
GNU Radius Reference Manual

GNU Radius Reference Manual
version 1.6, 6 December 2008

Sergey Poznyakoff

This manual documents GNU Radius (version 1.6, 6 December 2008).
Published by:

GNU Press Website: www.gnupress.org
a division of the General: press@gnu.org
Free Software Foundation Orders: sales@gnu.org
51 Franklin Street, Fifth Floor Tel: 617-542-5942
Boston, MA 02110-1301 USA Fax: 617-542-2652

Copyright c© 1999, 2000, 2001, 2002, 2003 Free Software Foundation

Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, with the Front-Cover texts
being “A GNU Manual”, and with the Back-Cover Texts as in (a)
below. A copy of the license is included in the section entitled
“GNU Free Documentation License”.
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and
modify this GNU Manual, like GNU software. Copies published by
the Free Software Foundation raise funds for GNU development.”

Cover art by Etienne Suvasa. Cover design by Jonathan Richard.

Introduction to Radius 1

Introduction to Radius

GNU Radius is a software package that provides authentication and account-
ing services. The acronym radius stands for Remote Authentication Dial
In User Service and (in that form) usually denotes the underlying protocol
name.

Historically, radius servers were used as a means to authenticate the
user coming from a dial-in connection, but GNU Radius is much more than
an authentication system: it is an advanced, customizable, and extensible
system for controlling access to the network.

GNU Radius has several built-in authentication and accounting meth-
ods. When these methods are not enough, it allows the administrator to
implement any new method she deems convenient.

The GNU Radius package includes the server program, radiusd, which
responds to authentication and accounting requests, and a set of accompa-
nying programs designed to monitor the activity of the server and analyze
the information it provides.

Overview
To illustrate what GNU Radius does, let’s consider an imaginary in-
ternet service provider. Our provider has two network access servers
(nases for short)—i.e., two pieces of equipment which directly accept users’
connections—and a core router that connects the ISP’s internal network with
the Internet backbone.

When a user connects to a nas, the server must verify that the user
is actually registered and that the credentials she has supplied are correct.
This first step is called authentication.

Upon authenticating the user, the nas must determine which services the
user is permitted to use and to what extent the user may use them. This
second step is called authorization.

When the first two stages have been successfully completed, the nas
takes the third step and establishes the connection between the user and the
main server. This connection is called a user session. For the purposes of
accounting, the nas remembers the exact time of the start of the session.
When the session is terminated, the duration of the session and the number
of bytes transferred are recorded as well.

All three tasks can be accomplished by the use of user and accounting
databases on each terminal server. However, this is not convenient, and it
is error-prone in that the maintenance of separate databases for the same
users is not a trivial task. What is worse, as the number of terminal servers
grows, this maintenance problem becomes more difficult.

2 GNU Radius Reference Manual

How Does radius Perform These Tasks?

radius allows an administrator to keep authentication and accounting data
in a single place, no matter how many network access servers are actually
present. Using radius, nases instead communicate with this central server
to perform authentication and accounting, thus easing the burden on the
system administrator.

Let’s return to our imaginary ISP. Suppose it runs a radius daemon on
its central server. Each nas runs client software to communicate with the
radius server by sending radius packets.

An average user session life cycle looks as follows.
A user connects to the nearest nas and supplies his login and password.

The nas forms an authentication request and sends it to the radius server.
The radius server verifies the user’s credentials and finds them sufficient.

It then retrieves the user’s authorization information from its database, pack-
ages it into an acknowledgement packet, and then sends it back to the nas

The nas receives the acknowledgement packet and starts the user session.
The information brought with the packet tells the nas to establish a connec-
tion between the core router and the user, and to assign the user a certain
IP address. Having established the session, the nas informs the radius
server by sending it an accounting start packet. The server acknowledges
the receipt of the accounting packet.

Now suppose that after some time the user decides to break the connec-
tion. The nas notices this and terminates the user’s session. The nas then
sends an accounting stop packet to the radius server to mark this event.
Again, the server acknowledges the receipt of the packet.

radius Attributes

Attributes are means of passing the information between the nas and the
server. Basically, an attribute is an integer number that identifies some
piece of information. A set of properties are associated with each attribute,
specifying the way to interpret the attribute. The most important property
is the data type, which declares the type of data that the attribute identifies
(character string, integer number, IP address, or raw binary data).

The information to be transmitted with the request is packaged in a set of
attribute-value pairs (or a/v pairs for short). Such pairs consist of attribute
numbers and the associated data.

radius Packets

There exist two basic kinds of radius packets: authentication and account-
ing packets. Each of them is subdivided into requests and replies.

Authentication requests are sent from the nas to the radius server and
contain the information necessary to check the identity of the user. The
minimum set of data in such packets consists of the user login name, user
password, and nas IP or identifier.

Introduction to Radius 3

Authentication replies are sent by the radius server and contain the reply
code and a set of additional attributes. According to their reply code the
authentication replies are subdivided into authentication acknowledgements,
authentication rejections, and authentication challenges.

An authentication acknowledgement packet is sent to the nas if the cre-
dentials supplied with the authentication request were correct. This kind
of packet tells the nas to establish a normal user session. The additional
attributes in such packets carry the authorization data, i.e., they determine
which kind of service the user is to be provided.

An authentication rejection is sent to the nas if the authentication has
failed. This packet forbids the nas to provide any service to the user. The
additional attributes may carry descriptive text to be displayed as an expla-
nation to the user for the failure of his request.

Finally, an authentication challenge packet is sent to the nas if the sup-
plied credentials did not suffice to establish the authenticity of the user. This
means that the dialog between the nas and the radius server continues. As
the radius server asks for additional authentication credentials, the nas
acts as a liaison, passing server requests to the user and sending user replies
back to the server. Such a dialog ends when the radius server sends either
an acknowledgement packet or a rejection packet.

An accounting request is sent to the server when the nas wishes to report
some event in the user session: the start of the session, session termination,
etc. The attributes carry the actual information about the event.

For each accounting request that has been received and successfully pro-
cessed, the radius server sends back an accounting acknowledgement. This
packet carries no attributes, but simply informs the nas that the information
it had sent was received.

Occasionally, a radius server may fail to receive incoming requests or
may fail to process them due to high server load. In order to prevent such
requests from being lost, the nas retransmits the request if no response from
the server is received within a predefined interval of time (a timeout interval).
Usually the nas is configured in such a way that it continues retransmitting
failed requests until either it receives a reply from the server or a predefined
number of retries are exhausted, whichever occurs first. Furthermore, a nas
may be configured to communicate with a set of backup radius servers. In
this case it applies the described process to each server from the set, until
one of them responds or the set is exhausted.

Chapter 1: Naming Conventions 5

1 Naming Conventions

This chapter describes file naming conventions used throughout this docu-
ment.

Programs from the GNU Radius package use the following directories to
store various configuration and log files:

Configuration or database directory
A directory where all configuration files are stored.

Log directory
A directory where radiusd stores its log files.

Accounting directory
A directory where radiusd stores accounting detail files (see
Section 7.2 [Detailed Request Accounting], page 81).

Data directory
A directory where shared data files are stored, such as Rewrite
or Scheme source files.

The default locations of these directories are determined at compile time.
Usually these are:

Directory Short name Default location

Configuration directory ‘raddb’ /usr/local/etc/raddb

Log directory ‘radlog’ /var/log

Accounting directory ‘radacct’ /var/log/radacct

Data directory ‘datadir’ /usr/local/share/radius/1.6

These locations may differ depending on your local site configuration.
Throughout this document we will refer to these directories by their short

names. For example, when we say:
... this information is contained in file ‘raddb/sqlserver’

we actually mean ‘/usr/local/etc/raddb/sqlserver’.
To get the default directory names that your version of Radius was com-

piled with, run radiusd --version.
Locations of these directories may be overridden by specifying the ap-

propriate command line options. For example, any program from the GNU
Radius package accepts the command line option ‘-d’ or ‘--directory’,
which introduces the configuration directory path.

Chapter 2: How Radius Operates 7

2 How Radius Operates

The main purpose of GNU Radius is to centralize authentication of users
coming from various network stations, pursuant to the radius specification.
Its primary usage is for dial-in users, though it can be used for any kind of
network connection.

2.1 Attributes
Information carried by radius requests is stored as a list of attribute-value
pairs. Each pair consists of an attribute number and an attribute value. The
attribute number identifies the type of information the pair carries, and the
attribute value keeps the actual data.

The value part of an attribute can contain data of one of the following
types:

Integer A 32-bit unsigned integer value.

IP-number
An IPv4 IP-number.

String A character string up to 253 characters long.
For convenience, the attributes and the values of some frequently used

integer attributes are given symbolic names. These names are assigned to
attributes and values in the dictionary file (see Section 4.2 [dictionary file],
page 40).

Attribute numbers range from 1 to 255. Attributes with numbers greater
than 255 are used internally by the server and cannot be sent to the nas.

The vendor-specific attribute number 26 is special, allowing vendors of
the nas hardware or software to support their own extended attributes.
Section 13.1.26 [Vendor-Specific], page 175.

Each attribute has a set of properties associated with it. The properties
are:

Usage flags
These flags determine the usage of the attribute in the configu-
ration files ‘huntgroups’, ‘hints’, and ‘users’.

Propagation
When a radius server functions in proxy mode, it uses the prop-
agation flag to determine which attributes from the reply packet
should be passed back to the requesting nas (see Section 2.4.2.1
[Proxy Service], page 13).

additivity Some configuration rules may cause the addition of new a/v
pairs to the incoming request. Before the addition of a new pair,
radiusd scans the request to see if it already contains a pair
with the same attribute. If it does, the value of the additivity
determines the following additional actions:

8 GNU Radius Reference Manual

None The old pair is retained in the request; the new pair
is not added to it.

Replace The old pair is retained in the request, but its value
is replaced with that of the new pair.

Append The new pair is appended to the end of the pair list.

Attributes are declared in the ‘raddb/dictionary’ file. For a detailed de-
scription, see Section 4.2.4 [ATTRIBUTE], page 41. For information about
particular attributes, see Chapter 13 [Attribute List], page 165.

2.2 radius Requests
The term request refers to both the authentication/accounting request
packet from a nas to a radius server and the response packet that the
server sends back to the nas.

Each request contains the following fields:

‘Code’ The code field identifies the type of the request.

‘Identifier’
The number in the range 0–255 used to match the request with
the reply.

‘Length’ The length of the request packet.

‘Authenticator’
The 16-byte hash value used to authenticate the packet.

‘Attributes’
The list of attribute-value pairs carrying actual information
about the request.

2.2.1 Authentication Requests

A nas sends authentication requests (packets with code field set to Access-
Request) to a radius server when a user is trying to connect to that nas.
Such requests convey information used to determine whether a user is allowed
access to the nas, and whether any special services are requested for that
user.

An Access-Request must contain a User-Name attribute Section 13.1.24
[User-Name], page 174. This packet should contain a NAS-IP-Address at-
tribute, a NAS-Identifier attribute, or both. It also must contain either a
User-Password attribute or a CHAP-Password attribute. These attributes
are passed after being encoded using a method based on the RSA Message
Digest Algorithm MD5.

The Access-Request should contain a NAS-Port or NAS-Port-Type at-
tribute or both, unless the type of access being requested does not involve a
port or the nas does not distinguish among its ports.

Chapter 2: How Radius Operates 9

Upon receiving an Access-Request packet for a particular user and au-
thenticating that user, the radius server replies to the nas that has sent
the packet with any one of the following packets:
• Access-Accept
• Access-Reject
• Access-Challenge

GNU Radius replies with an Access-Accept packet when it has success-
fully authenticated the user. Such a reply packet provides the configuration
information necessary to begin delivery of service to the user.

GNU Radius replies with an Access-Reject packet when it is unable to
authenticate the user. Such a packet may contain a descriptive text encap-
sulated in one or more Reply-Message attributes. The nas may display this
text along with its response to the user.

GNU Radius replies with an Access-Challenge packet when it needs to
obtain more information from the user in order to determine the user’s au-
thenticity or to determine the kind of service to be provided to the user.

An Access-Challenge packet may include one or more Reply-Message
attributes, and it may or may not include a single State attribute. No other
attributes are permitted in an Access-Challenge packet.

Upon receipt of an Access-Challenge, the Identifier field is matched with
a pending Access-Request. Additionally, the Response Authenticator field
must contain the correct response for the pending Access-Request. In the
event of an invalid packet, GNU Radius discards the offending packet and
issues the appropriate log message.

If the nas does not support challenge/response, it treats an Access-
Challenge as though it had received an Access-Reject instead. Otherwise,
upon receipt of a valid Access-Challenge the nas prompts the user for a re-
sponse, possibly displaying the text message provided in the Reply-Message
attributes of the request. It then sends its original Access-Request with a
new request id and request authenticator, along with the User-Password at-
tribute replaced by the encrypted user’s response, and including the State
attribute from the Access-Challenge, if any.

2.2.2 Accounting Requests

Accounting-Request packets are sent from a nas to a radius server to allow
for accounting of a service provided to a user.

Upon receipt of an Accounting-Request packet, the server attempts to
record it (see Chapter 7 [Accounting], page 81), and if it succeeds in doing
so, it replies with an Accounting-Response packet. Otherwise, it sends no
reply, which then causes the nas to retransmit its request within a preconfig-
ured interval of time. Such retransmits will continue until either the server
responds with an Accounting-Response packet or a preconfigured number of
retransmits is reached, whichever occurs first.

10 GNU Radius Reference Manual

Any attribute valid in an Access-Request or Access-Accept packet is
also valid in an Accounting-Request packet, except the following attributes,
which are never present in any Accounting-Request packet:
• User-Password

• CHAP-Password

• Reply-Message

• State

Either a NAS-IP-Address or a NAS-Identifier must be present in an
Accounting-Request packet. It should contain either a NAS-Port or a NAS-
Port-Type attribute (or both), unless the service does not involve a port or
the nas does not distinguish among its ports.

If the Accounting-Request packet includes a Framed-IP-Address, that
attribute must contain the actual IP of the user.

There are five types of accounting packets, differentiated by the value of
the Acct-Status-Type attribute. These are:

Session Start Packet
The session start packet is sent after the user has successfully
passed the authentication and has started to receive the re-
quested service. It must contain at least following attributes:
• Acct-Status-Type = Start

• User-Name

• Acct-Session-Id

• NAS-IP-Address

• NAS-Port-Id

Session Stop Packet
The session stop packet is sent after the user has disconnected.
It conveys the information about the duration of the session,
number of octets transferred, etc. It must contain at least the
following attributes:
• Acct-Status-Type = Stop

• User-Name

• NAS-IP-Address

• Acct-Session-Id

The last three of them are used to find the corresponding session
start packet.

Keepalive Packet
The keepalive packet is sent by the nas when it obtains some
new information about the user’s session, e.g. it has determined
its IP or has changed the connection speed. The packet must
contain at least the following attributes:

Chapter 2: How Radius Operates 11

• Acct-Status-Type = Alive

• User-Name

• NAS-IP-Address

• Acct-Session-Id

Accounting-Off Packet
By sending this packet, the nas requests that radiusd mark all
sessions registered from this particular nas as finished. Receiv-
ing this packet usually means that the nas is to be shut down,
or is about to change its configuration in a way that requires all
currently opened sessions to be closed. The packet must contain
at least the following attributes:
• Acct-Status-Type = Accounting-Off

• NAS-IP-Address

Accounting-On Packet
By sending this packet, the nas informs radiusd that it is ready
to accept the incoming connections. Usually this packet is sent
after startup, or after a major reconfiguration of the nas. It
must contain at least the following attributes:
• Acct-Status-Type = Accounting-On

• NAS-IP-Address

2.3 Matching Rule
A record in the GNU Radius database describing a particular rule for match-
ing an incoming request is called a matching rule. Each such rule defines an
action to be taken when the match occurs.

The matching rule consists of three distinct parts:

Label This is used to identify the rule. The special usernames DEFAULT
and BEGIN are reserved. These will be described in detail below.

Left-Hand Side (lhs)
The list of attribute-value pairs used for matching the profile
against an incoming request.

Right-Hand Side (rhs)
The list of attribute-value pairs that define the action to be
taken if the request matches lhs.

The following GNU Radius configuration files keep data in a matching
rule format: ‘hints’, ‘huntgroups’, and ‘users’. Although they keep data
in a similar format, the rules that are used to match incoming requests
against the contents of these files differ from file to file. The following section
describes these rules in detail.

12 GNU Radius Reference Manual

2.4 Processing Requests
Upon receiving a request, radiusd applies to it a number of checks to deter-
mine whether the request comes from an authorized source. If these checks
succeed, the request is processed and answered. Otherwise, the request is
dropped and corresponding error message is issued (see Chapter 8 [Logging],
page 85).

The following checks are performed:

Check if the username is supplied.
If the packet lacks the User-Name attribute, it is not processed.

Check if the nas is allowed to speak.
The source IP of the machine that sent the packet is looked up
in the ‘clients’ file (see Section 4.3 [clients file], page 45). If no
match is found, the request is rejected.

Compute the encryption key.
Using the data from the packet and the shared key value from
the ‘clients’ file, Radius computes the MD5 encryption key
that will be used to decrypt the value of the User-Password
attribute.

Process user-name hints.
User-name hints are special rules that modify the request de-
pending on the user’s name and her credentials. These rules
allow an administrator to divide users into distinct groups, each
group having its own authentication and/or accounting meth-
ods. The user-name hints are stored in ‘raddb/hints’ (see
Section 4.6 [hints file], page 50).

Process huntgroup rules.
Huntgroup rules allow an administrator to segregate incom-
ing requests depending on the nas and/or port number they
came from. These rules are stored in ‘raddb/huntgroups’ (see
Section 4.7 [huntgroups file], page 50).

Determine whether the request must be proxied to another radius server.
The requests pertaining to another realm are immediately for-
warded to the remote radius server for further processing. See
Section 2.4.2 [Proxying], page 13, for the description of this pro-
cess.

Process individual user profiles
This step applies only to authentication requests.

2.4.1 Checking for Duplicate Requests

As described above (see Chapter 2 [Operation], page 7), a nas may decide to
retransmit the request under certain circumstances. This behavior ensures
that no requests are lost. For example, consider the following scenario:

Chapter 2: How Radius Operates 13

1. The nas sends a request to the server.
2. The server processes it and sends back the reply.
3. The reply is lost due to a network outage, or the load average of the

nas is too high and it drops the response.
4. The nas retransmits the request.

Thus the radius server will receive and process the same request twice.
This probably won’t do any harm if the request in question is an authentica-
tion one, but for accounting requests it will lead to duplicate accounting. To
avoid such an undesirable effect, radiusd keeps a queue of received requests.
When an incoming request arrives, radiusd first scans the request queue to
see if the request is a duplicate. If so, it drops the request; otherwise, it
inserts the request into the queue for processing. After the request is com-
pleted, it will still reside in the queue for a preconfigured interval of time
(see Section 4.1.3 [auth], page 28, parameter request-cleanup-delay).

By default, radiusd considers two requests to be equal if the following
conditions are met:
1. Both requests come from the same nas.
2. They are of the same type.
3. The request identifier is the same for both requests.
4. The request authenticator is the same for both requests.

Additionally, radiusd may be configured to take into account the con-
tents of both requests. This may be necessary, since some nases modify the
request authenticator or request identifier before retransmitting the request,
so the method described above fails to recognize the request as a duplicate.
This extended comparison is described in detail in Section 5.1 [Extended
Comparison], page 67.

2.4.2 Proxying

Proxying is a mode of operation where a radius server forwards incoming
requests from a nas to another radius server, waits for the latter to reply,
and then forwards the reply back to the requesting nas. A common use for
such operation mode is to provide roaming between several internet service
providers (ISPs). Roaming permits ISPs to share their resources, allowing
each party’s users to connect to other party’s equipment. Thus, users trav-
eling outside the area of one ISP’s coverage are still able to access their
services through another ISP.

2.4.2.1 Proxy Service

Suppose the ISP ‘Local’ has a roaming arrangement with the ISP ‘Remote’.
When the user of ‘Remote’ dials in to the nas of ‘Local’, the nas sends
the authentication request to the ‘Local’ radius server. The server then
determines that this is a roaming user, stores a copy of the request in its
internal queue, and forwards the request to the ‘Remote’ radius server for

14 GNU Radius Reference Manual

processing. Thus, the ‘Local’ radius server acts as a client for the ‘Remote’
radius server.

When the ‘Remote’ radius server responds, the ‘Local’ radius server
receives the response, and passes it back to the nas. The copy of the re-
quest from the server’s queue determines which nas originated the request.
Before passing the request back to the nas, the server removes information
specific to the ‘Remote’ site, such as Framed-IP-Address, Framed-Netmask,
etc. Only the attributes marked with a ‘propagation’ flag (see Section 2.1
[Attributes], page 7) are passed back to the nas. After removing site-specific
attributes, the ‘Local’ radius server passes the request through its user pro-
files (see Section 2.4.5 [User Profiles], page 16) to insert any local, site-specific
information that might be needed. Finally, it passes the reply back to the
nas.

Proxied accounting requests are processed in a similar manner, except
that no attribute filtering takes place, as accounting responses do not carry
any a/v pairs.

This example illustrates only the simplest proxy chain, consisting of two
servers; real-life proxy chains may consist of several servers. For example,
our ‘Remote’ radius server might also act as a proxy, forwarding the request
to yet another radius server, and so on.

Note that when the accounting request passes through a chain of forward-
ing servers, the accounting records are stored on all servers in the chain.

2.4.2.2 Realms

GNU Radius determines which server a request must be forwarded to by the
request’s authentication realm. There are three kinds of realms:
1. A named realm is the part of a user name following the at sign (‘@’).

For example, if the user name is ‘jsmith@this.net’, then ‘this.net’
is the realm. The named realms can be cascaded; e.g., a request with
user name ‘jsmith@this.net@remote.net’ will first be forwarded to
the radius server of the realm ‘remote.net’, which in turn will forward
it to ‘this.net’.

2. A default realm defines the server to which the requests for realms not
mentioned explicitly in the configuration are forwarded.

3. An empty realm defines the server to which the requests without explic-
itly named realms are forwarded. If the configuration does not define
an empty realm, such requests are processed by the server itself.

GNU Radius keeps the information about the realms it serves in the
‘raddb/realms’ configuration file (see Section 4.8 [realms file], page 51).

2.4.3 Hints

User-name hints are special rules that modify the incoming request depend-
ing on the user name and its credentials. Hints are stored as a list of matching

Chapter 2: How Radius Operates 15

rules (see Section 2.3 [Matching Rule], page 11). Upon receiving a request,
radiusd scans the hint entries sequentially, comparing each rule’s label with
the value of the User-Name attribute from the request. If they coincide, then
radiusd appends the contents of the rule’s rhs to the request’s pair list.

The two user names must match exactly in order for a hint to take effect,
unless the hint’s checklist contains either the Prefix or the Suffix attribute.
The special name ‘DEFAULT’ or ‘DEFAULT%d ’ (where %d denotes any decimal
number), used as a hint’s label, matches any user name.

Two special attributes, Prefix and Suffix, may be used in lhs to restrict
the match to a specified part of a user name. Both are string attributes. The
Prefix instructs radiusd to accept the hint only if the user name begins
with the given prefix. Similarly, Suffix instructs radiusd to accept the hint
only if the user name ends with the given suffix. A hint may contain both
Prefix and Suffix attributes.

In addition to these two attributes, a hint’s lhs may contain User-ID
and Group attributes.

The following attributes, when used in a hint’s rhs have special meaning.
They are not appended to the request pair list. Instead, they are removed
after completing their function:

Fall-Through
If this attribute is present and is set to Yes, radiusd continues
scanning the hints after processing the current entry. This allows
radiusd to apply several hints to a single packet.

Rewrite-Function
If this attribute is present, the specified rewrite function is in-
voked.

Replace-User-Name
The value of this attribute is expanded (see Section 4.14 [Macro
Substitution], page 64) and replaces the value of the User-Name
attribute from the request.

Hint rules are defined in the ‘raddb/hints’ file (see Section 4.6 [hints
file], page 50).

2.4.4 Huntgroups

Huntgroups are special rules that allow an administrator to provide alternate
processing of certain incoming requests depending on the nas IP and port
number they come from. These rules are stored as a list of matching rules
(see Section 2.3 [Matching Rule], page 11).

Upon receiving a request, radiusd scans this list sequentially until it finds
an entry such that the conditions set forth in its lhs are matched by the
request. If such an entry is found, radiusd verifies that the request meets
the conditions described by rhs. If it does not, the request is rejected. In

16 GNU Radius Reference Manual

short, a huntgroup requires that any request matching its lhs must match
also its rhs.

The label part of the rule is not used in comparisons; instead it is
used to label huntgroups. All entries with the same label form a single
huntgroup. The special attribute Huntgroup-Name can be used to request
a match against a particular huntgroup (see Section 13.3.12 [Huntgroup-
Name], page 186).

Huntgroup rules are defined in the ‘raddb/huntgroups’ file (see
Section 4.7 [huntgroups file], page 50).

2.4.5 User Profiles

User profiles are per-user matching rules (see Section 2.3 [Matching Rule],
page 11). All incoming authentication requests are compared with the user
profiles after they have passed both hints and huntgroups. radiusd selects
the user profiles whose label matches the value of the User-Name attribute
from the incoming request.

The selected profiles form the list of authentication rules for the request.
In order for a profile to be selected, its label must either coincide literally
with the User-Name value, or be one of the special labels, DEFAULT or BEGIN.

Rules in an authentication list are ordered as follows: first go all the
profiles with the BEGIN label, followed by the profiles whose labels match the
User-Name literally, followed finally by the rules labeled with the DEFAULT.1

Within each of the three sublists, the rules preserve the order in which
they appear in the ‘raddb/users’ file. Once the list is constructed, it is
scanned sequentially until the rule is found whose lhs matches the incoming
request. If no such rule is found, the authentication fails. Otherwise, the
contents of its rhs are appended to the reply list being constructed. If the
rhs of the matched rule contains the attribute Fall-Through with the value
Yes, the matching continues. When the list is exhausted, the authentication
result is sent back to the nas along with the a/v pairs collected in the reply
list.

User profiles are defined in the ‘raddb/users’ file (see Section 4.9 [users
file], page 52).

1 For compatibility with other radius implementations, GNU Radius treats profile labels
in the form DEFAULT%d , where %d represents a decimal number, in the same way it
treats DEFAULT labels. The same applies to BEGIN labels.

Chapter 3: How to Start the Daemon. 17

3 How to Start the Daemon.

When started radiusd uses the configuration values from the following
sources (in order of increasing precedence):
• Compiled-in defaults
• ‘raddb/config’ file.
• Command line arguments

Whenever a command line options has its equivalent in config file the use
of this equivalent should be preferred (see Section 4.1 [config file], page 22).

The following command line options are accepted:

‘-A’
‘--log-auth-detail’

Enable detailed authentication logging. When this option
is specified each authentication request is logged to the
file ‘radacct/NASNAME/detail.auth’, where NASNAME is
replaced by the short name of the nas from ‘raddb/naslist’
Chapter 1 [Naming Conventions], page 5.
Config file equivalent: auth { detail yes; };.

‘-a DIR’
‘--acct-directory DIR’

Specify accounting directory.
Config file equivalent: option { acct-dir DIR; };.

‘-b’
‘--dbm’ Enable DBM support.

Config file equivalent: usedbm yes;.

‘-d DIR’
‘--config-directory DIR’
‘--directory D’

Specify alternate configuration directory. Default is
‘/usr/local/etc/raddb’.

‘-f’
‘--foreground’

Stay in foreground. We recommend to use it for debugging pur-
poses only.

‘-i IP’
‘--ip-address’

Specifies the ip address radiusd will listen on. If this option
is not specified, the program will listen on all IP addresses, as-
signed to the machine it runs on.
Config file equivalent: option { source-ip IP; };.

18 GNU Radius Reference Manual

Note that listen statement in ‘raddb/config’ provides a better
control over ip addresses to listen on (see Section 4.1.3 [auth],
page 28, and see Section 4.1.4 [acct], page 30).

‘-L’
‘--license’

Display GNU General Public License and exit.

‘-l DIR’
‘--logging-directory DIR’

Specify alternate logging directory.
Config file equivalent: option { log-dir DIR; };.

‘-mb’
‘--mode b’ “Builddbm” mode. Builds a DBM version of a plaintext users

database. Section 11.8 [Builddbm], page 130.

‘-mc’
‘--mode c’ Check configuration files and exit. All errors are reported via

usual log channels.

‘-mt’
‘--mode t’ Test mode. In this mode radiusd starts an interactive inter-

preter which allows to test various aspects of its configuration.

‘-N’
‘--auth-only’

Process only authentication requests.

‘-n’
‘--do-not-resolve’

Do not resolve IP addresses for diagnostic output. This can
reduce the amount of network traffic and speed up the server.
Config file equivalent: option { resolve no };.

‘-p PORTNO’
‘--port PORTNO’

Listen the udp port PORTNO. The accounting port is computed
as PORTNO + 1.

‘-P DIR’
‘--pid-file-dir DIR’

Specifies the alternate path for the pidfile.

‘-S’
‘--log-stripped-names’

Log usernames stripped off any prefixes/suffixes.
Config file equivalent: auth { strip-names yes };.

Chapter 3: How to Start the Daemon. 19

‘-s’
‘--single-process’

Run in single process mode. This is for debugging purposes only.
We strongly recommend against using this option. Use it only
when absolutely necessary.

‘-v’
‘--version’

Display program version and compilation options.

‘-x DEBUG_LEVEL’
‘--debug DEBUG_LEVEL’

Set debugging level. DEBUG LEVEL is a comma-separated list
of assignments in the forms

MODULE

MODULE = LEVEL

where MODULE is the module name or any non-ambiguous
assignment thereof, LEVEL is the debugging level in the range
0-100. Section 9.2 [Debugging], page 89
Config file equivalent:

logging {

category debug {

level DEBUG_LEVEL;

};

};

‘-y’
‘--log-auth’

Log authentications. With this option enabled, Radius will log
any authentication attempt into its log file Chapter 8 [Logging],
page 85.
Config file equivalent: logging { category auth { detail
yes; }; }; .

‘-z’
‘--log-auth-pass’

Log passwords along with authentication information. Do not
use this option. It is very insecure, since all users’ passwords
will be echoed in the logfile. This option is provided only for
debugging purposes.
Config file equivalent:

logging {

category auth {

print-pass yes;

};

};

See Section 4.1 [config file], page 22.

Chapter 4: Radius Configuration Files 21

4 Radius Configuration Files

At startup, GNU Radius obtains the information vital for its function-
ing from a number of configuration files. These are normally found in
/usr/local/etc/raddb directory, which is defined at configuration time, al-
though their location can be specified at runtime. In the discussion below
we will refer to this directory by ‘raddb’. See Chapter 1 [Naming Conven-
tions], page 5.

Each configuration file is responsible for a certain part of the GNU Radius
functionality. The following table lists all configuration files along with a
brief description of their purposes.

‘config’ Determines the runtime defaults for radiusd, such as the IP
address and ports to listen on, the sizes of the request queues,
configuration of the SNMP subsystem, fine-tuning of the exten-
sion languages, etc.

‘clients’ Lists the shared secret belonging to each nas. It is crucial for the
normal request processing that each nas have an entry in this
file. The requests from nases that are not listed in ‘clients’
will be ignored, as well as those from the nases that have a
wrong value for the shared secret configured in this file.

‘naslist’ Defines the types for the known nases. Its information is used
mainly when performing multiple login checking (see Section 6.9
[Multiple Login Checking], page 74).

‘nastypes’
Declares the known nas types. The symbolic type names, de-
clared in this file can be used in ‘naslist’.

‘dictionary’
Defines the symbolic names for radius attributes and attribute
values. Only the names declared in this file may be used in the
files ‘users’, ‘hints’ and ‘huntgroups’.

‘huntgroups’
Contains special rules that process the incoming requests basing
on the nas IP and port number they come from. These can also
be used as a kind of access control list.

‘hints’ Defines the matching rules that modify the incoming request
depending on the user name and its credentials.

‘users’ Contains the individual users’ profiles.

‘realms’ Defines the Radius realms and the servers that are responsible
for them.

‘access.deny’
A list of usernames that should not be allowed access via Radius.

22 GNU Radius Reference Manual

‘sqlserver’
Contains the configuration for the sql system. This includes
the type of sql interface used, the IP and port number of the
server and the definition of the sql requests used by radiusd.

‘rewrite’ Contains the source code of functions in Rewrite extension lan-
guage.

‘menus’ A subdirectory containing the authentication menus.

The rest of this chapter describes each of these files in detail.

4.1 Run-Time Configuration Options —
‘raddb/config’

At startup radiusd obtains its configuration values from three places. The
basic configuration is kept in the executable module itself. These values are
overridden by those obtained from ‘raddb/config’ file. Finally, the options
obtained from the command line override the first two sets of options.

When re-reading of the configuration is initiated either by SIGHUP signal
or by SNMP channel any changes in the config file take precedence over
command line arguments, since ‘raddb/config’ is the only way to change
configuration of the running program.

This chapter discusses the ‘raddb/config’ file in detail.
The ‘raddb/config’ consists of statements and comments. Statements

end with a semicolon. Many statements contain a block of sub-statements
which also terminate with a semicolon.

Comments can be written in shell, C, or C++ constructs, i.e. any of the
following represent a valid comment:

A shell comment

/* A C-style

* multi-line comment

*/

// A C++-style comment

These are the basic statements:

4.1.1 option block

Syntax:
option {

source-ip number ;

max-requests number ;

radiusd-user string ;

exec-program-user string ;

username-chars string ;

log-dir string ;

acct-dir string ;

resolve bool ;

Chapter 4: Radius Configuration Files 23

max-processes number ;

process-idle-timeout number ;

master-read-timeout number ;

master-write-timeout number ;

} ;

Usage

The option block defines the global options to be used by radiusd.

Boolean statements

resolve Determines whether radius should resolve the IP addresses for
diagnostic output. Specifying resolve no speeds up the server
and reduces the network traffic.

Numeric statements

source-ip
Sets the source ip address. When this statement is not present,
the ip address of the first available network interface on the
machine will be used as source.

max-requests
Sets the maximum number of the requests in queue.

max-processes
Sets the maximum number of child processes. The default value
is 16. If you plan to raise this value, make sure you have enough
file descriptors available, as each child occupies four descriptors
for its input/output channels.

process-idle-timeout
Sets the maximum idle time for child processes. A child termi-
nates if it does not receive any requests from the main process
within this number of seconds. By default, this parameter is
3600 seconds (one hour).

master-read-timeout
master-write-timeout

These two values set the timeout values for the interprocess in-
put/output operations in the main server process. More specif-
ically, master-read-timeout sets the maximum number of sec-
onds the main process will wait for the answer from the subpro-
cess, and master-write-timeout sets the maximum number
of seconds the main process will wait for the subprocess’s co-
munication channel to become ready for input. By default, no
timeouts are imposed.

24 GNU Radius Reference Manual

String statements

radiusd-user
Instructs radiusd to drop root privileges and to switch to the
real user and group IDs of the given user after becoming daemon.
Notice the following implications of this statement:
1. All configuration files must be readable for this user.
2. Authentication type System (see Section 6.5 [System Auth],

page 72) requires root privileges, so it cannot be used with
radiusd-user. Any ‘raddb/users’ profiles using this au-
thentication type will be discarded.

3. Authentication type PAM (see Section 6.7 [PAM Auth],
page 73) may require root provileges. It is reported to al-
ways require root privileges on some systems (notably on
Solaris).

4. exec-program-user statement (see below) is ignored when
used with radiusd-user.

exec-program-user
Sets the privileges for the programs executed as a result of Exec-
Program and Exec-Program-Wait. The real user and group ids
will be retrieved from the ‘/etc/passwd’ entry for the given user.

username-chars
Determines characters that are valid within a username. The al-
phanumeric characters are always allowed in a username, it is not
necessary to specify them in this statement. By default the fol-
lowing characters are allowed in a username: ‘.-_!@#$%^&\/"’.
The username-chars statement overrides this default, thus set-
ting:

username-chars ":"

will restrict the set of allowed characters to the alphanumeric
characters and colon. If you wish to expand the default character
set, you will have to explicitly specify it in the username-chars
argument, as shown in the example below:

username-chars ".-_!@#$%^&\\/\":"

(Notice the use of escape character ‘\’).

log-dir Specifies the logging directory.

acct-dir Specifies the accounting directory.

4.1.2 logging block

Syntax:
logging {

Chapter 4: Radius Configuration Files 25

prefix-hook string ;

suffix-hook string ;

category category_spec {

channel channel_name ;

print-auth bool ;

print-pass bool ;

print-failed-pass bool ;

level debug_level ;

} ;

channel channel_name {

file string ;

syslog facility . priority [tag] ;

print-pid bool ;

print-category bool ;

print-cons bool ;

print-level bool ;

print-priority bool ;

print-tid bool;

print-milliseconds bool;

prefix-hook string ;

suffix-hook string ;

};

} ;

Usage

The logging statement describes the course followed by radiusd’s logging
information.

The parts of this statement are discussed below.

4.1.2.1 Logging hooks

Most diagnostic messages displayed by radiusd describe some events that
occured while processig a certain incoming request. By default they contain
only a short summary of the event. Logging hooks are means of controlling
actual amount of information displayed in such messages. They allow you
to add to the message being displayed any relevant information from the
incoming request that caused the message to appear.

A hook is a special Rewrite function that takes three arguments and
returns a string. There are two kinds of logging hooks: prefix and suffix.
Return value from the prefix hook function will be displayed before the
actual log message, that of the suffix hook function will be displayed after
the message.

Furthermore, there may be global and channel-specific hooks. Global
hooks apply to all categories, unless overridden by category-specific hooks.
Global prefix hook is enabled by prefix-hook statement appearing in the
logging block. Global suffix hook is enabled by suffix-hook statement.
Both statements take as their argument the name of corresponding Rewrite
function.

26 GNU Radius Reference Manual

For detailed information about writing logging hooks, See Section 10.2.7
[Logging Hook Functions], page 105.

4.1.2.2 category statement

Each line of logging information generated by radiusd has an associated
category. The logging statement allows each category of output to be
controlled independently of the others. The logging category is defined by
category name and a severity. category name determines what part of ra-
diusd daemon is allowed to send its logging information to this channel. It
can be any of main, auth, acct, proxy, snmp. priority determines the min-
imum priority of the messages displayed by this channel. The priorities in
ascending order are: debug, info, notice, warn, err, crit, alert, emerg.

The full category specification, denoted by the category_spec in the
above section, can take any of the following three forms:

category name
Print the messages of given category.

priority Print messages of all categories, abridged by given priority. If
the priority is prefixed with ‘=’, only messages with given priority
will be displayed. If it is prefixed with ‘!’, the messages with
priority other than the specified will be displayed. Otherwise,
the messages with priorities equal to or greater than the specified
will be displayed.

category name . priority
Print the messages of given category, abridged by given priority.
The priority may be prefixed with either ‘=’ or ‘!’ as described
above. The dot (‘.’) separates the priority from the category
name, it may be surrounded by any amount of whitespace.

Additional category options valid for auth category are:

print-auth
Log individual authentications.

print-pass
Include passwords for successful authentications. It is very in-
secure, since all users’ passwords will be echoed in the logfile.
This option is provided only for debugging purposes.

print-failed-pass
Include passwords for failed authentications.

4.1.2.3 channel statement

Channels represent methods for recording logging information. Each channel
has a unique name, and any categories which specify that name in a channel
statement will use that channel.

