporting bugs . 25

Appendix A GNU Free Documentation License
. 26

Index . 34

Chapter 1: Overview 1

1 Overview

GNU RCS (Revision Control System) manages multiple revisions of files. RCS can store,
retrieve, log, identify, and merge revisions. It is useful for files that are revised frequently,
e.g. programs, documentation, graphics, and papers. It can handle text as well as binary
files, although functionality is reduced for the latter.

A normal installation includes the commands: ci, co, ident, merge, rcs, rcsclean, rcsdiff,
rcsmerge and rlog (see Chapter 2 [Usage], page 7). These are small and fast programs
(amenable to scripting) and indeed the distribution also includes the script rcsfreeze showing
some of the possibilities.

RCS works with versions stored on a single filesystem or machine, edited by one person at
a time. Other version control systems, such as Bazaar (http:///www.gnu.org/software/
bazaar), CVS, Subversion, and Git, support distributed access in various ways. Which is
more appropriate depends on the task at hand.

1.1 Credits

RCS was designed and built by Walter F. Tichy of Purdue University. RCS version 3 was
released in 1983.

Adam Hammer, Thomas Narten, and Daniel Trinkle of Purdue supported RCS through
version 4.3, released in 1990. Guy Harris of Sun contributed many porting fixes. Paul
Eggert of System Development Corporation contributed bug fixes and tuneups. Jay Lepreau
contributed 4.3BSD support.

Paul Eggert of Twin Sun wrote the changes for RCS versions 5.5 and 5.6 (1991). Rich
Braun of Kronos and Andy Glew of Intel contributed ideas for new options. Bill Hahn of
Stratus contributed ideas for setuid support. Ideas for piece tables came from Joe Berkovitz
of Stratus and Walter F. Tichy. Matt Cross of Stratus contributed test case ideas. Adam
Hammer of Purdue QAed.

Paul Eggert wrote most of the changes for RCS 5.7. K. Richard Pixley of Cygnus Support
contributed several bug fixes. Robert Lupton of Princeton and Daniel Trinkle contributed
ideas for ‘$Name’ expansion. Brendan Kehoe of Cygnus Support suggested rlog’s -N option.
Paul D. Smith of Data General suggested improvements in option and error processing.
Adam Hammer of Purdue QAed.

Thien-Thi Nguyen is responsibile for RCS 5.8. He modernized the code base, build sys-
tem, and manual pages, fixing some bugs on the way. He added standard --help, --version
processing, and wrote the documentation you are reading (gladly taking inspiration from
the paper1 and manpages originally written by Walter F. Tichy).

1.2 Concepts

1.2.1 Interaction model

The interaction model is straightforward. For each working file, you initialize its RCS file
once, then enter a cycle of checkout, modification, and checkin operations. Along the way,

1 Source (troff) and several output formats are available from the RCS homepage (http://www.gnu.org/
software/rcs/).

http:///www.gnu.org/software/bazaar
http:///www.gnu.org/software/bazaar
http://www.gnu.org/software/rcs/
http://www.gnu.org/software/rcs/

Chapter 1: Overview 2

you can tweak some of the RCS file’s metadata, as well. All of this is done through RCS
commands; you need not modify the RCS file directly (and in fact you should probably
avoid doing so lest RCS become confused). This model is somewhat analogous to using a
library (of books). With a library, you sign up for a library card (initialize), then enter a
cycle of taking a book home (checkout), enjoying it (NB: without modification, one hopes),
and returning it to the library (checkin).

Furthermore, you can compare revisions in the RCS file against each other, examine the
user- (hopefully high) quality descriptions of the changes each revision embodies, merge
selected revisions, and so forth.

1.2.2 Working file

RCS commands operate on one pair of files at a time. The working file is what you normally
view and edit (e.g., a file of C programming language source code named a.c). Because the
working file’s contents can be extracted from the RCS file (called instantiating a working
file), it can be safely deleted to regain some disk space.

1.2.3 RCS file

The RCS file is a separate file, conventionally placed in the subdirectory RCS, wherein RCS
commands organize the initial and subsequent revisions of the working file, associating
with each revision a unique revision number along with the remembered particulars of the
checkin that produced it. It also contains a description of the working file and various other
metadata, described below.

The RCS file is also known (colloquially) as the “comma-v file”, due to its name often
ending in ,v (e.g., a.c,v).

A revision number is a branch number followed by a dot followed by an integer, and a
branch number is an odd number of integers separated by dot. A revision number with one
dot (implying a branch number without any dots) is said to be on the trunk. All integers
are positive. For example:

1.1 -- revision number for initial checkin (typically);

branch number: 1

9.4.1.42 -- more complicated (perhaps after much gnarly hacking);

branch number: 9.4.1

333.333.333 -- not a valid revision number;

however, a perfectly valid branch number

The branch point of a non-trunk branch is the revision number formed by removing the
branch’s trailing integer. To compute the next higher branch or revision number, add one
to the trailing integer. The highest-numbered revision on a branch is called the tip of the
branch (or branch tip). Continuing the example:

1.1 -- on trunk; no branch point;

next higher branch number: 2

next higher revision number: 1.2

9.4.1.42 -- not on trunk; branch point: 9.4

Chapter 1: Overview 3

next higher branch number: 9.4.2

next higher revision number: 9.4.1.43

333.333.333 -- not on trunk; branch point: 333.333

next higher branch number: 333.333.334

next higher revision number: 333.333.333.1

In addition to this “tree” of thus-linked revisions, the RCS file keeps track of the default
branch, i.e., the branch whose tip corresponds to the most recent checkin; as well as the
symbolic names, a list of associations between a user-supplied (and presumably meaningful)
symbol and an underlying branch or revision number.

The RCS file contains two pieces of information used to implement its access control
policy. The first is a list of usernames. If non-empty, only those users listed can modify
the RCS file (via RCS commands). The second is a list of locks, i.e., association between
a username and a revision number. If a lock username:revno exists, that means only
username may modify revno (that is, do a checkin operation to deposit the next higher
revision, or a higher revision number on the same branch as revno).

1.2.4 Fundamental operations

The checkin operation records the contents of the working file in the RCS file, assigning it
a new (normally the next higher) revision number and recording the username, timestamp,
state (a short symbol), and user-supplied log message (a textual description of the changes
leading to that revision). It uses diff to find the differences between the tip of the default
branch and the working file, thereby writing the minimal amount of information needed to
be able to recreate the contents of the previous tip.