Chapter 4: Radius Configuration Files 27

radiusd can write logging information to files or send it to syslog. The
file statement sends the channel’s output to the named file (see Chapter 1
[Naming Conventions], page 5). The syslog statement sends the channel’s
output to syslog with the specified facility and severity. Its optional last
argument allows to alter default syslog tag.

Channel options modify the data flowing through the channel:

print-pid
Add the process id of the process generating the logging infor-
mation.

print-cons
Also send the logging information to the system console.

print-category
Add the category name to the logging information.

print-priority
print-level

Add the priority name to the logging information.

print-milliseconds
Print timestamp with milliseconds.

prefix-hook
Declares the name of Rewrite function used as logging prefix
hook for that channel (see Section 4.1.2.1 [hooks], page 25). This
overrides any global prefix hook.

suffix-hook
Declares the name of Rewrite function used as logging suffix
hook for that channel (see Section 4.1.2.1 [hooks], page 25). This
overrides any global suffix hook.

4.1.2.4 Example of the logging statement
logging {

channel default {

file "radius.log";

print-category yes;

print-priority yes;

};

channel info {

file "radius.info";

print-pid yes;

print-cons yes;

print-priority yes;

};

channel notice {

syslog auth.notice;

};

28 GNU Radius Reference Manual

category auth {

print-auth yes;

print-failed-pass yes;

};

category notice {

channel notice;

};

category info {

channel info;

};

category debug {

channel info;

level radiusd=1,files;

};

category *.!debug {

channel default;

};

};

4.1.3 auth statement

Syntax:
auth {

listen (addr-list | no);

forward addr-list;

port number ;

max-requests number ;

time-to-live number ;

request-cleanup-delay number ;

detail bool ;

strip-names bool ;

checkrad-assume-logged bool ;

password-expire-warning number ;

compare-atribute-flag character ;

trace-rules bool ;

reject-malformed-names bool ;

} ;

Usage:

The auth statement configures the parameters of the authentication service.

listen statement

This statement determines on which addresses radiusd will listen for in-
coming authentication requests. Its argument is a comma-separated list of
items in the form ip:port-number. ip can be either an IP address in familiar
“dotted-quad” notation or a hostname. :port-number part may be omitted,
in which case the default authentication port is assumed.

Chapter 4: Radius Configuration Files 29

If the listen statement is omitted, radiusd will accept incoming requests
from any interface on the machine.

The special value no disables listening for authentication requests.
The following example configures radius to listen for the incoming re-

quests on the default authentication port on the address 10.10.10.1 and on
port 1645 on address 10.10.11.2.

listen 10.10.10.1, 10.10.11.2:1645;

forward statement

This statement enables forwarding of the requests to the given set of servers.
Forwarding is an experimental feature of GNU Radius, it differs from prox-
ying in that the requests are sent to the remote server (or servers) and
processed locally. The remote server is not expected to reply.

This mode is intended primarily for debugging purposes. It could also be
useful in some very complex and unusual configurations.

Numeric statements

port Sets the number of which udp port to listen on for the authen-
tication requests.

max-requests
Sets the maximum number of authentication requests in the
queue. Any surplus requests will be discarded.

time-to-live
Sets the request time-to-live in seconds. The time-to-live is the
time to wait for the completion of the request. If the request
job isn’t completed within this interval of time it is cleared, the
corresponding child process killed and the request removed from
the queue.

request-cleanup-delay
Sets the request cleanup delay in seconds, i.e. determines how
long will the completed authentication request reside in the
queue.

password-expire-warning
Sets the time interval for password expiration warning. If user’s
password expires within given number of seconds, radiusd will
send a warning along with authentication-acknowledge response.
Default is 0.

Boolean statements

detail When set to true, radiusd will produce the detailed log of each
received packet in the file ‘radacct/nasname/detail.auth’.
The format of such log files is identical to the format of detailed

30 GNU Radius Reference Manual

accounting files (see Section 7.2 [Detailed Request Accounting],
page 81).

strip-names
Determines whether radiusd should strip any prefixes/suffixes
off the username before logging.

checkrad-assume-logged
See Section 4.1.11 [mlc], page 39, for the description of this set-
ting. It is accepted in auth for compatibility with previous ver-
sions of GNU Radius.

trace-rules
Enables tracing of the configuration rules that were matched
during processing of each received authentication request. See
Section 9.1 [Rule Tracing], page 87, for detailed information
about this mode.

reject-malformed-names
Enables sending access-reject replies for the access-accept re-
quests that contain an invalid value in User-Name attribute. By
default such requests are discarded without answering. See the
description of username-chars (see Section 4.1.1 [Option state-
ment], page 22).

Character statement

compare-attribute-flag
The argument to this statement is a character from ‘1’ through
‘9’. This statement modifies the request comparison method for
authentication requests. See Section 5.1 [Extended Compari-
son], page 67, for a detailed description of its usage.

4.1.4 acct statement

Syntax:
acct {

listen (addr-list | no);

forward addr-list ;

port number ;

detail bool;

system bool;

max-requests number ;

time-to-live number ;

request-cleanup-delay number ;

compare-atribute-flag character ;

trace-rules bool ;

} ;

Chapter 4: Radius Configuration Files 31

Usage:

The acct statement configures the parameters of the accounting service.

listen statement

This statement determines on which addresses radiusd will listen for incom-
ing accounting requests. Its argument is a comma-separated list of items in
the form ip:port-number. ip can be either an IP address in familiar “dotted-
quad” notation or a hostname. :port-number part may be omitted, in which
case the default accounting port is assumed.

If the listen statement is omitted, radiusd will accept incoming requests
from any interface on the machine.

The special value no disables listening for accounting requests.
The following example configures radius to listen for the incoming re-

quests on the default accounting port on the address 10.10.10.1 and on port
1646 on address 10.10.11.2.

listen 10.10.10.1, 10.10.11.2:1646;

forward statement

This statement enables forwarding of the requests to the given set of servers.
Forwarding is an experimental feature of GNU Radius, it differs from prox-
ying in that the requests are sent to the remote server (or servers) and
processed locally. The remote server is not expected to reply.

This mode is intended primarily for debugging purposes. It could also be
useful in some very complex and unusual configurations.

Numeric statements

port Sets the number of which port to listen for the authentication
requests.

max-requests
Sets the maximum number of accounting requests in the queue.
Any surplus requests will be discarded.

time-to-live
Sets the request time-to-live in seconds. The time-to-live is the
time to wait for the completion of the request. If the request
job isn’t completed within this interval of time it is cleared, the
corresponding child process killed and the request removed from
the queue.

request-cleanup-delay
Sets the request cleanup delay in seconds, i.e. determines how
long will the completed account request reside in the queue.

32 GNU Radius Reference Manual

Boolean statements

detail When set to no, disables detailed accounting (see Section 7.2
[Detailed Request Accounting], page 81).

system When set to no, disables system accounting (see Section 7.1
[System Accounting], page 81). Notice, that this will disable
simultaneous use checking as well, unless you supply an alterna-
tive mlc method (currently sql, See Section 6.9 [Multiple Login
Checking], page 74, for the detailed discussion of this).

trace-rules
Enables tracing of the configuration rules that were matched
during processing of each received accounting request. See
Section 9.1 [Rule Tracing], page 87, for detailed information
about this mode.

Character statement

compare-attribute-flag
The argument to this statement is a character from ‘1’ through
‘9’. This statement modifies the request comparison method for
authentication requests. See Section 5.1 [Extended Compari-
son], page 67, for a detailed description of its usage.

4.1.5 usedbm statement

Syntax:
usedbm (yes | no) ;

Usage

The usedbm statement determines whether the DBM support should be en-
abled.

no Do not use DBM support at all.

yes Use only the DBM database and ignore ‘raddb/users’.

4.1.6 snmp statement

Syntax:
snmp {

port portno ;

listen (addr-list | no);

max-requests number ;

time-to-live number ;

request-cleanup-delay number ;

ident string ;

Chapter 4: Radius Configuration Files 33

community name (rw | ro) ;

network name network [network ...] ;

acl {

allow network_name community_name ;

deny network_name ;

} ;

storage {

file filename ;

perms number ;

max-nas-count number ;

max-port-count number ;

} ;

};

Usage

The snmp statement configures the SNMP service.

listen statement

The listen statement determines on which addresses radiusd will listen for
incoming SNMP requests. The argument is a comma-separated list of items
in the form ip:port-number. The ip can be either an IP address in familiar
“dotted-quad” notation or a hostname. The :port-number part may be
omitted, in which case the default SNMP port (161) is used.

If the listen statement is omitted, radiusd will accept incoming requests
from any interface on the machine.

The special value no disables listening for SNMP requests.
The following example configures radius to listen for the incoming SNMP

requests on the default SNMP port on the address 10.10.10.1 and on port
4500 on address 10.10.11.2.

listen 10.10.10.1, 10.10.11.2:4500;

Numeric statements

port Sets the number of which port to listen for the SNMP requests.
max-requests

Sets the maximum number of SNMP requests in the queue. Any
surplus requests will be discarded.

time-to-live
Sets the request time-to-live in seconds. The time-to-live is the
time to wait for the completion of the request. If the request
job isn’t completed within this interval of time it is cleared, the
corresponding child process killed and the request removed from
the queue.

request-cleanup-delay
Sets the request cleanup delay in seconds, i.e. determines how
long will the completed SNMP request reside in the queue.

34 GNU Radius Reference Manual

String statements

ident Sets the SNMP server identification string.

Community and network definitions

community name (rw | ro)
Defines the community name as read-write (rw) or read-only
(ro).

network name network [network ...]
Groups several networks or hosts under one logical network
name.

Access-Control List definitions

allow network_name community_name
allow hosts from the group network name access to community
community name.

deny NETWORK_NAME
Deny access to SNMP service from any host in the group net-
work name.

Storage control

GNU Radius stores the SNMP monitoring data in an area of shared memory
mapped to an external file. This allows all subprocesses to share this infor-
mation and to accumulate the statistics across invocations of the daemon.

The storage statement controls the usage of the storage for the SNMP
data.

file Sets the file name for the SNMP storage file. Unless the filename
begins with a ‘/’ it is taken as relative to the current logging
directory.

perms Sets the access permissions for the storage file. Notice, that this
statement does not interpret its argument as octal by default,
so be sure to prefix it with ‘0’ to use an octal value.

max-nas-count
Sets maximum number of NASes the storage file is able to han-
dle. Default is 512. Raise this number if you see the following
message in your log file:� �
reached SNMP storage limit for the number of
monitored NASes: increase max-nas-count
 	

Chapter 4: Radius Configuration Files 35

max-port-count
Sets maximum number of ports the storage file is able to han-
dle. Default is 1024. Raise this number if you see the following
message in your log file:� �
reached SNMP storage limit for the number of
monitored ports: increase max-port-count
 	

4.1.7 rewrite statement.

(This message will disappear, once this node revised.)

Syntax:
rewrite {

stack-size number ;

load-path string ;

load string ;

};

Numeric statements

stack-size
Configures runtime stack size for Rewrite. The number is the
size of stack in words. The default value is 4096.

String statements

load-path
Add specified pathname to the list of directories searched for
rewrite files.

load Loads the specified source file on startup. Unless string is an
absolute pathname, it will be searched in directories set up by
load-path statement.

Loading

The default load path is ‘RADDB’:‘DATADIR’/rewrite.

4.1.8 guile statement

(This message will disappear, once this node revised.)
The guile statement allows to configure server interface with Guile.

Syntax
guile {

debug bool ;

load-path string ;

36 GNU Radius Reference Manual

load string ;

load-module string [string ...] ;

eval expression [expression ...] ;

gc-interval number ;

outfile string ;

};

Usage

Boolean statements

debug When set to yes, enables debugging evaluator and backtraces on
Guile scripts.

Numeric statements

gc-interval
Configures the forced garbage collections. By default the invo-
cation of the garbage collector is run by the internal Guile mech-
anism. However, you may force Radius to trigger the garbage
collection at fixed time intervals. The gc-interval statement
sets such interval in seconds.
For more information about Guile memory management sys-
tem in general and garbage collections in particular, see Section
“Memory Management and Garbage Collection” in The Guile
Reference Manual.

String statements

eval Evaluates its argument as Scheme expression.

load-path
Adds specified pathname to %load-path variable.

load Loads the specified source file on startup.

load-module
Loads the specified Scheme module on startup. This statement
takes an arbitrary number of arguments. The first argument
specifies the name of the module to load, the rest of arguments
is passed to the module initialization funtion. Module initializa-
tion function is a function named ‘module-init’, where module
is the module name. Arguments are converted using usual Guile
rules, except that the ones starting with a dash (‘-’) are con-
verted to keyword arguments.

outfile Redirects the standard output and standard error streams of the
Guile functions to the given file. Unless the filename starts with
‘/’, it is taken relative to the current logging directory.

Chapter 4: Radius Configuration Files 37

See Section 10.3 [Guile], page 115, for a detailed description of Guile
extensions interface.

4.1.9 message statement

The message statement allows to set up the messages that are returned to
the user with authentication-response packets.

Syntax
message {

account-closed string ;

password-expired string ;

password-expire-warning string ;

access-denied string ;

realm-quota string ;

multiple-login string ;

second-login string ;

timespan-violation string ;

};

All variables in message block take a string argument. In string you can
use the usual C backslash notation to represent non-printable characters.
The use of %C{} and %R{} sequences is also allowed (see Section 4.14
[Macro Substitution], page 64).

String statements

account-closed
This message will be returned to the user whose account is ad-
ministratively closed.

password-expired
This message will be returned to the user whose password has
expired.

password-expire-warning
This is a warning message that will be returned along with
an authentication-acknowledge packet for the user whose pass-
word will expire in less than n seconds. The value of n is
set by password-expire-warning variable in auth block. See
Section 4.1.3 [auth], page 28. In this string, you can use the
%R{Password-Expire-Days} substitution, to represent the ac-
tual number of days left to the expiration date. The default
is

Password Will Expire in %R{Password-Expire-Days} Days\r\n

access-denied
This message is returned to the user who supplies an incorrect
password or a not-existent user-name as his authentication cre-
dentials.

38 GNU Radius Reference Manual

realm-quota
This message is returned when the user is trying to log in using
a realm, and number of users that are currently logged in from
this realm reaches maximum value. For a description of realms,
see Section 2.4.2.2 [Realms], page 14.

multiple-login
This message is returned to the user, who has logged in more
than allowed number of times. For description of how to set
the maximum number of concurrent logins, see Section 13.3.25
[Simultaneous-Use], page 192.

second-login
This is a special case of multiple-login, which is used when
the user’s login limit is 1.

timespan-violation
This message is returned to the user who is trying to login out-
side of allowed time interval. For description of how to limit
user’s login time, see Section 13.3.14 [Login-Time], page 187.

4.1.10 filters statement

The filters statement configures user-defined external filters. See
Section 10.1 [Filters], page 95, for the detailed discussion of external filters.

Syntax
filters {

filter ident {

exec-path path ;

error-log filename ;

common bool [max-wait];

auth {

input-format fmt ;

wait-reply bool ;

};

acct {

input-format fmt ;

wait-reply bool ;

};

};

...

};

Each filter directive defines a new filter. The ident argument declares the
name of the filter. This string must be used in Exec-Program-Wait or Acct-
Ext-Program attributes to trigger invocation of this filter (see Section 13.3.7
[Exec-Program-Wait], page 181).

Usage

Chapter 4: Radius Configuration Files 39

exec-path path
Absolute path to the filter program.

error-log filename
Redirect error output from the filter program to filename. If the
filename does not start with a slash, it is taken relative to the
current logging directory (see Section 4.1.1 [option], page 22).

auth
acct

These compound statements define authentication and account-
ing parts of this filter. Any one of them may be missing. The
two statements allowed within auth and acct blocks are:

input-format fmt
Format of the input line for this filter. Usually this
string uses %C{} notations (see Section 4.14 [Macro
Substitution], page 64).
You can also use the return value from a rewrite
function as input line to the filter. To do so, declare:

input-format "=my_func()";

where my func is the name of the rewrite function
to invoke. The function must return string value.

wait-reply bool
If the filter prints a single line of output for each
input line, set this to yes. Otherwise, if the filter
produces no output, use wait-reply no.

4.1.11 mlc statement

Syntax
mlc {

method (system|sql);

checkrad-assume-logged bool;

};

Usage

Mlc statement configures multiple login checking subsystem (see Section 6.9
[Multiple Login Checking], page 74).

method Sets the method of retrieving information about the currently
open sessions. Currently two methods are implemented. Set-
ting method to system will use system accounting database (see
Section 7.1 [System Accounting], page 81). This is the default
method. Setting it to sql will use sql database.

40 GNU Radius Reference Manual

checkrad-assume-logged
radiusd consults the value of this variable when the nas does
not responds to checkrad queries (see Section 6.9 [Multiple Login
Checking], page 74). If this variable is set to yes, the daemon
will proceed as if the nas returned “yes”, i.e. it will assume the
user is logged in. Otherwise radiusd assumes the user is not
logged in.

4.2 Dictionary of Attributes — ‘raddb/dictionary’
The dictionary file ‘raddb/dictionary’ defines the symbolic names for ra-
dius attributes and their values (see Section 2.1 [Attributes], page 7). The
file consists of a series of statements, each statement occupies one line.

In the detailed discussion below we use the following meta-syntactic char-
acters:

number Denotes a decimal, octal or hexagesimal number. Usual C con-
ventions are honored, i.e. if number starts with ‘0x’ or ‘0X’ it is
read as a hex number, if it starts with ‘0’ it is read as an octal
number, otherwise it is read as a decimal one.

type Denotes an attribute type. These are valid attribute types:

string A string type.

integer An integer type.

ipaddr ip address in a dotted-quad form.

date A date in the format: "MON DD CCYY", where
MON is the usual three-character abbreviation, DD
is day of month (1-31), CCYY is the year, including
the century.

4.2.1 Comments

Comments are introduced by a pound sign (‘#’). Everything starting from
the first occurrence of ‘#’ up to the end of line is ignored.

4.2.2 $INCLUDE Statement

Syntax
$INCLUDE ‘filename’

Usage

The $INCLUDE statement causes the contents of the file ‘filename’ to be read
in and processed. The file is looked up in the Radius database directory,
unless its name starts with a slash.

Chapter 4: Radius Configuration Files 41

4.2.3 VENDOR Statement

Syntax
VENDOR vendor-name vendor-id

Usage

A VENDOR statement defines the symbolic name vendor-name for vendor iden-
tifier vendor-id. This name can subsequently be used in ATTRIBUTE state-
ments to define Vendor-Specific attribute translations. See Section 13.1.26
[Vendor-Specific], page 175.

Example
VENDOR Livingston 307

4.2.4 ATTRIBUTE statement

Syntax
ATTRIBUTE name number type [vendor] [flags]

Usage

The ATTRIBUTE statement defines the internal representation of an attribute:
its symbolic name, data type and syntactical usage. Its parts have the
following meaning:

name The attribute name.

number The attribute ID (number).

type The attribute type.

vendor Vendor name for vendor-specific attributes. For usual attributes
this field is empty or contains a dash (‘-’). The latter usage is
for compatibility with previos version of GNU Radius

flags Flags, defining attribute properties (see Section 2.1 [Attributes],
page 7).

The attribute property flags consist of a sequence of letters, whose mean-
ing is determined by the following rules:1

1. The attribute usage is described by three pairs of symbols, enclosed
in square brackets. Each pair describes how the attribute can be
used in each of three configuration files. The first pair corresponds
to ‘raddb/users’, the second one corresponds to ‘raddb/hints’, and
the third one corresponds to ‘raddb/huntgroups’. Within each pair,

1 The flags are optional for compatibility with previous versions of GNU Radius. If they
are omitted, the default is ‘[LRLRLR]+’

42 GNU Radius Reference Manual

the letter ‘L’ in first position means that the attribute is allowed in lhs
of a rule. The letter ‘R’ in second position means that the attribute is
allowed in rhs of a rule. The absence of any of these letters is indicated
by dash (‘-’). Thus, the following usage specification:

[L--RLR]

means that the attribute may be used in lhs of a rule in ‘raddb/users’,
in rhs of a rule in ‘raddb/hints’, and in both sides of a rule in
‘raddb/huntgroups’.

2. The attribute additivity is described by one of the following letters:
= Additivity = Replace
+ Additivity = Append
N Additivity = None

3. The presence of letter ‘P’ in property flags raises the propagation bit.
4. Letter ‘l’ (lower-case ell) enables logging the given attribute in detail

file (see Section 7.2 [Detailed Request Accounting], page 81). This is
meaningful only for internal attributes, i.e. the ones whose decimal
value is greater than 255 (see Section 13.3 [Radius Internal Attributes],
page 178). By default such attributes do not appear in detailed logs.
The flag ‘l’ reverts this behavior.

5. Letter ‘E’ marks attributes encrypted as described in RFC 2138. Cur-
rently these are User-Password and CHAP-Password.

6. Letter ‘T’ marks attribute encrypted according to RFC 2868.
7. The characters from ‘1’ to ‘9’ denote nine user-defined flags (see

Section 5.1 [Extended Comparison], page 67).

Example
ATTRIBUTE Service-Type 6 integer - [LR-RLR]=P

This statement declares that the attribute number 6 will be referred to
by the symbolic name ‘Service-Type’. The attribute is of integer data
type and it may be used in any part of matching rules, except in lhs of
a ‘raddb/hints’ rule. The additivity of Service-Type is set to ‘Replace’.
The attribute will be propagated through the proxy chain.

4.2.5 Blocks of Vendor-Specific Attributes

Syntax
BEGIN VENDOR vendor-name [vendor-id]

...

END

Usage

The BEGIN keyword marks start of the block of definitions of vendor-specific
attributes. The block is terminated by END keyword, optionally followed by

Chapter 4: Radius Configuration Files 43

an arbitrary number of words, which are regarded as a comment. The block
may contain any valid dictionary declarations, except other blocks: nesting
of declaration blocks is not allowed.

If vendor-id is absent, the value of vendor ID is looked up in the internal
table of vendors; therefore, it must be defined before BEGIN statement (see
Section 4.2.3 [VENDOR], page 41).

BEGIN---END block alters the handling of ATTRIBUTE statements within it.
If ATTRIBUTE statement does not contain an explicit vendor-id specification,
the value of vendor-id is used instead.

For compatibility with FreeRadius an alternative syntax is also sup-
ported:

BEGIN-VENDOR vendor-name

...

END-VENDOR vendor-name

Such compatibility blocks must appear only ater the declaration of vendor-
name (see Section 4.2.3 [VENDOR], page 41).

Example

The following is the usual way of definig vendor-specific attributes:
VENDOR Livingston 307

ATTRIBUTE LE-Terminate-Detail 2 string Livingston

ATTRIBUTE LE-Advice-of-Charge 3 string Livingston

The following two examples show the alternative ways:
VENDOR Livingston 307

BEGIN VENDOR Livingston

ATTRIBUTE LE-Terminate-Detail 2 string

ATTRIBUTE LE-Advice-of-Charge 3 string

END

BEGIN VENDOR Livingston 307

ATTRIBUTE LE-Terminate-Detail 2 string

ATTRIBUTE LE-Advice-of-Charge 3 string

END

These three examples are completely equivalent to each other.

4.2.6 ALIAS statement

Syntax
ALIAS name alt-name

Usage

The ALIAS statement defines an altenative name alt-name for attribute
name. The latter should already be defined, otherwise an error occurs.

44 GNU Radius Reference Manual

Example
ALIAS User-Password Password

4.2.7 PROPERTY statement

Syntax
PROPERTY name flags

PROPERTY name +flags [-flags ...]

Usage

The PROPERTY statement redefines property flags for attribute name. The
attribute must be defined, otherwise an error occurs. The PROPERTY state-
ment has two forms. In first form, it takes a single argument, representing
new property flags for the attribute. In its second form it takes any number
of arguments, each of them preceeded by ‘+’ sign, inidicating addition of
properties, or by ‘-’ sign, indicating removal of these.

See Section 4.2.4 [ATTRIBUTE], page 41, for the discussion of attribute
property flags.

Example

The following example defines that the attribute User-Password may be
used only on left-hand side of a ‘raddb/users’ entry, and that it is trans-
mitted in encrypted form.

PROPERTY User-Password [L-----]E

Next example illustrates adding and removing attribute properties:
PROPERTY My-Attrib +P -=

it adds propagation bit (‘P’) and removes ‘replace’ additivity from My-
Attrib attribute.

4.2.8 VALUE Statement

Syntax
VALUE Attribute-Translation Value-Translation number

Usage

The VALUE statement assigns a translation string to a given value of an
integer attribute. Attribute-Translation specifies the attribute and the
Value-Translation specifies the name assigned to the value number of this
attribute.

Example

The following assigns the translation string ‘Login-User’ to the value 1 of
the attribute ‘Service-Type’.

VALUE Service-Type Login-User 1

Chapter 4: Radius Configuration Files 45

4.3 Clients List — ‘raddb/clients’
The ‘raddb/clients’ lists nases which are allowed to make authentication
requests. As usual, the ‘#’ character introduces a comment. Each record in
the file consists of two fields, separated by whitespace. The fields are:

NAS name
Specifies a hostname or ip address of the nas.

Key Lists the encryption key shared between the server and this nas.
If the set of nases share the same encryption key, there are two ways to

list it in ‘raddb/clients’. First, if these nases lie in a single network, you
can specify this network address in NAS name field, e.g.:

10.10.10.0/27 seCRet

Notice also that specifying full netmask after the ‘/’ character is also
allowed, so that the above example could also be written as follows:

10.10.10.0/255.255.255.224 seCRet

Otherwise, the keyword DEFAULT may be used as NAS name. This no-
tation will match any ip address, so it should be used with caution.

4.3.1 Example of ‘clients’ file
This is a list of clients which are allowed to make authentication

requests.

Each record consists of two fields:

i. Valid hostname.

ii. The shared encryption key for this hostname.

#

#Client Name Key

#---------------- -------------------

myhost.dom.ain guessme

merlin emrys

11.10.10.10 secRet

4.4 NAS List — ‘raddb/naslist’
The ‘raddb/naslist’ file contains a list of nases known to the Radius server.
Each record in the file consist of the following four fields, the first two being
mandatory, the last two being optional:

NAS name
Specifies either a hostname or ip address for a single nas or a
CIDR net block address for a set of nases. The word ‘DEFAULT’
may be used in this field to match any nas.2

Short Name
This field defines a short name under which this nas will be
listed in logfiles. The short name is also used as a name of the
subdirectory where the detailed logs are stored.

2 Logins from DEFAULT nases are not reflected in SNMP variables.

46 GNU Radius Reference Manual

Type Specifies the type of this nas. Using this value radiusd deter-
mines the way to query nas about the presence of a given user
on it (see Section 6.9 [Multiple Login Checking], page 74). The
two special types: ‘true’ and ‘false’, can be used to disable
nas querying. When the type field contains ‘true’, radiusd as-
sumes the user is logged in to the nas, when it contains ‘false’,
radiusd assumes the user is not logged in. Otherwise, the type
is used as a link to ‘nastypes’ entry (see Section 4.5 [nastypes
file], page 47).
If this field is not present ‘true’ is assumed.

Arguments
Additional arguments describing the nas. Multiple arguments
must be separated by commas. No intervening whitespace is
allowed in this field.

There are two groups of nas arguments: nas-specific arguments and nas-
querying arguments. Nas-specific arguments are used to modify a behavior
of radiusd when sending or receiving the information to or from a particular
nas.

Nas-querying arguments control the way radiusd queries a nas for con-
firmation of a user’s session (see Section 6.9 [Multiple Login Checking],
page 74). These arguments override the ones specified in ‘nastypes’ and
can thus be used to override the default values.

The nas-specific arguments currently implemented are:

broken pass
This is a boolean argument that controls the encryption of user
passwords, longer than 16 octets. By default, radiusd uses
method specified by rfc 2865. However some nases, most no-
tably max ascend series, implement a broken method of encod-
ing long passwords. This flag instructs radiusd to use broken
method of password encryption for the given nas.

compare-auth-flag=flag
Instructs radius to use attributes marked with a given
user-defined flag when comparing authentication requests. It
overrides compare-attribute-flag (see Section 4.1.3 [auth],
page 28) for this particular nas. See Section 5.1 [Extended
Comparison], page 67, for a detailed description of its usage.

compare-acct-flag=flag
Instructs radius to use attributes marked with a given user-
defined flag when comparing accounting requests. It overrides
compare-attribute-flag (see Section 4.1.4 [acct], page 30) for
this particular nas. See Section 5.1 [Extended Comparison],
page 67, for a detailed description of its usage.

Chapter 4: Radius Configuration Files 47

See Section 2.4.1 [Checking Duplicates], page 12, for general description
of request comparison methods.

For the list of nas-querying arguments, See Section 4.5 [Full list of allowed
arguments], page 47.

4.4.1 Example of ‘naslist’ file
raddb/naslist: contains a list of Network Access Servers

#

Each record consists of following fields:

#

i. A valid hostname or IP address for the client.

ii. The short name to use in the logfiles for this NAS.

iii. Type of device. Valid values are ‘true’, ‘false’ and

those defined in raddb/nastypes file.

NAS Name Short Name Type

#---------------- ---------- ----

myhost.dom.ain myhost unix

merlin merlin max

11.10.10.10 arthur livingston

4.5 NAS Types — ‘raddb/nastypes’
The ‘raddb/nastypes’ file describes the ways to query nases about active
user sessions.

4.5.1 Syntax of ‘raddb/nastypes’

(This message will disappear, once this node revised.)

Syntax
Each record consists of three fields separated by any amount of whitespace.
The fields are:

Type Type of the nas which is described in this record.

Method Method to use to query a nas of given type.

Arguments
Arguments to pass to this method. Each argument is a pair
arg=value, where arg is its name and value is a value assigned
to it. The list of predefined argument names follows. Note, that
no intervening whitespace is allowed in this field.

Methods
Version 1.6 of GNU Radius supports following querying methods: finger,
snmp, external and guile. .

48 GNU Radius Reference Manual

Arguments
In the discussion below n means numeric and s string value.

The following arguments are predefined:

Common for all methods

function=s
Specifies the check function to use with this method (see
Section 10.2.5 [Login Verification Functions], page 103). This
argument must be present. For description of how this function
is applied, see Section 6.9 [Multiple Login Checking], page 74.

port=n Use port number n instead of the default for the given method.

Method snmp

password=s
Use community s instead of the default. This argument must be
present.

retries=n Retry n times before giving up.

timeout=n
Timeout n seconds on each retry.

Method finger

timeout=n
Give up if the nas does not respond within n seconds.

notcp
tcp=0 Disable the use of T/TCP for hosts with a broken TCP imple-

mentation.

arg=subst Send subst to finger, instead of username. subst must be one of
macro variables, described below.

Macro variables

The following macro-variables are recognized and substituted when encoun-
tered in the value pair of an argument:

‘%u’ Expands to username.

‘%s’ Expands to session id.

‘%d’ Expands to session id converted to decimal representation.

‘%p’ Expands to port number.

‘%P’ Expands to port number + 1.

Chapter 4: Radius Configuration Files 49

4.5.2 Example of nastypes file.

Note, that in the following example the long lines are broken into several
lines for readability.

Type Method Args

---- ------ ----

unix finger function=check_unix

max-f finger function=check_max_finger

max snmp oid=.1.3.6.1.4.1.529.12.3.1.4.%d,

function=check_snmp_u

as5300-f finger function=check_as5300_finger

as5300 snmp oid=.1.3.6.1.4.1.9.9.150.1.1.3.1.2.%d,

function=check_snmp_u

livingston snmp oid=.1.3.6.1.4.1.307.3.2.1.1.1.5.%P,

function=check_snmp_s

4.5.3 Standard nas types

The ‘nastypes’ shipped with version 1.6 of GNU Radius defines following
nas types:

unix — UNIX boxes running Finger
This type suits for unix boxes running finger service able to re-
turn information about dial-up users active on them. To enable
finger checking of a unix host add following to your ‘naslist’
file:

#Hostname Shortname Type

#-------- --------- ----

nas.name T unix

max-f — MAX Ascend with Finger
Use this type if you have MAX Ascend terminal server that
answers finger queries. The ‘naslist’ entry for such nas will
look like:

#Hostname Shortname Type Flags

#-------- --------- ---- -----

nas.name T max-f broken_pass

Note the use of broken_pass flag. It is needed for most MAX
Ascend servers (see Section 4.4 [naslist file], page 45).

max — MAX Ascend, answering SNMP
Use this type if you have MAX Ascend terminal server that
answers SNMP queries. The ‘naslist’ entry for such nas will
look like:

#Hostname Shortname Type Flags

#-------- --------- ---- -----

nas.name T max-f broken_pass,community=comm

Replace comm with your actual SNMP community name.

50 GNU Radius Reference Manual

as5300-f — Cisco AS5300 running finger
as5300 — Cisco AS5300 answering SNMP
livingston — Livingston Portmaster

Type livingston queries portmaster using SNMP.

4.6 Request Processing Hints — ‘raddb/hints’
The ‘raddb/hints’ file is used to modify the contents of the incoming re-
quest depending on the username. For a detailed description of this, See
Section 2.4.3 [Hints], page 14.

The file contains data in Matching Rule format (see Section 2.3 [Matching
Rule], page 11).

Notice, that versions of GNU Radius up to 1.0 allowed to use only a
subset of attributes in the check list of a ‘hints’ entry, namely:
• Suffix

• Prefix

• Group

• User-ID

This requirement has been removed in version 1.0.

4.6.1 Example of ‘hints’ file
If the username starts with ‘U’, append the UUCP hint

DEFAULT Prefix = "U", Strip-User-Name = No

Hint = "UUCP"

If the username ends with ‘.slip’, append the SLIP service data

and remove the suffix from the user name.

DEFAULT Suffix = ".slip",

Strip-User-Name = Yes

Hint = "SLIP",

Service-Type = Framed-User,

Framed-Protocol = SLIP

4.7 Huntgroups — ‘raddb/huntgroups’
The ‘raddb/huntgroups’ contains the definitions of the huntgroups. For a
detailed description of huntgroup concept, See Section 2.4.4 [Huntgroups],
page 15.

The file contains data in Matching Rule format (see Section 2.3 [Matching
Rule], page 11).

4.7.1 Example of ‘huntgroups’ file.
This defines the packet rewriting function for the server 11.10.10.11

DEFAULT NAS-IP-Address = 11.10.10.11, Rewrite-Function = "max_fixup"

NULL

Chapter 4: Radius Configuration Files 51

4.8 List of Proxy Realms — ‘raddb/realms’
The ‘raddb/realms’ file lists remote Radius servers that are allowed to com-
municate with the local Radius server (see Section 2.4.2 [Proxying], page 13).

Each record consists of up to three fields, separated by whitespace. Two
of them are mandatory. The fields are:

Realm name
Specifies the name of the realm being defined, i.e. part of the
login name after the ‘@’ symbol. There are three special forms
of this field.
The name ‘NOREALM’ defines the empty realm, i.e. lines marked
with this name will match user names without any realm suffix.
The name ‘DEFAULT’ defines the default realm (see
Section 2.4.2.2 [Realms], page 14). The lines with this realm
name will match any user name, not matched by any other line
in ‘raddb/realms’.

Remote server list
A comma-separated list of remote servers to which the requests
for this realm should be forwarded. Each item in the list is:

servername[:auth-port[:acct-port]]

Optional auth-port and acct-port are the authentication and ac-
counting port numbers. If acct-port is omitted, it is computed
as auth-port + 1. If auth-port is omitted, the default authenti-
cation port number is used.
The servers from this list are tried in turn until any of them
replies or the list is exhausted, whichever occurs first. The
timeout value and number of retries for each server are set via
timeout and retry flags (see below).
There may be cases where you would wish a particular realm to
be served by the server itself. It is tempting to write

Wrong!

realm.name localhost

however, this will not work. The special form of the server list
is provided for this case. It is the word ‘LOCAL’. The correct
configuration line for the above case will thus be:

Use this to declare a locally handled realm

realm.nam LOCAL

Flags (optional)
The flags meaningful in ‘raddb/realms’ are

ignorecase Boolean value. When set, enables case-insensitive comparison
of realm names. For example, if a realm were defined as

myrealm.net remote.server.net:1812 ignorecase

then user name ‘user@MyREAlm.NeT’ will match this definition.

52 GNU Radius Reference Manual

strip Boolean value. Controls whether the realm name should be
stripped off the username before forwarding the request to the
remote server. Setting strip enables stripping, setting nostrip
disables it. Default is to always strip user names.

quota=num
Set maximum number of concurrent logins allowed from this
realm to the given value (num).

timeout Number of seconds to wait for reply from the remote server
before retransmitting the request.

retries Number of attempts to connect a server. If the server does not
respond after the last attempt, the next server from the list is
tried.

auth Proxy only authentication requests.

acct Proxy only accounting requests.

4.8.1 Example of ‘realms’ file

Example 1.
Realm Remote server[:port] flags

#---------------- --------------------- --------

that.net radius.that.net nostrip

dom.ain server.dom.ain:3000 strip,quota=20

remote.net srv1.remote.net,srv2.remote.net

Example 2.
Realm Remote server[:port] flags

#---------------- --------------------- --------

NOREALM radius.server.net

that.net radius.that.net nostrip

dom.ain server.dom.ain:3000 strip,quota=20

4.9 User Profiles — ‘raddb/users’
File ‘raddb/users’ contains the list of User Profiles. See Section 2.4.5 [User
Profiles], page 16, for a description of its purpose.

Chapter 4: Radius Configuration Files 53

4.9.1 Example of ‘users’ file
The following entry is matched when the user appends ‘‘.ppp’’ to his

username when logging in.

The suffix is removed from the user name, then the password is

looked up in the SQL database.

Users may log in at any time. They get PPP service.

DEFAULT Suffix = ".ppp",

Auth-Type = SQL,

Login-Time = "Al",

Simultaneous-Use = 1,

Strip-User-Name = Yes

Service-Type = Framed-User,

Framed-Protocol = PPP

This is for SLIP users.

This entry is matched when the auth request matches ‘‘SLIP’’ hint

DEFAULT Hint = "SLIP",

Auth-Type = Mysql

Service-Type = Framed-User

Framed-Protocol = SLIP

The following authenticates users using system passwd files.

The users are allowed to log in from 7:55 to 23:05 on any weekday,

except the weekend, and from 07:55 to 12:00 on Sunday.

Only one login is allowed per user.

The program telauth is used to further check the authentication

information and provide the reply pairs

Note the use of backslashes to split a long line.

DEFAULT Auth-Type = System,

Login-Time = "Wk0755-2305,Su0755-1200",

Simultaneous-Use = 1

Exec-Program-Wait = "/usr/local/sbin/telauth \

%C{User-Name} \

%C{Calling-Station-Id} \

%C{NAS-IP-Address} \

%C{NAS-Port-Id}"

This particular user is authenticated via PAM. He is presented a

choice from ‘raddb/menus/menu1’ file.

gray Auth-Type = Pam

Menu = menu1

4.10 List of Blocked Users — ‘raddb/access.deny’
The ‘raddb/access.deny’ file contains a list of user names which are not
allowed to log in via Radius. Each user name is listed on a separate line. As
usual, the ‘#’ character introduces an end-of-line comment.

4.11 SQL Configuration — ‘raddb/sqlserver’
The ‘raddb/sqlserver’ file configures the connection to sql server.

54 GNU Radius Reference Manual

The file uses simple line-oriented ‘keyword --- value ’ format. Com-
ments are introduced by ‘#’ character.

The ‘sqlserver’ statements can logically be subdivided into following
groups: SQL Client Parameters, configuring the connection between sql
client and the server, Authentication Server Parameters, Authorization Pa-
rameters, and Accounting server parameters.

4.11.1 SQL Client Parameters

These parameters configure various aspects of connection between sql client
and the server.

interface iface-type
Specifies the sql interface to use. Currently supported values for
iface-type are mysql and postgres. Depending on this, the de-
fault communication port number is set: it is 3306 for interface
mysql and 5432 for interface postgres. Use of this statement
is only meaningful when the package was configured with both
‘--with-mysql’ and ‘--with-postgres’ option.

server string
Specifies the hostname or ip address of the sql server.

port number
Sets the sql communication port number. It can be omitted if
your server uses the default port.

login string
Sets the sql user login name.

password password
Sets the sql user password.

keepopen bool
Specify whether radiusd should try to keep the connection open.
When set to no (the default), radiusd will open new connection
before the transaction and close it right after finishing it. We
recommend setting keepopen to yes for heavily loaded servers,
since opening the new connection can take a substantial amount
of time and slow down the operation considerably.

idle_timeout number
Set idle timeout in seconds for an open sql connection. The
connection is closed if it remains inactive longer that this amount
of time.

4.11.2 Authentication Server Parameters

(This message will disappear, once this node revised.)
These parameters configure the sql authentication. The general syntax

is:

Chapter 4: Radius Configuration Files 55

doauth bool
When set to yes, enables authentication via sql. All auth_
keywords are ignored if doauth is set to no.

auth_db string
Specifies the name of the database containing authentication
information.

auth_query string
Specifies the sql query to be used to obtain user’s password
from the database. The query should return exactly one string
value — the password.

group_query string
Specifies the query that retrieves the list of user groups the user
belongs to. This query is used when Group or Group-Name at-
tribute appears in the lhs of a user’s or hint’s profile.

auth_success_query string
This query is executed when an authentication succeeds. See
Section 6.10 [Auth Probing], page 76, for the detailed discussion
of its purpose.

auth_failure_query string
This query is executed upon an authentication failure. See
Section 6.10 [Auth Probing], page 76, for the detailed discus-
sion of its purpose.

Example of Authentication Server Parameters

Let’s suppose the authentication information is kept in the tables passwd
and groups.

The passwd table contains user passwords. A user is allowed to have
different passwords for different services. The table structure is:

CREATE TABLE passwd (

user_name varchar(32) binary default ’’ not null,

service char(16) default ’Framed-PPP’ not null,

password char(64)

);

Additionally, the table groups contains information about user groups a
particular user belongs to. Its structure is:

CREATE TABLE groups (

user_name char(32) binary default ’’ not null,

user_group char(32)

);

The queries used to retrieve the information from these tables will then look
like:

56 GNU Radius Reference Manual

auth_query SELECT password

FROM passwd

WHERE user_name = ’%C{User-Name}’

AND service = ’%C{Auth-Data}’

group_query SELECT user_group

FROM groups

WHERE user_name = ’%C{User-Name}’

It is supposed, that the information about the particular service a user
is wishing to obtain, will be kept in Auth-Data attribute in lhs of a user’s
profile.

4.11.3 Authorization Parameters

These parameters define queries used to retrieve the authorization infor-
mation from the sql database. All the queries refer to the authentication
database.

check_attr_query string
This query must return a list of triplets:

attr-name, attr-value, opcode

The query is executed before comparing the request with the
profile entry. The values returned by the query are added to
lhs of the entry. opcode here means one of valid operation
codes: ‘=’, ‘!=’, ‘<’, ‘>’, ‘<=’, ‘>=’.

reply_attr_query string
This query must return pairs:

attr-name, attr-value

The query is executed after a successful match, the values it
returns are added to the rhs list of the matched entry, and are
therefore returned to the nas in the reply packet.

Example of Authorization Parameters

Suppose your attribute information is stored in a sql table of the following
structure:

CREATE TABLE attrib (

user_name varchar(32) default ’’ not null,

attr char(32) default ’’ not null,

value char(128),

op enum("=", "!=", "<", ">", "<=", ">=") default null

);

Each row of the table contains the attribute-value pair for a given user. If
op field is NULL, the row describes rhs (reply) pair. Otherwise, it describes a
lhs (check) pair. The authorization queries for this table will look as follows:

Chapter 4: Radius Configuration Files 57

check_attr_query SELECT attr,value,op \

FROM attrib \

WHERE user_name=’%u’ \

AND op IS NOT NULL

reply_attr_query SELECT attr,value \

FROM attrib \

WHERE user_name=’%u’ \

AND op IS NULL

Now, let’s suppose the ‘raddb/users’ contains only one entry:
DEFAULT Auth-Type = SQL

Service-Type = Framed-User

And the attrib table contains following rows:

user name attr value op
jsmith NAS-IP-Address 10.10.10.1 =
jsmith NAS-Port-Id 20 <=
jsmith Framed-Protocol PPP NULL
jsmith Framed-IP-

Address
10.10.10.11 NULL

Then, when the user jsmith is trying to authenticate, the following happens:

1. Radius finds the matching entry (DEFAULT) in the ‘raddb/users’.

2. It queries the database using the check_attr_query. The triplets it
returns are then added to the lhs of the profile entry. Thus, the lhs
will contain:

Auth-Type = SQL,

NAS-IP-Address = 10.10.10.1,

NAS-Port-Id <= 20

3. Radius compares the incoming request with the lhs pairs thus obtained.
If the comparison fails, it rejects the authentication. Note that the
Auth-Type attributes itself triggers execution of auth_query, described
in the previous section.

4. After a successful authentication, Radius queries the database, using
reply_attr_query, and adds its return to the list of rhs pairs. The
rhs pairs will then be:

Service-Type = Framed-User,

Framed-Protocol = PPP,

Framed-IP-Address = 10.10.10.11

This list is returned to the nas along with the authentication accept
packet.

Thus, this configuration allows the user jsmith to use only nas
10.10.10.1, ports from 1 to 20 inclusive. If the user meets these conditions,
he is allowed to use ppp service, and is assigned ip address 10.10.10.11.

58 GNU Radius Reference Manual

4.11.4 Accounting Parameters

To perform the sql accounting radiusd needs to know the database where
it is to store the accounting information. This information is supplied by
the following statements:

doacct bool
When set to yes enables sql accounting. All acct_ keywords
are ignored if doacct is set to no.

acct_db string
Specifies the name of the database where the accounting infor-
mation is to be stored.

Further, radiusd needs to know which information it is to store into the
database and when. Each of five accounting request types (see Section 2.2.2
[Accounting Requests], page 9) has a sql query associated with it. Thus,
when radius receives an accounting request, it determines the query to use
by the value of Acct-Status-Type attribute.

Following statements define the accounting queries:

acct_start_query string
Specifies the sql query to be used when Session Start Packet is
received. Typically, this would be some INSERT statement (see
Section 4.11.4.1 [Queries], page 59).

acct_stop_query string
Specifies the sql query to be used when Session Stop Packet is
received. Typically, this would be some UPDATE statement.

acct_stop_query string
Specifies the sql query to be executed upon arrival of a
Keepalive Packet. Typically, this would be some UPDATE
statement.

acct_nasup_query string
Specifies the sql query to be used upon arrival of an Accounting
Off Packet.

acct_nasdown_query string
Specifies the sql query to be used when a nas sends Accounting
On Packet.

None of these queries should return any values.
Three queries are designed for use by multiple login checking mechanism

(see Section 6.9 [Multiple Login Checking], page 74):

mlc_user_query string
A query retrieving a list of sessions currently opened by the given
user.

Chapter 4: Radius Configuration Files 59

mlc_realm_query string
A query to retrieve a list of sessions currently open for the given
realm.

mlc_stop_query string
A query to mark given record as hung.

4.11.4.1 Writing SQL Accounting Query Templates

Let’s suppose you have an accounting table of the following structure:
CREATE TABLE calls (

status int(3),

user_name char(32),

event_date_time datetime DEFAULT ’0000-00-00 00:00:00’ NOT NULL,

nas_ip_address char(17),

nas_port_id int(6),

acct_session_id char(16) DEFAULT ’’ NOT NULL,

acct_session_time int(11),

acct_input_octets int(11),

acct_output_octets int(11),

connect_term_reason int(4),

framed_ip_address char(17),

called_station_id char(32),

calling_station_id char(32)

);

On receiving the Session Start Packet we would insert a record into this
table with status set to 1. At this point the columns acct_session_
time, acct_input_octets, acct_output_octets as well as connect_term_
reason are unknown, so we will set them to 0:

Query to be used on session start

acct_start_query INSERT INTO calls \

VALUES(%C{Acct-Status-Type},\

’%u’,\

’%G’,\

’%C{NAS-IP-Address}’,\

%C{NAS-Port-Id},\

’%C{Acct-Session-Id}’,\

0,\

0,\

0,\

0,\

’%C{Framed-IP-Address}’,\

’%C{Called-Station-Id}’,\

’%C{Calling-Station-Id}’)

Then, when the Session Stop Packet request arrives we will look up the
record having status = 1, user_name matching the value of User-Name
attribute, and acct_session_id matching that of Acct-Session-Id at-
tribute. Once the record is found, we will update it, setting

60 GNU Radius Reference Manual

status = 2

acct_session_time = value of Acct-Session-Time attribute

acct_input_octets = value of Acct-Input-Octets attribute

acct_output_octets = value of Acct-Output-Octets attribute

connect_term_reason = value of Acct-Terminate-Cause attribute

Thus, every record with status = 1 will represent the active session and
every record with status = 2 will represent the finished and correctly closed
record. The constructed acct_stop_query is then:

Query to be used on session end

acct_stop_query UPDATE calls \

SET status=%C{Acct-Status-Type},\

acct_session_time=%C{Acct-Session-Time},\

acct_input_octets=%C{Acct-Input-Octets},\

acct_output_octets=%C{Acct-Output-Octets},\

connect_term_reason=%C{Acct-Terminate-Cause} \

WHERE user_name=’%C{User-Name}’ \

AND status = 1 \

AND acct_session_id=’%C{Acct-Session-Id}’

Upon receiving a Keepalive Packet we will update the information stored
with acct_start_query:

acct_alive_query UPDATE calls \

SET acct_session_time=%C{Acct-Session-Time},\

acct_input_octets=%C{Acct-Input-Octets},\

acct_output_octets=%C{Acct-Output-Octets},\

framed_ip_address=%C{Framed-IP-Address} \

WHERE user_name=’%C{User-Name}’ \

AND status = 1 \

AND acct_session_id=’%C{Acct-Session-Id}’

Further, there may be times when it is necessary to bring some nas down.
To correctly close the currently active sessions on this nas we will define a
acct_nasdown_query so that it would set status column to 2 and update
acct_session_time in all records having status = 1 and nas_ip_address
equal to ip address of the nas. Thus, all sessions on a given nas will be
closed correctly when it brought down. The acct_session_time can be
computed as difference between the current time and the time stored in
event_date_time column:

Query to be used when a NAS goes down, i.e. when it sends

Accounting-Off packet

acct_nasdown_query UPDATE calls \

SET status=2,\

acct_session_time=unix_timestamp(now())-\

unix_timestamp(event_date_time) \

WHERE status=1 \

AND nas_ip_address=’%C{NAS-IP-Address}’

We have not covered only one case: when a nas crashes, e.g. due to a
power failure. In this case it does not have a time to send Accounting-
Off request and all its records remain open. But when the power supply is
restored, the nas will send an Accounting On packet, so we define a acct_

Chapter 4: Radius Configuration Files 61

nasup_query to set status column to 3 and update acct_session_time in
all open records belonging to this nas. Thus we will know that each record
having status = 3 represents a crashed session. The query constructed will
be:

Query to be used when a NAS goes up, i.e. when it sends

Accounting-On packet

acct_nasup_query UPDATE calls \

SET status=3,\

acct_session_time=unix_timestamp(now())-\

unix_timestamp(event_date_time) \

WHERE status=1 \

AND nas_ip_address=’%C{NAS-IP-Address}’

If you plan to use SQL database for multiple login checking (see
Section 6.9 [Multiple Login Checking], page 74), you will have to supply at
least two additional queries for retrieving the information about currently
active sessions for a given user and realm (see Section 6.9.1 [Retrieving
Session Data], page 74). Each of these queries must return a list consisting
of 5-element tuples:

user-name, nas-ip-address, nas-port-id, acct-session-id

For example, in our setup these queries will be:
mlc_user_query SELECT user_name,nas_ip_address,\

nas_port_id,acct_session_id \

FROM calls \

WHERE user_name=’%C{User-Name}’ \

AND status = 1

mlc_realm_query SELECT user_name,nas_ip_address,\

nas_port_id,acct_session_id \

FROM calls \

WHERE realm_name=’%C{Realm-Name}’

While performing multiple login checking radiusd will eventually need to
close hung records, i.e. such records that are marked as open in the database
(status=1, in our setup), but are actually not active (See Section 6.9.2
[Verifying Active Sessions], page 75, for the description of why it may be
necessary). It will by default use acct_stop_query for that, but it has a
drawback that hung records will be marked as if they were closed correctly.
This may not be suitable for accounting purposes. The special query mlc_
stop_query is provided to override acct_stop_query. If we mark hung
records with status=4, then the mlc_stop_query will look as follows:

mlc_stop_query UPDATE calls \

SET status=4,\

acct_session_time=unix_timestamp(now())-\

unix_timestamp(event_date_time) \

WHERE user_name=’%C{User-Name}’ \

AND status = 1 \

AND acct_session_id=’%C{Acct-Session-Id}’

62 GNU Radius Reference Manual

4.12 Rewrite functions — ‘raddb/rewrite’
The file ‘raddb/rewrite’ contains definitions of Rewrite extension func-
tions. For information regarding Rewrite extension language See Section 10.2
[Rewrite], page 98.

4.13 Login Menus — ‘raddb/menus’
The menus is a way to allow user the choice between various services he could
be provided. The menu functionality is enabled when Radius is compiled
with ‘--enable-livingston-menus’ option.

A user is presented a menu after it is authenticated if the rhs of his
profile record consists of a single a/v pair in the form:

Menu = <menu-name>

The menu files are stored in directory ‘raddb/menus’.

4.13.1 A menu file syntax.

A menu file is a text file containing a menu declaration and any number of
choice descriptions. The menus can be nested to an arbitrary depth.

A comment is introduced by a ‘#’ character. All characters from this one
up to the end of line are discarded.

The menu declaration is contained between the words ‘menu’ and ‘end’.
Each of these must be the only word on a line and must start in column 1.

Choice descriptions follow the menu declaration. Each description starts
with a line containing choice identifier. A choice identifier is an arbitrary
word identifying this choice, or a word ‘DEFAULT’. It is followed by comma-
separated list of a/v pairs which will be returned to the server when a user
selects this choice.

4.13.2 An example of menu files

Single-Level Menu
Suppose the following file is stored under ‘raddb/menus/menu1’:

menu

*** Welcome EEE user! ***

Please select an option:

1. Start CSLIP session

2. Start PPP session

3. Quit

Option:

end

CSLIP choice

Framed-IP-Address of 255.255.255.254 indicates that the NAS should

select an address for the user from its own IP pool.

Chapter 4: Radius Configuration Files 63

1

Service-Type = Framed-User,

Framed-Protocol = SLIP,

Framed-IP-Address = 255.255.255.254,

Termination-Menu = "menu1"

PPP choice

2

Service-Type = Framed-User,

Framed-Protocol = PPP,

Framed-IP-Address = 255.255.255.254,

Termination-Menu = "menu1"

A special menu EXIT means abort the session

3

Menu = "EXIT"

Return to this menu if no valid choice have been entered

DEFAULT

Menu = "menu1"

Now, suppose the ‘raddb/users’ contains the following profile entry:
DEFAULT Auth-Type = System

Menu = "menu1"

and user ‘jsmith’ has a valid system account and tries to log in from some
nas. Upon authenticating the user, the Radius server sees that his reply
pairs contain the Menu attribute. Radius then sends Access-Challenge packet
to the nas with the text of the menu in it. The ‘jsmith’ then sees on his
terminal:

*** Welcome EEE user! ***

Please select an option:

1. Start CSLIP session

2. Start PPP session

3. Quit

Option:

He then enters ‘2’. The nas sends the Access-Request packet to the
server, which sees that user wishes to use option 2 and replies to the nas
with an Access-Accept packet containing the following attributes:

Service-Type = Framed-User,

Framed-Protocol = PPP,

Framed-IP-Address = 255.255.255.254,

Termination-Menu = "menu1"

The Termination-Menu in this list makes sure the same process will continue
when ‘jsmith’ logs out, i.e. he will be presented the same menu again until
he enters choice ‘3’ which will disconnect him.

Nested menus
In this example, the ‘other’ choice refers to the menu above.

menu

*** Welcome here! ***

64 GNU Radius Reference Manual

Please enter an option:

ppp --- Start PPP session

telnet --- Begin guest login session

other --- Select other option

Enter your choice:

end

ppp

Service-Type = Framed-User,

Framed-Protocol = PPP

telnet

Service-Type = Login-User,

Login-IP-Host = 10.11.11.7,

Login-Service = Telnet,

Login-TCP-Port = 23

other

Menu = "menu1"

DEFAULT

menu = "menu2"

4.14 Macro Substitution
Some statements in the configuration files need to use the actual values of
the attributes supplied with the request. These are:
• Exec-Program and Exec-Program-Wait assignments in ‘users’ data-

base
• sql query templates in ‘sqlserver’
In these statements the following macros are replaced by the value of

corresponding attributes:

%Cnum (num is a decimal number). This variable is replaced by the
value of attribute number ‘num’. The attribute is looked up in
the incoming request pairlist.

%C{attr-name}
This is replaced by the value of attribute named ‘attr-name’.
The attribute is looked up in the incoming request pairlist.

%Rnum (num is a decimal number). This variable is replaced by the
value of attribute number ‘num’. The attribute is looked up in
the reply pairlist.

%R{attr-name}
This is replaced by the value of attribute named ‘attr-name’.
The attribute is looked up in the reply pairlist.

%D This is replaced by current date/time (localtime).

%G This is replaced by current date/time in GMT.
The exact substitution procedure varies depending on the type of the

attribute referenced by macro. If the attribute is of string or date type,

Chapter 4: Radius Configuration Files 65

radiusd first checks if the resulting substitution should be quoted. It does
so by looking at the character immediately preceeding ‘%’. If it is a single or
double quote, then radiusd assumes the macro must be quoted and replaces
it by an appropriately modified attribute value. The purpose of the mod-
ification is to ensure that no characters within the expanded string would
conflict with the quoting characters. In particular, radiusd searches the at-
tribute value for any of the characters ‘\’, ‘’’, ‘"’ and prepends a ‘\’ to any
occurrence of these. For example, suppose that attribute NAS-Identifier
has the value ‘A "new" host’. Then:

nasid=%C{NAS-Identifier} 7→ nasid=A "new" host

nasid="%C{NAS-Identifier}" 7→ nasid="A \"new\" host"

nasid=%\C{NAS-Identifier} 7→ nasid=A \"new\" host

The last example illustrates the use of backslash character to force string
quoting in the absense of explicit quotation marks.

If an integer attribute reference is quoted, radiusd looks up the string
translation of its value in the dictionary (see Section 4.2.8 [VALUE], page 44)
and uses this string as a replacement. If no translation is found, the nu-
meric value is used. The following example assumes that the value of Acct-
Terminate-Cause attribute is 10:

reason=%C{Acct-Terminate-Cause} 7→ reason=10

reason=’%C{Acct-Terminate-Cause}’ 7→ reason=’NAS-Request’

reason=%\C{Acct-Terminate-Cause} 7→ reason=NAS-Request

Again, a backslash after percent sign can be used to force dictionary
lookup.

The “‘{}’ form” allows to specify default value for the substitution. The
default value will be used when no such attribute is encountered in the
pairlist. The syntax for specifying the default value resembles that of shell
environment variables.

The substitution %C{attr-name:-defval} is expanded to the value of
attr-name attribute, if it is present in the request pairlist, and to defval
otherwise. For example:

%C{Acct-Session-Time:-0}

will return the value of Acct-Session-Time attribute or 0 if it doesn’t exist
in the request pairlist.

The substitution %C{attr-name:=defval} is expanded to the value of
attr-name attribute. If this attribute is not present in the request pairlist,
it will be created and assigned the value defval. E.g.:

%C{Acct-Session-Time:=0}

The substitution %C{attr-name:?message} is expanded to the value of
attr-name attribute, if it is present. Otherwise the diagnostic message “attr-
name: message” is issued to the log error channel, and string “message” is
returned.

The substitution %C{attr-name:+retval} is expanded to empty string
if the attribute attr-name is present in the referenced pairlist. Otherwise it
is expanded to retval.

66 GNU Radius Reference Manual

You can also use the following shortcuts:

%p Port number

%n nas ip address

%f Framed ip address

%u User name

%c Callback-Number

%i Calling-Station-Id

%t MTU

%a Protocol (SLIP/PPP)

%s Speed (Connect-Info attribute)

Chapter 5: Request Comparison Methods 67

5 Request Comparison Methods

The basic notions about comparison of the incoming requests and why it is
necessary were given in Section 2.4.1 [Checking Duplicates], page 12. This
chapter concentrates on extended methods of request comparison and on the
configuration issues.

5.1 Extended Comparison
The default comparison method may fail to recognize duplicate requests.
if the originating nas has modified the request authenticator or request
identifier before retransmitting the request. If you happen to use such nases,
you will have to enable extended request comparison to compensate for their
deficiencies.

The extended request comparison consists in comparing the contents of
both requests. However, blindly comparing each a/v pair from both requests
won’t work, since many attributes do change their values between successive
retransmits. Therefore, radiusd uses only comparable attribute, i.e. a user-
defined subset of such attributes that can safely be used in comparison.
Thus, extended request comparison works as follows:
1. The comparable attributes are extracted from each request. They form

two sorted attribute lists.
2. If lengths of both lists differ, the requests are considered different.
3. Otherwise, the value of each a/v pair from the first list is compared

against that of the corresponding a/v pair from the second list. If at
least one a/v pair differs, then the requests are considered different.
Notice, that values of Password and CHAP-Password are decoded prior
to comparison.

To use the extended comparison, follow the procedure below:
1. Select user-defined attribute properties.

The syntax of dictionary file allows for nine user-defined properties,
denoted by characters ‘1’ through ‘9’. You should select one of them to
mark comparable attributes for authentication and another one to mark
those for accounting. It is strongly suggested that you use PROPERTY
statement in your main dictionary file (see Section 4.2.7 [PROPERTY],
page 44), instead of modifying ATTRIBUTE statements in the underlying
dictionary files.
See Section 4.2.4 [ATTRIBUTE], page 41, for detailed description of
attribute property flags.

2. To enable the extended comparison for requests coming from any nas,
declare extended comparison flags in ‘raddb/config’.
To enable the extended comparison for authentication requests, add to
your auth block the statement

68 GNU Radius Reference Manual

compare-attribute-flag flag;

The flag is the same symbol you used in the dictionary to mark com-
parable attributes for authentication.
To enable the extended comparison for accounting requests, insert
compare-attribute-flag statement into the acct block.

3. To enable the extended comparison for requests coming from selected
nases, declare extended comparison flags in ‘raddb/naslist’.
Add the following statement to the declaration of those nases, that
require using the extended comparison (in flags column):

compare-auth-flag=flag,compare-acct-flag=flag

See Section 4.4 [naslist file], page 45, for a description of naslist file
syntax.

5.1.1 An example of extended comparison
configuration

In this example configuration, the user-defined flag ‘1’ marks authentication
comparable attributes, and the flag ‘2’ marks the accounting comparable
attributes.

‘raddb/dictionary’
PROPERTY User-Name +12

PROPERTY Password +1

PROPERTY NAS-Port-Id +12

PROPERTY State +1

PROPERTY Called-Station-Id +12

PROPERTY Calling-Station-Id +12

PROPERTY Acct-Status-Type +2

PROPERTY Acct-Session-Id +2

PROPERTY Acct-Session-Time +2

‘raddb/config’
auth {

max-requests 127;

request-cleanup-delay 2;

compare-attribute-flag 1;

};

acct {

max-requests 127;

request-cleanup-delay 2;

compare-attribute-flag 2;

};

5.1.2 List of attributes that can be declared
comparable.

The following attributes can be declared as comparable:

Chapter 5: Request Comparison Methods 69

• User-Name

• Password

• CHAP-Password

• NAS-Port-Id

• State

• Called-Station-Id

• Calling-Station-Id

• NAS-Identifier

• Acct-Status-Type

• Acct-Session-Id

• Acct-Session-Time

• User-UID

• User-GID

Notice that this list is by no means an exhaustive one. Depending on a
particular nas other attributes may be safe to be used in comparisons, or,
vice-versa, some attributes from this list may not be used. You should care-
fully analyze packets coming from your nas before deciding which attributes
to mark as comparable.

5.2 Fine-Tuning the Request Queue
As described in Section 2.4.1 [Checking Duplicates], page 12, each request is
added to the request queue when radiusd starts processing it and is removed
from there a certain amount of time after its processing was finished. The
configuration parameter request-cleanup-delay defines how long each al-
ready processed request is kept in the queue. Its value must be synchronized
with the nas settings.

Each nas allows to configure two parameters:

Ntimeout The amount of time in seconds during which the nas is waiting
for a response from radius server.

Nretries The number of times the nas tries to re-send the request if it
received no response from the radius server.

Of course, these parameters are named differently for different makes of
nases. Refer to your nas documentation to find out where these values are
configured.

In general, these parameters must satisfy the following relation:
request-cleanup-delay = Nretries * Ntimeout + const

where const is an empirical constant that depends on the average time of
processing a single request. Usually its value lies between 0 and 10 seconds.

For example, if the configuration of your nas sets

70 GNU Radius Reference Manual

Nretries = 3

Ntimeout = 10

then your raddb/config should contain:
auth {

request-cleanup-delay 40;

};

acct {

request-cleanup-delay 40;

};

Notice the duplication of request-cleanup-delay: radiusd uses dis-
tinct values for authentication and accounting requests, however most exist-
ing nases do not make such distinction.

Chapter 6: Authentication 71

6 Authentication

An Authentication Type specifies which credentials the user is required to
supply in order to be authenticated and where the user’s authentication
data are stored. It is defined by the value of Auth-Type attribute in lhs of
a ‘users’ entry.

6.1 Accept Authentication Type
Accept is the simplest authentication type. Users with this authentication
type will be authenticated successfully without checking any credentials.
Actually this means that only username is required for authentication.

This authentication type is used for each ‘users’ entry, whose lhs con-
tains

Auth-Type = Accept

This authentication type can be used for guest accounts, e.g. the following
profile in ‘users’:

guest Auth-Type = Accept,

Simultaneous-Use = 10

Service-Type = Framed-User,

Framed-Protocol = PPP

allows up to 10 simultaneous guest PPP accounts. To log in using such guest
account it is sufficient to use username ‘guest’ and any password.

6.2 Reject Authentication Type
The Reject authentication type causes the request to be rejected uncondi-
tionally. It can be used to disable a user account (For another method of
disabling user accounts, see Section 4.10 [access.deny file], page 53).

This authentication type is used for each ‘users’ entry, whose lhs con-
tains

Auth-Type = Reject

6.3 Local Password Authentication Type
The Local Password authentication type allows to keep plaintext user pass-
words. Although the use of this authentication type is strongly discouraged
for security reasons, this is the only authentication type that can be used
with CHAP authentication.

There are two ways of using this authentication type

Specifying Passwords in users File.

To keep the plaintext passwords in ‘users’ file, the profile entry must follow
this pattern:

72 GNU Radius Reference Manual

user-name Auth-Type = Local,

User-Password = plaintext

The plaintext is the user’s plaintext password. Obviously, user-name may
not be DEFAULT nor BEGIN.

Specifying Passwords in SQL Database.
user-name Auth-Type = Local,

Password-Location = SQL

When the user is authenticated using such profile, its password is re-
trieved from the authentication database using auth_query. The configura-
tion of SQL authentication is described in detail in Section 4.11.2 [Authen-
tication Server Parameters], page 54.

6.4 Encrypted Password Authentication Type
The Encrypted Password type allows to keep user’s passwords encrypted
via DES or MD5 algorithm. There are two ways of using this authentication
type.

Specifying Passwords in users File.
user-name Auth-Type = Crypt-Local,

User-Password = crypt-pass

The Crypt-Password is a shortcut for the above notation:
user-name Crypt-Password = crypt-pass

Specifying Passwords in SQL Database.
user-name Auth-Type = Crypt-Local,

Password-Location = SQL

Using this profile, the user’s password is retrieved from the authentication
database using auth_query. The configuration of SQL authentication is
described in detail on Section 4.11.2 [Authentication Server Parameters],
page 54.

The shortcut for this notation is Auth-Type = SQL.
In any case, the passwords used with this authentication type must be

either DES or MD5 hashed.

6.5 System Authentication Type
The System authentication type requires that the user have a valid system
account on the machine where the radius server is running. The use of this
type is triggered by setting

Auth-Type = System

in the lhs of a ‘users’ entry.

Chapter 6: Authentication 73

6.6 SQL Authentication Type
Setting Auth-Type = SQL or Auth-Type = Mysql in the lhs of a ‘users’ entry
is a synonym for

Auth-Type = Crypt-Local, Password-Location = SQL

and is provided as a shortcut and for backward compatibility with previ-
ous versions of GNU Radius.

For description of SQL authentication, see Section 6.4 [Encrypted Pass-
word Auth], page 72. The configuration of SQL subsystem is described in
Section 4.11 [sqlserver file], page 53.

6.7 PAM Authentication Type
PAM authentication type indicates that a user should be authenticated using
PAM (Pluggable Authentication Module) framework. The simplest way of
usage is:

Auth-Type = PAM

Any user whose ‘users’ profile contains the above, will be authenticated
via PAM, using service name ‘radius’. If you wish to use another service
name, set it using Auth-Data attribute, e.g.:

Auth-Type = PAM,

Auth-Data = pam-service

6.8 Defining Custom Authentication Types
The are three ways to define custom authentication types:
1. Write a PAM module.
2. Use a Guile procedure.
3. Use an external program

You can write a PAM module implementing the new authentication type.
Then, specifying Auth-Type = PAM allows to apply it (see Section 6.7 [PAM
Auth], page 73).

Alternatively, you may write a Scheme procedure implementing the new
authentication type. To apply it, use Scheme-Procedure attribute in rhs.
The Auth-Type = Accept can be used in lhs if the whole authentication
burden is to be passed to the Scheme procedure. For example, if one wrote
a procedure my-auth, to apply it to all users, one will place the following
profile in his ‘users’ file:

DEFAULT Auth-Type = Accept

Scheme-Procedure = "my-auth"

For a discussion of how to write Scheme authentication procedures, See
Section 10.3.2 [Authentication with Scheme], page 116.

The third way to implement your own authentication method is using an
external program. This is less effective than the methods described above,

74 GNU Radius Reference Manual

but may be necessary sometimes. To invoke the program, use the following
statement in the rhs of ‘users’ entry:

Exec-Program-Wait = "progname args"

The progname must be the full path to the program, args — any argu-
ments it needs. The usual substitutions may be used in args to pass any
request attributes to the program (see Section 4.14 [Macro Substitution],
page 64).

For a detailed description of Exec-Program-Wait attribute and an exam-
ple of its use, see Section 13.3.7 [Exec-Program-Wait], page 181.

6.9 Multiple Login Checking
The number of sessions a user can have open simultaneously can be re-
stricted by setting Simultaneous-Use attribute in the user’s profile lhs
(see Section 13.3.25 [Simultaneous-Use], page 192). By default the number
of simultaneous sessions is unlimited.

When a user with limited number of simultaneous logins authenticates
himself, Radius counts the number of the sessions that are already opened
by this user. If this number is equal to the value of Simultaneous-Use
attribute the authentication request is rejected.

This process is run in several stages. First, Radius retrieves the informa-
tion about currently opened sessions from one of its accounting databases.
Then, it verifies whether all these sessions are still active. This pass is neces-
sary since an open entry might be a result of missing Stop request. Finally,
the server counts the sessions and compares their count with the value of
Simultaneous-Use attribute.

The following subsections address each stage in detail.

6.9.1 Retrieving Session Data

Radius retrieves the list of sessions currently opened by the user either from
the system database (see Section 7.1 [System Accounting], page 81), or from
the SQL database (see Section 7.3 [SQL Accounting], page 83). The system
administrator determines which method to use.

By default, system accounting database is used. Its advantages are sim-
plicity and ease of handling. It has, however, a serious deficiency: the in-
formation is kept in the local files. If you run several radius servers, each
of them has no easy way of knowing about the sessions initiated by other
servers.

This problem is easy to solve if you run SQL accounting (see Section 7.3
[SQL Accounting], page 83). In this case, each radius server stores the data
in your SQL database and can easily retrieve them from there.

To enable use of SQL database for multiple login checking, do the follow-
ing:

In your ‘raddb/config’ file set:

Chapter 6: Authentication 75

mlc {

method sql;

};

In your ‘raddb/sqlserver’ file, specify the queries for retrieving the in-
formation about open sessions and, optionally, a query to close an existing
open record.

There are two queries for retrieving the information: mlc_user_query
returns the list of sessions opened by the user, mlc_realm_query returns
the list of sessions opened for the given realm. Each of them should return
a list of 4-element tuples1:

user-name, nas-ip-address, nas-port-id, acct-session-id

Here is an example of mlc_user_query and mlc_realm_query:
mlc_user_query SELECT user_name,nas_ip_address,\

nas_port_id,acct_session_id \

FROM calls \

WHERE user_name=’%C{User-Name}’ \

AND status = 1

mlc_realm_query SELECT user_name,nas_ip_address,\

nas_port_id,acct_session_id \

FROM calls \

WHERE realm_name=’%C{Realm-Name}’

Apart from these two queries you may also wish to provide a query for
closing a hung record. By default, radiusd will use acct_stop_query. If
you wish to override it, supply a query named mlc_stop_query, for example:

mlc_stop_query UPDATE calls \

SET status=4,\

acct_session_time=unix_timestamp(now())-\

unix_timestamp(event_date_time) \

WHERE user_name=’%C{User-Name}’ \

AND status = 1 \

AND acct_session_id=’%C{Acct-Session-Id}’

See Section 4.11.4.1 [Queries], page 59, for detailed information on how
to write these queries.

6.9.2 Verifying Active Sessions

Whatever database radiusd uses, an open entry in it does not necessary
mean that the corresponding session is still being active. So, after retrieving
the information about user sessions, Radius verifies on corresponding nases
whether these are actually active.

For each entry in the session list, if its nas acknowledges the session, the
session count is incremented. Otherwise, such entry is marked as closed in
the database and is not counted.

There may also be cases when the nas is unreachable due to some rea-
sons. In such cases the Radius behavior is determined by the value of

1 This interface is likely to change in future versions

76 GNU Radius Reference Manual

checkrad-assume-logged in ‘config’ file Section 4.1.3 [auth statement
(raddb/config)], page 28. If the value is yes, Radius assumes the session
is still active and increases the session count, otherwise it proceeds as if the
nas returned negative reply.

To query a nas, Radius first looks up its type and additional parameters
in ‘naslist’ file (see Section 4.4 [naslist file], page 45). There are two pre-
defined nas types that cause Radius to act immediately without querying
tne nas: the special type ‘true’ forces Radius to act as if the nas returned
1, the type ‘false’ forces it to act as if the nas returned 0. If the type is
neither of this predefined types, Radius uses it as a look up key into the
‘nastypes’ file (see Section 4.5 [nastypes file], page 47) and tries to retrieve
an entry which has matching type. If such entry does not exist, Radius issues
the error message and acts accordingly to the value of configuration variable
checkrad-assume-logged. Otherwise, Radius determines the query method
to use from the second field of this entry, and constructs method arguments
by appending arguments from the ‘naslist’ entry to those of nastypes en-
try. Note, that the former take precedence over the latter, and can thus be
used to override default values specified in ‘nastypes’.

Having determined the query method and its argument, Radius queries
nas and analyzes its output by invoking a user-supplied Rewrite function.
The function to use is specified by the function= argument to the method.
It is called each time a line of output is received from the nas (for finger
queries) or a variable is received (for SNMP queries). The process continues
until the function returns 1 or the last line of output is read or a timeout
occurs whichever comes first.

If the user-function returns 1 it is taken to mean the user’s session is now
active at the nas, otherwise, if it replies 0 or if the end of output is reached,
it is taken to mean the user’s session is not active.

The syntax conventions for user-supplied functions are described in detail
in Section 10.2.5 [Login Verification Functions], page 103.

6.10 Controlling Authentication Probes
Authentication probe is an attempt of a user to use other user’s account, by
guessing his password. The obvious indication of an authentication probe is
appearence of several consecutive authentication failures for the same user.
Of course, if the intruder is given sufficient number of such probes he will
sooner or later succeed in finding the actual password. The conventional
method to prevent this from occurring is to keep failure counters for each
user and to lock the account when its failure counter reaches a predefined
limit. Notice that a legitimate user may fail (sometimes even several times in
sequence) in entering his password, so two important points should always
be observed. First, failure counters record the number of consecutive au-
thentication failures and they are reset after each successive authentication.

Chapter 6: Authentication 77

Secondly, the maximum number of allowed consecutive failures should be set
sufficiently high.

The version 1.6 offers two ways for controlling authentication probes:
using external programs and using special SQL queries.

To control authentication probes using external programs, use the com-
bination of Exec-Program-Wait and Auth-Failure-Trigger. The program
specified by Auth-Failure-Trigger is executed each time an authentica-
tion attempt failed. When both attributes are used together, the program
invoked by Auth-Failure-Trigger can update the failure counter, and the
one invoked by Exec-Program-Wait can compare the counter value with the
predefined limit and reject authentication when both values become equal.
Such approach is most useful in conjunction with BEGIN profile.

Let’s suppose the program ‘/sbin/check_failure’ accepts a user name
and returns 1 if the failure counter for this user has reached maximum al-
lowed value. Otherwise it returns 0 and clears the counter. Another program,
‘/sbin/count_failure’ increases failure counter value for the given user
name. Assuming our basic authentication type is ‘PAM’, the ‘raddb/users’
file will look as follows:

BEGIN NULL

Exec-Program-Wait = "/sbin/check_failure %C{User-Name}",

Auth-Failure-Trigger = "/sbin/count_failure %C{User-Name}",

Fall-Through = Yes

DEFAULT Auth-Type = PAM

Service-Type = Framed-User,

Framed-Protocol = PPP

[... Other profiles ...]

The BEGIN profile will be executed before any other profile. It will add
to the rhs Exec-Program-Wait and Auth-Failure-Trigger attributes and
then radiusd will proceed to finding a matching profile (due to Fall-
Through attribute). When such profile is found, the user will be authen-
ticated according to the method set up by the profile’s Auth-Type attribute.
If authentication fails, ‘/sbin/count_failure’ will be called and the user
name passed to it as the argument. Otherwise, ‘/sbin/check_failure’ will
be invoked.

To complete the example, here are working versions of both pro-
grams. Failure counters for each user name are kept in separate file in
‘/var/log/radius/fails’ directory. Both programs are written in bash.