The checkout operation identifies a specific revision from the RCS file and either dis-
plays the content to standard output or instantiates a working file, overwriting any current
instantiation with the selected revision. In either case, the content may undergo keyword
expansion, which replaces text of the form ‘$Keyword$’ with (possibly) different text com-
prising the keyword and its value, depending on the current keyword expansion mode (see
Section 2.1.4 [Substitution mode option], page 8).

1.2.5 Keywords

The keywords and their values are:

Author The login name of the user who checked in the revision.

Date The date and time the revision was checked in. May include an appended
timezone offset.

Header A standard header containing the absolute RCS filename, the revision number,
the date and time, the author, the state, and the locker (if locked). May include
an appended timezone offset.

Id Same as ‘Header’, except that only the basename appears (no directory com-
ponents).

Locker The login name of the user who locked the revision (empty if not locked).

Chapter 1: Overview 4

Log The log message supplied during checkin, preceded by a header containing the
RCS filename, the revision number, the author, and the date and time. May
include an appended timezone offset.

Existing log messages are not replaced. Instead, the new log message is inserted
after ‘$Log:...$’. This is useful for accumulating a complete change log in a
source file.

Each inserted line is prefixed by the string that prefixes the ‘Log’ line. For
example, if the ‘Log’ line is

// $Log: tan.cc $

then RCS prefixes each line of the log with ‘// ’ (slash, slash, space). This is
useful for languages with comments that go to the end of the line.

The convention for other languages is to use a ‘ * ’ (space, asterisk, space)
prefix inside a multiline comment. For example, the initial log comment of a C
program conventionally is of the following form:

/*

* Log

*/

For backwards compatibility with older versions of RCS, if the log prefix is ‘/*’
or ‘(*’ surrounded by optional white space, inserted log lines contain a space
instead of ‘/’ or ‘(’; however, this usage is obsolescent and should not be relied
on.

Name The symbolic name used to check out the revision, if any. For example, ‘co
-rJoe’ generates ‘$Name: Joe $’. Plain co generates just ‘$Name: $’.

RCSfile The basename of the RCS file.

Revision The revision number assigned to the revision.

Source The absolute RCS filename.

State The state assigned to the revision with the -s option of rcs or ci.

1.3 Quick tour

This section complements the preceding section (see Section 1.2 [Concepts], page 1), pre-
senting a handful of RCS commands in quick succession. For details on individual RCS
commands, See Chapter 2 [Usage], page 7.

Suppose you have a file f.c that you wish to put under control of RCS. If you have not
already done so, make an RCS directory with the command:

mkdir RCS

Then invoke the checkin command:

ci f.c

This command creates an RCS file in directory RCS, stores f.c into it as revision 1.1, and
deletes f.c. It also asks you for a description. The description should be a synopsis of the
contents of the file. All later checkin commands will ask you for a log entry, which should
summarize the changes that you made.

To get back the working file f.c in the previous example, use the checkout command:

Chapter 1: Overview 5

co f.c

This command extracts the latest revision from the RCS file and writes it into f.c. If you
want to edit f.c, you must lock it as you check it out, with the command:

co -l f.c

You can now edit f.c. Suppose after some editing you want to know what changes that
you have made. The command:

rcsdiff f.c

tells you the difference between the most recently checked-in version and the working file.
You can check the file back in by invoking:

ci f.c

This increments the revision number properly. If ci complains with the message:

ci error: no lock set by your name

then you have tried to check in a file even though you did not lock it when you checked it
out. Of course, it is too late now to do the checkout with locking, because another checkout
would overwrite your modifications. Instead, invoke:

rcs -l f.c

This command will lock the latest revision for you, unless somebody else got ahead of you
already. In this case, you’ll have to negotiate with that person.

Locking assures that you, and only you, can check in the next update, and avoids nasty
problems if several people work on the same file. Even if a revision is locked, it can still be
checked out for reading, compiling, etc. All that locking prevents is a checkin by anybody
but the locker.

If your RCS file is private, i.e., if you are the only person who is going to deposit revisions
into it, strict locking is not needed and you can turn it off. If strict locking is turned off,
the owner of the RCS file need not have a lock for checkin; all others still do. Turning strict
locking off and on is done with the commands:

rcs -U f.c # disable strict locking
rcs -L f.c # enable strict locking

If you don’t want to clutter your working directory with RCS files, create a subdirectory
called RCS in your working directory, and move all your RCS files there. RCS commands
will look first into that directory to find needed files. All the commands discussed above
will still work, without any modification. See Section 2.1 [Common elements], page 7.

To avoid the deletion of the working file during checkin (in case you want to continue
editing or compiling), invoke one of:

ci -l f.c # checkin + locked checkout
ci -u f.c # checkin + unlocked checkout

These commands check in f.c as usual, then perform an implicit checkout. The first form
also locks the checked in revision, the second one doesn’t. Thus, these options save you one
checkout operation. The first form is useful if you want to continue editing, the second one
if you just want to read the file. Both update the keyword substitutions in your working
file see Section 1.2 [Concepts], page 1.

You can give ci the number you want assigned to a checked-in revision. Assume all your
revisions were numbered 1.1, 1.2, 1.3, etc., and you would like to start release 2. Either of
the commands:

Chapter 1: Overview 6

ci -r2 f.c

ci -r2.1 f.c

assigns the number 2.1 to the new revision. From then on, ci will number the subsequent
revisions with 2.2, 2.3, etc. The corresponding co commands:

co -r2 f.c

co -r2.1 f.c

retrieve the latest revision numbered 2.x and the revision 2.1, respectively. co without
a revision number selects the latest revision on the trunk, i.e. the highest revision with a
number consisting of two fields. Numbers with more than two fields are needed for branches.
For example, to start a branch at revision 1.3, invoke:

ci -r1.3.1 f.c

This command starts a branch numbered 1 at revision 1.3, and assigns the number 1.3.1.1
to the new revision. Here is a diagram showing the new revision in relation to its branch
and the trunk.

1.1 -- 1.2 -- 1.3 -- 1.4 -- 1.5

|

[1.3.1] -- 1.3.1.1

For more information about branches, See Section 1.2 [Concepts], page 1.

Chapter 2: Usage 7

2 Usage

This chapter describes how to invoke RCS commands, including common command-line
elements, as well options specific to each command.