78 GNU Radius Reference Manual

The /sbin/count failure program
#! /bin/bash

test $# -eq 1 || exit 1

MAXFAIL=8

REGDIR=/var/log/radius/fails

if [-r "$REGDIR/$1"]; then

read COUNT < "$REGDIR/$1"

COUNT=$((COUNT+1))

else

COUNT=1

fi

echo $COUNT > "$REGDIR/$1"

End of /sbin/count_failure

The /sbin/check failure program
#! /bin/bash

test $# -eq 1 || exit 1

MAXFAIL=8

REGDIR=/var/log/radius/fails

if [-r "$REGDIR/$1"]; then

read COUNT < "$REGDIR/$1"

if [$COUNT -ge $MAXFAIL]; then

echo "Reply-Message=\"Too many login failures. Your account is locked\""

exit 1

else

rm "$REGDIR/$1"

fi

fi

exit 0

End of check_failure

Another way of controlling authentication probes is by using SQL data-
base to store failure counters. Two queries are provided for this purpose in
‘raddb/sqlserver’ file: auth_success_query is executed upon each suc-
cessful authentication, and auth_failure_query is executed upon each au-
thentication failure. Both queries are not expected to return any values.
One obvious purpose of auth_failure_query would be to update failure
counters and that of auth_success_query would be to clear them. The
auth_query or group_query should then be modified to take into account
the number of authentication failures.

The default SQL configuration GNU Radius is shipped with provides a
working example of using these queries. Let’s consider this example.

Chapter 6: Authentication 79

First, we create a special table for keeping authentication failure counters
for each user:

CREATE TABLE authfail (

User name this entry refers to

user_name varchar(32) binary default ’’ not null,

Number of successive authentication failures for this user

count int,

Timestamp when this entry was last updated

time datetime DEFAULT ’1970-01-01 00:00:00’ NOT NULL,

Create a unique index on user_name

UNIQUE uname (user_name)

);

The query auth_fail_query will increment the value of count column
for the user in question:

auth_failure_query UPDATE authfail \

SET count=count+1,time=now() \

WHERE user_name=’%C{User-Name}’

The query auth_success_query will clear count:
auth_success_query UPDATE authfail \

SET count=0,time=now() \

WHERE user_name=’%C{User-Name}’

Now, the question is: how to use this counter in authentication? The
answer is quite simple. First, let’s create a special group for all the users
whose authentication failure counter has reached its maximum value. Let
this group be called ‘*LOCKED_ACCOUNT*’. We’ll add the following entry to
‘raddb/users’:

DEFAULT Group = "*LOCKED_ACCOUNT*",

Auth-Type = Reject

Reply-Message = "Your account is currently locked.\n\

Please, contact your system administrator\n"

which will reject all such users with an appropriate reply message.
The only thing left now is to rewrite group_query so that it returns

‘*LOCKED_ACCOUNT*’ when authfail.count reaches its maximum value.
Let’s say this maximum value is 8. Then the following query will do the
job:

group_query SELECT user_group FROM groups \

WHERE user_name=’%u’ \

UNION \

SELECT CASE WHEN (SELECT count > 8 FROM authfail \

WHERE user_name=’%u’)

THEN ’*LOCKED_ACCOUNT*’ END

The default configuration comes with these queries commented out. It
is up to you to uncomment them if you wish to use SQL-based control over
authentication failures.

Notice the following important points when using this approach:

80 GNU Radius Reference Manual

1. Your SQL server must support UNION. Earlier versions of MySQL lacked
this support, so if you run MySQL make sure you run a reasonably new
version (at least 4.0.18).

2. Both auth_failure_query and auth_success_query assume the data-
base already contains an entry for each user. So, when adding a new
user to the database, make sure to insert an appropriate record into
authfails table, e.g.

INSERT INTO authfail VALUES(’new-user’,0,now());

Chapter 7: Accounting 81

7 Accounting

By default GNU Radius supports three types of accounting. Any additional
accounting methods can be defined using extension mechanisms.

The accounting methods are applied to a request in a following sequence:
1. System accounting
2. Detailed request accounting
3. sql accounting
4. Custom accounting

Any method can be enabled or disabled. Thus, you can even disable them
all, thereby disabling accounting altogether.

Notice, that the multiple login checking scheme relies on accounting being
enabled. By default it uses system accounting, but can also be configured
to use sql accounting. So, if you disable system accounting and still wish to
use reliable multiple login checking, make sure you configure radiusd to use
sql for this purpose. See Section 6.9 [Multiple Login Checking], page 74, for
the detailed information about the subject.

If any accounting type in this sequence fails, the accounting is deemed to
fail and all subsequent methods are not invoked.

7.1 System Accounting
Radius keeps files ‘radutmp’ and ‘radwtmp’ in its logging directory and stores
the accounting data there. The utilities radwho and radlast can be used
to list information about users’ sessions.

This accounting method is enabled by default. To disable it, use system
no statement in ‘raddb/config’. See Section 4.1.4 [acct], page 30, for more
information. Please notice that disabling this authentication method will
disable multiple login checking as well. Refer to Section 6.9 [Multiple Login
Checking], page 74, for the detailed discussion of this.

7.2 Detailed Request Accounting
Radius stores the detailed information about accounting packets it receives
in files ‘radacct/nasname/detail’ (see Chapter 1 [Naming Conventions],
page 5), where nasname is replaced with the short name of the nas from
the ‘raddb/naslist’ file (see Section 4.4 [naslist file], page 45).

By default, this accounting type is always enabled, provided that
‘radacct’ directory exists and is writable (see Chapter 1 [Naming
Conventions], page 5). To turn the detailed accounting off, use the
detail statement in the ‘config’ file. For more information about it, see
Section 4.1.4 [acct], page 30.

The accounting detail files consist of a record for each accounting request.
A record includes the timestamp and detailed dump of attributes from the
packet, e.g.:

82 GNU Radius Reference Manual

Fri Dec 15 18:00:24 2000

Acct-Session-Id = "2193976896017"

User-Name = "e2"

Acct-Status-Type = Start

Acct-Authentic = RADIUS

Service-Type = Framed-User

Framed-Protocol = PPP

Framed-IP-Address = 11.10.10.125

Calling-Station-Id = "+15678023561"

NAS-IP-Address = 11.10.10.11

NAS-Port-Id = 8

Acct-Delay-Time = 0

Timestamp = 976896024

Request-Authenticator = Unverified

Fri Dec 15 18:32:09 2000

Acct-Session-Id = "2193976896017"

User-Name = "e2"

Acct-Status-Type = Stop

Acct-Authentic = RADIUS

Acct-Output-Octets = 5382

Acct-Input-Octets = 7761

Service-Type = Framed-User

Framed-Protocol = PPP

Framed-IP-Address = 11.10.10.125

Acct-Session-Time = 1905

NAS-IP-Address = 11.10.10.11

NAS-Port-Id = 8

Acct-Delay-Time = 0

Timestamp = 976897929

Request-Authenticator = Unverified

Notice that radiusd always adds two pseudo-attributes to detailed list-
ings. Attribute Timestamp shows the UNIX timestamp when radiusd has
received the request. Attribute Request-Authenticator shows the result
of checking the request authenticator. Its possible values are:

Verified The authenticator check was successful.

Unverified The authenticator check failed. This could mean that either the
request was forged or that the remote nas and radiusd do not
agree on the value of the shared secret.

None The authenticator check is not applicable for this request type.

Notice also that the so-called internal attributes by default are not logged
in the detail file. Internal attributes are those whose decimal value is greater
than 255. Such attributes are used internally by radius and cannot be trans-
ferred via radius protocol. Examples of such attributes are Fall-Through,
Hint and Huntgroup-Name. See Section 13.3 [Radius Internal Attributes],
page 178, for detailed listing of all internal attributes. The special attribute
flag l (lower-case ell) may be used to force logging of such attributes (see
Section 4.2.4 [ATTRIBUTE], page 41).

Chapter 7: Accounting 83

7.3 sql Accounting
The sql accounting method is enabled when Radius is configured with
‘--enable-sql’ option and the ‘sqlserver’ file in its configuration directory
is properly set up (see Section 4.11 [sqlserver file], page 53).

This version of GNU Radius (1.6) supports MySQL and PostgreSQL
servers. It also supports odbc, which can be used to build interfaces to
another database management systems.

With this accounting method enabled, radiusd will store the informa-
tion about accounting requests in the configured sql database. The account-
ing method is fully configurable: the Radius administrator defines both the
types of requests to be accounted and the information to be stored into the
database (see Section 4.11 [sqlserver file], page 53).

7.4 Defining Custom Accounting Types
If the built-in accounting methods do not meet your requirements, you can
implement your own. There are two ways of doing so:
1. Using a Guile procedure.
2. Using an external program

To use a Guile procedure for accounting, the name of the procedure must
be specified as a value to the Scheme-Acct-Procedure attribute in the rhs
list of a ‘hints’ entry, e.g.:

DEFAULT NULL Scheme-Acct-Procedure = "my-acct"

For a detailed description of Scheme accounting procedures, see
Section 10.3.3 [Accounting with Scheme], page 117.

Another way of implementing your own accounting method is using an
external program. This is less effective than the methods described above,
but may be necessary sometimes. To invoke the program, use the following
statement in the lhs of the ‘hints’ entry:

Acct-Ext-Program = "progname args"

The progname must be the full path to the program, and args any ar-
guments it needs. The usual substitutions may be used in args to pass any
request attributes to the program (see Section 4.14 [Macro Substitution],
page 64).

For a detailed description of Acct-Ext-Program, see Section 13.3.1 [Acct-
Ext-Program], page 178.

Chapter 8: Logging 85

8 Logging

GNU Radius reports every event worth mentioning. The events are segre-
gated by their severity level. Radius discerns the following levels (in order
of increasing severity):

Debug The debug messages (Section 9.2 [Debugging], page 89).

Auth Under this level every authentication attempt is logged. This is
enabled by setting

level auth;

in the category auth statement of the ‘config’ file.

Proxy Messages regarding proxy requests (see Section 2.4.2 [Proxying],
page 13).

Info Informational messages.

Notice Normal, but significant conditions.

Warning Warning conditions. These mean some deviations from normal
work.

Error Error conditions. Usually these require special attention.

CRIT Critical conditions due to which Radius is no longer able to
continue working. These require urgent actions from the site
administrator.

By default, all messages in all levels are output to the file
‘radlog/radius.log’. In addition, messages in level CRIT are also
duplicated to the system console. These defaults can be overridden using
logging statement in the ‘raddb/config’ file. (See Section 4.1.2 [logging
statement], page 24, for the description of logging statement syntax;
see Chapter 1 [Naming Conventions], page 5 for information about the
locations of different Radius configuration files.)

Chapter 9: Problem Tracking 87

9 Problem Tracking

9.1 Rule Tracing
If you have more than one entry in your ‘users’ file it is not always obvious
which of the entries were used for authentication. The authentication data
flow becomes even harder to understand if there are some complex rules in
the ‘hints’ and ‘huntgroups’ files.

The rule tracing mode is intended to help you find out the exact order of
the rules that each request matched during processing. The mode is toggled
by trace-rules statement in auth or acct block of your ‘config’ file. When
rule tracing mode is on for a given type of requests, radiusd will display
the data flow diagram for each processed request of this type. The diagram
is output on info logging category, it represents the list of rules in reverse
chronological order. Each rule is represented by its location in the form
filename:line. To make the output more compact, if several rules appear in
the same configuration file, their locations are listed as a comma-separated
list of numbers after the file name. Furthermore, if the configuration files
have the same path prefix, then only the first file name appears with the full
prefix.

Here is an example of trace rule diagram:� �
Oct 31 11:37:17 [28322]: Auth.info: (Access-Request foo 170 bar):

rule trace: /etc/raddb/users:157,22,3; huntgroups:72; hints:34
 	
This diagram means, that the authentication request from server ‘foo’

for user ‘bar’ with ID 170 matched the following rules
File name Line number
‘/etc/raddb/hints’ 34
‘/etc/raddb/huntgroups’ 72
‘/etc/raddb/users’ 3
‘/etc/raddb/users’ 22
‘/etc/raddb/users’ 157

As a practical example, let’s suppose you have the following setup. There
are three classes of users:
1. Users from group “root” are authenticated using system password data-

base and get rlogin access to the server 192.168.10.1
2. Users from group “staff” are also authenticated using system pass-

word database, but they are granted only telnet access to the server
192.168.10.2

3. Finally, the rest of users is authenticated against SQL database and get
usual PPP access.

88 GNU Radius Reference Manual

In addition, users from the first two classes are accounted using custom
Scheme procedure staff-acct.

The configuration files for this setup are showed below:
Contents of ‘hints’:
DEFAULT Group = "root"

Scheme-Acct-Procedure = "staff-acct",

Hint = "admin"

DEFAULT Group = "staff"

Scheme-Acct-Procedure = "staff-acct",

Hint = "staff"

Contents of file ‘users’:
DEFAULT Auth-Type = SQL,

Simultaneous-Use = 1

Service-Type = Framed-User,

Framed-Protocol = PPP

DEFAULT Hint = "admin",

Auth-Type = System

Service-Type = Login-User,

Login-IP-Host = 192.168.0.1,

Login-Service = Rlogin

DEFAULT Hint = "staff",

Auth-Type = System,

Simultaneous-Use = 1

Service-Type = Login-User,

Login-IP-Host = 192.168.0.2,

Login-Service = Telnet

Now, let’s suppose that user ‘svp’ is in the group ‘staff’ and is trying
to log in. However, he fails to do so and in radiusd logs you see:� �

Nov 06 21:25:24: Auth.notice: (Access-Request local 61 svp):

Login incorrect [svp]
 	
Why? To answer this question, you add to auth block of your ‘config’ the
statement

trace-rules yes;

and ask user ‘svp’ to retry his attempt. Now you see in your logs:� �
Nov 06 21:31:24: Auth.notice: (Access-Request local 13 svp):

Login incorrect [svp]

Nov 06 21:31:24: Auth.info: (Access-Request local 13 svp):

rule trace: /etc/raddb/users:1, hints: 5
 	
This means that the request for ‘svp’ has first matched rule on the line 1 of
file ‘hints’, then the rule on line 1 of file ‘users’. Now you see the error:

Chapter 9: Problem Tracking 89

the entries in ‘users’ appear in wrong order! After fixing it your ‘users’
looks like:

DEFAULT Hint = "admin",

Auth-Type = System

Service-Type = Login-User,

Login-IP-Host = 192.168.0.1,

Login-Service = Rlogin

DEFAULT Hint = "staff",

Auth-Type = System,

Simultaneous-Use = 1

Service-Type = Login-User,

Login-IP-Host = 192.168.0.2,

Login-Service = Telnet

DEFAULT Auth-Type = SQL,

Simultaneous-Use = 1

Service-Type = Framed-User,

Framed-Protocol = PPP

Now, you ask ‘svp’ to log in again, and see:� �
Nov 06 21:35:14: Auth.notice: (Access-Request local 42 svp):

Login OK [svp]

Nov 06 21:35:14: Auth.info: (Access-Request local 42 svp):

rule trace: /etc/raddb/users:7, hints: 5
 	
Let’s also suppose that user ‘plog’ is not listed in groups “root” and

“staff”, so he is supposed to authenticate using SQL. When he logs in, you
see in your logs:� �

Nov 06 21:39:05: Auth.notice: (Access-Request local 122 plog):

Login OK [svp]

Nov 06 21:39:05: Auth.info: (Access-Request local 122 plog):

rule trace: /etc/raddb/users:14
 	
9.2 Debugging
GNU Radius provides extensive debugging features. These are enabled either
by the ‘--debug’ (‘-x’) command line option to radiusd (see Chapter 3
[Invocation], page 17), or by the level statement in the debug category
(see Section 4.1.2 [logging statement], page 24). Both cases require as an
argument a valid debug specification.

A debug specification sets the module for which the debugging should be
enabled and the debugging level. The higher the level is, the more detailed
information is provided. The module name and level are separated by an
equal sign. If the level is omitted, the highest possible level (100) is assumed.
The module name may be abbreviated to the first N characters, in which

90 GNU Radius Reference Manual

case the first matching module is selected. Several such specifications can be
specified, in which case they should be separated by commas. For example,
the following is a valid debug specification:

proxy.c=10,files.c,config.y=1

It sets debug level 10 for module proxy.c, 100 for files.c, and 1 for
config.y.

The modules and debugging levels are subject to change from release to
release.

9.3 Test Mode
Test mode is used to test various aspects of radius configuration, without
starting the daemon. To enter test mode, run

radiusd -mt

You will see usual radiusd diagnostics and the following two lines:

� �
** TEST SHELL **

(radiusd) _
 	
The string ‘** TEST SHELL **’ indicates that radiusd has entered test

mode, the string ‘(radiusd)’ is the shell prompt, indicating that radiusd
is waiting for your commands.

The syntax of test shell command resembles that of Bourne shell: each
command consists of a list of words separated by any amount of whitespace.
Each word is either a sequence of allowed word characters (i.e. alphabetical
characters, decimal digits, dashes and underscores), or any sequence of char-
acters enclosed in a pair of double quotes. The very first word is a command
verb, the rest of words are arguments to this command verb. A command
verb may be used in its full form, in its abbreviated form (i.e. you may type
only several first characters of the verb, the only condition being that they
do not coincide with another command verb), or in it’s short form.

The first command you should know is help (or, in its short form, h).
This command takes no arguments and displays the short summary of all
the available commands. Here is an example of its output:

Chapter 9: Problem Tracking 91

� �
(radiusd) help

h help Print this help screen

q query-nas NAS LOGIN SID PORT [IP]

Query the given NAS

g guile Enter Guile

rs rewrite-stack [NUMBER] Print or set the Rewrite

stack size

r run-rewrite FUNCTION(args..) Run given Rewrite function

s source FILE Source the given Rewrite file

t timespan TIMESPAN [DOW [HH [MM]]]

Check the timespan interval

d debug LEVEL Set debugging level

rd request-define [PAIR [,PAIR]] Define a request

rp request-print Print the request

quit quit Quit the shell
 	
Each line of the output consists of three fields. The first field shows the

short command form. The second one lists its full form and its arguments,
optional arguments being enclosed in square brackets. The third field con-
tains short textual description of the command.

[Test Shell Command]query-nas nas login sid port [ip]
[Test Shell Abbreviation]q

Queries the given nas about the session described by its arguments.
This command is useful in testing simultaneous login verification (see
Section 6.9 [Multiple Login Checking], page 74. Its arguments are

nas Specifies the nas to query. It cn be its short name as defined
in ‘raddb/naslist’, or its fully qualified domain name, or its
ip address.

login Name of the user whose session should be verified.

sid Session ID.

port Port number on the nas.

ip Framed ip address, assigned to the user.

The command displays the following result codes:

0 The session is not active.

1 The session is active

-1 Some error occurred.

[Test Shell Command]guile
[Test Shell Abbreviation]g

Enter Guile shell. The command is only available if the package has been
compiled with Guile support. For more information, See Section 10.3
[Guile], page 115.

92 GNU Radius Reference Manual

[Test Shell Command]rewrite-stack [number]
[Test Shell Abbreviation]rs

Prints or sets the Rewrite stack size.

[Test Shell Command]run-rewrite function (args . . .)
[Test Shell Abbreviation]r

Runs given Rewrite function and displays its return value. Function ar-
guments are specified in the usual way, i.e. as a comma-separated list of
Rewrite tokens.

If the function being tested operates on request contents (see
Section 10.2.4 [Rewriting Incoming Requests], page 99), you may supply
the request using request-define command (see below).

[Test Shell Command]source file
[Test Shell Abbreviation]s

Reads and compiles (“source”) the given Rewrite file. The command
prints ‘0’ if the file was compiled successfully. Otherwise, it prints ‘1’ and
any relevant diagnostics.

[Test Shell Command]timespan timespan [day-of-week [hour
[minutes]]]

[Test Shell Abbreviation]t
Checks whether the given time falls within the timespan interval. Its first
argument, timespan, contains the valid radiusd timespan specification
(see Section 13.3.14 [Login-Time], page 187). Rest of arguments define
the time. If any of these is omitted, the corresponding value from current
local time is used.

day-of-week
Ordinal day of week number, counted from 0. I.e.: Sunday –
0, Monday – 1, etc.

hour Hours counted from 0 to 24.

minutes Minutes.

The following set of samples illustrates this command:

Chapter 9: Problem Tracking 93

� �
(radiusd) timespan Wk0900-1800

ctime: Tue Dec 2 16:08:47 2003

inside Wk0900-1800: 6720 seconds left

(radiusd) timespan Wk0900-1800 0

ctime: Sun Nov 30 16:09:03 2003

OUTSIDE Wk0900-1800: 60660 seconds to wait

(radiusd) timespan Wk0900-1800 0 12 30

ctime: Sun Nov 30 12:30:13 2003

OUTSIDE Wk0900-1800: 73800 seconds to wait

(radiusd) timespan Wk0900-1800 1 05 00

ctime: Mon Dec 1 05:00:33 2003

OUTSIDE Wk0900-1800: 14400 seconds to wait

(radiusd) timespan Wk0900-1800 1 09 10

ctime: Wed Jan 7 22:09:41 2004

OUTSIDE Wk0900-1800: 39060 seconds to wait

(radiusd) timespan Wk0900-1800 1 09 10

ctime: Mon Dec 1 09:10:44 2003

inside Wk0900-1800: 31800 seconds left

(radiusd)
 	
[Test Shell Command]debug level

[Test Shell Abbreviation]d
Set debugging level. Level is any valid debug level specification (see
Section 9.2 [Debugging], page 89).

[Test Shell Command]request-define [pair [,pair]]
[Test Shell Abbreviation]rd

Define a request for testing Rewrite functions. The optional arguments
are a comma-separated list of a/v pairs. If they are omitted, the com-
mand enters interactive mode, allowing you to enter the desired a/v pairs,
as in the following example:� �

(radiusd) request-define

Enter the pair list. End with end of file

[radiusd] User-Name = smith, User-Password = guessme

[radiusd] NAS-IP-Address = 10.10.10.1

[radiusd] NAS-Port-Id = 34

[radiusd]

(radiusd)
 	

94 GNU Radius Reference Manual

Notice that any number of a/v pairs may be specified in a line. To finish
entering the request, either type an EOF character or enter an empty
line.

[Test Shell Command]request-print
[Test Shell Abbreviation]rp

Prints the request, defined by request-define.� �
(radiusd) request-print

User-Name = (STRING) smith

User-Password = (STRING) guessme

NAS-IP-Address = (IPADDR) 10.10.10.1

NAS-Port-Id = (INTEGER) 34

(radiusd)
 	
[Test Shell Command]quit

Immediately quits the shell.

Chapter 10: Extensions 95

10 Extensions

The use of extension language allows extending the functionality of GNU
Radius without having to modify its source code. The two extension lan-
guages supported are Rewrite and Scheme. Use of Rewrite is always enabled.
Use of Scheme requires Guile version 1.4 or higher.

10.1 Filters
The simplest way to extend the functionality of Radius is to use filters. A
filter is an external program that communicates with Radius via its standard
input and output channels.

10.1.1 Getting Acquainted with Filters

Suppose we wish to implement an authentication method based on the user
name and the user’s calling station ID. We have a database of user names
with valid IDs, and the new method should authenticate a user only if the
combination {user name, id} is found in this database.

We write a filter program that reads its standard input line by line. Each
input line must consist of exactly two words: the user name and the calling
station ID. For each input line, the program prints 0 if the {user name, id}
is found in the database and 1 otherwise. Let’s suppose for the sake of
example that the database is a plaintext file and the filter is written in a
shell programming language. Then it will look like

#! /bin/sh

DB=/var/db/userlist

while read NAME CLID

do

if grep "$1:$2" $DB; then

echo "0"

else

echo "1"

fi

done

10.1.2 Declaring the Filter

Here is how this filter is declared in the ‘raddb/config’ file:
filters {

filter check_clid {

exec-path "/usr/libexec/myfilter";

error-log "myfilter.log";

auth {

input-format "%C{User-Name}

%C{Calling-Station-Id}";

wait-reply yes;

96 GNU Radius Reference Manual

};

};

};

Let’s analyze this declaration line by line:
1. filters {

This keyword opens the filters declaration block. The block may contain
several declarations.

2. filter check_clid {

This line starts the declaration of this particular filter and names it
‘check_clid’.

3. exec-path "/usr/libexec/myfilter";

This line tells radiusd where to find the executable image of this filter.
4. error-log "myfilter.log";

The diagnostic output from this filter must be redirected to the file
‘myfilter.log’ in the current logging directory

5. auth {

This filter will process authentication requests.
6. input-format "%C{User-Name} %C{Calling-Station-Id}";

Define the input line format for this filter. The %C{} expressions will be
replaced by the values of the corresponding attributes from the incoming
request (see Section 4.14 [Macro Substitution], page 64).

7. wait-reply yes;

radiusd will wait for the reply from this filter to decide whether to
authenticate the user.

10.1.3 Invoking the Filter from a User Profile

To invoke this filter from the user profile, specify its name prefixed with ‘|’
in the value of Exec-Program-Wait attribute, like this:

DEFAULT Auth-Type = System,

Simultaneous-Use = 1

Exec-Program-Wait = "|check_clid"

10.1.4 Adding Reply Attributes

Apart from simply deciding whether to authenticate a user, the filter can
also modify the reply pairs.

#! /bin/sh

DB=/var/db/userlist

while read NAME CLID

do

if grep "$1:$2" $DB; then

echo "0 Service-Type = Login, Session-Timeout = 1200"

Chapter 10: Extensions 97

else

echo "1 Reply-Message =

\"You are not authorized to log in\""

fi

done

10.1.5 Accounting Filters

Let’s suppose we further modify our filter to also handle accounting re-
quests. To discern between the authentication and accounting requests we’ll
prefix each authentication request with the word ‘auth’ and each accounting
request with the word ‘acct’. Furthermore, the input line for accounting
requests will contain a timestamp.

Now, our filter program will look as follows:
#! /bin/sh

AUTH_DB=/var/db/userlist

ACCT_DB=/var/db/acct.db

while read CODE NAME CLID DATE

do

case CODE

auth)

if grep "$1:$2" $DB; then

echo "0 Service-Type = Login, \

Session-Timeout = 1200"

else

echo "1 Reply-Message = \

\"You are not authorized to log in\""

fi

acct)

echo "$CODE $NAME $CLID $DATE" >> $ACCT_DB

done

Its declaration in the ‘raddb/config’ will also change:
filter check_clid {

exec-path "/usr/libexec/myfilter";

error-log "myfilter.log";

auth {

input-format "auth %C{User-Name}

%C{Calling-Station-Id}";

wait-reply yes;

};

acct {

input-format "acct %C{User-Name}

%C{Calling-Station-Id} %D";

wait-reply no;

};

};

(The input-format lines are split for readability. Each of them is actually
one line).

98 GNU Radius Reference Manual

Notice wait-reply no in the acct statement. It tells radiusd that it
shouldn’t wait for the response on accounting requests from the filter.

10.1.6 Invoking the Accounting Filter

To invoke the accounting filter, specify its name prefixed with a vertical bar
character as a value of Acct-Ext-Program in our ‘raddb/hints’ file. For
example:

DEFAULT NULL

Acct-Ext-Program = "|check_clid:

10.2 Rewrite
Rewrite is the GNU Radius extension language. Its name reflects the fact
that it was originally designed to rewrite the broken request packets so they
could be processed as usual (see Section 10.2.4 [Rewriting Incoming Re-
quests], page 99). Beside this basic use, however, Rewrite functions are used
to control various aspects of GNU Radius functionality, such as verifying the
activity of user sessions, controlling the amount of information displayed in
log messages, etc (see Section 10.2.3 [Interaction with Radius], page 99).

10.2.1 Syntax Overview

The syntax of Rewrite resembles that of C. Rewrite has two basic data
types: integer and string. It does not have global variables; all variables
are automatic. The only exceptions are the a/v pairs from the incoming
request, which are accessible to Rewrite functions via the special notation
%[attr].

10.2.2 Quick Start

As an example, let’s consider the following Rewrite function:
string

foo(integer i)

{

string rc;

if (i % 2)

rc = "odd";

else

rc = "even";

return "the number is " + rc;

}

The function takes an integer argument and returns the string ‘the number
is odd’ or ‘the number is even’, depending on the value of i. This illus-
trates the fact that in Rewrite the addition operator is defined on the string
type. The result of such operation is the concatenation of operands.

Another example is a function that adds a prefix to the User-Name at-
tribute:

Chapter 10: Extensions 99

integer

px_add()

{

%[User-Name] = "pfx-" + %[User-Name];

return 0;

}

This function manipulates the contents of the incoming request; its return
value has no special meaning.

10.2.3 Interaction with Radius

A Rewrite function can be invoked in several ways, depending on its purpose.
There are three major kinds of Rewrite functions:
• Functions used to rewrite the incoming requests.
• Functions designed for simultaneous login verification.
• Functions used to generate Radius attribute values.
• Logging hooks.

10.2.4 Rewriting Incoming Requests

The need for rewriting the incoming requests arises from the fact that some
nases are very particular about the information they send with the requests.
There are cases when the information they send is hardly usable or even
completely unusable. For example, a Cisco as5300 terminal server used as
a voice-over IP router packs a lot of information into its Acct-Session-
Id attribute. Though the information stored there is otherwise relevant, it
makes proper accounting impossible, since the Acct-Session-Id attributes
in the start and stop packets of the same session become different, and thus
Radius cannot determine the session start to which the given session stop
request corresponds (see Section 13.2.7 [Acct-Session-Id], page 177).

In order to cope with such nases, GNU Radius is able to invoke a Rewrite
function upon arrival of the packet and before processing it further. This
function can transform the packet so that it obtains the form prescribed by
rfcs and its further processing becomes possible.

For example, in the case of the as5300 router, a corresponding Rewrite
function parses the Acct-Session-Id attribute; breaks it down into fields;
stores them into proper attributes, creating them if necessary; and finally
replaces Acct-Session-Id with its real value, which is the same for the start
and stop records corresponding to a single session. Thus all the information
that came with the packet is preserved, but the packet itself is made usable
for proper accounting.

A special attribute, Rewrite-Function, is used to trigger invocation of
a Rewrite function. Its value is a name of the function to be invoked.

When used in a ‘naslist’ profile, the attribute causes the function to be
invoked when the incoming request matches the huntgroup (see Section 2.4.4
[Huntgroups], page 15). For example, to have a function fixup invoked for

100 GNU Radius Reference Manual

each packet from the nas 10.10.10.11, the following huntgroup rule may
be used:

DEFAULT NAS-IP-Address = 11.10.10.11

Rewrite-Function = "fixup"

The Rewrite-Function attribute may also be used in a ‘hints’ rule. In
this case, it will invoke the function if the request matches the rule (see
Section 2.4.3 [Hints], page 14). For example, this ‘hints’ rule will cause the
function to be invoked for each request containing the user name starting
with ‘P’:

DEFAULT Prefix = "P"

Rewrite-Function = "fixup"

Note that in both cases the attribute can be used either in lhs or in rhs
pairs of a rule.

The packet rewrite function must be declared as having no arguments
and returning an integer value:

integer fixup()

{

}

The actual return value from such a function is ignored, the integer return
type is just a matter of convention.

The following subsection present some examples of packet rewrite func-
tions.

10.2.4.1 Examples of Various Rewrite Functions

The examples found in this chapter are working functions that can be used
with various existing nas types. They are taken from the ‘rewrite’ file
contained in distribution of GNU Radius.

1. Port rewriting for max ascend terminal servers

Some max ascend terminal servers pack additional information into the
NAS-Port-Id attribute. The port number is constructed as XYYZZ, where
X = 1 for digital, X = 2 for analog, YY is the line number (1 for first
PRI/T1/E1, 2 for second, and so on), and ZZ is the channel number (on the
PRI or channelized T1/E1).

The following rewrite functions are intended to compute the integer port
number in the range (1 .. portcnt), where portcnt represents the real number
of physical ports available on the nas. Such a port number can be used,
for example, to create a dynamic pool of IP addresses (see Section 13.1.8
[Framed-IP-Address], page 168).

Chapter 10: Extensions 101

/*

* decode MAX port number

* input: P -- The value of NAS-Port-Id attribute

* portcnt -- number of physical ports on the NAS

*/

integer

max_decode_port(integer P, integer portcnt)

{

if (P > 9999) {

integer s, l, c;

s = P / 10000;

l = (P - (10000 * s))/100;

c = P - ((10000 * s) + (100 * l));

return (c-1) + (l-1) * portcnt;

}

return P;

}

/*

* Interface function for MAX terminal server with 23 ports.

* Note that it saves the received NAS-Port-Id attribute in

* the Orig-NAS-Port-Id attribute. The latter must be

* defined somewhere in the dictionary

*/

integer

max_fixup()

{

%[Orig-NAS-Port-Id] = %[NAS-Port-Id];

Preserve original data

%[NAS-Port-Id] = max_decode_port(%[NAS-Port-Id], 23);

return 0;

}

2. Session id parsing for Cisco AS 5300 series

Cisco voip ios encodes a lot of other information into its Acct-Session-
Id. The pieces of information are separated by ‘/’ characters. The part of
Acct-Session-Id up to the first ‘/’ character is the actual session id.

On the other hand, its accounting packets lack NAS-Port-Id, though they
may contain the vendor-specific pair with code 2 (vendor pec 9), which is
a string in the form ‘ISDN 9:D:999’ (‘9’ represents any decimal digit). The
number after the last ‘:’ character can be used as a port number.

The following code parses Acct-Session-Id attribute and stores the in-
formation it contains in various other attributes, generates a normal Acct-
Session-Id, and attempts to generate a NAS-Port-Id attribute.

102 GNU Radius Reference Manual

/*

* The port rewriting function for Cisco AS5300 used for

* VoIP. This function is used to generate NAS-Port-Id pair

* on the basis of vendor-specific pair 2. If the latter is

* in the form "ISDN 9:D:999" (where each 9 represents a

* decimal digit), then the function returns the number

* after the last colon. This is used as a port number.

*/

integer

cisco_pid(string A)

{

if (A =~

".*\([0-9][0-9]*\):

[A-Z0-9][A-Z0-9]*:\([0-9][0-9]*\)") {

return (integer)\2;

}

return -1;

}

/*

* This function parses the packed session id.

* The actual sid is the number before the first slash

* character. Other possibly relevant fields are also

* parsed out and saved in the Voip-* A/V pairs. The latter

* should be defined somewhere in the dictionary.

* Note that the regular expression in this example

* spans several lines for readability. It should be on one

* line in real file.

*/

string

cisco_sid(string S)

{

if (S =~ "\(.[^/]*\)/[^/]*/[^/]*/\([^/]*\)/\([^/]*\)/

\([^/]*\)/\([^/]*\)/\([^/]*\)/\([^/]*\)

/\([^/]*\).*") {

%[Voip-Connection-ID] = \2;

%[Voip-Call-Leg-Type] = \3;

%[Voip-Connection-Type] = \4;

%[Voip-Connect-Time] = \5;

%[Voip-Disconnect-Time] = \6;

%[Voip-Disconnect-Cause] = \7;

%[Voip-Remote-IP] = \8;

return \1;

}

return S;

}

Chapter 10: Extensions 103

/*

* Normalize cisco AS5300 packets

*/

integer

cisco_fixup()

{

integer pid;

if ((pid = cisco_pid(%[Cisco-PRI-Circuit])) != -1) {

if (*%[NAS-Port-Id])

%[Orig-NAS-Port-Id] = %[NAS-Port-Id];

%[NAS-Port-Id] = pid;

}

if (*%[Acct-Session-Id]) {

%[Orig-Acct-Session-Id] = %[Acct-Session-Id];

%[Acct-Session-Id] = cisco_sid(%[Acct-Session-Id]);

}

return 0;

}

3. User-name rewriting for nt machines

Users coming from Windows nt machines often authenticate themselves as
‘NT_DOMAIN\username ’. The following function selects the user-name part
and stores it in the User-Name attribute:

integer

login_nt(string uname)

{

integer i;

if ((i = index(uname, ’\\’)) != -1)

return substr(uname, i+1, -1);

return uname;

}

integer

nt_rewrite()

{

%[Orig-User-Name] = %[User-Name];

%[User-Name] = login_nt(%[User-Name]);

return 0;

}

10.2.5 Login Verification Functions

A login verification function is invoked to process the output from the nas.
This process is described in Section 6.9 [Multiple Login Checking], page 74.
The function to be invoked for given nas is defined by a function flag in
the ‘raddb/nastypes’ or ‘raddb/naslist’ file (see Section 4.5 [nastypes file],
page 47). It must be defined as follows:

104 GNU Radius Reference Manual

[Function Template]integer check (string str, string name, integer
pid, string sid)

Its arguments are:

str Input string. If the query method is finger, this is the string
of output received from the nas with trailing newline stripped
off. If the query method is snmp, it is the received variable value
converted to its string representation.

name User name.

pid Port id of the session.

sid Session id.

The function should return non-0 if its arguments match the user’s ses-
sion, and 0 otherwise.

10.2.5.1 Examples of Login Verification Functions

As an example, let’s consider the function for analyzing a line of output from
a standard UNIX finger service. In each line of finger output the first field
contains the user name; the third field, the The function must return 1 if
the three fields match the input user name and port and session ids:

integer

check_unix(string str, string name, integer pid, string sid)

{

return field(str, 1) == name

&& field(str, 3) == pid

&& field(str, 7) == sid;

}

The next example is a function to analyze a line of output from an SNMP
query returning a user name. This function must return 1 if the entire input
line matches the user name:

integer

check_username(string str, string name, integer pid, string sid)

{

return str == name;

}

10.2.6 Attribute Creation Functions

These are the functions used to create Radius reply attributes. An attribute
creation function can take any number of arguments. The type of its return
is determined by the type of Radius attribute the value will be assigned to.
To invoke the function, write its name in the a/v pair of the rhs in the
‘raddb/users’ file, e.g.:

DEFAULT Auth-Type = SQL

Service-Type = Framed-User,

Framed-IP-Address = "=get_ip_addr(10.10.10.1)"

Chapter 10: Extensions 105

The function get_ip_addr will be invoked after successful authentication
and it will be passed the IP 10.10.10.1 as its argument. An example of a
useful function that can be invoked this way is

integer

get_ip_address(integer base)

{

return base + %[NAS-Port-Id] - %[NAS-Port-Id]/16;

}

10.2.7 Logging Hook Functions

A logging hook functions should be declared as follows:

[Function Template]string hook (integer reqtype, string nasid,
integer reqid)

reqtype Type of the request. It can be converted to string using
request_code_string function (see Section 10.2.8.7 [Built-
in Functions], page 111).

nasid nas identifier from ‘raddb/naslist’, or its host name if not
declared there

reqid Request identifier.

Notice that the hook function shall not produce any side effects, in par-
ticular it shall not modify the incoming request in any way.

Following is an example prefix hook function that formats the incoming
request data:

string

compat_log_prefix(integer reqtype, string nas, integer id)

{

string result;

return "(" + request_code_string(reqtype) + " "

+ nas + " " + (string)id + " " + %[User-Name] + ")";

}

Here is a sample log produced by radiusd before and after enabling this
function:� �

Auth.notice: Login OK [jsmith]

...

Auth.notice: (AUTHREQ nas-2 251 jsmith): Login OK [jsmith]
 	
10.2.8 Full Syntax Description

10.2.8.1 Rewrite Data Types

There are only two data types: integer and string, the two being coercible
to each other in the sense that a string can be coerced to an integer if it

106 GNU Radius Reference Manual

contains a valid ascii representation of a decimal, octal, or hex number,
and an integer can always be coerced to a string, the result of such coercion
being the ascii string that is the decimal representation of the number.

10.2.8.2 Rewrite Symbols

A symbol is a lexical token. The following symbols are recognized:

Arithmetical operators
These are ‘+’, ‘-’, ‘*’, ‘/’ representing the basic arithmetical
operations, and ‘%’ meaning remainder.

Comparison operators
These are: ‘==’, ‘!=’, ‘<’, ‘<=’, ‘>’, ‘>=’ with the same mean-
ing they have in C. Special operators are provided for regular-
expression matching. The binary operator ‘=~’ returns true if
its left-hand-side operand matches the regular expression on
its right-hand side (see Section 10.2.8.6 [Regular Expressions],
page 110). ‘!~’ returns true if its left-hand-side operand does
not match the regexp on its right-hand side. The right-hand-side
operand of ‘!~’ or ‘=~’ must be a literal string, i.e., the regular
expression must be known at compile time.

Unary operators
The unary operators are ‘-’ and ‘+’ for unary plus and minus,
‘!’ for boolean negation, and ‘*’ for testing for the existence of
an attribute.

Boolean operators
These are ‘&&’ and ‘||’.

Parentheses ‘(’ and ‘)’
These are used to change the precedence of operators, to intro-
duce type casts (type coercions), to declare functions, and to
pass actual arguments to functions.

Curly braces (‘{’ and ‘}’)
These are used to delimit blocks of code.

Numbers Numbers follow the usual C convention for integers. A number
consisting of a sequence of digits is taken to be octal if it begins
with ‘0’ (digit zero), and decimal otherwise. If the sequence of
digits is preceded by ‘0x’ or ‘0X’, it is taken to be a hexadecimal
integer.

IP Numbers
IP numbers are represented by a standard numbers-and-dots
notation. IP numbers do not constitute a separate data type,
rather they are in all respects similar to initeger numbers.

Chapter 10: Extensions 107

Characters
These follow the usual C convention for characters, i.e., they
consist either of an ascii character itself or of its value, enclosed
in a pair of singlequotes. The character value begins with ‘\’
(backslash) and consists either of three octal or of two hexadec-
imal digits. A character does not form a special data type; it is
represented internally by an integer.

Quoted strings
These follow slightly modified C conventions for strings. A string
is a sequence of characters surrounded by double quotes, as in
‘"..."’. In a string, the double quote character ‘"’ must be
preceeded by a backslash ‘\’. A ‘\’ and an immediately following
newline are ignored. Following escape sequences have special
meaning:

\a Audible bell character (ASCII 7)

\b Backspace (ASCII 8)

\e Escape character (ASCII 27)

\f Form feed (ASCII 12)

\n Newline (ASCII 10)

\r Carriage return (ASCII 13)

\t Horizontal tab (ASCII 9)

\\ Backslash

\ooo (‘o’ represents an octal digit) A character whose
ASCII value is represented by the octal number
‘ooo’.

\xHH
\XHH (‘H’ represents a hex digit) A character whose ASCII

value is represented by the hex number ‘HH’.

\(Two characters ‘\(’.

\) Two characters ‘\)’.

If the character following the backslash is not one of those spec-
ified, the backslash is ignored.

Attribute values
The incoming request is passed implicitly to functions invoked
via the Rewrite-Function attribute. It is kept as an associative
array, whose entries can be accessed using the following syntax:

‘%[’ attribute-name ‘]’

‘%[’ attribute-name ‘]’ ‘(’ n ‘)’

108 GNU Radius Reference Manual

The first form returns the value of the attribute attribute-name.
Here attribute-name should be a valid Radius dictionary name
(see Section 4.2 [dictionary file], page 40).
The second form returns the value of the nth attribute of type
attribute-name. The index n is counted from zero, so

%[attribute-name](0)

is equivalent to
%[attribute-name]

Identifiers Identifiers represent functions and variables. These are de-
scribed in the next sub-subsection.

Regexp group references
A sequence of characters in the form

‘\number’

refers to the contents of parenthesized group number number
obtained as a result of the last executed ‘=~’ command. The
regexp group reference has always string data type. For example:

string

basename(string arg)

{

if (arg =~ ".*/\(.*\)\..*")

return \1;

else

return arg;

}

This function strips from arg all leading components up to the
last slash character, and all trailing components after the last dot
character. It returns arg unaltered if it does not contain slashes
and dots. It is roughly analogous to the system basename utility.

10.2.8.3 Rewrite Identifiers

A valid identifier is a string of characters meeting the following requirements:
1. It starts with either a lower- or an uppercase letter of the Latin alphabet

or either of the following symbols: ‘_’, ‘$’.
2. It consists of alphanumeric characters, underscores(‘_’), and dollar signs

(‘$’).

10.2.8.4 Rewrite Declarations

Function declarations

A Rewrite function is declared as follows:
type function-name (parameter-list)

where type specifies the return type of the function, function-name declares
the symbolic name of the function, and parameter-list declares the formal

Chapter 10: Extensions 109

parameters to the function. It is a comma-separated list of declarations in
the form

type parm-name

type being the parameter type, and parm-name being its symbolic name.
Both function-name and parm-name should be valid identifiers.

Variable declarations

There are no global variables in Rewrite. All variables are local. The local
variables are declared right after the opening curly brace (‘{’) and before
any executable statements. The declaration syntax is

type ident_list ;

Here ident list is either a valid Rewrite identifier or a comma-separated list
of such identifiers.

Note that, unlike in C, no assignments are allowed in variable declara-
tions.

10.2.8.5 Rewrite Statements

The Rewrite statements are: expressions, assignments, conditional state-
ments, and return statements. A statement is terminated by a semicolon.

Expressions

An expression is one of the following:
• A variable identifier
• A type coercion expression
• An arithmetic expression
• A boolean expression
• An assignment
• A function call
• A delete statement

Type coercion

The type coercion is like a type cast in C. Its syntax is
‘(’ type ‘)’ ident

The result of type coercion is as follows:
type Variable

type
Resulting conversion

integer integer No conversion. This results in the same
integer value.

110 GNU Radius Reference Manual

integer string If the string value of the variable is a valid
ascii representation of the integer number
(either decimal, octal, or hex), it is con-
verted to the integer; otherwise the result
of the conversion is undefined.

string integer The ascii representation (in decimal) of the
integer number.

string string No conversion. This results in the same
string value.

Assignment

An assignment is
ident = expression ;

The variable ident is assigned the value of expression.

Function calls

These take the form
ident (arg-list)

where ident is the identifier representing the function, and arg-list is a
comma-separated list of expressions supplying actual arguments to the func-
tion. The number of the expressions must correspond exactly to the number
of formal parameters in the function definition. The function that ident
references can be either a compiled function or a built-in function.

‘delete’ statement

The ‘delete’ statement is used to delete an attribute or attributes from the
incoming request. Its syntax is:

delete attribute-name;

delete attribute-name(n);

The first variant deletes all the attributes of the given type. The second
variant deletes only the nth occurrence of the matching attribute.

10.2.8.6 Regular Expressions

Rewrite uses POSIX regular expressions (See Section “Regular Expression
Library” in Regular Expression Library , for the detailed description of
these).

You control the exact type of regular expressions by the use of the prag-
matic comment regex. Its syntax is as follows:

#pragma regex option-list

Option-list is a whitespace-separated list of options. Each option is one of
the following words prefixed with ‘+’ or ‘-’:

Chapter 10: Extensions 111

extended Use POSIX extended regular expression syntax when interpret-
ing regular expressions.

icase Do not differentiate case. Subsequent regular expression com-
parisons will be case insensitive.

newline Match-any-character operators don’t match a newline.
A non-matching list (‘[^...]’) not containing a newline does
not match a newline.
Match-beginning-of-line operator (‘^’) matches the empty string
immediately after a newline.
Match-end-of-line operator (‘$’) matches the empty string im-
mediately before a newline.

Prefixing an option with ‘+’ means to enable the corresponding behavior.
Prefixing it with ‘-’ means to disable it. Thus, the following statement:

#pragma regex +extended +icase

will enable extended POSIX regular expressions using case-insensitive com-
parison.

Using the following comment:
#pragma regex -extended

will switch to the basic POSIX regular expressions.
The settings of a regex pragmatic comment remain in force up to the

end of current source file, or to the next regex comment, whichever occurs
first.

For compatibility with previous versions, GNU Radius uses the following
defaults:

#pragma regex -extended -icase -newline

i.e. all regular expressions are treated as basic POSIX, comparison is case-
sensitive.

10.2.8.7 Rewrite Built-in Functions

The following built-in functions are provided:

[Function]integer length (string s)
Returns the length of the string s.

length("string") ⇒ 6

[Function]integer index (string s, integer c)
Returns the index of the first occurrence of the character c in the string
s. Returns −1 if no such occurrence is found.

index("/raddb/users", 47) ⇒ 0

index("/raddb/users", 45) ⇒ −1

112 GNU Radius Reference Manual

[Function]integer rindex (string s, integer i)
Returns the index of the last occurrence of the character c in the string
s. Returns −1 if no such occurrence is found.

rindex("/raddb/users", 47) ⇒ 6

[Function]string substr (string s, integer start, integer length)
Returns the substring of s of length at most length starting at position
start.

substr("foo-bar-baz", 3, 5) ⇒ "-bar-"

All character positions in strings are counted from 0.

[Function]string field (string buffer, integer n)
This function regards the buffer argument as consisting of fields separated
with any amount of whitespace. It extracts and returns the nth field. n
is counted from 1.

field("GNU’s not UNIX", 1) ⇒ "GNU’s"

field("GNU’s not UNIX", 2) ⇒ "not"

field("GNU’s not UNIX", 3) ⇒ "UNIX"

field("GNU’s not UNIX", 4) ⇒ ""

[Function]integer logit (string msg)
Outputs its argument to the Radius log channel info. Returns 0. For
debugging purposes.

[Function]integer inet_aton (string str)
Converts the Internet host address str from the standard numbers-and-
dots notation into the equivalent integer in host byte order.

inet_aton("127.0.0.1") ⇒ 2130706433

[Function]string inet_ntoa (integer ip)
Converts the Internet host address ip given in host byte order to a string
in standard numbers-and-dots notation.

inet_ntoa(2130706433) ⇒ "127.0.0.1"

[Function]integer htonl (integer n)
Converts the integer n, regarded as long, from host to network byte order.

[Function]integer ntohl (integer n)
Converts the integer n, regarded as long, from network to host byte order.

[Function]integer htons (integer n)
Converts the integer n, regarded as short, from host to network byte
order.

[Function]integer ntohs (integer n)
Converts the integer n, regarded as short, from network to host byte
order.

Chapter 10: Extensions 113

[Function]string gsub (string regex, string repl, string str)
For each substring matching the regular expression regex in the string
str, substitute the string repl, and return the resulting string.

gsub("s","S","strings")
⇒ "StringS"

gsub("[0-9][0-9]*","N","28 or 29 days")
⇒ "N or N days"

gsub("[()’\"]","/","\"a\" (quoted) ’string’")
⇒ "/a/ /quoted/ /string/"

[Function]string qprn (string str)
Replace all non-printable characters in string S by their corresponding hex
value preceeded by a percent sign. Return the resulting string. Printable
are alphabetical characters, decimal digits and dash (‘-’). Other charac-
ters are considered non-printable. For example:

qprn("a string/value") ⇒ "a%20string%2Fvalue"

[Function]string quote_string (string str)
Replace all non-printable characters in string str by their three-digit oc-
tal code prefixed with a backslash, or by their C escape notation, as
appropriate. Non-printable characters depend on the locale settings. For
example, suppose that the current locale is set to ISO-8859-1 (a so called
“Latin-1” character set) and ? represents a tab character. Then:

quote_string("François contains non?printable chars")
⇒ "Fran\347ois contains non\tprintable chars"

[Function]string unquote_string (string str)
Replace C escape notations in string str with corresponding characters
using current locale. For example, for ISO-8859-1 locale:

unquote_string("Fran\347ois") ⇒ "François"

[Function]string toupper (string str)
Returns the copy of the string str with all alphabetical characters con-
verted to upper case. For example:

toupper("a-string") ⇒ "A-STRING"

[Function]string tolower (string str)
Returns the copy of the string str with all alphabetical characters con-
verted to lower case. For example:

tolower("A-STRING") ⇒ "a-string"

[Function]string request_code_string (integer code)
Converts integer RADIUS request code to its textual representation as
per RFC 3575. This function is useful in logging hooks (see Section 4.1.2.1
[hooks], page 25).

request_code_string(4) ⇒ "Accounting-Request"

114 GNU Radius Reference Manual

Native Language Support

The native language support is provided via the functions described below.
These functions are interfaces to GNU gettext library. For the information
about general concepts and principles of Native Language Support, please
refer to Section “gettext” in GNU gettext utilities.

The default current textual domain is ‘radius’.

[Function]string textdomain (string domain)
Sets the new value for the current textual domain. This domain is used by
the functions gettext and ngettext. Returns the name of the previously
used domain.

[Function]string gettext (string msgid)
[Function]string _ (string msgid)

The function returns the translation of the string msgid if it is available in
the current domain. If it is not available, the argument itself is returned.
The second form of this function provides a traditional shortcut notation.
For a detailed description of the GNU gettext interface, refer to Section
“Interface to gettext” in GNU gettext utilities.

[Function]string dgettext (string domain, string msgid)
Returns the translation of the string msgid if it is available in the domain
domain. If it is not available, the argument itself is returned.

[Function]string ngettext (string msgid_singular, string
msgid_plural, integer number)

The ngettext function is used to translate the messages that have sin-
gular and plural forms. The msgid singular parameter must contain the
singular form of the string to be converted. It is also used as the key
for the search in the catalog. The msgid_plural parameter is the plural
form. The parameter number is used to determine the plural form. If
no message catalog is found msgid singular is returned if number == 1,
otherwise msgid plural.
For a detailed description of the GNU gettext interface for the plural
translation, refer to Section “Additional functions for plural forms” in
GNU gettext utilities.

[Function]string dngettext (string domain, string msg_sing,
string msg_plur, integer number)

Similar to ngettext, but searches translation in the given domain.

Request Accessors

The following functions are used to read some internal fields of a radius
request.

Chapter 10: Extensions 115

[Function]Integer request_source_ip ()
Returns source ip address of the currently processed request. This func-
tion can be used to add NAS-IP-Address attribute to the requests lacking
one, e.g.:

integer

restore_nas_ip()

{

if (!*%[NAS-IP-Address])

%[NAS-IP-Address] = request_source_ip();

return 0;

}

[Function]Integer request_source_port ()
Returns the source udp port.

[Function]Integer request_id ()
Returns the request identifier.

[Function]Integer request_code ()
Returns the request code.

10.3 Guile
The name Guile stands for GNU’s Ubiquitous Intelligent Language for Ex-
tensions. It provides a Scheme interpreter conforming to the R4RS language
specification. This section describes use of Guile as an extension language
for GNU Radius. It assumes that the reader is sufficiently familiar with
the Scheme language. For information about the language, refer to Section
“Top” in Revised(4) Report on the Algorithmic Language Scheme. For more
information about Guile, see Section “Overview” in The Guile Reference
Manual.

Scheme procedures can be called for processing both authentication and
accounting requests. The invocation of a Scheme procedure for an authenti-
cation request is triggered by the Scheme-Procedure attribute; the invoca-
tion for an accounting request is triggered by the Scheme-Acct-Procedure
attribute. The following sections address these issues in more detail.

10.3.1 Data Representation

a/v pair lists are the main object Scheme functions operate upon. Scheme
is extremely convenient for representation of such objects. A Radius a/v
pair is represented by a Scheme pair; e.g.,

Session-Timeout = 10

is represented in Guile as
(cons "Session-Timeout" 10)

The car of the pair can contain either the attribute dictionary name or
the attribute number. Thus, the above pair may also be written in Scheme
as

116 GNU Radius Reference Manual

(cons 27 10)

(because Session-Timeout corresponds to attribute number 27).
Lists of a/v pairs are represented by Scheme lists. For example, the

Radius pair list
User-Name = "jsmith",

User-Password = "guessme",

NAS-IP-Address = 10.10.10.1,

NAS-Port-Id = 10

is written in Scheme as
(list

(cons "User-Name" "jsmith")

(cons "User-Password" "guessme")

(cons "NAS-IP-Address" "10.10.10.1")

(cons "NAS-Port-Id" 10))

10.3.2 Authentication with Scheme

The Scheme procedure used for authentication must be declared as follows:

[Function Template]auth-function request-list check-list reply-list
Its arguments are:
request-list

The list of a/v pairs from the incoming request
check-list The list of a/v pairs from the lhs of the profile entry that

matched the request
reply-list The list of a/v pairs from the rhs of the profile entry that

matched the request

The function return value determines whether the authentication will
succeed. The function must return either a boolean value or a pair. The
return of #t causes authentication to succeed. The return of #f causes it to
fail.

For a function to add something to the reply a/v pairs, it should return
a pair in the form

(cons return-code list)

where return-code is a boolean value of the same meaning as described above.
list is a list of a/v pairs to be added to the reply list. For example, the follow-
ing function will always deny the authentication, returning an appropriate
message to the user:

(define (decline-auth request-list check-list reply-list)

(cons #f

(list

(cons "Reply-Message"

"\r\nSorry, you are not

allowed to log in\r\n"))))

As a more constructive example, let’s consider a function that allows the
authentication only if a user name is found in its internal database:

Chapter 10: Extensions 117

(define staff-data

(list

(list "scheme"

(cons

(list (cons "NAS-IP-Address" "127.0.0.1"))

(list (cons "Framed-MTU" "8096")))

(cons

’()

(list (cons "Framed-MTU" "256"))))))

(define (auth req check reply)

(let* ((username (assoc "User-Name" req))

(reqlist (assoc username req))

(reply-list ’()))

(if username

(let ((user-data (assoc (cdr username) staff-data)))

(rad-log L_INFO (format #f "~A" user-data))

(if user-data

(call-with-current-continuation

(lambda (xx)

(for-each

(lambda (pair)

(cond

((avl-match? req (car pair))

(set! reply-list (avl-merge

reply-list

(cdr pair)))

(xx #t))))

(cdr user-data))

#f)))))

(cons

#t

reply-list)))

To trigger the invocation of the Scheme authentication function, assign
its name to the Scheme-Procedure attribute in the rhs of a corresponding
‘raddb/users’ profile. For example:

DEFAULT Auth-Type = SQL

Scheme-Procedure = "auth"

10.3.3 Accounting with Scheme

The Scheme accounting procedure must be declared as follows:

[Function Template]acct-function-name request-list
Its argument is:

request-list
The list of a/v pairs from the incoming request

The function must return a boolean value. The accounting succeeds only
if it has returned #t.

118 GNU Radius Reference Manual

Here is an example of a Scheme accounting function. The function dumps
the contents of the incoming request to a file:

(define radius-acct-file "/var/log/acct/radius")

(define (acct req)

(call-with-output-file radius-acct-file

(lambda (port)

(for-each (lambda (pair)

(display (car pair) port)

(display "=" port)

(display (cdr pair) port)

(newline port))

req)

(newline port)))

#t)

10.3.4 Radius-Specific Functions

[Scheme Function]avl-delete av-list attr
Delete from av-list the pairs with attribute attr.

[Scheme Function]avl-merge dst src
Merge src into dst.

[Scheme Function]avl-match? target list
Return #t if all pairs from list are present in target.

[Scheme Function]rad-dict-name->attr name
Return a dictionary entry for the given attribute name or #f if no such
name was found in the dictionary.
A dictionary entry is a list in the form

[Scheme List]dict-entry name-string attr-number type-number
vendor

where the arguments are as follows:

name-string
The attribute name

value-number
The attribute number

type-number
The attribute type

vendor The vendor PEC, if the attribute is a vendor-specific one,
or #f otherwise.

[Scheme Function]rad-dict-value->name attr value
Returns the dictionary name of the given value for an integer-type at-
tribute attr, which can be either an attribute number or its dictionary
name.

Chapter 10: Extensions 119

[Scheme Function]rad-dict-name->value attr value
Convert a symbolic attribute value name into its integer representation.

[Scheme Function]rad-dict-pec->vendor pec
Convert a PEC to the vendor name.

[Scheme Function]rad-log-open prio
Open Radius logging to the severity level prio.

[Scheme Function]rad-log-close
Close a Radius logging channel opened by a previous call to rad-log-
open.

[Scheme Function]rad-rewrite-execute-string string
Interpret string as an invocation of a function in Rewrite language and
execute it.
Return value: return of the corresponding Rewrite call, translated to the
Scheme data type.

[Scheme Function]rad-rewrite-execute arglist
Execute a Rewrite language function. (car arglist) is interpreted as a
name of the Rewrite function to execute, and (cdr arglist) as a list of
arguments to be passed to it.
Return value: return of the corresponding Rewrite call, translated to the
Scheme data type.

[Scheme Function]rad-openlog ident option facility
Scheme interface to the system openlog() call.

[Scheme Function]rad-syslog prio text
Scheme interface to the system syslog() call.

[Scheme Function]rad-closelog
Scheme interface to the system closelog() call.

[Scheme Function]rad-utmp-putent status delay list radutmp file
radwtmp file

Write the supplied data into the radutmp file. If radwtmp file is not nil,
the constructed entry is also appended to wtmp file.
list is:

[Scheme List]utmp-entry user-name orig-name port-id port-type
session-id caller-id framed-ip nas-ip proto

user-name The user name

orig-name The original user name from the request

port-id The value of the NAS-Port-Id attribute

port-type A number or character indicating the port type

120 GNU Radius Reference Manual

session-id The session id

caller-id The value of the Calling-Station-Id attribute from the
request

framed-ip The framed IP assigned to the user

nas-ip The nas IP

proto A number or character indicating the type of the connec-
tion

Chapter 11: Utility Programs 121

11 Utility Programs

11.1 radwho

Radwho displays the list of users currently logged in by the Radius server.
Default output information is made compatible with that of the standard

unix finger(1) utility. For each user the following information is displayed:
login name, name, connection protocol, nas port, login date, nas name,
assigned IP or corresponding network name.

When used with ‘-l’ option, the long output format is used. In this
format the following information is output:

‘Login’ Login name of the user

‘SessionID’
Unique session id assigned by the terminal server.

‘Proto’ Connection prototype.

‘Port’ Port number

‘When’ Login date and time

‘From’ Name of the nas that accepted the connection.

‘Location’
Framed IP or the corresponding network name.

‘Caller’ Caller station id ad reported by the nas.

‘Duration’
Duration of the session.

11.1.1 radwho Command Line Options

The following command line options can be used to modify the behavior of
the program:

‘-A’
‘--all’ Display the information about logged-out users as well. The

logged-out users are shown with ‘Proto’ field set to HUP.

‘-c’
‘--calling-id’

Display the calling station id in the second column. Equivalent
to ‘--format clid’.

‘-d NAME’
‘--directory NAME’

Set the Radius configuration directory name.

122 GNU Radius Reference Manual

‘-D fmt ’
‘--date-format fmt ’

Set the date representation. Th fmt is usual strftime(3) for-
mat string. It defaults to %a %H:%M, i.e. the abbreviated week-
day name according to the current locale, and the hour and the
minutes as two-digit decimal numbers.

‘-e STRING ’
‘--empty STRING ’

Display any empty field as STRING. This is useful when the
output of radwho is fed to some analyzing program, as it helps
to keep the same number of columns on each line of output.

‘-F’
‘--finger’

Start in fingerd mode. In this mode radwho emulates the be-
havior of the fingerd(8) utility. Use this option if starting
radwho from the ‘/etc/inetd.conf’ line like this1:

finger stream tcp nowait nobody /usr/sbin/radwho

radwho -fL

This mode is also enabled by default if radwho notices that its
name (argv[0]) is ‘fingerd’ or ‘in.fingerd’.

‘-H’
‘--no-header’

Don’t display header line.

‘-i’
‘--session-id’

Display session id instead of gecos in the second column.
Equivalent to ‘--format sid’.

‘-I’
‘--ip-strip-domain’

Display hostnames without domain part.

‘-u’
‘--local-also’

Display information about local users from the system ‘utmp’
file. May prove useful when running radwho as a finger daemon.

‘-n’
‘--no-resolve’

Do not resolve IP.

1 In this example the statement has been split on two lines to fit the page width. It
must occupy a single line in the real configuration file.

Chapter 11: Utility Programs 123

‘-o format ’
‘--format format ’

Select customized output format. This can also be changed by
setting the value of environment variable RADWHO_FORMAT. The
format is either a symbolic name of one of the predefined formats
or a format specification (see next subsection).

‘-s’
‘--secure’

Run in secure mode. Queries without a user name are rejected.

11.1.2 radwho Format Strings

A format string controls the output of every record from ‘radutmp’. It
contains two types of objects: ordinary characters, which are simply copied
to the output, and format specifications, each of which causes output of a
particular piece of information from the ‘radutmp’ record.

Each format specification starts with an opening brace and ends with a
closing brace. The first word after the brace is the name of the format spec-
ification. The rest of words are positional arguments followed by keyword
arguments. Both are optional. The keyword arguments begin with a colon
and must follow the positional arguments.

The full list of format specifications follows.

[Format Spec]newline [count]
Causes the newline character to be output. If the optional count is sup-
plied, that many newlines will be printed

[Format Spec]tab [num]
Advance to the next tabstop in the output stream. If optional num is
present, then skip num tabstops. Each tabstop is eight characters long.

The following specifications output particular fields of a ‘radutmp’ record.
They all take two positional arguments: width and title.

The first argument, width sets the maximum output length for this spec-
ification. If the number of characters actually output is less than the width,
they will be padded with whitespace either to the left or to the right, de-
pending on the presence of the :right keyword argument. If the number of
characters is greater than width, they will be truncated to fit. If width is
not given, the exact data are output as is.

The second argument, title, gives the title of this column for the heading
line. By default no title is output.

Every field specification accepts at least two keyword arguments. The
keyword :right may be used to request alignment to the right for the data.
This keyword is ignored if width is not given.

The keyword :empty followed by a string causes radwho to output that
string if the resulting value for this specification would otherwise be empty.

124 GNU Radius Reference Manual

[Format Spec]login width title [:empty repl][:right]
Print the user login name.

[Format Spec]orig-login width title [:empty repl][:right]
Print original login name as supplied with the request.

[Format Spec]gecos width title [:empty repl][:right]
The gecos field from the local ‘/etc/passwd’ corresponding to the login
name. If the user does not have a local account, his login name is output.

[Format Spec]nas-port width title [:empty repl][:right]
nas port number

[Format Spec]session-id width title [:empty repl][:right]
The session ID.

[Format Spec]nas-address width title [:empty
repl][:right][:nodomain]

The nas name or IP.
The :nodomain keyword suppresses the output of the domain part of the
name, i.e., the hostname is displayed only up to the first dot.

[Format Spec]framed-address width title [:empty
repl][:right][:nodomain]

Framed IP assigned to the user, if any.
The :nodomain keyword suppresses the output of the domain part of the
name, i.e. the hostname is displayed only up to the first dot.

[Format Spec]protocol width title [:empty repl][:right]
Connection protocol as reported by Framed-Protocol attribute. If the
symbolic value is found in the dictionary file, it will be displayed. Other-
wise, the numeric value will be displayed as is.

[Format Spec]time width title [:empty repl][:right][:format
date-format]

Date and time when the session started.
The :format keyword introduces the strftime format string to be used
when converting the date for printing. The default value is %a %H:%M.

[Format Spec]duration width title [:empty repl][:right]
Total time of the session duration.

[Format Spec]delay width title [:empty repl][:right]
Delay time (see Section 13.2.2 [Acct-Delay-Time], page 175).

[Format Spec]port-type width title [:empty repl][:right]
Port type as reported by the value of the NAS-Port-Type attribute. If
the symbolic value is found in the dictionary file, it will be displayed.
Otherwise, the numeric value will be displayed as is.

Chapter 11: Utility Programs 125

[Format Spec]clid width title [:empty repl][:right]
The calling station ID.

[Format Spec]realm width title [:empty repl][:right][:nodomain]
If the request was forwarded to a realm server, print the symbolic name
of the realm from the ‘raddb/realms’ file. If no symbolic name is found,
print the remote server IP or hostname. In the latter case, the :nodomain
keyword may be used to suppress the output of the domain part of the
name, i.e. to display the hostname only up to the first dot.

11.1.3 radwho Predefined Formats

The predefined formats are:

‘default’ Default output format. Each record occupies one line. The fields
output are: login name, gecos name, connection protocol, port
number, time when the connection was initiated, nas IP, and
assigned framed IP. This corresponds to the following format
specification (split in several lines for readability:

(login 10 Login) (gecos 17 Name) \

(protocol 5 Proto) (nas-port 5 TTY) \

(time 9 When) (nas-address 9 From) \

(framed-address 16 Location)

‘sid’ The same as ‘default’, except that the session ID is output in
the second column.

‘clid’ The same as ‘default’, except that the calling station ID is
output in the second column.

‘long’ Outputs all information from each ‘radutmp’ record. It is equiv-
alent to specifying the following format string:

(login 32 Login) (session-id 32 SID) \

(protocol 5 Proto) (nas-port 5 Port) \

(time 27 Date) (nas-address 32 NAS) \

(clid 17 CLID) (duration 7 Duration) \

(framed-address 16 Location) (realm 16 Realm)

‘gnu’ Each ‘radutmp’ record is represented as a table. It is equivalent
to specifying the following format string:

User: (login)(newline)\

In real life: (gecos)(newline)\

Logged in: (time)(newline)\

NAS: (nas-address)(newline)\

Port: (nas-port)(newline)\

CLID: (clid)(newline)\

Protocol: (protocol)(newline)\

Session ID: (session-id)(newline)\

Uptime: (duration)(newline)\

Assigned IP: (framed-address)(newline)\

Realm: (realm)(newline)"

126 GNU Radius Reference Manual

11.2 radlast

The radlast utility lists sessions of specified users, nases, nas ports, and
hosts, in reverse time order. By default, each line of output contains the
login name, the nas short name and port number from where the session
was conducted, the host IP or name, the start and stop times for the session,
and the duration of the session. If the session is still continuing, radlast
will so indicate.

When the ‘-l’ option is specified, radlast produces long output. It
includes following fields:
• Login name
• nas short name
• Port number
• Connection protocol
• Port type
• Session id

• Caller id

• Framed IP address
• Session Start Time
• Session Stop Time
• Duration of the Session

11.2.1 radlast Command Line Options

Use following command line options to control the behavior of the radlast
utility:

‘-number ’
‘-c number ’
‘--count number ’

When given this option, radlast will output at most this many
lines of information.

‘-f’
‘--file name ’

Read the specified file instead of the default
‘/var/log/radwtmp’.

‘-h hostname ’
‘--host hostname ’

Report the logins from given host. Host can be either a name
or a dotted-quad Internet address.

‘-n shortname ’
‘--nas shortname ’

Report the logins from the given nas.

Chapter 11: Utility Programs 127

‘-l’
‘--long-format’

Long output format. Report all the information stored in
‘radwtmp’ file.

‘-p number ’
‘--port number ’

Report the logins on a given port. The port may be specified
either fully or abbreviated, e.g. radlast -p S03 or radlast -p
3.

‘-s’
‘--show-seconds’

Report the duration of the login session in seconds instead of
the default days, hours, and minutes.

‘-t’ The same as ‘-p’. This flag is provided for compatibility with
last(1).

‘-w’
‘--wide’ Widen the duration field to show seconds as well as the default

days, hours and minutes.

If multiple arguments are given, the logical or operation between them
is assumed, i.e., the information selected by each argument is printed. This,
however, does not apply to the ‘-c’ option. That option is always combined
with the rest of command line by logical and.

The pseudo-user ‘~reboot’ logs in on every reboot of the network access
server.

If radlast is interrupted, it indicates to what date the search had pro-
gressed.

11.3 radzap

radzap searches the Radius accounting database for matching login records
and closes them.

At least one of the options ‘-n’, ‘-p’, or the user name must be specified.
If they are used in conjunction, they are taken as if joined by the logical and
operation.

radzap operates in two modes: silent and confirm. The silent mode is
enabled by default. When run in this mode, radzap deletes every record
that matches the search conditions given.

In confirm mode radzap will ask for a confirmation before zapping each
matching record. Any line beginning with a ‘y’ is taken as a positive re-
sponse; any other line is taken as a negative response.

The confirm mode is toggled by the command line option ‘-c’.

128 GNU Radius Reference Manual

Syntax
radzap [options] [username]

Options are:

‘-c’
‘--confirm’

Enable confirm mode.

‘-d dir ’
‘--directory dir ’

Specify alternate configuration directory. Default is
‘/usr/local/etc/raddb’.

‘-f file ’
‘--file file ’

Operate on file instead of the default ‘RADLOG/radutmp’.

‘-l dir ’
‘--log-directory dir ’

Search the file ‘radutmp’ in the given directory.
This option is deprecated. It is currently retained for backward
compatibility with previous versions.

‘-q’
‘--quiet’ Disable confirm mode.

‘-h’
‘--help’ Display a short help summary, and exit.

‘-n name ’
‘--nas name ’

Specify nas name to zap user from.

‘-p port ’
‘--port port ’

Specify the port number of the session to be zapped. The port
number can be specified either in its full form, e.g. radzap -p
S02, or in its short form, e.g. radzap -p 2.

11.4 radgrep

This utility allows one to quickly look up the user in the Radius accounting
database, using a regular expression match. radgrep scans the output of
radwho utility and outputs only the lines that match given regular expres-
sions.

Syntax

radgrep accepts two sets of options separated by ‘--’ (double hyphen). The
first subset is passed as the command line to the radwho utility. The second
one is passed to grep.

Chapter 11: Utility Programs 129

11.5 radping

This utility is a shell program that determines the user’s framed IP and runs
ping on that address.

Syntax
radping username

radping -c calling-station-id

The second way of invoking the program allows one to use the calling
station id to indicate the user.

11.6 radauth

The radauth utility sends the Radius server an Access-Request packet
and displays the result it gets. If the server responds with Access-Accept
radauth can also send an Accounting-Request thereby initiating user’s
session.

The utility is a radtest program. See Section 12.2.12 [Sample Radtest
Program], page 155, for the detailed discussion of its internals.

Invocation
radauth [options] [command] user-name [password]

Options are:

‘-v’ Print verbose descriptions of what is being done.

‘-n nas-ip ’
Set nas ip address

‘-s sid ’ Set accounting session ID

‘-P port ’ Set nas port number.

Valid commands are:

auth Send only Access-Request. This is the default.

acct Send Access-Request. If successfull, send Accounting-
Request with Acct-Status-Type = Start.

start Send Accounting-Request with Acct-Status-Type = Start.

stop Accounting-Request with Acct-Status-Type = Stop.

The program determines which Radius server to use, the authentication
port number, and the shared secret, following the procedure common to all
client scripts (see Section 12.1 [client.conf], page 135).

130 GNU Radius Reference Manual

11.7 radctl

Radctl is a control interface to the radiusd daemon. It allows the user
running it to query radiusd about various aspects of its work and to issue
administrative commands to it. The syntax is

radctl command [args]

where command is a command telling radctl which actions to take, and
args are optional arguments to the command. Only one command can be
specified per invocation.

The valid commands are as follows:

start [args]
If radiusd is not running already, it is started. When present,
args are passed as the command line to the server.

stop Stops running radiusd.

restart [args]
Stops the server and then starts it again. When present, args
are passed as the command line to the server.

reload Causes the running radiusd server to reread its configuration
files.

dumpdb Tells radiusd to dump its user hash table into the file ‘rad-
log/radius.parse’. This can be used for debugging configura-
tion files.

status
which This command shows the line of ps(1) describing the running

copy of radiusd program. The exact look depends on the ver-
sion of operating system you are running. Please refer to “man
ps” for more detail on ps output.
Here is an example of what radctl status prints on GNU/Linux:

19692 ? 01:53:11 radiusd

Here, first field is the PID of the process, second field (‘?’) in-
dicates that the running program has detached from the con-
trolling terminal, the third field gives total amount of CPU time
used by the program, and, finally, the last field shows the full
name under which the command was invoked.

11.8 builddbm

Usage

builddbm converts the plaintext Radius users database into DBM files. Some
versions of the Radius daemon have used this to speed up the access to the
users database. However, with GNU Radius things go the other way around.
The server reads the entire plaintext database, converts it into internal form,

Chapter 11: Utility Programs 131

and stores into a hash table, which provides for fast access. Actually, using a
DBM version of the users database slows down the access unless the machine
that runs the Radius daemon is short of address space for the daemon to
store the users database.

Syntax

When used without arguments, the builddbm utility attempts to convert the
file ‘raddb/users’ to ‘raddb/users.db’ or to the pair ‘raddb/users.pag’,
‘raddb/users.dir’, depending on the version of the DBM library used.

If used with one argument, that argument is taken as the name of the
plaintext database file to operate upon.

Use the following command line options to modify the operation of
buildbm:

‘-d dir ’ Specifies alternate directory for the Radius configuration files.
This defaults to ‘/usr/local/etc/raddb’.

‘-h’ Outputs short usage summary and exits with 0 exit code.

11.9 radscm: A Guile Interface to Radius
Functions

radscm is a Scheme interpreter based on Guile with the addition of spe-
cial functions and variables for communicating with radiusd. This chapter
concentrates on the special features provided by radscm. Refer to Guile
documentation for information about Scheme and Guile (see Section “Over-
view” in The Guile Reference Manual).

Variables

[Variable]%raddb-path
A path to the Radius configuration directory.

[Function]rad-server-list
A list of radius servers. Each element of the list is:

(list id-str host-str secret-str auth-num acct-num

cntl-num)

where the arguments are as follows:
id-str Server id
host-str Server hostname or IP
secret-str Shared secret key to use
auth-num Authentication port number
acct-num Accounting port number
cntl-num Control channel port number
Thus, each entry can be used as an argument to rad-client-set-server
or rad-client-add-server.

132 GNU Radius Reference Manual

Functions

[Function]rad-send-internal port-number code-number
pair-list

Sends the request to currently selected server. Arguments are:

port-number
Port number to use. These values are allowed:
0 Authentication port
1 Accounting port
2 Control port
The actual port numbers are those configured for the given
server.

code-number
Request code.

pair-list List of attribute-value pairs. Each pair is either
(cons attr-name-str value)

or
(cons attr-number value)

Return: On success,
(list return-code-number pair-list)

On failure,
’()

[Function]rad-send port-number code-number pair-list .
verbose

Sends a radius request. Actually it does the same work as rad-send-
internal, but if verbose is specified, the verbose report about interaction
with the radius server is printed.

[Function]rad-client-list-servers
List currently configured servers. Two columns for each server are dis-
played: server id and IP.

[Function]rad-get-server
Returns the id of the currently selected server.

[Function]rad-client-set-server list
Selects for use the server described by list. Here list takes the form

(list id-str host-str secret-str auth-num acct-num

cntl-num)

where the elements are as follows:
id-str Server id
host-str Server hostname or IP
secret-str Shared secret key to use

Chapter 11: Utility Programs 133

auth-num Authentication port number
acct-num Accounting port number
cntl-num Control channel port number

[Function]rad-client-add-server list
Adds the server described by list to the list of active servers. Here list
takes the form

(list id-str host-str secret-str auth-num acct-num

cntl-num)

where the elements are as follows:
id-str Server id
host-str Server hostname or IP
secret-str Shared secret key to use
auth-num Authentication port number
acct-num Accounting port number
cntl-num Control channel port number

[Function]rad-read-no-echo prompt-str
Prints the given prompt-str, disables echoing, reads a string up to the
next newline character, restores echoing, and returns the string entered.
This is the interface to the C getpass(3) function.