2.1 Common elements

All RCS commands accept --help and --version. See Section “Command-Line Interfaces”
in The GNU Coding Standards.

Aside from --help and --version, RCS commands take the form ‘-letter[arg]’, i.e.,
a hyphen followed by a single letter, optionally followed by extra information. The square
braces mean that the extra information is optional. (No square braces means that the extra
information is required.) In any case, when specified, the extra information must abut the
letter; there can be no intervening whitespace.

co -u 1.4 foo # wrong, space between -u and 1.4

co -u1.4 foo # ok

Furthermore, options must appear before file names (if any) on the command line.

ident foo -q # wrong, option after file name
ident -q foo # ok

Lastly, pairs of RCS and working files can be specified in three ways: (a) both are given, (b)
only the working file is given, (c) only the RCS file is given. For (a), both RCS and working
files may have arbitrary directory components; RCS commands pair them up intelligently.
For (b), RCS commands will look first into the directory ./RCS, if it exists, to find the
associated RCS file.

2.1.1 Revision options

As to be expected in a revision control system, many options are of the form ‘-flag[rev]’,
where flag is a single letter (e.g., ‘r’). If ommitted, rev defaults to the latest revision on
the default branch. A revision can be specified in many ways:

br.n Straightforward dot-notation, where br specifies the branch.

.n Like br.n, using the default branch.

br Like br.n, using the a command-specific computation of n, given the current
tip i. For ci (see Section 2.2 [ci], page 11), n would be i + 1, while for other
commands n would be simply i.

name This is the symbolic name of a revision, as assigned previously by a ci -n or
ci -N command.

$ The command computes the effective revision by examining the values of key-
word expansions in the working file.

For commands that accept a range of revisions, the syntax is generally rev1:rev2, i.e., two
revisions (specified as described above) separated by a colon.

Chapter 2: Usage 8

2.1.2 Date option

Some commands accept an option of the form ‘-ddate’ to specify a date, an absolute point
in time (to second resolution), expressed in a date format. These also accept ‘-zzone’ to
specify the timezone. The special value ‘LT’ stands for the local time zone. RCS recognizes
many date formats and time zones. For example, the following dates are equivalent if local
time is January 11, 1990, 8pm Pacific Standard Time, eight hours west of Coordinated
Universal Time (UTC):

8:00 pm lt

4:00 AM, Jan. 12, 1990 default is UTC

1990-01-12 04:00:00+00 ISO 8601 (UTC)

1990-01-11 20:00:00-08 ISO 8601 (local time)

1990/01/12 04:00:00 traditional RCS format

Thu Jan 11 20:00:00 1990 LT output of ctime(3) + LT

Thu Jan 11 20:00:00 PST 1990 output of date(1)

Fri Jan 12 04:00:00 GMT 1990

Thu, 11 Jan 1990 20:00:00 -0800 Internet RFC 822

12-January-1990, 04:00 WET

Most fields in the date and time can be defaulted. The default time zone is normally UTC,
but this can be overridden by the -z option. The other defaults are determined in the order
year, month, day, hour, minute, and second (most to least significant). At least one of these
fields must be provided. For omitted fields that are of higher significance than the highest
provided field, the time zone’s current values are assumed. For all other omitted fields, the
lowest possible values are assumed. For example, without -z, the date ‘20, 10:30’ defaults
to ‘10:30:00 UTC’ of the 20th of the UTC time zone’s current month and year. Note that
for the shell, the date/time must be quoted if it contains spaces.

RCS also accepts some other formats which specify only the date portion (omitting the
time portion):

YYYY-DDD DDD is the day of year, 1-366.

YYYY-wWW-D

WW is the ISO week number, 0-53 (actually, ISO week numbers are 1-53; week
0 is a GNU RCS extension); and D is the ISO day number, 1-7 (Monday through
Sunday).

2.1.3 Description option

Some commands accept an option of the form ‘-t-text’ or ‘-tfile-name’. This option
is to set or update the RCS file description text. In the first form, text is used directly,
excluding the leading hyphen (‘-’) that distinguishes the two forms. In the second form,
the description text is taken from the contents of file-name.

2.1.4 Substitution mode option

Some commands accept an option of the form -ksubst, used to control how keywords (see
Section 1.2 [Concepts], page 1) are expanded in the working file. In the following table of
subst values, the example keyword is ‘Revision’ and its value is ‘5.13’.

kv Generate ‘$Revision: 5.13 $’ (dollar-sign, keyword, colon, space, value, space,
dollar-sign). A locker’s name is inserted in the value of the Header, Id and

Chapter 2: Usage 9

Locker keyword strings only as a file is being locked, i.e., by ci -l and co -l.
This is the default substitution mode.

kvl Like -kkv, except that a locker’s name is always inserted if the given revision
is currently locked.

k Generate ‘$Revision$’ (dollar-sign, keyword, dollar-sign). This is useful when
comparing different revisions of a file. Log messages are inserted after Log key-
words even if -kk is specified, since this tends to be more useful when merging
changes.

o Like -kkv, but use the old value present in the working file just before it was
checked in. This can be useful for file formats that cannot tolerate any changes
to substrings that happen to take the form of keyword strings.

b Like -ko, but do all file i/o in binary mode. This makes little difference on
POSIX and Unix hosts, but on DOS-like hosts one should use rcs -i -kb to
initialize an RCS file intended to be used for binary files. Also, on all hosts,
rcsmerge normally refuses to merge files when -kb is in effect.

v Generate ‘5.13’ (value only). Further keyword substitution cannot be per-
formed once the keyword names are removed, so this should be used with care.
Because of this danger of losing keywords, -kv cannot be combined with -l,
and the owner write permission of the working file is turned off; to edit the file
later, check it out again without -kv.

2.1.5 Log message option

Both ci and rcs allow a log message to be specified with the -m option. If themsg argument
to this option is empty, RCS uses the default ‘*** empty log message ***’. This particular
message is handled specially (i.e., filtered out) by rlog.

2.1.6 Misc common options

Other common options are -I, -q, -s, -T, -V, -w, -x.

-I This option enables interactive mode. More precisely, it forces interactive mode,
whereby RCS commands believe that their standard input is a terminal, nor-
mally a precondition for displaying a prompt to receive input (such as a log mes-
sage on checkin). The intention of -I is for scripting situations where standard
input is actually not a terminal but you know beforehand (without prompting)
that input is needed and you are ready to provide it on standard input anyway.

-q This option enables quiet mode. Commands work silently (unless there is an
error condition), and suppress warnings and prompts.

-sstate Specify the state to be state.

-T This option controls how commands timestamp the RCS file. Normally, RCS
commands set the RCS file’s timestamp when modifying it in the “natural” way
(without taking any particular care). With -T, on the other hand, the com-
mands either preserve the timestamp (for standalone lock/unlock operations),
or use the timestamp of the working file (for ci).

Chapter 2: Usage 10

This can be useful if the RCS file is found in a makefile target’s list of pre-
requisites (see Section “Rule Syntax” in The GNU Make Manual), that is, if
some target should be rebuilt if the RCS file is newer than it. In that case, you
can do ‘rcs -u -T’, for example, to unlock a revision in the RCS file without
triggering a recompilation.

-V Behave like --version, i.e., display command version information and exit
successfully. NB: This option is obsolete and its support will be removed in
some future release.

-Vn n specifies the RCS (major) version to emulate. Valid values for n are: 3, 4, 5.
Version 5 is the current version, so -V5 does nothing special.

In versions prior to 5, RCS outputs ‘\t’ (tab, U+09) between the ‘:’ (colon) and
the value (for keyword substitution) instead of space, uses the RCS file comment
string to prefix each line in the Log expansion instead of computing it on the
fly from the input text, writes/reads localtime instead of UTC, and displays
slightly different output for rlog.

For version 4, the Header expansion unconditionally includes Locker: locker,
as if the kvl substitution mode were specified (see Section 2.1.4 [Substitution
mode option], page 8).

For version 3, the Header expansion omits the directories from the filename and
says only Locked instead of the state.

-wlogin Some commands accept an option of the form ‘-wlogin’ to specify the login
name of the author of a revision, i.e., “who” is responsible.

-xsuff Specify suff as the slash-separated list of file name suffixes used to recognize
an RCS file. The default value is ‘,v/’, that is, first try with ‘,v’ then try with
an empty suffix.

This basename search occurs within (i.e., starting from the beginning) the larger
directory search loop, which comprises two candidates: d/RCS and d, where d
is the directory component of the working file name. For example, given the
working file a.c in the current directory, RCS tries, in order, these candidates:

./RCS/a.c,v

./RCS/a.c

./a.c,v

./a.c

Note that the last candidate is impossible (and is in fact discarded), because
the working and RCS files cannot have the same name.

2.1.7 Environment

Various environment variables influence how RCS works.

[Environment Variable]RCSINIT
Another way to set common options is with the ‘RCSINIT’ environment variable. This
is a space-separated list of options. Use ‘\’ (backslash) to escape significant space.
For example:

Chapter 2: Usage 11

Set the value; make it available to subsequent commands.
RCSINIT="-q -x/,v -zLT"

export RCSINIT

Use it (implicitly).
rlog -L foo

This example, in Bourne shell syntax, arranges for RCS commands to operate as if
each command-line had prepended ‘-q -x/,v -zLT’ to the rest of the command-line.
The effective command-line that rlog sees is thus ‘-q -x/,v -zLT -L foo’.

[Environment Variable]RCS_MEM_LIMIT
Normally, for speed, commands either memory map or copy into memory the RCS file
if its size is less than thememory limit, currently defaulting to “unlimited”. Otherwise
(or if the initially-tried speedy ways fail), the commands fall back to using standard
i/o routines.

You can adjust the memory limit by setting the ‘RCS_MEM_LIMIT’ environment variable
to a numeric value (measured in kilobytes). An empty value is silently ignored.

As a side effect, specifying the memory limit inhibits fall-back to slower routines.
(This env var is mostly intended for testing RCS; normally, you can leave it unset.
Probably it will be removed in a future release.)

[Environment Variable]TMPDIR
[Environment Variable]TMP
[Environment Variable]TEMP

Commands sometimes create temporary files, normally in a system-dependent direc-
tory, such as /tmp. You can override this directory by specifying another one as
the value of one of the environment variables TMPDIR, TMP, or TEMP (checked in that
order).

[Environment Variable]LOGNAME
[Environment Variable]USER

Absent -wlogin, or when login is omitted (see Section 2.1.6 [Misc common options],
page 9), commands check environment variables LOGNAME and USER (in that order).
If neither of these are set, RCS queries the host for, and uses, your login.

2.2 Invoking ci

rcs ci [options] file ...

(or “ci” instead of “rcs ci”)

The ci command adds a revision to the RCS file reflecting the current state of the working
file. This operation is also known as “checkin”.

-f[rev] Force new entry, even if no content changed.

-I[rev]

-q[rev] See Section 2.1.6 [Misc common options], page 9.

-i[rev] Initial checkin; error if the RCS file already exists.

-j[rev] Just checkin, don’t initialize; error if the RCS file does not exist.

Chapter 2: Usage 12

-k[rev] Compute revision from working file keywords.

-r Release lock and delete working file.

-rrev Do normal checkin.

-l[rev] Like -r, but immediately checkout locked (co -l) afterwards.

-u[rev] Like -l, but checkout unlocked (co -u).

-M[rev] Reset working file mtime (relevant for -l, -u).

Multiple flags in -{fiIjklMqru} may be given, except for -r, -l, -u, which are mutually
exclusive. For a fully specified revision of the form br.n, nmust be greater than any existing
on br, or br must be new. If rev is omitted, compute it from the last lock (co -l), perhaps
starting a new branch. If there is no lock, use defbr.(L+1). See Section 2.1.1 [Revision
options], page 7.

-d[date]

-zzone See Section 2.1.2 [Date option], page 8. If no date specified, use the working
file modification time.

-m[msg] Use msg as the log message. See Section 2.1.5 [Log message option], page 9.

-nname

-Nname Assign symbolic name to the entry. For -n, name must be new (no previous
assignment). For -N, overwrite any previous assignment.

-sstate See Section 2.1.6 [Misc common options], page 9. Set the state.

-t-text

-tfile-name

See Section 2.1.3 [Description option], page 8.

-T Set the RCS file’s modification time to the new revision’s time if the former pre-
cedes the latter and there is a new revision; preserve the RCS file’s modification
time otherwise.

-wwho Use who as the author.

-V

-Vn

-xsuff See Section 2.1.6 [Misc common options], page 9.

2.3 Invoking co

rcs co [options] file ...