[Function]rad-client-source-ip ip-str
Sets the IP to be used as source. ip-str can be either an IP in dotted-quad
form or a hostname.

[Function]rad-client-timeout number
Sets the timeout in seconds for waiting for a server reply.

[Function]rad-client-retry number
Sets the number of retries for sending requests to a Radius server.

[Function]rad-format-code dest-bool code-number
Format a radius reply code into a human-readable form. dest-bool has
the same meaning as in format (see Section “Formatted Output” in The
Guile Reference Manual.)

[Function]rad-format-pair dest-bool pair
Format a radius attribute-value pair for output. dest-bool has the same
meaning as in format. pair is either

(cons name-str value)

or
(cons attr-number value)

where value may be of any type appropriate for the given attribute.

[Function]rad-print-pairs dest-bool pair-list
Output the radius attribute-value pairs from pair-list. dest-bool has the
same meaning as in format. pair-list is a list of pairs in the form

134 GNU Radius Reference Manual

(cons name-str value)

or
(cons attr-number value)

where value may be of any type appropriate for the given attribute.
All Reply-Message pairs from the list are concatenated and displayed as
one.

[Function]rad-format-reply-msg pair-list . text
Concatenate and print text from all Reply-Message pairs from pair-list.
If text is specified, it is printed before the concatenated text.

[Function]rad-list-servers
For each server from rad-server-list, print its id and hostname or IP.

[Function]rad-select-server ID-STR
Select the server identified by id-str as a current server. The server data
are looked up in rad-server-list variable.

[Function]rad-add-server id-str
Add the server identified by id-str to the list of current servers. The
server data are looked up in rad-server-list variable.

Chapter 12: Client Package 135

12 Client Package

Beside the Radius server and accompanying utilities, GNU Radius provides
a set of utilities to be used as Radius clients.

The following sections describe in detail the parts of the Radius client
package.

12.1 Client Configuration
All programs from the client package share the same configuration file:
‘raddb/client.conf’. The file uses simple line-oriented syntax. Empty
lines are ignored; the command ‘#’ introduces an end-of-line comment.

The source IP is introduced with the source_ip statement. Its syntax
is:

source_ip ip-addr

where ip-addr must be the IP in dotted-quad notation.
The Radius server to send the requests to is introduced with server

statement:
server name ip-addr secret auth-port acct-port

Its parts are:

name The server name. It is reserved for further use.

ip-addr The server IP.

secret The shared secret to be used when sending requests to this
server.

auth-port The authentication port number.

acct-port The accounting port number.

If several server statement are present, they are tried in turn until one
of them replies to the request.

The amount of time a client program waits for the reply from a server is
configured using the timeout statement:

timeout number

If the program does not receive any response within number seconds, it
assumes the server does not respond and either retries the transmission or
tries the next available server. The number of retries is set with the retry
statement:

retry number

The example ‘raddb/client.conf’ follows:
server first 10.11.10.1 secret 1645 1646

server second 10.11.10.1 secret 1645 1646

source_ip 127.0.0.1

timeout 3

retry 5

136 GNU Radius Reference Manual

12.2 radtest
Radtest is a radius client shell, providing a simple and convenient language
for sending requests to radius servers and analyzing their reply packets.

12.2.1 Invoking radtest

(This message will disappear, once this node revised.)

‘-a variable=value ’
‘--assign=variable=value ’

Assign a value to variable. See Section 12.2.4.5 [Assignment
Options], page 142, for a detailed discussion.

‘-f file ’
‘--file=file ’

Read input from file. Stops further processing of the command
line.

‘-i’
‘--no-interactive’

Disable interactive mode.

‘-n’
‘--dry-run’

Check the input file syntax and exit.

‘-q’
‘--quick’ Do not read the configuration file.

‘-r number ’
‘--retry=number ’

Set number of retries.

‘-s server ’
‘--server=server ’

Set radius server parameters.

‘-t number ’
‘--timeout=number ’

Set timeout

‘-v’
‘--verbose’

Verbose mode

‘-x debugspec ’
‘--debug=debugspec ’

Set debugging level

‘-d dir ’
‘--directory dir ’

Specify alternate configuration directory. Default is
‘/usr/local/etc/raddb’.

Chapter 12: Client Package 137

‘-L’
‘--license’

Print license and exit.
‘-?’
‘--help’ Print short usage summary
‘--usage’ Print even shorter usage summary.
‘-V’
‘--version’

Print program version.

12.2.2 Literal Values

There are four basic data types in radtest language: integer, ipaddr,
string and avlist.

12.2.2.1 Numeric Values

Integer means a signed integer value in the range -2147483648..2147483647.
Ipaddr is an unsigned integer value suitable for representing ipv4 ad-

dresses. These can be input either as decimal numbers or as ip addresss in
usual “dotted-quad” notation.

As a convenience measure, radius request code names can be used in
integer context. The following table lists currently defined request names
with their integer codes:
Access-Request 1
Access-Accept 2
Access-Reject 3
Accounting-Request 4
Accounting-Response 5
Accounting-Status 6
Password-Request 7
Password-Ack 8
Password-Reject 9
Accounting-Message 10
Access-Challenge 11
Status-Server 12
Status-Client 13
Ascend-Terminate-Session 31
Ascend-Event-Request 33
Ascend-Event-Response 34
Ascend-Allocate-IP 51
Ascend-Release-IP 52

12.2.2.2 Character Strings

String is an arbitrary string of characters. Any input token consisting of
letters of Latin alphabet, decimal digits, underscores dashes and dots and

138 GNU Radius Reference Manual

starting with a Latin alphabet letter or underscores is considered a string.
To input strings containing other letters, surround them by double quotes.
The following are valid strings:

A-string

"String, containing white space"

The double quote character ‘"’ must be preceeded by a backslash ‘\’ if it
is part of a string:

"Always quote \" character"

Generally speaking, ‘\’ is an escape character, that alters the meaning of
the immediately following character. If it is located at the end of the line,
it allows to input newline character to strings:

"This string contains a \

newline character."

Other special escape sequences are:

\a Audible bell character (ASCII 7)

\b Backspace (ASCII 8)

\e Escape character (ASCII 27)

\f Form feed (ASCII 12)

\n Newline (ASCII 10)

\r Carriage return (ASCII 13)

\t Horizontal tab (ASCII 9)

\\ Backslash

\ooo (‘o’ represents an octal digit) A character whose ASCII value is
represented by the octal number ‘ooo’.

\xHH
\XHH (‘H’ represents a hex digit) A character whose ASCII value is

represented by the hex number ‘HH’.

If the character following the backslash is not one of those specified, the
backslash is ignored.

An important variant of string is a numeric string, or STRNUM for
short. A numeric string is a string that can be converted to a number, for
example "+2". This concept is used for type conversion between integer
and string values.

Another way to represent strings is using here document syntax. Its
format is as follows:

<<[-]delimiter

text

delimiter

Delimiter is any word you choose to delimit the text, text represent the text
of the string. If delimiter is prepended by a dash, any leading tabulation

Chapter 12: Client Package 139

characters will be removed from text. This allows for natural indentation of
‘here document’ constructs.

The ‘here document’ construct is especially useful to represent strings
containing embedded newlines, as shown in the example below:

print <<EOT

usage: foo [OPTIONS] [NAME...]

OPTIONS are:

-h Print this help list.

EOT

12.2.2.3 Lists of A/V pairs

Avlist are whitespace or comma-separated lists of radius attribute-value
pairs. A syntax for a/v pair is

name op value

where name is attribute name, op is a comparison operator (‘=’, ‘!=’, ‘<’,
‘<=’, ‘>’, ‘>=’), and value is any valid radtest data or expression. An a/v
pair list must be enclosed in parentheses. This is an example of an a/v pair
list consisting of two pairs:

(User-Name = "test" NAS-IP-Address = 10.10.10.1)

An empty pair list is represented by a pair of parentheses: ().

12.2.3 Reserved Keywords

The following keywords are reserved in radtest:
acct, and, auth, begin, break, case, continue,

do, else, end, exit, expect, getopt, if,

in, input, not, or, print, return, send,

set, shift, while

The reserved keywords may be used as variable names, provided that the
following requrements are met:
• In assignment, these names are quoted using single quotes.

’case’ = 1

• When dereferencing, the use of curly braces is obligatory:
${case} + 2

12.2.4 Variables

Variables are means of storing data values at one point of your program for
using them in another parts of it. Variables can be assigned either in the
program itself, or from the radtest command line.

12.2.4.1 Using Variables

The name of a variable must be a sequence of letters, digits, underscores and
dashes, but it may not begin with a digit or dash. Notice, that in contrast
to the majority of programming languages, use of dashes (minus signs) is
allowed in user names. This is because traditionally radius attribute names

140 GNU Radius Reference Manual

contain dashes, so extending this practice to variable names makes radtest
programs more consistent. On the other hand, this means that you should
be careful when using minus sign as a subtraction operator (see [minus-
ambiguity], page 141). Case is significant in variable names: a and A are
different variables.

A name of a variable may coincide with one of radtest reserved keywords.
See Section 12.2.3 [Reserved Keywords], page 139, for description on how to
use such variables.

A few variables have special built-in meanings (see Section 12.2.4.6 [Built-
in Variables], page 143). Such variables can be assigned and accessed just
as any other ones. All built-in variables names are entirely upper-case.

Variables are never declared, they spring into existence when an assign-
ment is made to them. The type of a variable is determined by the type of
the value assigned to it.

12.2.4.2 Variable Assignments

An assignment stores a new value into a variable. It’s syntax is quite straight-
forward:

variable = expression

As a result of the assignment, the expression is evaluated and its value
is assigned to variable. If variable did not exist before the assignment, it
is created. Otherwise, whatever old value it had before the assignment is
forgotten.

It is important to notice that variables do not have permanent types.
The type of a variable is the type of whatever value it currently holds. For
example:

foo = 1

print $foo ⇒ 1

foo = "bar"

print $foo ⇒ bar

foo = (User-Name = "antonius" NAS-IP-Address = 127.0.0.1)

print $foo ⇒ (User-Name = "antonius" NAS-IP-Address = 127.0.0.1)

Another important point is that in radtest, assignment is not an ex-
pression, as it is in many other programming languages. So C programmers
should resist temptation to use assignments in expressions. The following is
not correct:

x = y = 1

Finally, if the variable name coincides with one of radtest keywords, it
must be enclosed in single quotes:

’case’ = 1

12.2.4.3 Dereferencing Variables

Dereferencing a variable means accessing its value. The simplest form of
dereferencing is by prepending a dollar sign to the variable name:

Chapter 12: Client Package 141

foo = 1

print foo ⇒ foo

print $foo ⇒ 1

Notice, that in the example above, the first print statement understands
foo as a literal string, whereas the second one prints the value of the variable.

Dereferencing an undefined variable produces error message:
print $x error variable ‘x’ used before definition

Optionally, the variable name may be surrounded by curly braces. Both
$foo and ${foo} are equivalent. The use of the latter form is obligatory
only when the variable name coincides with one of the reserved keywords
(see Section 12.2.3 [Reserved Keywords], page 139). It also can be used
to resolve ambiguity between using dash as a part of user name and as a
subtraction operator:

long-name = 2

$long-name ⇒ 2

$long-name-1 error variable ‘long-name-1’ used before definition

${long-name}-1 ⇒ 1

$long-name - 1 ⇒ 1

We recommend to always surround ‘-’ with whitespace when it is used
as arithmetic operator.

The ${} notation also permits some operations similar to shell variable
substitution.

${variable:-text}
Use default values. If variable is unset, return text, otherwise
return the value of the variable.

$x error variable ‘x’ used before definition

${x:-1} ⇒ 1

x = 2

${x:-1} ⇒ 2

${variable:=text}
Assign default values. If variable is unset, text is assigned to it.
The expression always returns the value of the variable.

$x error variable ‘x’ used before definition

${x:=1} ⇒ 1

$x ⇒ 1

${variable:?text}
Display error if unset. If variable is unset, text is written to
the standard error (if text is empty, the default diagnostic mes-
sage is used) and further execution of the program is aborted.
Otherwise, the value of variable is returned.

$x error variable ‘x’ used before definition

${x:?} error x: variable unset

${x:?foobar} error foobar

142 GNU Radius Reference Manual

${variable::text}
Prompt for the value if unset. If variable is unset, radtest
prints text (or a default message, if it is empty), reads the stan-
dard input up to the newline character and returns the value
read. Otherwise, the value of the variable is returned. This
notation provides a convenient way for asking user to supply
default values.

${x::} a (<teletype>:1)x?

${x::Enter value of x: } a Enter value of x:

${variable:&text}
Prompt for the value with echo turned off if unset. This is similar
to the ${variable::text}, with the exception that the input
value will not be echoed on the screen. This notation provides a
convenient way for asking user to supply default values for vari-
ables (such as passwords, shared secrets, etc.) while preventing
them from being compromised.

12.2.4.4 Accessing Elements of A/V Pair Lists

Elements of an avlist are accessed as if it were an array, i.e.:
$variable [attribute-name]

If the attribute attribute-name is of string data type and variable may
contain more than one pair with this attribute, adding an asterisk after
attribute-name returns concatenated values of all such pairs:

$variable [attribute-name *]

Examples:
x = (NAS-Port-Id = 127.0.0.1 \

Reply-Message = "a long"

Reply-Message = " string"

$x[NAS-Port-Id] ⇒ 127.0.0.1

$x[Reply-Message] ⇒ "a long"

$x[Reply-Message*] ⇒ "a long string"

12.2.4.5 Assignment Options

You can set any radtest variable from the command line. There are two
ways of doing so.

First, you can use variable assignment option ‘--assign’ (or ‘-a’). Its
syntax is:

--assign variable=text

-a variable=text

For example:
radtest -a foobar=5

Another way is useful when you load a radtest program by ‘--file’ or
‘-f’. This second way consists in including a variable assignment in the form

Chapter 12: Client Package 143

variable=text

in the command line after the script name. For example:
radtest -f myprog.rad foo=5 addr=127.0.0.1

This method is especially useful for executable scripts that are run using #!
shell magic. Consider a simple script:

#! /usr/local/bin/radtest -f

print $addr

The value of addr can be given to the script from the command line as in
the example below:

myprog.rad addr=127.0.0.1

12.2.4.6 Built-in Variables

The following variables are predefined:

(an underscore character)
Contains the result of last evaluated expression.

REPLY CODE
Contains the last reply code received from the radius server
(integer).

REPLY Contains the a/v pairs lastly received from the radius server
(avlist).

SOURCEIP
Contains the source ip address of the radius client (ipaddr). By
default, it equals the ip address set via source_ip statement in
your ‘client.conf’ file (see Section 12.1 [client.conf], page 135).

INPUT The value of the input read by input statement (see
Section 12.2.11 [Built-in Primitives], page 153).

OPTVAR The option obtained by the recent call to getopt (see
Section 12.2.11 [Built-in Primitives], page 153).

OPTARG Argument to the option obtained by the recent call to getopt.

OPTIND Index of the next command line argument to be processed by
getopt. If the last call to getopt returned false, OPTIND contains
index of the first non-optional argument in the command line.

12.2.5 Positional Parameters

Normally radtest stops parsing its command line when it encounters either
first non-optional argument (i.e. the one not starting with dash), or an
argument consisting of two dashes. The rest of the command line starting
from the first non-optional argument forms positional parameters. These
parameters are said to form the top-level environment.

Similarly, when invoking a user-defined function (see Section 12.2.7 [Func-
tion Definitions], page 149), arguments passed to it are said to form the

144 GNU Radius Reference Manual

current environment of the function. These arguments are positional pa-
rameters for this function.

Positional parameters are assigned numbers starting from 1. To access
(dereference) a positional parameter, the syntax $n is used, where n is the
number of the parameter. Alternative forms, such as ${n} or ${n:-text},
can also be used. These work exactly as described in Section 12.2.4.3 [Deref-
erencing Variables], page 140).

The number of positional parameters can be accessed using a special
notation $#.

Several things need to be mentioned:
• All top-level positional parameters have string data type, whereas the

types of positional parameters in a function current environment are
determined before inoking the function.

• Special notion $0 returns the name of the function being evaluated.
When used in the top-level environment, it returns the name of radtest
program as given by ‘--file’ (‘-f’) option.

• Dereferencing non-existing parameter returns empty string. This differs
from dereferencing non-existing variable, which results in error.

• AWK programmers should note that assignments (see Section 12.2.4.5
[Assignment Options], page 142) are not included in the top level envi-
ronment (see example below).

For example, suppose you run:
radtest -f script.rad name foo=bar 5

Then, the top-level environment of program ‘script.rad’ consists of the
following variables:

$0 ⇒ script.rad

$1 ⇒ name

$2 ⇒ 5

12.2.6 Expressions

An expression evaluates to a value, which can be printed, assigned to a
variable, used in a conditional statement or passed to a function. As in other
languages, expressions in radtest include literals, variable and positional
parameter dereferences, function calls and combinations of these with various
operators.

12.2.6.1 Arithmetic Operations

Radtest provides the common arithmetic operators, which follow normal
precedence rules (see Section 12.2.6.8 [Precedence], page 148), and work
as you would expect them to. The only notable exception is subtraction
operator (minus) which can be used as part of a variable or attribute name,
and therefore expressions like $x-3 are ambiguous. This expression can be
thought of either as a dereference of the variable x-3 (see Section 12.2.4.3

Chapter 12: Client Package 145

[Dereferencing Variables], page 140), or as subtraction of the value 3 from
the value of the variable x. Radtest always resolves this ambiguityin the
favor of variable dereference. Therefore we advise you to always surround
minus sign by whitespace, if it is used as a subtraction operator. So, instead
of $x-3, write $x - 3. For other methods of solving this ambiguity, See
[minus-ambiguity], page 141.

This table lists the arithmetic operators in order from highest precedence
to lowest:

- x Negation.

+ x Unary plus. This is equivalent to x .

x * y Multiplication.

x / y Division.

x % y Remainder.

x + y Addition.

x - y Subtraction.

Unary plus and minus have the same precedence, the multiplication, di-
vision and remainder all have the same precedence, and addition and sub-
traction have the same precedence.

If x and y are of different data types, their values are first coerced to a
common data type, selected using a set of rules (see Section 12.2.6.6 [Con-
version Between Data Types], page 147).

12.2.6.2 String Operations

There is only one string operation: concatenation. It is represented by plus
sign, e.g.:

"string" + "ent" ⇒ "stringent"

12.2.6.3 Operations on A/V Lists

(This message will disappear, once this node revised.)
The following operations are defined on A/V lists:

x + y Addition. The a/v pairs from y are added to x, honoring the
respective pairs additivity (see Section 2.1 [additivity], page 7).
For example:

(User-Name = "foo") + (Password = "bar")
⇒ (User-Name = "foo" Password = "bar")

(User-Name = "foo" Service-Type = Login-User) + \

(Service-Type = Framed-User Password = "bar")
⇒ (User-Name = "foo" \

Service-Type = Framed-User \

Password = "bar")

146 GNU Radius Reference Manual

x - y Subtraction. The result of this operation is an A/V list consist-
ing of pairs from x, which are not found in y.

(User-Name = "foo" Service-Type = Login-User) - \

(Service-Type = Framed-User)
⇒ (User-Name = "foo")

Notice, that only attribute name matters, its value is ignored.

x % y Intersection. The result of this operation is an a/v pair list
consisting of pairs from x which are also present in y.

(User-Name = "foo" Service-Type = Login-User) - \

(Service-Type = Framed-User)
⇒ (Service-Type = Login-User)

12.2.6.4 Comparison Operations

Comparison expressions compare operands for relationships such as equality.
They return boolean values, i.e. true or false. The comparison operations
are nonassociative, i.e. they cannot be used together as in:

Wrong!

1 < $x < 2

Use boolean operations (see Section 12.2.6.5 [Boolean Ops], page 147) to
group comparisons together.

Comparison operations can only be used in conditional expressions.
This table lists all comparison operators in order from highest precedence

to lowest (notice, however, the comment after it):

x = y True if x is equal to y. C and AWK programmers, please note
single equal sign!

x != y True if x is not equal to y.

x < y True if x is less than y.

x <= y True if x is less than or equal to y.

x > y True if x is greater than y.

x >= y True if x is greater than or equal to y.

Operators = and != have equal precedence. Operators <, <=, >, >= have
equal precedence.

Most operators are defined for all radtest data types. However, only =
and != are defined for avlists. Using any other comparison operator with
avlists produces error.

If x and y are of different data types, their values are first coerced to a
common data type, selected using a set of rules (see Section 12.2.6.6 [Con-
version Between Data Types], page 147).

Chapter 12: Client Package 147

12.2.6.5 Boolean Operations

A boolean operation is a combination of comparison expressions. Boolean
operations can only be used in conditional expressions.

This table lists all comparison operators in order from highest precedence
to lowest.

not x
! x True if x is false.

x and y True if both x and y are true. The subexpression y is evaluated
only if x is true.

x or y True if at least one of x or y is true. The subexpression y is
evaluated only if x is false.

12.2.6.6 Conversion Between Data Types

(This message will disappear, once this node revised.)
The unary negation operand is always converted to integer type:
-(1 + 1) ⇒ -2

-(127.0.0.1 + 2) ⇒ -2130706435

- ("1" + "1") ⇒ -11

- "text" error cannot convert string to integer

The unary not operand is converted using the following rules:
1. If the operand is integer, no conversion is performed.
2. If the operand is STRNUM (see [STRNUM], page 138) or ipaddr, it is

converted to integer.
3. If the operand is string (but is not STRNUM), the result of not is true

only if the operand is an empty string.
4. If the operand is avl, the result of not is true if the list is empty.

Examples:
not 0 ⇒ 1

not 10 ⇒ 0

not "23" ⇒ 0

not "0" ⇒ 1

not "text" ⇒ 0

not "" ⇒ 1

not 127.0.0.1 ⇒ 0

not 0.0.0.0 ⇒ 1

When operands of two different data types are used in a binary operation,
one of the operands is converted (cast) to another operand’s type according
to the following rules:
1. If one of the operands is literal, radtest attemtps to convert another

operand to the literal data type. If this attempt fails, it goes on to rule
2.

148 GNU Radius Reference Manual

2. If one of operands is STRNUM (see [STRNUM], page 138) and another
is of numeric data type (i.e. either integer or ipaddr), the latter is
converted to string representation.

3. If one of the operands is ipaddr and another is integer, the latter is
converted to ipaddr.

4. Otherwise, if one of the operands is string, the second operand is also
converted to string.

5. Otherwise, the two operands are incompatible. Radtest prints appro-
priate diagnostics and aborts execution of the current statement.

12.2.6.7 Function Calls

A function is a name for a particular sequence of statements. It is defined
using special definition syntax (see Section 12.2.7 [Function Definitions],
page 149). Normally a function return some value. The way to use this value
in an expression is with a function call expression, which consists of the func-
tion name followed by a comma-separated list of arguments in parentheses.
The arguments are expressions which provide values for the function call
environment (see Section 12.2.5 [Positional Parameters], page 143. When
there is more than one argument, they are separated by commas. If there
are no arguments, write just ‘()’ after the function name. Here are some
examples:

foo() no arguments

bar(1) one argument

bar(1, "string") two arguments

12.2.6.8 Operator Precedence (How Operators Nest)

Operator precedence determines the order of executing operators, when dif-
ferent operators appear close by in one expression. For example, * has higher
precedence than +; thus, a + b * c means to multiply b and c, and then add
a to the product.

You can overrule the precedence of the operators by using parentheses.
You can think of the precedence rules as saying where the parentheses are
assumed to be if you do not write parentheses yourself. Thus the above
example is equivalent to a + (b * c).

When operators of equal precedence are used together, the leftmost op-
erator groups first. Thus, a - b + c groups as (a - b) + c.

This table lists radtest operators in order from highest precedence to
the lowest:

$ Dereference.

(...) Grouping.

+ - not ! Unary plus, minus. Unary boolean negation.

* / % Multiplication, division, modulus.

Chapter 12: Client Package 149

+ - Addition, subtraction.

< <= = != > >=
Relational operators.

and Logical ‘and’.

or Logical ‘or’.

12.2.7 Function Definitions

A function is a name for a particular sequence of statements. The syntax
for the function definition is:

name

begin

...

end

where name is function name and ‘...’ represent a non-empty list of valid
radtest statements.

Notice that newline characters are obligatory after name, begin and be-
fore the final end keyword.

If the function accepts arguments, these can be referenced in the func-
tion body using $n notation (see Section 12.2.5 [Positional Parameters],
page 143). To return the value from the function return statement is used.

For example, here is a function that computes sum of the squares of its
two arguments:

hypo

begin

return $1*$1 + $2*$2

end

12.2.8 Interacting with Radius Servers

Radtest provides two commands for interaction with remote radius servers.
Command send sends request to the server specified in

‘raddb/client.conf’. Its syntax is:
send [flags] port-type code [expr-or-pair-list]

Optional flags can be used for fine-tuning the internals of send. You
will seldom need to use these, unless you are developing GNU Radius. See
Section 12.2.11 [Built-in Primitives], page 153, for the detailed description
of these.

The first obligatory argument, port-type, specifies which radius port to
send the request to. Specifying ‘auth’ will send the request to the authen-
tication port (see Section 12.1 [client.conf], page 135); specifying ‘acct’ will
send it to the accounting port (see Section 12.1 [client.conf], page 135).

Argument code gives the request code. It is either a number or a symbolic
request code name (see Section 12.2.2.1 [Numeric Values], page 137).

150 GNU Radius Reference Manual

The last argument, expr-or-pair-list is either a radtest expression eval-
uating to avlist or a list of a/v pairs. These pairs will be included in the
request.

Here are several examples:
Send a Status-Server request without attributes.

send auth Status-Server

Send an Access-Request with two attributes

send auth Access-Request User-Name = "foo" User-Password = "bar"

Send an Accounting-Request, taking attributes from the variable

attr

send acct Accounting-Request $attr

Command send stores the reply code into the variable REPLY_CODE and
reply pairs into the variable REPLY (see Section 12.2.4.6 [Built-in Variables],
page 143).

Another primitive is expect. Expect takes at most two arguments: a
request code (either numeric or symbolic, (see Section 12.2.2.1 [Numeric
Values], page 137)) and optional list of a/v pairs (similar to send expr-or-
pair-list argument). Expect check if these match current REPLY_CODE and
REPLY values and if so, prints the string ‘PASS’. Otherwise, it prints ‘FAIL’.
This command is designed primarily for use in GNU Radius testsuite.

Expect is usually used right after send, as shown in the example below:
send auth Access-Request User-Name = "foo" User-Password = "bar"

expect Access-Accept Reply-Message = "Access allowed"

12.2.9 Conditional Statements

(This message will disappear, once this node revised.)
Radtest provides two kinds of conditional statements: if and case.

If statement

An if statement in its simplest form is:
if cond stmt

where cond is a conditional expression and stmt is a valid radtest statement.
Optional newline may be inserted between cond stmt.

In this form, if evaluates the condition and if it yields true, executes the
statement. For example:

if $REPLY[NAS-IP-Address] = 127.0.0.1

print "Request from localhost"

More complex form of this statement allows to select between the two
statements:

if cond stmt-1 else stmt-2

Here, stmt-1 will be executed if cond evaluates to true, and stmt-2 will be
executed if cond evaluates to false.

Chapter 12: Client Package 151

Notice, that an optional newline is allowed between cond and stmt-1 and
right after else keyword. However, a newline before else constitutes an
error.

If several statements should be executed in a branch of the if statement,
use compound statement as in the example below:

if $REPLY_CODE != Accounting-Response

begin

print "Accounting failed.\n"

exit 1

end else

print "Accounting succeeded.\n"

If statements can be nested to any depth.

Case statement

Case statement allows select a statement based on whether a string ex-
pression matches given regular expression. The syntax of case statement
is:

case expr in

expr-1) stmt-1

expr-2) stmt-2

...

expr-n) stmt-n

end

where expr is a control expression, expr-1, expr-2 etc. are expressions eval-
uating to extended POSIX regular expressions (for the detailed description
of these see Section “Regular Expression Library” in Regular Expression
Library).

Case statement first evaluates expr and converts it to string data type.
Then it evaluates each expr-n in turn and tests if the resulting regular expres-
sion matches expr. If so, the statement stmt-n is executed and the execution
of case statement finishes.

The following example illustrates the concept:
case $COMMAND in

"auth.*") authenticate($LIST, no)

"acct") authenticate($LIST, yes)

".*") begin

print "Unknown command."

exit 1

end

end

Bourne shell programmers should notice that:
• Case statement ends with end, not esac.
• There is no need to put ;; at the end of each branch,
• Boolean operations are not allowed in expr-n.

152 GNU Radius Reference Manual

12.2.10 Loops

(This message will disappear, once this node revised.)

Two looping constructs are provided: while and do...while.

While loop

The syntax of a while loop is:

while cond

stmt

Newline after cond is obligatory.

Do...while loop
do

stmt

while cond

As usual do...while loop differs from its while counterpart in that its
stmt is executed at least once.

The looping constructs can be nested to any depth.

Two special statements are provided for branching within loop constructs.
These are break and continue.

Break statement stops the execution of the current loop statement and
passes control to the statement immediately following it

while $x < 10

begin

if $x < $y

break

...

x = $x + 1

end

print "OK\n"

In the example above, execution of break statement passes control to print
statement.

Break may also take an argument: a literal number representing the
number of nested loop statements to break from. For example, the break
statement in the sample code below will exit from the outermost while:

Chapter 12: Client Package 153

while $y < 10

begin

while $x < 10

begin

if $x < $y

break 2

...

x = $x + 1

end

...

y = $y + 1

end

print "OK\n"

Continue statement passes control to the condition of the current looping
construct. When used with a numeric argument, the latter specifies the
number of the nesting looping construct to pass control to (as with break,
the innermost loop is considered to have number 1, so continue is equivalent
to continue 1).

12.2.11 Built-in Primitives

[Radtest built-in]getopt optstring [opt [arg [ind]]]
Getopt is used to break up command line options for subsequent parsing.
The only mandatory argument, optstring is a list of short (one-character)
options to be recognized. Each short option character in optstring may
be followed by one colon to indicate it has a required argument, and by
two colons to indicate it has an optional argument.
Each subsequent invocation of getopt processes next command line argu-
ment. Getopt returns true if the argument is an option and returns false
otherwise. It stores the retrieved option (always with a leading dash) in
the variable opt (OPTVAR by default). If the option has an argument, the
latter is stored in the variable arg (OPTARG by default). Index of the next
command line argument to be processed is preserved in the variable ind
(OPTIND by default).
The usual way of processing command line options is by invoking getopt
in a condition expression of while loop and analyzing its return values
within the loop. For example:

while getopt "hf:"

case $OPTVAR in

"-h") print "Got -h option\n"

"-f") print "Got -f option. Argument is " $OPTARG "\n"

".*") begin

print "Unknown option: " $OPTVAR "\n"

exit 1

end

end

end

154 GNU Radius Reference Manual

[Radtest statement]input [expr name]
Evaluates expr and prints its result on standard output. Then reads a
line from standard input and assigns it to the variable name.
If expr is given, name must also be present.
If name is not given, variable INPUT is used by default.

[Radtest statement]set options
Sets radtest command line options. Options should be a valid radtest
command line (see Section 12.2.1 [Invoking radtest], page 136).

[Radtest statement]shift [expr]
Shift positional parameters left by one, so that $2 becomes $1, $3 becomes
$2 etc. $# is decremented. $0 is not affected.
If expr is given, it is evaluated, converted to integer and used as shift
value. Thus shift 2 shifts all positional parameters left by 2.

[Radtest statement]return [expr]
Returns from the current function (see Section 12.2.7 [Function Defini-
tions], page 149). If expr is present, it is evaluated and the value thus
obtained becomes the function return value.
It is an error to use return outside of a function definition.

[Radtest statement]break [n]
Exit from within a loop.If n is specified, break from number levels. n
must be >= 1. If n is greater than the number of enclosing loops, an error
message is issued.
See Section 12.2.10 [Loops], page 152, for the detailed discussion of the
subject.

[Radtest statement]continue [n]
Resume the next iteration of the enclosing loop. If n is specified, resume
at the nth enclosing loop. n must be >= 1. If n is greater than the number
of enclosing loops, an error message is issued.
See Section 12.2.10 [Loops], page 152, for the detailed discussion of the
subject.

[Radtest statement]exit [expr]
Exit to the shell. If expr is specified, it is evaluated and used as exit code.
Otherwise, 0 is returned to the shell.

[Radtest statement]print expr-list
Evaluate and print expressions. Expr-list is whitespace or comma-
separated list of expressions. Each expression is evaluated in turn and
printed to the standard output.

Chapter 12: Client Package 155

[Radtest statement]send [flags] port-type code
expr-or-pair-list

Send a request to the radius server and wait for the reply. Stores reply
code in the variable REPLY_CODE and reply a/v pairs in the variable REPLY
(see Section 12.2.8 [Interacting with Radius Servers], page 149).
flags are a whitespace-separated list of variable assignments. Following
variables are understood:

repeat=n Unconditionally resend the request n times.

id=n Specify the request ID.

keepauth=1
Do not alter request authenticator when resending the re-
quest.

port-type Specifies which port to use when sending the request. Use
‘auth’ to send the request to the authentication port (see
Section 12.1 [client.conf], page 135), and ‘acct’ to send it to
the accounting port (see Section 12.1 [client.conf], page 135).

code radius request code. Either numeric or symbolic (see
Section 12.2.2.1 [Numeric Values], page 137).

expr-or-pair-list
Specifies the a/v pairs to include in the request. This ar-
gument is either an expression evaluating to avlist, or an
immediate avlist (see Section 12.2.2.3 [Avlists], page 139).
In the latter case, the parentheses around the list are optional.

[Radtest statement]expect code [expr-or-pair-list]
Test if REPLY_CODE matches code and, optionally, if REPLY matches expr-
or-pair-list. If so, print the string ‘PASS’, otherwise print ‘FAIL’.
See Section 12.2.8 [Interacting with Radius Servers], page 149, for the
detailed discussion of this statement.

12.2.12 Sample Radtest Program

As an example, let’s consider radauth program (see Section 11.6 [Radauth],
page 129). Its main purpose is to send authentication request to the remote
server, analyze its reply and if it is positive, send an appropriate accounting
record, thereby initiating user’s session. Optionally, the script should also
be able to send a lone accounting record.

In the discussion below, we will show and explain subsequent parts of the
script text. For the ease of explanation, each line of program text will be
prepended by its ordinal line number.

Parsing command line options

The script begins as follows:

156 GNU Radius Reference Manual

1 #! /usr/bin/radtest -f

2

3 while getopt "n:s:P:hv"

4 begin

5 case $OPTVAR in

6 "-n") NASIP = $OPTARG

7 "-s") SID = $OPTARG

8 "-P") PID = $OPTARG

9 "-v") set -v

1 It is a pragmatic comment informing shell that it should run
radtest in order to interpret the program.

3 This line starts option processing loop. Getopt (see
Section 12.2.11 [Built-in Primitives], page 153) in line 3
analyzes each subsequent command line argument and if it is
an option checks whether it matches one of the option letters
defined in its first argument. The option letter will be returned
in OPTVAR variable, its argument (if any) – in OPTARG variable.

4 – 8 OPTARG value is analyzed using case statement. Lines 6 – 8
preserve OPTARG values in appropriate variables for later use.
NASIP will be used as the value of NAS-IP-Address attribute,
SID is the session id (Acct-Session-Id attribute), and PID is
the port number (for NAS-Port-Id attribute.

9 This line sets ‘-v’ option to the radtest interpreter (see
Section 12.2.1 [Invoking radtest], page 136).

The next piece of code handles ‘-h’ and erroneous options:

Chapter 12: Client Package 157

10 "-h") begin

11 print <<-EOT

12 usage: radauth [OPTIONS] [COMMAND] login [password]

13 Options are:

14 -v Print verbose descriptions of what is being done

15 -n IP Set NAS IP address

16 -s SID Set session ID

17 -P PORT Set NAS port number

18 COMMAND is one of:

19 auth Send only Access-Request (default)

20 acct Send Access-Request. If successfull, send

21 accounting start request

22 start Send accounting start request

23 stop Send accounting stop request

24 EOT

25 exit 0

26 end

27 ".*") begin

28 print "Unknown option: " $OPTVAR "\n"

29 exit 1

30 end

31 end

32 end

10 – 26 Print short description and exit, if the program is given ‘-h’.
Notice that ‘here document’ syntax is used to print the text
(See Section 12.2.2.2 [Strings], page 137, for its description). The
leading whitespace in lines 12 to 24 is composed of tabulation
characters (ASCII 9), not usual space characters (ASCII 32), as
required by ‘<<-’ construct.

27 – 30 These lines handle unrecognized options.
31 Closes case statement started on line 5
32 Closes compound statement started on line 4

Checking Command Line Consistency
33

34 shift ${OPTIND}-1

35

36 if $# > 3

37 begin

38 print "Wrong number of arguments."

39 print "Try radauth -h for more info"

40 exit 1

41 end

34 OPTIND keeps the ordinal number of the first non-optional argu-
ment. This line shifts off all the options processed by getopt,
so that the first non-optional argument may be addressed by $1
notation. Notice use of curly braces to solve minus ambiguity
(see [minus-ambiguity], page 141).

158 GNU Radius Reference Manual

36 – 41 At this point we may have at most three arguments: command,
user name, and password. If there are more, display the diag-
nostic message and exit the program.

Next piece of code:
42

43 case $1 in

44 "auth|acct|start|stop") begin

45 COMMAND=$1

46 shift 1

47 end

48 ".*") COMMAND="auth"

49 end

50

51 LOGIN=${1:?User name is not specified. Try radauth -h for more info.}

52

53 if ${NASIP:-} = ""

54 NASIP=$SOURCEIP

55

56 LIST = (User-Name = $LOGIN NAS-IP-Address = $NASIP)

43 – 48 Check if a command is given. If so, store command name in the
variable COMMAND and shift arguments by one, so login becomes
argument $1. Otherwise, assume ‘auth’ command.

51 If the user login name is supplied, store it into LOGIN variable.
Otherwise, print diagnostic message and exit.

53 – 54 Provide a default value for NASIP variable from the built-
in variable SOURCEIP (see Section 12.2.4.6 [Built-in Variables],
page 143)

56 The variable LIST will hold the list of A/V pairs to be sent to
the server. This line initializes it with a list of two a/v pairs:
User-Name and NAS-IP-Address.

Defining Accounting Function

Accounting function will be used to send accounting requests to the server.
It is supposed to take a single argument: an avlist of a/v pairs to be sent
to the server.

57

58 ’acct’

59 begin

60 if ${SID:-} = ""

61 input "Enter session ID: " SID

62 if ${PID:-} = ""

63 input "Enter NAS port ID: " PID

64 send acct Accounting-Request $1 + \

(Acct-Session-Id = $SID NAS-Port-Id = $PID)

58 – 59 These lines start the function definition. Notice quoting of the
function name (‘acct’): it is necessary because it coincides with

Chapter 12: Client Package 159

a reserved keyword (see Section 12.2.3 [Reserved Keywords],
page 139).

60 – 61 If the value of SID (session ID) is not supplied, prompt the user
to input it.

62 – 63 If the value of PID (port ID) is not supplied, prompt the user to
input it.