(or “co” instead of “rcs co”)

The co command retrieves a revision from the RCS file, writing a new working file. This
operation is also known as “checkout”.

-f[rev] Force overwrite of working file.

-I[rev]

-q[rev] See Section 2.1.6 [Misc common options], page 9.

-p[rev] Write to stdout instead of the working file.

Chapter 2: Usage 13

-r[rev] Normal checkout.

-l[rev] Like -r, but also lock.

-u[rev] Like -l, but unlock.

-M[rev] Reset working file mtime (relevant for -l, -u).

Multiple flags in -{fIlMpqru} may be given, except for -r, -l, -u, which are mutually
exclusive. See Section 2.1.1 [Revision options], page 7.

-ksubst See Section 2.1.4 [Substitution mode option], page 8.

-ddate

-zzone See Section 2.1.2 [Date option], page 8. Select latest before or on date.

-jjoins Merge using joins, a list of rev:rev pairs. NB: This option is obsolete (see
Section 2.9 [rcsmerge], page 17).

-sstate See Section 2.1.6 [Misc common options], page 9. Select matching state.

-S Enable "self-same" mode. In this mode, the owner of a lock is unimportant,
just that it exists. Effectively, this prevents you from checking out the same
revision twice.

$ whoami

ttn

$ co -l -f z

RCS/z,v --> z

revision 1.1 (locked)

done

$ co -S -l -f z

RCS/z,v --> z

co: RCS/z,v: Revision 1.1 is already locked by ttn.

-T Preserve the modification time on the RCS file even if it changes because a lock
is added or removed.

-wwho Select matching login who.

-V

-Vn

-xsuff See Section 2.1.6 [Misc common options], page 9.

2.4 Invoking ident

ident [options] [file ...]

If no file is specified, scan standard input. The ident command scans its input for keywords
(see Section 1.2 [Concepts], page 1), displaying to standard output what it finds.

-q Normally, if no patterns are found for a file, ident emits a warning. This option
suppresses the warning.

Chapter 2: Usage 14

-V Note that -Vn is not a valid option for ident, in contrast to most other RCS
commands (see Section 2.1.6 [Misc common options], page 9).

In addition to the normal keyword pattern, for Subversion 1.2 (and later) compatibility1,
ident also recognizes patterns having one of the forms:

$keyword:: text $

;; two colons and space after keyword

;; space before ending $

$keyword:: text#$

;; two colons and space after keyword

;; hash before ending $

2.5 Invoking merge

merge [options] receiving-sibling parent other-sibling

The merge command combines the differences between a the parent and the other sibling,
and the differences between the parent and the receiving sibling. It writes the result to the
receiving sibling.

-A

-E

-e Use diff3 -A, -E (default), or -e, respectively.

-p Write to stdout instead of overwriting receiving-sibling.

-q See Section 2.1.6 [Misc common options], page 9. Suppress conflict warnings.

-Llabel (up to three times) Specify the conflict labels for receiving-sibling, parent and
other-sibling, respectively.

-V Note that -Vn is not a valid option for merge, in contrast to most other RCS
commands (see Section 2.1.6 [Misc common options], page 9).

2.6 Invoking rcs

The rcs command is unique in the set of RCS programs in that it has two usages, the
modern (for RCS 5.9.0 and later) and the legacy.

2.6.1 modern

rcs [options] command [command-arg ...]

This rcs usage dispatches to command, passing along command-arg . . . without interpreta-
tion.

--commands

Display a list of available commands, including a one-line description, and exit
successfully.

1 The fixed-length keyword syntax is described in detail in Version Control with Subversion, chapter
“Advanced Topics”, section “Keyword Substitution”.

http://svnbook.red-bean.com/en/1.5/svn-book.html#svn.advanced.props.special.keywords

Chapter 2: Usage 15

--aliases

Display a list of command aliases and exit successfully.

--help command

Display help for a particular command and exit successfully. For example, to
display help for the legacy interface, use:

--help frob

2.6.2 legacy

rcs frob [options] file ...

(or “rcs” instead of “rcs frob”)

This rcs usage performs various administrative operations on the RCS file, depending on
the options given.

-i Create and initialize a new RCS file.

-L Set strict locking.

-U Set non-strict locking.

-M Don’t send mail when breaking someone else’s lock.

-T Preserve the modification time on the RCS file unless a revision is removed.

-I

-q See Section 2.1.6 [Misc common options], page 9.

-alogins Append logins (comma-separated list of usernames) to access-list.

-e[logins]

Erase logins (comma-separated list of usernames) from access-list. If logins is
omitted, clear the access-list.

-Afile-name

Append access-list of file-name to current access-list.

-b[rev] Set default branch to that of rev or highest branch on trunk if rev is omitted.

-l[rev] Lock a revision.

-u[rev] Unlock a revision.

-cstring Set comment leader to string. NB: Don’t use; obsolete.

-ksubst See Section 2.1.4 [Substitution mode option], page 8.

-mrev:[msg]

Replace log message with msg. See Section 2.1.5 [Log message option], page 9.

-nname[:[rev]]

If :rev is omitted, delete symbolic name. Otherwise, associate name with rev ;
name must be new.

-Nname[:[rev]]

Like -n, but overwrite any previous assignment.

-orange Delete (also known as “outdate”) revisions in range:

Chapter 2: Usage 16

rev single revision

br latest revision on branch br

rev1:rev2

rev1 to rev2 on same branch, inclusive

:rev beginning of branch to rev

rev: rev to end of branch

-sstate[:rev]

See Section 2.1.6 [Misc common options], page 9. Set state.

-t-text

-tfile-name

See Section 2.1.3 [Description option], page 8. Replace description.

-V

-Vn

-xsuff See Section 2.1.6 [Misc common options], page 9.

These options have no effect, and are included solely for consistency with other comamnds
(see Section 2.1.7 [Environment], page 10): -zzone.

2.7 Invoking rcsclean

rcs clean [options] [file ...]

(or “rcsclean” instead of “rcs clean”)

The rcsclean command removes working files that are not being worked on. If given -u, it
also unlocks and removes working files that are being worked on but have not changed. If
no file is specified, operate on all the working files in the current directory.

-r[rev] Specify revision.

-u[rev] Unlock if is locked and no differences found.

-n[rev] Dry run (no act, don’t operate).

-q[rev] See Section 2.1.6 [Misc common options], page 9.