64 Send accounting request. The list of a/v pairs to send is
formed by concatenating Acct-Session-Id and NAS-Port-Id
attributes to the function’s first argument.

The final part of acct function analyzes the reply from the server:
65 if $REPLY_CODE != Accounting-Response

66 begin

67 print "Accounting failed.\n"

68 exit 1

69 end

70 print "Accounting OK.\n"

71 exit 0

72 end

73

Notice, that acct never returns. Instead it exits with an error code indicating
success or failure.

Defining Authentication Function

The purpose of the authentication function auth is to send an Access-
Request to the server and perform some actions based on its reply.

The function will take three arguments:
$1 The list of a/v pairs to include in the request.
$2 User password.
$3 This argument indicates whether accounting request must be

sent after successful authentication. String ‘yes’ means to send
the accounting request, ‘no’ means not to send it.

The function is not expected to return. Instead it should exit to the shell
with an appropriate error code.

74 ’auth’

75 begin

76 send auth Access-Request $1 + (User-Password = $2)

74 – 75 Begin the function definition. Notice quoting of the func-
tion name (‘auth’): it is necessary because it coincides with
a reserved keyword (see Section 12.2.3 [Reserved Keywords],
page 139).

76 Send the initial authentication request. The list of a/v pairs is
formed by appending User-Password pair to the list given by
the first argument to the function.

160 GNU Radius Reference Manual

The rest of the function analyzes the reply from the server and takes appro-
priate actions. Notice that if the server replies with an Access-Challenge
packet, we will have to send subsequent authentication requests, so this piece
of code is enclosed within a while loop.

First, the function handles Access-Accept and Access-Reject replies:
77 while 1

78 begin

79 if $REPLY_CODE = Access-Accept

80 begin

81 print "Authentication passed. " + $REPLY[Reply-Message*] + "\n"

82 if ${3:-no} = no

83 exit 0

84 ’acct’($1 + (Acct-Status-Type = Start))

85 end else if $REPLY_CODE = Access-Reject

86 begin

87 print "Authentication failed. " + $REPLY[Reply-Message*] + "\n"

88 break

77 Begin an “endless” while loop. It will eventually be exited either
using break, or using exit (see below).

79 – 84 Hanlde Access-Accept replies:

81 Print the reply message. Notice the use of ‘*’ to print all the
instances of Reply-Message attribute from the reply packet
(see Section 12.2.4.4 [Accessing Elements of A/V Pair Lists],
page 142).

82 – 83 If the third argument is missing or is a string ‘no’, exit in-
dicating success (see Section 12.2.4.3 [Dereferencing Variables],
page 140).

84 Otherwise, call acct function to perform accounting. The a/v
pairs included in the accounting request are formed by adding
Acct-Status-Type attribute to the list given by the first argu-
ment to the function.

85 – 88 Handle Access-Reject replies. Print the reply message and
break from the loop.

Next piece of code deals with Access-Challenge replies. For simplicity we
assume that such replies always carry user menus (See Section 4.13 [menus
directory], page 62, for the description of these). So, upon receiving an
Access-Challenge we should print out the menu, read the users selection
and send back an Access-Request to the server. This part is the only one
that actually continues the loop at line 77.

Chapter 12: Client Package 161

89 end else if $REPLY_CODE = Access-Challenge

90 begin

91 print $REPLY[Reply-Message*]

92 input

93 send auth Access-Request \

94 (User-Name = $LOGIN User-Password = $INPUT \

State = $REPLY[State])

91 Print the menu contents carrieb by Reply-Message attributes.
There may be several instances of the attribute, hence the use
of ‘*’ to concatenate their values together.

92 Read the input from the user. The input will be stored in INPUT
variable. See Section 12.2.11 [Built-in Primitives], page 153, for
the description of input statement.

93 – 94 Send an Access-Request packet with three attributes. User-
Password contains the user reply, State contains the menu state
from the server reply packet.

Final part of the function:

95 end else begin

96 print "Authentication failed. Reply code " + $REPLY_CODE + "\n"

97 break

98 end

99 end

100 exit 1

101 end

102

95 – 98 Handle unknown reply codes.

99 Closes the while loop started on line 77.

100 Exit to the shell indicating failure. This statement will be
reached only if a break is executed either on line 88 or on line
97.

101 Closes function definition started on lines 74 – 75

Final Part of Radauth Program

The final part selects an action based on the user command and executes it.
It is equivalent to the main function in a C program:

162 GNU Radius Reference Manual

103 case ${COMMAND} in

104 "auth") ’auth’($LIST, ${2:&Password: }, no)

105 "acct") ’auth’($LIST, ${2:&Password: }, yes)

106 "start") ’acct’($LIST+(Acct-Status-Type = Start))

107 "stop") ’acct’($LIST+(Acct-Status-Type = Stop))

108 ".*") begin

109 print "Unknown command. Try radauth -h for more info"

110 exit 1

111 end

112 end

113

114 # End of radauth

103 Select an action based on the value of COMMAND variable.

104 – 105 Call auth function. If the second argument is given in the
command line, its value is taken as user’s password. Otherwise,
the user is prompted for the password with the string ‘Password:
’. The input is read with echo turned off to prevent the password
from being compromised (the ‘:&’ construct, see Section 12.2.4.3
[Dereferencing Variables], page 140).

106 – 107 Call acct function for ‘start’ and stop commands.

108 – 111 Handle an unknown command verb.

112 Closes case statement from line 103.

12.3 radsession
radsession is a Guile script that sends authentication and accounting re-
quests to the Radius server. To invoke the script, run

radsession options action

Possible actions are:

‘--auth’ Send authentication request.

‘--start’ Send accounting start request.

‘--stop’ Send accounting stop request.

Options determine the contents of the request’s pairlist. They are:

‘-l STRING’
‘--login STRING’

Set login name.

‘-p STRING’
‘--passwd STRING’

Set password.

‘-n IP’
‘--nas IP’ Set the value of NAS-IP-Address attribute.

Chapter 12: Client Package 163

‘-s STRING’
‘--sid STRING’

Set the session id (Acct-Session-Id attribute).

‘-P NUMBER’
‘--port NUMBER’

Set the port number (NAS-Port-Id attribute).

‘-h’
‘--help’ Print a short usage message and exit.

‘-v’
‘--verbose’

Verbosely list the contents of the received reply.

12.4 nas.scm

nas.scm is a Guile program that allows one to convert a GNU/Linux box
into a nas. It requires Guile version 1.4 or better and PPP version 2.3.7 or
better.

To use it, you will basically need to do the following:
1. Create links:

ln -s libexec/nas.scm /etc/ppp/ip-up

ln -s libexec/nas.scm /etc/ppp/ip-down

Here, libexec denotes the location of your libexec directory, where
nas.scm is installed. If not overridden at configure time, it defaults
to ‘prefix/libexec’. These links assure that ppp will invoke nas.scm
when the user’s session starts and ends, thus giving it a possibility to
send accounting requests.

2. Configure the file ‘raddb/client.conf’.
3. Edit the file ‘raddb/nas.rc’. The supplied ‘nas.rc’ template is tailored

to work in most environments. The only variables you may need to
change are nas-log-facility, specifying the syslog facility to be used
for logging, and pppd-args, keeping the arguments to be given to ppp.

4. Configure your ‘/etc/inittab’ and getty.
For example, if you use mgetty, then the ‘inittab’ entries for dial-up
lines will look like:

d0:345:respawn:/sbin/mgetty ttyS0 vt100

d1:345:respawn:/sbin/mgetty ttyS1 vt100

...

mgetty’s ‘login.config’ will then contain the following line:
* - - /usr/local/libexec/nas.scm @

If you use agetty, then the ‘inittab’ will contain (with the long lines
split for readability)

164 GNU Radius Reference Manual

d0:345:respawn:/sbin/agetty -mt60 \

-l /usr/local/libexec/nas.scm 38400,19200,9600 \

ttyS0 vt100

d1:345:respawn:/sbin/agetty -mt60 \

-l /usr/local/libexec/nas.scm 38400,19200,9600 \

ttyS1 vt100

...

12.5 pam_radius.so

pam_radius.so is a PAM module for Radius authentication. The module
understands the following command line options:

‘audit’ Enable audit information.

‘debug[=level]’
Enable debugging information. The higher level is, the more
debugging info is output. When omitted, level defaults to 100.
Debugging levels equal to or greater than 10 compromise users’
passwords, so use them sparingly.

‘use_authtok’
Use the authentication token passed from the previous module
in the stack.

‘confdir=path ’
Look for configuration files in path. The default is
‘$sysconfdir/etc/raddb’.

‘attr:’ This keyword marks the end of command line options. The part
of the command line after it is parsed as a whitespace-separated
list of a/v pairs to be sent with the request.

‘service_type=type ’
This option is retained for compatibility with the 0.96 series of
GNU Radius. It is equivalent to

attr: Service-Type=type

The pam_radius.so module logs its messages under LOG_AUTH syslog
facility.

Chapter 13: Attribute List 165

13 Attribute List

The following sections describe the most frequently used Radius attributes.
Each attribute is described as follows:

ATTRIBUTE name value type

Users: user-flags
Hints: hints-flags
Huntgroups: huntgroup-flags
Additivity: additivity
Proxy propagated: prop

These values have the following meaning:

name The attribute name.

value The attribute number.

type The attribute type.

user-flags Syntax flags defining in which part of a ‘raddb/users’ entry
this attribute may be used. The flags consist of two letters: ‘L’
means the attribute can be used in the lhs, ‘R’ means it can be
used in the rhs.

hints-flags Syntax flags defining in which part of a ‘raddb/hints’ entry this
attribute may be used.

huntgroup-flags
Syntax flags defining in which part of a ‘raddb/huntgroups’
entry this attribute may be used.

additivity The additivity of the attribute determines what happens if a
rule attempts to add to the pair list an attribute that is already
present in this list. Depending on its value, the actions of the
server are:

Append New attribute is appended to the end of the list.

Replace New attribute replaces the old.

Drop New attribute is dropped. The old one remains in
the list.

prop Is the attribute propagated back to the nas if the server works
in proxy mode?

The entry N/A for any of this fields signifies “not applicable”.

13.1 Authentication Attributes
These are the attributes the nas uses in authentication packets and expects
to get back in authentication replies. These can be used in matching rules.

166 GNU Radius Reference Manual

13.1.1 CHAP-Password
ATTRIBUTE CHAP-Password 3 string

Users: L-
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: No

This attribute indicates the response value provided by a PPP Challenge-
Handshake Authentication Protocol (CHAP) user in response to the chal-
lenge. It is only used in Access-Request packets.

The CHAP challenge value is found in the CHAP-Challenge attribute
(60) if present in the packet, otherwise in the request authenticator field.

13.1.2 Callback-Id
ATTRIBUTE Callback-Id 20 string

Users: -R
Hints: --
Huntgroups: --
Additivity: Replace
Proxy propagated: No

This attribute indicates the name of a place to be called, to be interpreted
by the nas. It may be used in Access-Accept packets.

13.1.3 Callback-Number
ATTRIBUTE Callback-Number 19 string

Users: -R
Hints: --
Huntgroups: --
Additivity: Replace
Proxy propagated: No

This attribute indicates a dialing string to be used for callback. It may be
used in Access-Accept packets. It may be used in an Access-Request packet
as a hint to the server that a Callback service is desired, but the server is
not required to honor the hint.

13.1.4 Called-Station-Id
ATTRIBUTE Called-Station-Id 30 string

Users: L-
Hints: -R
Huntgroups: LR
Additivity: Append
Proxy propagated: No

This attribute allows the nas to send in the Access-Request packet the
phone number that the user called, using Dialed Number Identification

Chapter 13: Attribute List 167

(DNIS) or similar technology. Note that this may be different from the
phone number the call comes in on. It is only used in Access-Request pack-
ets.

13.1.5 Calling-Station-Id
ATTRIBUTE Calling-Station-Id 31 string

Users: L-
Hints: -R
Huntgroups: LR
Additivity: Append
Proxy propagated: No

This attribute allows the nas to send in the Access-Request packet the
phone number that the call came from, using automatic number identifica-
tion (ANI) or similar technology. It is only used in Access-Request packets.

13.1.6 Class
ATTRIBUTE Class 25 string

Users: LR
Hints: LR
Huntgroups: LR
Additivity: Append
Proxy propagated: No

This attribute is available to be sent by the server to the client in an
Access-Accept and should be sent unmodified by the client to the accounting
server as part of the Accounting-Request packet if accounting is supported.

13.1.7 Framed-Compression
ATTRIBUTE Framed-Compression 13 integer

Users: LR
Hints: -R
Huntgroups: LR
Additivity: Replace
Proxy propagated: Yes

VALUE Framed-Compression None 0

VALUE Framed-Compression Van-Jacobson-TCP-IP 1

This attribute indicates a compression protocol to be used for the link.
It may be used in Access-Accept packets. It may be used in an Access-
Request packet as a hint to the server that the nas would prefer to use that
compression, but the server is not required to honor the hint.

More than one compression protocol attribute may be sent. It is the
responsibility of the nas to apply the proper compression protocol to appro-
priate link traffic.

168 GNU Radius Reference Manual

13.1.8 Framed-IP-Address
ATTRIBUTE Framed-IP-Address 8 ipaddr

Users: LR
Hints: -R
Huntgroups: LR
Additivity: Replace
Proxy propagated: No

This attribute indicates the address to be configured for the user. It may
be used in Access-Accept packets. It may be used in an Access-Request
packet as a hint by the nas to the server that it would prefer that address,
but the server is not required to honor the hint.

The value 0xFFFFFFFF (255.255.255.255) indicates that the NAS
should allow the user to select an address. The value 0xFFFFFFFE
(255.255.255.254) indicates that the nas should select an address for the
user (e.g. assigned from a pool of addresses kept by the nas). Other valid
values indicate that the nas should use that value as the user’s IP.

When used in a rhs, the value of this attribute can optionally be followed
by a plus sign. This usage means that the value of NAS-Port-Id must be
added to this IP before replying. For example,

Framed-IP-Address = 10.10.0.1+

13.1.9 Framed-IP-Netmask
ATTRIBUTE Framed-IP-Netmask 9 ipaddr

Users: LR
Hints: -R
Huntgroups: LR
Additivity: Replace
Proxy propagated: No

This attribute indicates the IP netmask to be configured for the user
when the user is a router to a network. It may be used in Access-Accept
packets. It may be used in an Access-Request packet as a hint by the nas to
the server that it would prefer that netmask, but the server is not required
to honor the hint.

13.1.10 Framed-MTU
ATTRIBUTE Framed-MTU 12 integer

Users: LR
Hints: -R
Huntgroups: -R
Additivity: Replace
Proxy propagated: Yes

This attribute indicates the maximum transmission unit to be configured
for the user, when it is not negotiated by some other means (such as PPP).
It is only used in Access-Accept packets.

Chapter 13: Attribute List 169

13.1.11 Framed-Protocol
ATTRIBUTE Framed-Protocol 7 integer

Users: LR
Hints: -R
Huntgroups: LR
Additivity: Replace
Proxy propagated: Yes

VALUE Framed-Protocol PPP 1

VALUE Framed-Protocol SLIP 2

This attribute indicates the framing to be used for framed access. It may
be used in both Access-Request and Access-Accept packets.

13.1.12 Framed-Route
ATTRIBUTE Framed-Route 22 string

Users: -R
Hints: --
Huntgroups: --
Additivity: Replace
Proxy propagated: No

This attribute provides routing information to be configured for the user
on the nas. It is used in the Access-Accept packet and can appear multiple
times.

13.1.13 Framed-Routing
ATTRIBUTE Framed-Routing 10 integer

Users: -R
Hints: -R
Huntgroups: -R
Additivity: Replace
Proxy propagated: No

VALUE Framed-Routing None 0

VALUE Framed-Routing Broadcast 1

VALUE Framed-Routing Listen 2

VALUE Framed-Routing Broadcast-Listen 3

This attribute indicates the routing method for the user when the user is
a router to a network. It is only used in Access-Accept packets.

13.1.14 Idle-Timeout
ATTRIBUTE Idle-Timeout 28 integer

Users: -R
Hints: --
Huntgroups: --
Additivity: Replace
Proxy propagated: Yes

170 GNU Radius Reference Manual

This attribute sets the maximum number of consecutive seconds of idle
connection allowed to the user before termination of the session or prompt.
The server may send this attribute to the client in an Access-Accept or
Access-Challenge.

13.1.15 NAS-IP-Address
ATTRIBUTE NAS-IP-Address 4 ipaddr

Users: L-
Hints: -R
Huntgroups: LR
Additivity: Append
Proxy propagated: No

This attribute indicates the identifying IP of the nas which is requesting
authentication of the user. It is only used in Access-Request packets. Each
Access-Request packet should contain either a NAS-IP-Address or a NAS-
Identifier attribute (Section 13.1.16 [NAS-Identifier], page 170).

13.1.16 NAS-Identifier
ATTRIBUTE NAS-Identifier 32 string

Users: L-
Hints: -R
Huntgroups: LR
Additivity: Append
Proxy propagated: No

This attribute contains a string identifying the nas originating the access
request. It is only used in Access-Request packets. Either NAS-IP-Address
or NAS-Identifier should be present in an Access-Request packet.

See Section 13.1.15 [NAS-IP-Address], page 170.

13.1.17 NAS-Port-Id
ATTRIBUTE NAS-Port-Id 5 integer

Users: LR
Hints: -R
Huntgroups: LR
Additivity: Append
Proxy propagated: No

This attribute indicates the physical port number of the nas that is
authenticating the user. It is only used in Access-Request packets. Note
that here we are using “port” in its sense of a physical connection on the
nas, not in the sense of a tcp or udp port number.

Some nases try to encode various information in the NAS-Port-Id at-
tribute value. For example, the max ascend terminal server constructs NAS-
Port-Id by concatenating the line type (one digit), the line number (two
digits), and the channel number (two digits), thus producing a five-digit port

Chapter 13: Attribute List 171

number. In order to normalize such encoded port numbers we recommend
using a rewrite function (see Section 4.12 [rewrite file], page 62). A rewrite
function for max ascend servers is provided in the distribution.

13.1.18 NAS-Port-Type
ATTRIBUTE NAS-Port-Type 61 integer

Users: --
Hints: --
Huntgroups: --
Additivity: Append
Proxy propagated: No

VALUE NAS-Port-Type Async 0

VALUE NAS-Port-Type Sync 1

VALUE NAS-Port-Type ISDN 2

VALUE NAS-Port-Type ISDN-V120 3

VALUE NAS-Port-Type ISDN-V110 4

This attribute indicates the type of the physical port of the nas that
is authenticating the user. It can be used instead of or in addition to the
NAS-Port-Id (Section 13.1.17 [NAS-Port-Id], page 170) attribute. It is only
used in Access-Request packets. Either NAS-Port or NAS-Port-Type or both
should be present in an Access-Request packet, if the nas differentiates
among its ports.

13.1.19 Reply-Message
ATTRIBUTE Reply-Message 18 string

Users: -R
Hints: --
Huntgroups: --
Additivity: Append
Proxy propagated: Yes

This attribute indicates text that may be displayed to the user.
When used in an Access-Accept, it is the success message.
When used in an Access-Reject, it is the failure message. It may indicate

a dialog message to prompt the user before another Access-Request attempt.
When used in an Access-Challenge, it may indicate a dialog message to

prompt the user for a response.
Multiple Reply-Message attributes may be included, and if any are dis-

played, they must be displayed in the same order as they appear in in the
packet.

13.1.20 Service-Type
ATTRIBUTE Service-Type 6 integer

Users: LR
Hints: -R

172 GNU Radius Reference Manual

Huntgroups: LR
Additivity: Replace
Proxy propagated: Yes

VALUE Service-Type Login-User 1

VALUE Service-Type Framed-User 2

VALUE Service-Type Callback-Login-User 3

VALUE Service-Type Callback-Framed-User 4

VALUE Service-Type Outbound-User 5

VALUE Service-Type Administrative-User 6

VALUE Service-Type NAS-Prompt-User 7

VALUE Service-Type Authenticate-Only 8

VALUE Service-Type Call-Check 10

This attribute indicates the type of service the user has requested, or the
type of service to be provided. It may be used in both Access-Request and
Access-Accept packets.

When used in an Access-Request the service type represents a hint to the
Radius server that the nas has reason to believe the user would prefer the
kind of service indicated.

When used in an Access-Accept, the service type is an indication to the
nas that the user must be provided this type of service.

The meaning of various service types is as follows:

Login-User
The user should be connected to a host.

Framed-User
A framed protocol, such as PPP or SLIP, should be started for
the user. The Framed-IP-Address attribute (see Section 13.1.8
[Framed-IP-Address], page 168) will supply the IP to be used.

Callback-Login-User
The user should be disconnected and called back, then connected
to a host.

Callback-Framed-User
The user should be disconnected and called back; then a framed
protocol, such as PPP or SLIP, should be started for the user.

Outbound-User
The user should be granted access to outgoing devices.

Administrative-User
The user should be granted access to the administrative interface
to the nas, from which privileged commands can be executed.

NAS-Prompt
The user should be provided a command prompt on the nas,
from which nonprivileged commands can be executed.

Chapter 13: Attribute List 173

Authenticate-Only
Only authentication is requested, and no authorization informa-
tion needs to be returned in the Access-Accept.

Call-Check
Callback-NAS-Prompt

The user should be disconnected and called back, then provided
a command prompt on the nas, from which nonprivileged com-
mands can be executed.

13.1.21 Session-Timeout
ATTRIBUTE Session-Timeout 27 integer

Users: -R
Hints: --
Huntgroups: --
Additivity: Replace
Proxy propagated: Yes

This attribute sets the maximum number of seconds of service to be pro-
vided to the user before termination of the session or prompt. The server may
send this attribute to the client in an Access-Accept or Access-Challenge.

13.1.22 State
ATTRIBUTE State 24 string

Users: LR
Hints: LR
Huntgroups: LR
Additivity: Append
Proxy propagated: No

This attribute is available to be sent by the server to the client in an
Access-Challenge and must be sent unmodified from the client to the server
in the new Access-Request reply to that challenge, if any.

This attribute is available to be sent by the server to the client in an
Access-Accept that also includes a Termination-Action attribute with the
value RADIUS-Request. If the nas performs the termination action by send-
ing a new Access-Request upon termination of the current session, it must
include the State attribute unchanged in that Access-Request.

In either usage, no interpretation by the client should be made. A packet
may have only one State attribute.

13.1.23 Termination-Action
ATTRIBUTE Termination-Action 29 integer

Users: LR
Hints: -R
Huntgroups: -R
Additivity: Replace

174 GNU Radius Reference Manual

Proxy propagated: No
VALUE Termination-Action Default 0

VALUE Termination-Action RADIUS-Request 1

This attribute indicates what action the nas should take when the spec-
ified service is completed. It is only used in Access-Accept packets.

13.1.24 User-Name
ATTRIBUTE User-Name 1 string

Users: LR
Hints: -R
Huntgroups: LR
Additivity: Replace
Proxy propagated: Yes

This attribute indicates the name of the user to be authenticated or ac-
counted. It is used in Access-Request and Accounting attributes. The length
of the user name is usually limited by some arbitrary value. By default, Ra-
dius supports user names up to 32 characters long. This value can be modi-
fied by redefining the RUT_USERNAME macro in the ‘include/radutmp.h’ file
in the distribution directory and recompiling the program.

Some nases have peculiarities about sending long user names. For exam-
ple, the Specialix Jetstream 8500 24-port access server inserts a ‘/’ character
after the 10th character if the user name is longer than 10 characters. In
such cases, we recommend applying rewrite functions in order to bring the
user name to its normal form (see Section 4.12 [rewrite file], page 62).

13.1.25 User-Password
ATTRIBUTE User-Password 2 string

Users: L-
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: No

This attribute indicates the password of the user to be authenticated, or
the user’s input following an Access-Challenge. It is only used in Access-
Request packets.

On transmission, the password is hidden. The password is first padded
at the end with nulls to a multiple of 16 octets. A one-way MD5 hash is
calculated over a stream of octets consisting of the shared secret followed
by the request authenticator. This value is xored with the first 16 octet
segment of the password and placed in the first 16 octets of the String field
of the User-Password attribute.

If the password is longer than 16 characters, a second one-way MD5 hash
is calculated over a stream of octets consisting of the shared secret followed
by the result of the first xor. That hash is xored with the second 16 octet

Chapter 13: Attribute List 175

segment of the password and placed in the second 16 octets of the string
field of the User-Password attribute.

If necessary, this operation is repeated, with each xor result being used
along with the shared secret to generate the next hash to xor the next
segment of the password, up to no more than 128 characters.

13.1.26 Vendor-Specific

(This message will disappear, once this node revised.)
ATTRIBUTE Vendor-Specific 26 string

Users: LR
Hints: -R
Huntgroups: -R
Additivity: Append
Proxy propagated: No

This attribute is available to allow vendors to support their own extended
attributes not suitable for general usage.

13.2 Accounting Attributes
These are attributes the nas sends along with accounting requests. These
attributes can not be used in matching rules.

13.2.1 Acct-Authentic
ATTRIBUTE Acct-Authentic 45 integer

Users: --
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: N/A

VALUE Acct-Authentic RADIUS 1

VALUE Acct-Authentic Local 2

VALUE Acct-Authentic Remote 3

This attribute may be included in an Accounting-Request to indicate how
the user was authenticated, whether by Radius, the nas itself, or another
remote authentication protocol. Users who are delivered service without
being authenticated should not generate accounting records.

13.2.2 Acct-Delay-Time
ATTRIBUTE Acct-Delay-Time 41 integer

Users: --
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: N/A

176 GNU Radius Reference Manual

This attribute indicates how many seconds the client has been trying to
send this record for, and can be subtracted from the time of arrival on the
server to find the approximate time of the event generating this Accounting-
Request. (Network transit time is ignored.)

13.2.3 Acct-Input-Octets
ATTRIBUTE Acct-Input-Octets 42 integer

Users: --
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: N/A

This attribute indicates how many octets have been received from the
port over the course of this service being provided, and can only be present
in Accounting-Request records where Acct-Status-Type is set to Stop.

13.2.4 Acct-Input-Packets
ATTRIBUTE Acct-Input-Packets 47 integer

Users: --
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: N/A

This attribute indicates how many packets have been received from the
port over the course of this service being provided to a framed user, and can
only be present in Accounting-Request records where Acct-Status-Type is
set to Stop.

13.2.5 Acct-Output-Octets
ATTRIBUTE Acct-Output-Octets 43 integer

Users: --
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: N/A

This attribute indicates how many octets have been sent to the port in
the course of delivering this service, and can only be present in Accounting-
Request records where Acct-Status-Type is set to Stop.

13.2.6 Acct-Output-Packets
ATTRIBUTE Acct-Output-Packets 48 integer

Users: --
Hints: --
Huntgroups: --

Chapter 13: Attribute List 177

Additivity: N/A
Proxy propagated: N/A

This attribute indicates how many packets have been sent to the port in
the course of delivering this service to a framed user, and can only be present
in Accounting-Request records where Acct-Status-Type is set to Stop.

13.2.7 Acct-Session-Id
ATTRIBUTE Acct-Session-Id 44 string

Users: --
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: N/A

This attribute is a unique accounting id to make it easy to match start
and stop records in a log file. The start and stop records for a given session
must have the same Acct-Session-Id. An Accounting-Request packet must
have an Acct-Session-Id. An Access-Request packet may have an Acct-
Session-Id; if it does, then the nas must use the same Acct-Session-Id
in the Accounting-Request packets for that session.

13.2.8 Acct-Session-Time
ATTRIBUTE Acct-Session-Time 46 integer

Users: --
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: N/A

This attribute indicates how many seconds the user has received service
for, and can only be present in Accounting-Request records where Acct-
Status-Type is set to Stop.

13.2.9 Acct-Status-Type
ATTRIBUTE Acct-Status-Type 40 integer

Users: --
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: N/A

VALUE Acct-Status-Type Start 1

VALUE Acct-Status-Type Stop 2

VALUE Acct-Status-Type Alive 3

VALUE Acct-Status-Type Accounting-On 7

VALUE Acct-Status-Type Accounting-Off 8

This attribute indicates whether this Accounting-Request marks the be-
ginning of the user service (Start) or the end (Stop).

178 GNU Radius Reference Manual

It may also be used to mark the start of accounting (for example, upon
booting) by specifying Accounting-On and to mark the end of accounting
(for example, just before a scheduled reboot) by specifying Accounting-Off.

A special value Alive or Interim-Update indicates the packet that con-
tains some additional data to the initial Start record or to the last Alive
record.

13.2.10 Acct-Terminate-Cause
ATTRIBUTE Acct-Terminate-Cause 49 integer

Users: --
Hints: --
Huntgroups: --
Additivity: N/A
Proxy propagated: N/A

VALUE Acct-Terminate-Cause User-Request 1

VALUE Acct-Terminate-Cause Lost-Carrier 2

VALUE Acct-Terminate-Cause Lost-Service 3

VALUE Acct-Terminate-Cause Idle-Timeout 4

VALUE Acct-Terminate-Cause Session-Timeout 5

VALUE Acct-Terminate-Cause Admin-Reset 6

VALUE Acct-Terminate-Cause Admin-Reboot 7

VALUE Acct-Terminate-Cause Port-Error 8

VALUE Acct-Terminate-Cause NAS-Error 9

VALUE Acct-Terminate-Cause NAS-Request 10

VALUE Acct-Terminate-Cause NAS-Reboot 11

VALUE Acct-Terminate-Cause Port-Unneeded 12

VALUE Acct-Terminate-Cause Port-Preempted 13

VALUE Acct-Terminate-Cause Port-Suspended 14

VALUE Acct-Terminate-Cause Service-Unavailable 15

VALUE Acct-Terminate-Cause Callback 16

VALUE Acct-Terminate-Cause User-Error 17

VALUE Acct-Terminate-Cause Host-Request 18

This attribute indicates how the session was terminated, and can only be
present in Accounting-Request records where Acct-Status-Type is set to
Stop.

13.3 Radius Internal Attributes
These are attributes used by GNU Radius during the processing of a request.
They are never returned to the nas. Mostly, they are used in matching rules.

13.3.1 Acct-Ext-Program
ATTRIBUTE Acct-Ext-Program 2008 string

Users: --
Hints: -R
Huntgroups: --
Additivity: Replace

Chapter 13: Attribute List 179

Proxy propagated: N/A
The Acct-Ext-Program attribute can be used in rhs of an ‘raddb/hints’

to require the execution of an external accounting program or filter. If the
attribute value starts with a vertical bar (‘|’), then the attribute specifies the
filter program to be used. If it starts with a slash (‘/’), then it is understood
as the full pathname and arguments for the external program to be executed.
Using any other character as the start of this string results in error.

The command line can reference any attributes from both check and
reply pairlists using attribute macros (see Section 4.14 [Macro Substitution],
page 64).

Before the execution of the program, radiusd switches to the uid and
gid of the user daemon and the group daemon. You can override these de-
faults by setting variables exec-program-user and exec-program-group in
configuration file to proper values (see Section 4.1.1 [The option statement],
page 22).

The accounting program must exit with status 0 to indicate a successful
accounting.

13.3.2 Acct-Type
ATTRIBUTE Acct-Type 2003 integer

Users: L-
Hints: -R
Huntgroups: -R
Additivity: Append
Proxy propagated: N/A

VALUE Acct-Type None 0

VALUE Acct-Type System 1

VALUE Acct-Type Detail 2

VALUE Acct-Type SQL 3

The Acct-Type allows one to control which accounting methods must be
used for a given user or group of users. In the absence of this attribute, all
currently enabled accounting types are used. See Chapter 7 [Accounting],
page 81, for more information about accounting types.

13.3.3 Auth-Failure-Trigger

This attribute specifies an external program or a Scheme expression to be
run upon an authentication failure. The handling of this attribute depends
upon its value:

If the value of Auth-Failure-Trigger begins with ‘/’, it is taken to
contain a command line for invoking an external program. In this case
radiusd invokes the program much the same way it does when handling
Exec-Program attribute, i.e. the program is invoked with standard input
closed, its standard output and standard error are captured and redirected
to ‘radlog/radius.stderr’ file, the return value of the program is ignored.

180 GNU Radius Reference Manual

If the value of Auth-Failure-Trigger begins with ‘(’, it is executed it
as a Scheme expression. The return value of the expression is ignored.

This attribute is designed as a means to provide special handling for au-
thentication failures. It can be used, for example, to increase failure counters
and to block accounts after a specified number of authentication failures oc-
curs. See Section 6.10 [Auth Probing], page 76, for the detailed discussion
of its usage.

13.3.4 Auth-Data
ATTRIBUTE Auth-Data 2006 string

Users: L-
Hints: -R
Huntgroups: -R
Additivity: Replace
Proxy propagated: N/A

The Auth-Data can be used to pass additional data to the authentication
methods that need them. In version 1.6 of GNU Radius, this attribute may
be used in conjunction with the SQL and Pam authentication types. When
used with the Pam authentication type, this attribute holds the name of the
PAM service to use. This attribute is temporarily appended to the authen-
tication request, so its value can be referenced to as %C{Auth-Data}. See
Section 4.11.2 [Authentication Server Parameters], page 54, for an example
of of using the Auth-Data attribute in ‘raddb/sqlserver’:

13.3.5 Auth-Type
ATTRIBUTE Auth-Type 1000 integer

Users: L-
Hints: -R
Huntgroups: -R
Additivity: Append
Proxy propagated: No

VALUE Auth-Type Local 0

VALUE Auth-Type System 1

VALUE Auth-Type Crypt-Local 3

VALUE Auth-Type Reject 4

VALUE Auth-Type SQL 252

VALUE Auth-Type Pam 253

VALUE Auth-Type Accept 254

This attribute tells the server which type of authentication to apply to a
particular user. It can be used in the lhs of the user’s profile (see Chapter 6
[Authentication], page 71.)

Radius interprets values of Auth-Type attribute as follows:

Local The value of the User-Password attribute from the record is
taken as a cleantext password and is compared against the User-
Password value from the input packet.

Chapter 13: Attribute List 181

System This means that a user’s password is stored in a system password
type. Radius queries the operating system to determine if the
user name and password supplied in the incoming packet are
O.K.

Crypt-Local
The value of the User-Password attribute from the record is
taken as an MD5 hash on the user’s password. Radius generates
MD5 hash on the supplied User-Password value and compares
the two strings.

Reject Authentication fails.

Accept Authentication succeeds.

SQL
Mysql The MD5-encrypted user’s password is queried from the sql

database (Section 6.6 [SQL Auth], page 73). Mysql is an alias
maintained for compatibility with other versions of Radius.

Pam The user-name–password combination is checked using PAM.

13.3.6 Crypt-Password
ATTRIBUTE Crypt-Password 1006 string

Users: L-
Hints: --
Huntgroups: --
Additivity: Append
Proxy propagated: No

This attribute is intended to be used in user’s profile lhs. It specifies
the MD5 hash of the user’s password. When this attribute is present, Auth-
Type = Crypt-Local is assumed. If both Auth-Type and Crypt-Password
are present, the value of Auth-Type is ignored.

See Section 13.3.5 [Auth-Type], page 180.

13.3.7 Exec-Program-Wait
ATTRIBUTE Exec-Program-Wait 1039 string

Users: -R
Hints: -R--
Huntgroups: Replace
Additivity: No
Proxy propagated:

When present in the rhs, the Exec-Program-Wait attribute specifies the
program to be executed when the entry matches. If the attribute value string
starts with vertical bar (‘|’), then the attribute specifies the filter program
to be used. If it starts with slash (‘/’), then it is understood as the full
pathname and arguments for the external program to be executed. Using
any other character as the start of this string results in error.

182 GNU Radius Reference Manual

13.3.7.1 Running an External Program

The command line can reference any attributes from both check and re-
ply pairlists using attribute macros see Section 4.14 [Macro Substitution],
page 64.

Before the execution of the program, radiusd switches to uid and gid of
the user daemon and the group daemon. You can override these defaults by
setting the variable exec-program-user in the configuration file to a proper
value. See Section 4.1.1 [The option statement], page 22.

The daemon will wait until the program terminates. The return value of
its execution determines whether the entry matches. If the program exits
with a nonzero code, then the match fails. If it exits with a zero code, the
match succeeds. In this case the standard output of the program is read and
parsed as if it were a pairlist. The attributes thus obtained are added to the
entry’s reply attributes.

Example.

Suppose the ‘users’ file contains the following entry:
DEFAULT Auth-Type = System,

Simultaneous-Use = 1

Exec-Program-Wait = "/usr/local/sbin/telauth \

%C{User-Name} \

%C{Calling-Station-Id}"

Then, upon successful matching, the program ‘/usr/local/sbin/telauth’
will be executed. It will get as its arguments the values of the User-Name
and Calling-Station-Id attributes from the request pairs.

The ‘/usr/local/sbin/telauth’ can, for example, contain the following:
#! /bin/sh

DB=/var/db/userlist

if grep "$1:$2" $DB; then

echo "Service-Type = Login,"

echo "Session-Timeout = 1200"

exit 0

else

echo "Reply-Message = \

\"You are not authorized to log in\""

exit 1

fi

It is assumed that ‘/var/db/userlist’ contains a list of username:caller-
id pairs for those users that are authorized to use login service.

13.3.7.2 Using an External Filter

If the value of Exec-Program-Wait attribute begins with ‘|’, radiusd strips
this character from the value and uses the resulting string as a name of the

Chapter 13: Attribute List 183

predefined external filter. Such filter must be declared in ‘raddb/config’
(see Section 4.1.10 [filters], page 38).

Example.

Let the ‘users’ file contain the following entry:
DEFAULT Auth-Type = System,

Simultaneous-Use = 1

Exec-Program-Wait = "|myfilter"

and let the ‘raddb/config’ contain the following1:
filters {

filter myfilter {

exec-path "/usr/libexec/myfilter";

error-log "myfilter.log";

auth {

input-format "%C{User-Name}

%C{Calling-Station-Id}";

wait-reply yes;

};

};

};

Then, upon successful authentication, the program
/usr/libexec/myfilter will be invoked, if it hasn’t already been
started for this thread. Any output it sends to its standard error will be
redirected to the file ‘myfilter.log’ in the current logging directory. A
string consisting of the user’s login name and his calling station id followed
by a newline will be sent to the program.

The following is a sample /usr/libexec/myfilter written in the shell:
#! /bin/sh

DB=/var/db/userlist

while read NAME CLID

do

if grep "$1:$2" $DB; then

echo "0 Service-Type = Login, Session-Timeout = 1200"

else

echo "1 Reply-Message = \

\"You are not authorized to log in\""

fi

done

13.3.8 Exec-Program
ATTRIBUTE Exec-Program 1038 string

Users: -R
Hints: --

1 In this example the input-format statement has been split on two lines to fit the page
width. It must occupy a single line in the real configuration file.

184 GNU Radius Reference Manual

Huntgroups: --
Additivity: Replace
Proxy propagated: No

When present in the rhs, the Exec-Program attribute specifies the full
pathname and arguments for the program to be executed when the entry
matches.

The command line can reference any attributes from both check and
reply pairlists, using attribute macros (see Section 4.14 [Macro Substitution],
page 64).

Before the execution of the program, radiusd switches to the uid and
gid of the user daemon and the group daemon. You can override these de-
faults by setting variables exec-program-user and exec-program-group
in configuration file to proper values Section 4.1.1 [The option statement],
page 22.

The daemon does not wait for the process to terminate.