-ksubst See Section 2.1.4 [Substitution mode option], page 8.

-T Preserve the modification time on the RCS file even it changes because a lock
is removed.

-V

-Vn

-xsuff See Section 2.1.6 [Misc common options], page 9.

-zzone See Section 2.1.2 [Date option], page 8.

Chapter 2: Usage 17

2.8 Invoking rcsdiff

rcs diff [options] file ...

(or “rcsdiff” instead of “rcs diff”)

The rcsdiff command runs diff to compare two revisions in an RCS file. See Section “In-
voking diff” in The GNU Diffutils Manaual.

-rrev (zero, one, or two times) Name a revision. If given two revisions (‘-rrev1
-rrev2’), compare those revisions. If given only one revision (‘-rrev’), compare
the working file with it. If given no revisions, compare the working file with the
latest revision on the default branch.

-ksubst See Section 2.1.4 [Substitution mode option], page 8.

-q See Section 2.1.6 [Misc common options], page 9.

-V

-Vn

-xsuff See Section 2.1.6 [Misc common options], page 9.

-zzone See Section 2.1.2 [Date option], page 8.

These options have no effect, and are included solely for consistency with other comamnds
(see Section 2.1.7 [Environment], page 10): -T.

Additionally, the following options (and their argument, if any) are passed to the underlying
diff command:

-0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -B, -C, -D, -F, -H, -I,

-L, -U, -W, -a, -b, -c, -d, -e, -f, -h, -i, -n, -p, -t, -u, -w, -y,

long options (that start with "--")

(Not all of these options are meaningful.)

2.9 Invoking rcsmerge

rcs merge [options] file

(or “rcsmerge” instead of “rcs merge”)

The rcsmerge command incorporates the changes between two revisions of an RCS file into
the corresponding working file.

-A

-E

-e Passed to the diff3 command. The default if none are specified is -E. With -e,
suppress warnings on conflict. The -A style generates the most verbose output.
See Section “Invoking diff3” in The GNU Diffutils Manual.

-p[rev] Write to stdout instead of overwriting the working file.

-q[rev] See Section 2.1.6 [Misc common options], page 9.

-rrev (one or two times) specify a revision.

One or two revisions must be specified (using -p, -q, -r). If only one is specified, the second
revision defaults to the latest revision on the default branch.

Chapter 2: Usage 18

-ksubst See Section 2.1.4 [Substitution mode option], page 8.

-V

-Vn

-xsuff See Section 2.1.6 [Misc common options], page 9.

-zzone See Section 2.1.2 [Date option], page 8.

These options have no effect, and are included solely for consistency with other comamnds
(see Section 2.1.7 [Environment], page 10): -T.

2.10 Invoking rlog

rcs log [options] file ...

(or “rlog” instead of “rcs log”)

The rlog command displays information about RCS files.

-L Ignore RCS files with no locks set.

-R Print only the name of the RCS file.

-h Print only the “header” information.

-t Like -h, but also include the description.

-N Omit symbolic names.

-b Select the default branch.

-ddates See Section 2.1.2 [Date option], page 8. Select revisions based on timestamp,
in the range dates, with spec:

d single revision d or earlier

d1<d2

d2>d1 between d1 and d2, exclusive

<d

d> before d

>d

d< after d

Instead of ‘<’ or ‘>’, you can use ‘<=’ or ‘>=’, respectively, to specify inclusive
ranges. dates may also be a list of semicolon-separated specs.

-l[who] Select revisions locked by who (comma-separated list of usernames) only, or by
anyone if who is omitted.

-r[revs] Select revisions in revs, a comma-separated list of range specs, one of: rev,
rev:, :rev, rev1:rev2.

-sstates See Section 2.1.6 [Misc common options], page 9. states can also be a comma-
separated list of states. Select revisions with specified state(s).

-w[who] Select revisions checked in by who (comma-separated list of usernames), or by
the user if who is omitted.

Chapter 2: Usage 19

-V

-Vn

-xsuff See Section 2.1.6 [Misc common options], page 9.

-zzone See Section 2.1.2 [Date option], page 8.

These options have no effect, and are included solely for consistency with other comamnds
(see Section 2.1.7 [Environment], page 10): ‘-q’, ‘-T’.

Chapter 3: Hacking 20

3 Hacking

This chapter, in contrast to the previous (see Chapter 2 [Usage], page 7), is introspective. It
describes an important aspect of RCS interop with other programs, and development ideas
and methods.

3.1 File format

An RCS file’s contents are described by the grammar below1. Overall, the format is free–
format text. In most environments RCS uses the ISO 8859/1 encoding: visible graphic
characters are (octal) codes 041–176 and 240–377, and whitespace characters are codes
010–015 and 040.
TODO: Discuss or point to encoding compatibility issues.

3.1.1 File format grammar

The meta syntax in this section uses the following conventions: ‘|’ (U+7C) separates al-
ternatives; ‘{’ (U+7B) and ‘}’ (U+7D) enclose optional phrases; ‘{’ and ‘}*’ (trailing U+2A)
enclose phrases that can be repeated zero or more times; ‘{’ and ‘}+’ (trailing U+2B) enclose
phrases that must appear at least once and can be repeated; terminal symbols are in ‘""’
(two U+22).

rcstext ::= admin {delta}* desc {deltatext}*

admin ::= "head" {num} ";"

{ "branch" {num} ";" }

"access" {id}* ";"

"symbols" { sym ":" num }* ";"

"locks" { id ":" num }* ";"

{ "strict" ";" }

{ "integrity " {intstring} ";" }

{ "comment" {string} ";" }

{ "expand" {string} ";" }

delta ::= num

"date" num ";"

"author" id ";"

"state" {id} ";"

"branches" {num}* ";"

"next" {num} ";"

{ "commitid" sym ";" }

desc ::= "desc" string

deltatext ::= num

"log" string

"text" string

1 This section is adapted from the ‘rcsfile(5)’ manpage, written by Walter F. Tichy.

Chapter 3: Hacking 21

num ::= { digit | "." }+

digit ::= "0" through "9"

id ::= { idchar | "." }+

sym ::= {idchar}+

idchar ::= any visible graphic character except special

special ::= "$" | "," | "." | ":" | ";" | "@"

string ::= "@" { any character, with @ doubled }* "@"

word ::= id | num | string | ":"

intchar ::= any character, except @

thirdp ::= "^L" {intchar}*

intstring ::= "@" {intchar}* {thirdp}* "@"

3.1.2 Additional particulars of the file format

• In releases prior to 5.8 (2011-08-30), the grammar included the production:

newphrase ::= id word* ";"

and used it in the admin, delta and deltatext productions. This allowed third-party
programs to interoperate with RCS by storing opaque (to RCS) data in the file.

As of 5.8, in the name of progress (towards more systematic file integrity support), the
only area reserved for third-party interop is in the (string) value of the integrity field,
specifically after the first formfeed (U+0C). A further restriction (for all programs) is
that the integrity value must not contain ‘@’.

• Whitespace has no significance except in strings. However, whitespace cannot appear
within an id, num, or sym, and an RCS file must end with newline (U+0A). Strings are
enclosed by ‘@’ (U+40). If a string contains a ‘@’, it must be doubled; otherwise, strings
can contain arbitrary binary data.

• Identifiers are case sensitive. Keywords are in lower case only. The sets of keywords
and identifiers can overlap.

• Dates, which appear after the date keyword, are of the form Y.mm.dd.hh.mm.ss, where
Y is the year, mm the month (01–12), dd the day (01–31), hh the hour (00–23), mm the
minute (00–59), and ss the second (00–60). Y contains just the last two digits of the
year for years from 1900 through 1999, and all the digits of years thereafter. Dates use
the Gregorian calendar; times use UTC.

• The delta nodes form a tree. All nodes whose numbers consist of a single pair (e.g., 2.3,
2.1, 1.3) are on the trunk, and are linked through the next field in order of decreasing

Chapter 3: Hacking 22

numbers. The head field in the admin node points to the head of that sequence (i.e.,
contains the highest pair). The branch node in the admin node indicates the default
branch (or revision) for most RCS operations. If empty, the default branch is the
highest branch on the trunk.

All delta nodes whose numbers consist of 2n fields (n ≥ 2) (e.g., 3.1.1.1, 2.1.2.2) are
linked as follows. All nodes whose first 2n−1 number fields are identical are linked
through the next field in order of increasing numbers. For each such sequence, the
delta node whose number is identical to the first 2n−2 number fields of the delta

nodes on that sequence is called the branchpoint. The branches field of a node contains
a list of the numbers of the first nodes of all sequences for which it is a branchpoint.
This list is ordered in increasing numbers. See Figure 3.1.

Chapter 3: Hacking 23

Head

|

|

v / \

--------- / \

/ \ / \ | | / \ / \

/ \ / \ | 2.1 | / \ / \

/ \ / \ | | / \ / \

/1.2.1.3\ /1.3.1.1\ | | /1.2.2.2\ /1.2.2.1.1.1\

--------- --------- --------- --------- -------------

^ ^ | ^ ^

| | | | |

| | v | |

/ \ | --------- / \ |

/ \ | \ 1.3 / / \ |

/ \ ---------\ / / \-----------

/1.2.1.1\ 1.3.1 \ / /1.2.2.1\ 1.2.2.1.1

--------- \ / ---------

^ | ^

| | |

| v |

| --------- |

| \ 1.2 / |

----------------------\ /---------

1.2.1 \ / 1.2.2

\ /

|

|

v

\ 1.1 /

\ /

\ /

\ /

Figure 3.1: The organization of an example RCS file.

3.2 Still missing

RCS is still missing some features. The following is an unordered list of “to-do musings” kept
by the RCS maintainers. If you would like to hack on an item, See Section 3.3 [Reporting
bugs], page 25.

• Add an option to rcsmerge so that it can use an arbitrary program to do the 3-way
merge, instead of the default merge. Likewise for rcsdiff and diff. It should be possible
to pass arbitrary options to these programs, and to the subsidiary co invocations.

• Add format options for finer control over the output of ident and rlog. E.g. there
should be an easy way for rlog to output lines like ‘src/main.c 2.4 wft’, one for

Chapter 3: Hacking 24

each locked revision. rlog options should have three orthogonal types: selecting files,
selecting revisions, and selecting rlog format.

• Add format options for finer control over the output of keyword strings. E.g. there
should be some way to prepend ‘@(#)’, and there should be some way to change ‘$’ to
some other character to disable further substitution. These options should make the
resulting files uneditable, like ‘-kv’.

• Add long options, e.g. --keyword-substitution. Unfortunately RCS’s option syntax
is incompatible with getopt. Perhaps the best way is to overload rcs, e.g., ‘rcs diff

--keyword-substitution=old file’ instead of ‘rcsdiff -ko file’.

• rlog -rM:N should work even if M and N have different numbers of fields, so long as
M is an ancestor of N or vice versa.

• rcs should evaluate options in order; this allows rcs -oS -nS.

• Be able to redo your most recent checkin with minor changes.

• co -u shouldn’t complain about a ‘+w’ working file if contents don’t change.

• Add a ‘-’ option to take the list of file names from standard input. Perhaps the file
names should be null-terminated, not newline-terminated, so that those that contain
newlines are handled properly.

• Permit multiple option–filename pairs, e.g., co -r1.4 a -r1.5 b.

• Add an option to break a symbolic link to an RCS file, instead of breaking the hard
link that it points to.

• Add ways to specify the earliest revision, the most recent revision, the earliest or latest
revision on a particular branch, and the parent or child of some other revision.

• If a user has multiple locks, perhaps ci should fall back on the method of ci -k to figure
out which revision to use.

• Add an option to rcsclean to clean directories recursively.

• Write an rcsck program that repairs corrupted RCS files, much as fsck repairs corrupted
file systems. For example, it should remove stale lock files.

• Update the date parser to use the more modern getdate.y by Bellovin, Salz, and
Berets, or the even more modern getdate by Moraes. None of these getdate imple-
mentations are as robust as RCS’s old warhorse in avoiding problems like arithmetic
overflow, so they’ll have to be fixed first. (Perhaps we can use gnulib module getdate.)

• Break up the code into a library so that it’s easier to write new programs that manip-
ulate RCS files, and so that useless code is removed from the existing programs. For
example, the rcs command contains unnecessary keyword substitution baggage, and
the merge command can be greatly pruned.

• Make it easier to use your favorite text editor to edit log messages, etc., instead of
having to type them in irretrievably at the terminal.

• Let the user specify a search path for default branches, e.g., to use L as the default
branch if it works, and M otherwise. Let the user require that at least one entry in
the search path works. Let the user say that later entries in the search path are read
only, i.e. one cannot check in changes to them. This should be an option settable by
‘RCSINIT’.

• Add a way for a user to see which revisions affected which lines.

Chapter 3: Hacking 25

• Have rlog -nN F print just the revision number that N translates to. E.g., rlog -nB.

F would print the highest revision on the branch B. Use this to add an option -bB to
rcsbranch, to freeze the named branch. This should interact well with default branches.

• Add a co option that prints the revision number before each line, as SCCS’s get -m

does. [I implemented this for Emacs 22 as a subroutine of vc-annotate, q.v. —ttn]

3.3 Reporting bugs

To report bugs or suggest enhancements for GNU RCS, please visit its homepage (http://
www.gnu.org/software/rcs/) to find directions on how to “file a bug report” online, or
send electronic mail to help-rcs@gnu.org. (If you use the web interface, you don’t need
to also send email, since that is done automatically.)

For bug reports, please include enough information for the maintainers to reproduce the
problem. Generally speaking, that means:

• The RCS version, command(s) and manual section(s) involved.

• Hardware and operating system names and versions.

• The contents of any input files necessary to reproduce the bug.

• The expected behavior and/or output.

• A description of the problem and samples of any erroneous output.

• Options you gave to configure other than specifying installation directories.

• Anything else that you think would be helpful.

When in doubt whether something is needed or not, include it. It’s better to include too
much than to leave out something important.

Patches are welcome; if possible, please make them with ‘git format-patch’ and include
ChangeLog entries (see Section “Change Log” in The GNU Emacs Manual). Please follow
the existing coding style.

http://www.gnu.org/software/rcs/
http://www.gnu.org/software/rcs/
mailto:help-rcs@gnu.org

Appendix A: GNU Free Documentation License 26

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix A: GNU Free Documentation License 27

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 28

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix A: GNU Free Documentation License 29

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 30

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: GNU Free Documentation License 31

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 32

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 33

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 34

Index

A
access control policy . 3
Author . 3
author, specifying . 10

B
behavior prior to version 5 . 10
behavior, version 3 . 10
behavior, version 4 . 10
binary-old-keyword-value substitution mode 9
branch growth . 7
branch number . 2
branch tip . 2
branch, default . 3
bug reporting . 25

C
case sensitivity, file format . 21
checkin . 3
checklist for bug reports . 25
checkout . 3
checkout, implicit . 5
ci invocation . 11
co invocation . 12
comma-v file format . 1
command help . 7
command version . 7
command-line option to specify a revision 7
credits . 1

D
Date . 3
date formats . 8
date, specifying . 8
dates, file format . 21
default branch . 3
default branch, setting . 15
deleting revisions . 15
description of working file . 2
description text, specifying . 8

E
empty log message . 9
emulation, previous RCS versions 10
encoding, file format . 20
environment variables . 10

F
features, still missing . 23

file names on the command-line 7
format, RCSfile . 20

G
grammar, file format . 20

H
Header . 3
history . 1

I
Id . 3
ident invocation . 13
implicit checkout, circumstance 5
implicit checkout, locked . 12
implicit checkout, unlocked . 12
instantiating a working file . 2
interaction model . 1
interactive mode . 9
invocation, ci . 11
invocation, co . 12
invocation, ident . 13
invocation, merge . 14
invocation, rcs . 14, 15
invocation, rcsclean . 16
invocation, rcsdiff . 17
invocation, rcsmerge . 17
invocation, rlog . 18

K
keyword-only substitution mode 9
keyword-value substitution mode 8
keyword-value-locker substitution mode 9
keywords, table of . 3

L
layout of nodes, file format . 21
license . 1
Locker . 3
locking a revision . 15
locking on implicit checkout 12
locking, non-strict . 5
locking, set non-strict . 15
locking, set strict . 15
locking, strict . 5
locks in RCS file . 3
Log . 3
log message, empty . 9
LOGNAME . 11

Index 35

M
memory limit . 11
merge invocation . 14
model, interaction . 1

N
Name . 4
names, symbolic . 3
node layout, file format . 21
non-strict locking . 5
number, branch . 2
number, revision . 2

O
old-keyword-value substitution mode 9
order of options and file names 7
outdating revisions . 15
overview . 1

P
pairing RCS and working files 7
patches, contributing . 25
problems . 25
projects, related . 1

Q
quiet mode . 9

R
range of revisions, specifying . 7
RCS file . 2
rcs invocation . 14, 15
RCS version emulation . 10
RCS_MEM_LIMIT . 11
rcsclean invocation . 16
rcsdiff invocation . 17
RCSfile . 4
RCSfile format . 20
RCSINIT . 10
rcsmerge invocation . 17
removing revisions . 15
reporting bugs . 25
Revision . 4
revision number . 2
revision range, specifying . 7

revision, specifying . 7
revisions, tree of . 3
rlog invocation . 18

S
Source . 4
specifying a date . 8
specifying a range of revisions 7
specifying a revision . 7
specifying a state . 9
specifying a suffix list . 10
specifying a time/date . 8
specifying author . 10
specifying description text . 8
specifying substitution mode . 8
State . 4
state, specifying . 9
strict locking . 5
substitution mode, default . 8
substitution mode, specifying 8
suffix list, specifying . 10
symbolic names . 3

T
TEMP . 11
third-party interop, file format 21
Tichy, Walter F. 1
time zone . 8
time/date, specifying . 8
tip . 2
tip increment . 7
TMP . 11
TMPDIR . 11
tree of revisions . 3

U
unlocking a revision . 15
USER . 11

V
value-only substitution mode . 9

W
whitespace, file format . 21
working file, description . 2
working file, instantiation . 2

	Overview
	Credits
	Concepts
	Interaction model
	Working file
	RCS file
	Fundamental operations
	Keywords

	Quick tour

	Usage
	Common elements
	Revision options
	Date option
	Description option
	Substitution mode option
	Log message option
	Misc common options
	Environment

	Invoking ci
	Invoking co
	Invoking ident
	Invoking merge
	Invoking rcs
	modern
	legacy

	Invoking rcsclean
	Invoking rcsdiff
	Invoking rcsmerge
	Invoking rlog

	Hacking
	File format
	File format grammar
	Additional particulars of the file format

	Still missing
	Reporting bugs

	GNU Free Documentation License
	Index