Example

Suppose the ‘users’ file contains the following entry:
DEFAULT Auth-Type = System,

Simultaneous-Use = 1

Exec-Program = "/usr/local/sbin/logauth \

%C{User-Name} \

%C{Calling-Station-Id}"

Then, upon successful matching, the program ‘/usr/local/sbin/logauth’
will be executed. It will get as its arguments the values of the User-Name
and Calling-Station-Id attributes from the request pairs.

13.3.9 Fall-Through
ATTRIBUTE Fall-Through 1036 integer

Users: LR
Hints: LR
Huntgroups: --
Additivity: Append
Proxy propagated: No

VALUE Fall-Through No 0

VALUE Fall-Through Yes 1

The Fall-Through attribute should be used in the reply list. If its value
is set to Yes in a particular record, that tells Radius to continue looking up
other records even when the record at hand matches the request. It can be
used to provide default values for several profiles.

Consider the following example. Let’s suppose the ‘users’ file contains
the following:

johns Auth-Type = SQL

Framed-IP-Address = 11.10.10.251,

Chapter 13: Attribute List 185

Fall-Through = Yes

smith Auth-Type = SQL

Framed-IP-Address = 11.10.10.252,

Fall-Through = Yes

DEFAULT NAS-IP-Address = 11.10.10.1

Service-Type = Framed-User,

Framed-Protocol = PPP

Then after successful matching of a particular user’s record, the matching
will continue until it finds the DEFAULT entry, which will add its rhs to the
reply pairs for this request. The effect is that, if user ‘johns’ authenticates
successfully she gets the following reply pairs:

Service-Type = Framed-User,

Framed-Protocol = PPP,

Framed-IP-Address = 11.10.10.251

whereas user smith gets
Service-Type = Framed-User,

Framed-Protocol = PPP,

Framed-IP-Address = 11.10.10.252

Note that the attribute Fall-Through itself is never returned to the nas.

13.3.10 Group
ATTRIBUTE Group 1005 string

Users: L-
Hints: L-
Huntgroups: LR
Additivity: Append
Proxy propagated: No

13.3.11 Hint
ATTRIBUTE Hint 1040 string

Users: L-
Hints: -R
Huntgroups: -R
Additivity: Append
Proxy propagated: No

Use the Hint attribute to specify additional matching criteria depending
on the hint (see Section 4.6 [hints file], page 50).

Let the ‘hints’ file contain
DEFAULT Prefix = "S", Strip-User-Name = No

Hint = "SLIP"

and the ‘users’ file contain
DEFAULT Hint = "SLIP",

NAS-IP-Address = 11.10.10.12,

186 GNU Radius Reference Manual

Auth-Type = System

Service-Type = Framed-User,

Framed-Protocol = SLIP

Then any user having a valid system account and coming from nas
‘11.10.10.12’ will be provided SLIP service if his user name starts with
‘S’.

13.3.12 Huntgroup-Name
ATTRIBUTE Huntgroup-Name 221 string

Users: L-
Hints: -R
Huntgroups: LR
Additivity: Append
Proxy propagated: No

The Huntgroup-Name can be used either in the lhs of the ‘users’ file
record or in the rhs of the ‘huntgroups’ file record.

When encountered in a lhs of a particular ‘users’ profile, this attribute
indicates the huntgroup name to be matched. Radius looks up the corre-
sponding record in the ‘huntgroups’ file. If such a record is found, each a/v
pair from its reply list is compared against the corresponding pair from the
request being processed. The request matches only if it contains all the at-
tributes from the specified huntgroup, and their values satisfy the conditions
listed in the huntgroup pairs.

For example, suppose that the authentication request contains the fol-
lowing attributes:

User-Name = "john",

User-Password = "guess",

NAS-IP-Address = 10.11.11.1,

NAS-Port-Id = 24

Let us further suppose that the ‘users’ file contains the following entry:
john Huntgroup-Name = "users_group",

Auth-Type = System

Service-Type = Login

and, finally, ‘huntgroups’ contains the following entry:
users_group NAS-IP-Address = 10.11.11.1

NAS-Port-Id < 32

Then the authentication request will succeed, since it contains NAS-Port-Id
attribute and its value is less than 32.

See Section 4.7 [huntgroups file], page 50.

13.3.13 Log-Mode-Mask
ATTRIBUTE Log-Mode-Mask 2007 integer

Users: L-
Hints: -R

Chapter 13: Attribute List 187

Huntgroups: -R
Additivity: Append
Proxy propagated: N/A

VALUE Log-Mode-Mask Log-Auth 1

VALUE Log-Mode-Mask Log-Auth-Pass 2

VALUE Log-Mode-Mask Log-Failed-Pass 4

VALUE Log-Mode-Mask Log-Pass 6

VALUE Log-Mode-Mask Log-All 7

Log-Mode-Mask is used to control the verbosity of authentication log mes-
sages for given user or class of users. The meaning of its values is:

Log-Auth Do not log successful authentications.

Log-Auth-Pass
Do not show the password with the log message from a successful
authentication.

Log-Failed-Pass
Do not show a failed password.

Log-Pass Do not show a plaintext password, either failed or succeeded.

Log-All Do not log authentications at all.
Technical details: After authentication, the server collects all Log-Mode-

Mask attributes from the incoming request and lhs of the user’s entry. The
values of these attributes ored together form a mask, which is applied via
an xor operation to the current log mode. The value thus obtained is used
as effective log mode.

13.3.14 Login-Time
ATTRIBUTE Login-Time 1042 string

Users: L-
Hints: --
Huntgroups: --
Additivity: Append
Proxy propagated: No

The Login-Time attribute specifies the time range over which the user is
allowed to log in. The attribute should be specified in the lhs.

The format of the Login-Time string is the same as that of UUCP time
ranges. The following description of the time range format is adopted from
the documentation for the Taylor UUCP package:

A time string may be a list of simple time strings separated with vertical
bars ‘|’ or commas ‘,’.

Each simple time string must begin either with a day-of-week abbrevia-
tion (one of ‘Su’, ‘Mo’, ‘Tu’, ‘We’, ‘Th’, ‘Fr’, ‘Sa’), or ‘Wk’ for any day from
Monday to Friday inclusive, or ‘Any’ or ‘Al’ for any day.

Following the day may be a range of hours separated with a hyphen, using
24-hour time. The range of hours may cross 0; for example ‘2300-0700’

188 GNU Radius Reference Manual

means any time except 7 AM to 11 PM. If no time is given, calls may be
made at any time on the specified day(s).

The time string may also be the single word ‘Never’, which does not
match any time.

Here are a few sample time strings with an explanation of what they
mean.

‘Wk2305-0855,Sa,Su2305-1655’
This means weekdays before 8:55 AM or after 11:05 PM, any
time Saturday, or Sunday before 4:55 PM or after 11:05 PM.
These are approximately the times during which night rates ap-
ply to phone calls in the U.S.A. Note that this time string uses,
for example, ‘2305’ rather than ‘2300’; this will ensure a cheap
rate even if the computer clock is running up to five minutes
ahead of the real time.

‘Wk0905-2255,Su1705-2255’
This means weekdays from 9:05 AM to 10:55 PM, or Sunday
from 5:05 PM to 10:55 PM. This is approximately the opposite
of the previous example.

‘Any’
This means any day. Since no time is specified, it means any
time on any day.

13.3.15 Match-Profile
ATTRIBUTE Match-Profile 2004 string

Users: LR
Hints: -R
Huntgroups: -R
Additivity: Append
Proxy propagated: No

The Match-Profile attribute can be used in lhs and rhs lists of a user
profile. Its value is the name of another user’s profile (target profile). When
Match-Profile is used in the lhs, the incoming packet will match this
profile only if it matches the target profile. In this case the reply pairs will
be formed by concatenating the rhs lists from both profiles. When used in
the rhs, this attribute causes the reply pairs from the target profile to be
appended to the reply from the current profile if the target profile matches
the incoming request.

For example:
IPPOOL NAS-IP-Address = 10.10.10.1

Framed-Protocol = PPP,

Framed-IP-Address = "10.10.10.2"

IPPOOL NAS-IP-Address = 10.10.11.1

Framed-Protocol = PPP,

Chapter 13: Attribute List 189

Framed-IP-Address = "10.10.11.2"

guest Auth-Type = SQL

Service-Type = Framed-User,

Match-Profile = IPPOOL

In this example, when user guest comes from nas 10.10.10.1, he is
assigned IP 10.10.10.2, otherwise if he is coming from nas 10.10.11.1 he
is assigned IP 10.10.11.2.

13.3.16 Menu
ATTRIBUTE Menu 1001 string

Users: -R
Hints: --
Huntgroups: --
Additivity: Replace
Proxy propagated: No

This attribute should be used in the rhs. If it is used, it should be the
only reply item.

The Menu attribute specifies the name of the menu to be presented to the
user. The corresponding menu code is looked up in the ‘RADIUS_DIR/menus/’
directory (see Section 4.13 [menus directory], page 62).

13.3.17 Pam-Auth
ATTRIBUTE Pam-Auth 1041 string

Users: L-
Hints: -R
Huntgroups: -R
Additivity: Append
Proxy propagated: No

The Pam-Auth attribute can be used in conjunction with
Auth-Type = Pam

to supply the PAM service name instead of the default ‘radius’. It is ignored
if Auth-Type attribute is not set to Pam.

13.3.18 Prefix
ATTRIBUTE Prefix 1003 string

Users: L-
Hints: L-
Huntgroups: LR
Additivity: Append
Proxy propagated: No

The Prefix attribute indicates the prefix that the user name should
contain in order for a particular record in the profile to be matched. This
attribute should be specified in the lhs of the ‘users’ or ‘hints’ file.

190 GNU Radius Reference Manual

For example, if the ‘users’ file contained
DEFAULT Prefix = "U", Auth-Type = System

Service-Type = Login-User

then the user names ‘Ugray’ and ‘Uyoda’ would match this record, whereas
‘gray’ and ‘yoda’ would not.

Both Prefix and Suffix attributes may be specified in a profile. In this
case the record is matched only if the user name contains both the prefix
and the suffix specified.

See Section 13.3.27 [Suffix], page 193, and Section 13.3.26 [Strip-User-
Name], page 192.

13.3.19 Proxy-Replied
ATTRIBUTE Proxy-Replied 2012 integer

Users: L-
Hints: L-
Huntgroups: L-
Additivity: Replace
Proxy propagated: N/A

VALUE Proxy-Replied No 0

VALUE Proxy-Replied Yes 1

radiusd adds this attribute to the incoming request if it was already
processed by a remote radius server.

13.3.20 Realm-Name

(This message will disappear, once this node revised.)
ATTRIBUTE Realm-Name 2013 string

Users: L-
Hints: L-
Huntgroups: L-
Additivity: Append
Proxy propagated: No

13.3.21 Replace-User-Name
ATTRIBUTE Replace-User-Name 2001 string

Users: LR
Hints: LR
Huntgroups: --
Additivity: Append
Proxy propagated: No

VALUE Replace-User-Name No 0

VALUE Replace-User-Name Yes 1

Use this attribute to modify the user name from the incoming packet. The
Replace-User-Name can reference any attributes from both lhs and rhs
pairlists using attribute macros (Section 4.14 [Macro Substitution], page 64).

Chapter 13: Attribute List 191

For example, the ‘users’ entry
guest NAS-IP-Address = 11.10.10.11,

Calling-Station-Id != ""

Auth-Type = Accept

Replace-User-Name = "guest#%C{Calling-Station-Id}",

Service-Type = Framed-User,

Framed-Protocol = PPP

allows the use of PPP service for user name guest, coming from nas
‘11.10.10.11’ with a nonempty Calling-Station-Id attribute. A string
consisting of a ‘#’ character followed by the Calling-Station-Id value is
appended to the user name.

13.3.22 Rewrite-Function
ATTRIBUTE Rewrite-Function 2004 string

Users: LR
Hints: LR
Huntgroups: LR
Additivity: Append
Proxy propagated: No

The Rewrite-Function attribute specifies the name of the rewriting func-
tion to be applied to the request. The attribute may be specified in either
pairlist in the entries of the ‘hints’ or ‘huntgroups’ configuration file.

The corresponding function should be defined in ‘rewrite’ as
integer name()

i.e., it should return an integer value and should not take any arguments.
See Section 4.12 [Packet rewriting rules], page 62, Section 4.6 [hints file],

page 50; Section 4.7 [huntgroups file], page 50.

13.3.23 Scheme-Acct-Procedure
ATTRIBUTE Scheme-Acct-Procedure 2010 string

Users: --
Hints: -R
Huntgroups: --
Additivity: Replace
Proxy propagated: N/A

The Scheme-Acct-Procedure attribute is used to set the name of the
Scheme accounting procedure. See Section 10.3.3 [Accounting with Scheme],
page 117, for information about how to write Scheme accounting procedures.

13.3.24 Scheme-Procedure
ATTRIBUTE Scheme-Procedure 2009 string

Users: -R
Hints: -R--
Huntgroups: Append

192 GNU Radius Reference Manual

Additivity: N/A
Proxy propagated:

The Scheme-Procedure attribute is used to set the name of the Scheme
authentication procedure. See Section 10.3.2 [Authentication with Scheme],
page 116, for information about how to write Scheme authentication proce-
dures.

13.3.25 Simultaneous-Use
ATTRIBUTE Simultaneous-Use 1034 integer

Users: L-
Hints: -R
Huntgroups: -R
Additivity: Append
Proxy propagated: No

This attribute specifies the maximum number of simultaneous logins a
given user is permitted to have. When the user is logged in this number of
times, any further attempts to log in are rejected.

See Section 6.9 [Multiple Login Checking], page 74.

13.3.26 Strip-User-Name
ATTRIBUTE Strip-User-Name 1035 integer

Users: LR
Hints: LR
Huntgroups: -R
Additivity: Append
Proxy propagated: No

VALUE Strip-User-Name No 0

VALUE Strip-User-Name Yes 1

The value of Strip-User-Name indicates whether Radius should strip any
prefixes/suffixes specified in the user’s profile from the user name. When it is
set to Yes, the user names will be logged and accounted without any prefixes
or suffixes.

A user may have several user names for different kind of services. In this
case differentiating the user names by their prefixes and stripping them off
before accounting would help keep accounting records consistent.

For example, let’s suppose the ‘users’ file contains
DEFAULT Suffix = ".ppp",

Strip-User-Name = Yes,

Auth-Type = SQL

Service-Type = Framed-User,

Framed-Protocol = PPP

DEFAULT Suffix = ".slip",

Strip-User-Name = Yes,

Auth-Type = SQL

Chapter 13: Attribute List 193

Service-Type = Framed-User,

Framed-Protocol = SLIP

Now, user ‘johns’, having a valid account in the sql database, logs in as
‘johns.ppp’. She then is provided the PPP service, and her PPP session is
accounted under user name ‘johns’. Later on, she logs in as ‘johns.slip’. In
this case she is provided the SLIP service and again her session is accounted
under her real user name ‘johns’.

13.3.27 Suffix
ATTRIBUTE Suffix 1004 string

Users: L-
Hints: L-
Huntgroups: LR
Additivity: Append
Proxy propagated: No

The Suffix attribute indicates the suffix that the user name should con-
tain in order for a particular record in the profile to be matched. This
attribute should be specified in lhs of the ‘users’ or ‘hints’ file.

For example, if the ‘users’ file contained
DEFAULT Suffix = ".ppp", Auth-Type = System,

Strip-User-Name = Yes

Service-Type = Framed-User,

Framed-Protocol = PPP

then the user names ‘gray.ppp’ and ‘yoda.ppp’ would match this record,
whereas ‘gray’ and ‘yoda’ would not.

Both Prefix and Suffix attributes may be specified in a profile. In this
case the record is matched only if the user name contains both the prefix
and the suffix specified.

See Section 13.3.18 [Prefix], page 189, and Section 13.3.26 [Strip-User-
Name], page 192.

13.3.28 Termination-Menu
ATTRIBUTE Termination-Menu 1002 string

Users: -R
Hints: --
Huntgroups: --
Additivity: Replace
Proxy propagated: No

This attribute should be used in the rhs. If it is used, it should be the
only reply item.

The Termination-Menu specifies the name of the menu file to be pre-
sented to the user after finishing his session. The corresponding menu code
is looked up in the ‘RADIUS_DIR/menus/’ directory (see Section 4.13 [menus
directory], page 62).

Chapter 14: Reporting Bugs 195

14 Reporting Bugs

It is possible you will encounter a bug in one of the Radius programs. If this
happens, we would like to hear about it. As the purpose of bug reporting is
to improve software, please be sure to include maximum information when
reporting a bug. The information needed is:
• Conditions under which the bug appears.
• Version of the package you are using.
• Compilation options used when configuring the package.
• If the bug is found in radiusd daemon, run ‘radiusd -v’ and include

the output it produces.
• Contents of Radius configuration directory (‘/usr/local/etc/raddb’

or whatever you have set it to while configuring).
• Log messages produced.

Send your report to bug-gnu-radius@gnu.org. Allow us a couple of days
to answer.

mailto:bug-gnu-radius@gnu.org

Chapter 15: Where to Get Information about GNU Radius 197

15 Where to Get Information about
GNU Radius

The two places to look for news regarding GNU Radius are the Radius home-
page at http://www.gnu.org/software/radius and the Radius project
page at http://savannah.gnu.org/projects/radius.

The following mailing lists are related to GNU Radius:

info-gnu-radius@gnu.org
This list distributes announcements and progress reports on
GNU Radius. This is a moderated list. Please do not send
bug reports or requests for help to this list; there exist special
mailing lists for these purposes. To subscribe to the list, visit
http://mail.gnu.org/mailman/listinfo/info-gnu-radius.

help-gnu-radius@gnu.org
This list is the place for users and installers of GNU Radius
to ask for help. The list is not moderated, but postings are
allowed for list members only. To subscribe to the list, visit
http://mail.gnu.org/mailman/listinfo/help-gnu-radius.

bug-gnu-radius@gnu.org
This list distributes bug reports, bug fixes, and suggestions
for improvements in Radius. User discussion of Radius
bugs also occurs here. The list is not moderated; postings
are allowed for anybody. To subscribe to the list, visit
http://mail.gnu.org/mailman/listinfo/bug-gnu-radius.

http://www.gnu.org/software/radius
http://savannah.gnu.org/projects/radius
mailto:info-gnu-radius@gnu.org
http://mail.gnu.org/mailman/listinfo/info-gnu-radius
mailto:help-gnu-radius@gnu.org
http://mail.gnu.org/mailman/listinfo/help-gnu-radius
mailto:bug-gnu-radius@gnu.org
http://mail.gnu.org/mailman/listinfo/bug-gnu-radius

How to Obtain Radius 199

How to Obtain Radius

GNU Radius is free software; this means that everyone is free to use it and
free to redistribute it on certain conditions. GNU Radius is not in the public
domain; it is copyrighted and there are restrictions on its distribution, but
these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others
from further sharing any version of GNU Radius that they might get from
you. The precise conditions are found in the GNU General Public License
that comes with Radius and also appears following this section.

One way to get a copy of GNU Radius is from someone else who has
it. You need not ask for our permission to do so, or tell any one else;
just copy it. If you have access to the Internet, you can get the latest
distribution version of GNU Radius by anonymous FTP. It is available at
ftp://ftp.gnu.org/pub/gnu/radius

ftp://ftp.gnu.org/pub/gnu/radius

Radius Glossary 201

Radius Glossary

Throughout this document the following terms are used:

radius (small capitals)
The Remote Authentication Dial In User Service protocol as
described in RFC 2138, 2865, and 2866.

nas A network access server, that is, a computer or a special device
designed to provide access to the network. For example, it can be
a computer connected to the network and equipped with several
modems. Such a nas will allow a user connecting to one of its
modems to access the network.

Service A service, such as PPP, SLIP, or telnet, provided to a user by
the nas.

Session Each instance of a service. Sessions start when the service is
first provided and close when the service is ended. A user may
be allowed to have multiple sessions active simultaneously.

Session id The session identifier: a string of characters uniquely identifying
the session.

a/v pair Attribute-value pair: see Section 2.1 [Attributes], page 7.

Dial-in or dial-up user
A user connecting to a service through the modem line.

User database
A database where a radius server keeps information about
users, their authentication information, etc.

User’s profile
A record in the user database describing a particular user for
purposes of authentication and authorization, i.e., how the user
should be authenticated as well as which services he is allowed
to be provided and parameters of these services.

Acknowledgements 203

Acknowledgements

I would like to acknowledge Oswaldo Aguirre and Francisco Obispo, who
invested a lot of time and effort to debug and test the program. They also
wrote web-radact — a web interface to the radius database.

Alexandre Oliva provided a lot of good advice and offered valuable help
in testing Radius on various platforms.

The following people provided many helpful comments, bug reports and
patches: Dustin Mitchell, Jody Owens, Andrey Y. Mosienko, Oleg Gawriloff,
Adrian P. van Bloois, Michael Samuel, Michael Smirnov, Andrey Pavlenko,
Michael Weiser, Eric Salomé, Clement Gerouville, Dave Restall, Vlad Lungu,
Robert Abbate, Jaime Tellez Sanchez, Cornel Cristea, Krzysztof Kopera,
and David Friedman.

Additional people need to be thanked for their assistance in producing
this manual. Lisa M. Goldstein coordinated its preparation and Joseph C.
Fineman and Daniel Barowy did a remarkable job of editing.

And of course, thanks to Richard M. Stallman for founding the FSF and
starting the GNU project.

Appendix A: New Configuration Approach (draft) 205

Appendix A New Configuration
Approach (draft)

(This message will disappear, once this node revised.)
This document presents a draft describing new approach for processing

radius requests. It is intended as a request for comments, and, in the
long run, as a guide for GNU Radius developers. In its current state it
is far from being complete. Please check http://www.gnu.org/software/
radius/manual for updated versions. Feel free to send your comments and
suggestions to bug-gnu-radius@gnu.org.

A.1 A brief description of Currently Used
Approach

When I started to write GNU Radius, back in 1998, I had two major aims.
The first and primary aim was to create a flexible and robust system that
would follow the principle of Jon Postel:

Be liberal in what you accept and conservative in what you send.
This, I believe, is the main principle of any good software for Internet.
The second aim was to be backward compatible with the implementations

that already existed back then. This seemed to be important (and the time
has proved it was), because it would allow users to easily switch from older
radius daemon to GNU Radius.

An important part of every complex program is its configuration file.
Traditional implementations of radius servers (beginning from Livingston
Radius) used a configuration suite consisting of several files, usually located
in ‘/etc/raddb’ subdirectory. Its main components were:

‘dictionary’
A file containing translations of symbolic names of radius at-
tributes and attribute values to their integer numbers as speci-
fied by radius protocol.

‘hints’ This file was intended to separate incoming requests in groups,
based on the form of their login name. Traditionally such sepa-
ration was performed basing on common prefixes and/or suffixes
of login names.

‘huntgroups’
The purpose of this file was to separate incoming requests de-
pending on their source, i.e. on the nas that sent them and the
port number on that nas. It also served as a sort of simplified
access control list.

‘users’ This file contained a users database. It described criteria for
authentication and reply pairs to be sent back to requesting
nases.

http://www.gnu.org/software/radius/manual
http://www.gnu.org/software/radius/manual
mailto:bug-gnu-radius@gnu.org

206 GNU Radius Reference Manual

Among these files, the first two were used for requests of any kind, whereas
‘users’ was used only for Access-Request packets.

Though this configuration system suffered from many inconsistencies, the
second aim required GNU Radius to use this approach.

To compensate for its deficiencies and to fulfill the first aim, this con-
figuration system was extended, while preserving its main functionality. A
number of additional internal attributes were added, that control radiusd
behavior. A new language was created whose main purpose was to mod-
ify incoming requests (see Section 10.2 [Rewrite], page 98). The support
for GNU’s Ubiquitous Intelligent Language for Extensions (see Section 10.3
[Guile], page 115) was added, that allowed to further extend GNU Radius
functionality.

The present operation model1 of GNU Radius and its configuration file
system2 emerged as a result of the two development aims described above.
Since 1998 up to present, GNU Radius users contributed a lot of ideas and
code to the further development of the system.

However, it became obvious that this system presents strong obstacles to
the further development. The next section addresses its deficiencies.

A.2 Deficiencies of Current Operation Model and
Configuration Suite

The main deficiencies are inherited with the traditional configuration file
suite. The rules for processing each request are split among three files, each
of which is processed differently, despite of their external similarity. The
administrator has to keep in mind a set of exotic rules when configuring the
system3. When matching incoming requests with configuration file entries
(LHS, see Section 2.3 [Matching Rule], page 11), some attributes are taken
verbatim, whereas others are used to control radiusd behavior and to pass
additional data to other rules (see Section 13.3 [Radius Internal Attributes],
page 178). The things become even more complicated when radius realms
come into play (see Section 2.4.2.1 [Proxy Service], page 13). Some attributes
are meaningful only if used in a certain part of a certain configuration file
rule.

So, while being a lot more flexible than the approach used by other ra-
dius implementations, the current system is quite difficult to maintain.

Another deficiency is little control over actions executed on different
events. For example, it is often asked how can one block a user account af-
ter a predefined number of authentication failures? Currently this can only

1 See Chapter 2 [Operation], page 7.
2 See Chapter 4 [Configuration Files], page 21.
3 ‘Hints’ is processed for each request... Authentication requests first pass ‘hints’, then

‘huntgroups’, then ‘users’... Accounting requests use only ‘hints’ and ‘huntgroups’...
‘Huntgroups’ entries may also be used (sometimes inadvertently) to create ACL rules,
etc, etc...

Appendix A: New Configuration Approach (draft) 207

be done by writing an external authentication procedure (either in Scheme,
using Guile, or as a standalone executable, using Exec-Program-Wait). The
proper solution would be to have a set of user-defined triggers for every
radius event (in this case, for authentication failure).

Another commonly asked question is how to make radiusd execute sev-
eral SQL queries when processing a request. While GNU Radius is not
supposed to compensate for deficiencies of some SQL implementations that
do not allow for nested queries, such a feature could come quite handy.

A.3 Proposed Solution
(This message will disappear, once this node revised.)

Processing of incoming requests is controlled by request-processing pro-
gram. Request-processing program is a list-like structure, consisting of in-
structions.

A.3.1 Request-processing Instruction

Request-processing program consists of instructions. There are seven basic
instruction types:

grad_instr_conditional_t
This instruction marks a branch point within the program.

grad_instr_call_t
Represents a call of a subprogram

grad_instr_action_t
Invokes a Rewrite function

grad_instr_proxy_t
Proxies a request to the remote server

grad_instr_forward_t
Forwards a request to the remote server

grad_instr_reply_t
Replies back to the requesting nas.

Consequently, an instruction is defined as a union of the above node
types:

208 GNU Radius Reference Manual

[Instruction]grad_instr_t
enum grad_instr_type

{

grad_instr_conditional,

grad_instr_call,

grad_instr_return,

grad_instr_action,

grad_instr_reply,

grad_instr_proxy,

grad_instr_forward

};

typedef struct grad_instr grad_instr_t;

struct grad_instr

{

enum grad_instr_type type;

grad_instr_t *next;

union

{

grad_instr_conditional_t cond;

grad_instr_call_t call;

grad_instr_action_t action;

grad_instr_reply_t reply;

grad_instr_proxy_t proxy;

grad_instr_forward_t forward;

} v;

};

Type member contains type of the instruction. The evaluator uses type
to determine which part of union v, holds instruction-specific data.
Next points to the next instruction. The evaluator will go to this instruc-
tion unless the present one changes the control flow.
Finally, v contains instruction-specific data. These will be discussed in
the following subsections.

A.3.2 grad instr conditional

(This message will disappear, once this node revised.)

[Instruction]grad_instr_conditional_t cond iftrue iffalse
struct grad_instr_conditional

{

grad_entry_point_t cond; /* Entry point to the compiled

Rewrite condition */

grad_instr_t *iftrue; /* Points to the ‘‘true’’ branch */

grad_instr_t *iffalse; /* Points to the ‘‘false’’ branch */

};

typedef struct grad_instr_conditional grad_instr_conditional_t;

Instructions of type grad_instr_conditional_t indicate branching.
Upon encountering an grad_instr_conditional_t, the engine executes
a Rewrite expression pointed to by cond. If the expression evaluates to

Appendix A: New Configuration Approach (draft) 209

true, execution branches to instruction iftrue. Otherwise, if iffalse is
not NULL, execution branches to that instruction. Otherwise, the control
flow passes to grad_instr_t.next, as described in the previous section.

RPL representation

[RPL defun]COND expr if-true [if-false]

expr Textual representation of Rewrite conditional expression or
its entry point.

if-true RPL expression executed if expr evaluates to t.

if-true Optional RPL expression that is executed if expr evaluates
to nil.

Example

COND with two arguments:
(COND "%[User-Name] ~= \"test-.*\""

(REPLY Access-Reject ("Reply-Message" . "Test accounts disabled")))

COND with three arguments:
(COND "%[Hint] == "PPP" && authorize(PAM)"

(REPLY Access-Accept

("Service-Type" . "Framed-User")

("Framed-Protocol" . "PPP"))

(REPLY Access-Reject

("Reply-Message" . "Access Denied")))

A.3.3 grad instr call

(This message will disappear, once this node revised.)

[Instruction]grad_instr_call_t entry
struct grad_instr_call {

grad_instr_t *entry;

};

typedef struct grad_instr_call grad_instr_call_t;

Instructions of type grad_instr_call instruct the engine to call the
given subprogram. The engine pushes the current instruction to the return
point stack and branches to instruction entry. Execution of the subprogram
ends when the engine encounters an instruction of one of the following types:
grad_instr_return, grad_instr_reply or grad_instr_proxy.

If grad_instr_return is encountered, the engine pops the instruction
from the top of the return point stack and makes it current instruction, then
it branches to the next node.

If grad_instr_reply or grad_instr_proxy is encountered, the engine,
after executing corresponding actions, finishes executing the program.

210 GNU Radius Reference Manual

RPL representation

[RPL defun]CALL list
[RPL defun]CALL defun-name

In the first form, the argument list is the RPL subprogram to be executed.
In the second form defun-name is a name of the RPL subprogram defined
by defun.

Examples

First form:
(CALL (ACTION "myfun(%[User-Name])")

(REPLY Access-Reject

("Reply-Message" . "Access Denied")))

Second form:
(CALL process_users)

A.3.4 grad instr return

(This message will disappear, once this node revised.)
An instruction of type grad_instr_return indicates a return point from

the subprogram. If encountered in a subprogram (i.e. a program entered by
grad_instr_call node), it indicates return to the calling subprogram (see
the previous subsection). Otherwise, if grad_instr_return is encountered
within the main trunk, it ends evaluating of the program.

Instructions of this type have no data associated with them in union v.

RPL representation

[RPL defun]RETURN

Examples
(RETURN)

A.3.5 grad instr action

(This message will disappear, once this node revised.)

[Instruction]grad_instr_reply_t expr
struct grad_instr_action {

grad_entry_point_t expr; /* Entry point to the compiled

Rewrite expression */

};

typedef struct grad_instr_action grad_instr_reply_t;

The machine executes a Rewrite expression with entry point expr. Any
return value from the expression is ignored.

Appendix A: New Configuration Approach (draft) 211

RPL representation

[RPL defun]ACTION expr
[RPL defun]ACTION entry-point

Examples
(ACTION "%[NAS-IP-Address] = request_source_ip()")

A.3.6 grad instr reply

(This message will disappear, once this node revised.)

[Instruction]grad_instr_reply_t return code
struct grad_instr_reply {

u_char reply_code; /* Radius request code */

};

typedef struct grad_instr_reply grad_instr_reply_t;

grad_instr_reply instructs radiusd to send to the requesting nas a
reply with code reply_code. Any reply pairs collected while executing the
program are attached to the reply.

After executing grad_instr_reply instruction, the engine stops execut-
ing of the program.

Any execution path will usually end with this instruction.

RPL representation

[RPL defun]REPLY reply-code [attr-list]
Arguments:

reply-code Radius reply code.

attr-list List of a/v pairs to be added to the reply. Each a/v pair is
represented as a cons: (name-or-number . value).

Example
(REPLY Access-Accept

("Service-Type" . "Framed-User")

("Framed-Protocol" . "PPP"))

A.3.7 grad instr proxy

(This message will disappear, once this node revised.)

[Instruction]grad_instr_proxy_t realm
struct grad_instr_proxy

{

grad_realm_t realm;

};

typedef struct grad_instr_proxy grad_instr_proxy_t;

212 GNU Radius Reference Manual

This instruction tells radius to proxy the request to the server defined in
realm. In other words, the engine executes proxy_send. Further processing
of the program is stopped.

RPL representation

[RPL defun]PROXY realm-name
Realm-name is name of the realm as defined in ‘raddb/realms’.

Examples

.

A.3.8 grad instr forward

(This message will disappear, once this node revised.)

[Instruction]grad_instr_forward_t server list
struct grad_instr_forward

{

grad_list_t server_list;

};

typedef struct grad_instr_forward grad_instr_forward_t;

This node forwards the request to each servers from server_list. For-
warding differs from proxying in that the requests are sent to the remote
servers and processed locally. The remote server is not expected to reply.
See Section 4.1.3 [auth], page 28, for more information on this subject.

In contrast to grad_instr_proxy, this instruction type does not cause
the execution to stop.

Elements of server_list are of type grad_server_t.
Currently forwarding is performed by forward_request function

(‘forward.c’), which could be used with little modifications. Namely, it will
be rewritten to get server list as argument, instead of using static variable
forward_list. Consequently, the functions responsible for creating and
initializing this static variable will disappear along with the variable itself. .

A.3.9 RPL representation

[RPL defun]FORWARD server-list

A.4 Changes to Rewrite Language
(This message will disappear, once this node revised.)

A.5 Support for Traditional Configuration Files.
(This message will disappear, once this node revised.)

Within the new configuration system, the traditional “trio”
‘hints-huntgroups-users’ will be translated to the following program:

Appendix A: New Configuration Approach (draft) 213

(defprog main

(CALL hints)

(CALL huntgroups)

(COND "request_code() == Access-Request"

(CALL users))

(REPLY Access-Reject

(Reply-Message . "\nAccess denied\n")))

For example, consider the following configuration:
raddb/hints:

DEFAULT Prefix = "PPP" Hint = PPP

This will produce the following program:
(defprog hints

(COND "%[Prefix] == \"PPP\"")

(ACTION "%[Hint] = \"PPP\""))

#raddb/huntgroups

DEFAULT NAS-IP-Address = 10.10.4.1 Suffix = "staff"

DEFAULT NAS-IP-Address = 10.10.4.2 Huntgroup-Name = "second"

Will produce
(defprog huntgroups

(COND "%[NAS-IP-Address] == 10.10.4.1 && !(%[Suffix] == \"staff\")"

(REPLY Access-Reject

("Reply-Message" . "Access Denied by Huntgroup")))

(COND "%[NAS-IP-Address] == 10.10.4.2"

(ACTION "%[Huntgroup-Name] = \"second\"")))

Finally, ‘users’:
#raddb/users

DEFAULT Hint = "PPP",

Auth-Type = PAM

Service-Type = Framed-User,

Framed-Protocol = PPP

DEFAULT Huntgroup-Name = "second",

Auth-Type = PAM

Service-Type = "Authenticate-Only",

Reply-Message = "Authentity Confirmed"

will produce
(defprog users

(COND "%[Hint] == "PPP" && authorize(PAM)"

(REPLY Access-Accept

(Service-Type . Framed-User)

(Framed-Protocol . PPP))

(REPLY Access-Reject

(Reply-Message . "Access Denied")))

(COND "%[Huntgroup-Name] == \"second\" && authorize(PAM)"

(REPLY Access-Accept

(Service-Type . "Authenticate-Only")

(Reply-Message . "Authentity Confirmed"))))

214 GNU Radius Reference Manual

A.6 New Configuration Files
(This message will disappear, once this node revised.)

Appendix B: GNU Free Documentation License 215

Appendix B GNU Free Documentation
License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.
We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within

216 GNU Radius Reference Manual

that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque for-
mats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix B: GNU Free Documentation License 217

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque

218 GNU Radius Reference Manual

copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adja-

cent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If

Appendix B: GNU Free Documentation License 219

there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

220 GNU Radius Reference Manual

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works
of the Document.
If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire

Appendix B: GNU Free Documentation License 221

aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/

222 GNU Radius Reference Manual

B.1 ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

Index 223

Index

$
$INCLUDE (dictionary) 40

%
%raddb-path . 131

_ . 114

A
A/V pair . 7, 201
Accept Authentication Type 71
access-denied . 37
‘access.deny’ file . 53
account-closed . 37
Accounting directory 5
Accounting requests . 9
Accounting service parameters 30
Accounting Types . 81
Accounting with Scheme 117
acct . 38
acct statement . 30
Acct-Authentic . 175
Acct-Delay-Time . 175
acct-dir . 22
Acct-Ext-Program 178
acct-function-name 117
Acct-Input-Octets 176
Acct-Input-Packets 176
Acct-Output-Octets 176
Acct-Output-Packets 176
Acct-Session-Id . 177
Acct-Session-Time 177
Acct-Status-Type 177
Acct-Terminate-Cause 178
Acct-Type . 179
acl . 32
ACTION . 211
Additivity of an attribute 7
ALIAS . 43
allow . 32
Analyzing SNMP output 104
Attribute . 7, 201
ATTRIBUTE . 41
Attribute-value pair . 7

Attribute-Value pair 201
auth . 28, 38
Auth-Data . 180
Auth-Failure-Trigger 179
auth-function . 116
Auth-Type . 180
auth_db . 54
auth_failure_query 54
auth_query . 54
auth_success_query 54
Authentication . 16
authentication probes 76
Authentication requests 8
Authentication service parameters 28
Authentication with Scheme 116
avl-delete . 118
avl-match? . 118
avl-merge . 118

B
BEGIN . 42
BEGIN-VENDOR . 42
break . 154
buildbm . 130
Built-in functions, Rewrite 111

C
CALL . 210
Callback-Id . 166
Callback-Number . 166
Called-Station-Id 166
Calling-Station-Id 167
category . 26
channel . 26
CHAP . 71
CHAP-Password . 166
check . 104
Checking UNIX finger output 104
checkrad-assume-logged 28
Class . 167
clid . 125
Client Configuration 135
Client Package . 135
‘client.conf’ . 135
‘clients’ file . 45
common . 38

224 GNU Radius Reference Manual

community . 32
compare-atribute-flag 28, 30
Comparing the requests 67
COND . 209
Configuration directory 5
Configuration files (radiusd) 21
continue . 154
Controlling Authentication Probes 76
Crypt-Password . 181
Custom Accounting Types 83
Custom Authentication Types 73
Customizing accounting service 30
Customizing authentication server 28
Customizing Radiusd Guile interface . . 35
Customizing reply messages 37
Customizing SNMP server 32

D
d . 93
Data directory . 5
Data types, Rewrite 105
‘datadir’, directory for shared data files

. 5
DBM: enabling . 32
debug . 35, 93
Debugging . 89
Declarations, Rewrite 108
delay . 124
Deleting hung user sessions 127
deny . 32
detail . 28, 30
Detailed Request Accounting 81
dgettext . 114
Dial-in user . 201
Dial-up user . 201
dict-entry . 118
‘dictionary’ file . 40
Disabling user accounts 71
dngettext . 114
doauth . 54
duplicate requests, checking 12
duration . 124

E
Enabling DBM . 32
Encrypted Password Authentication Type

. 72
END . 42
END-VENDOR . 42
eval . 35

Exec-Program . 183
exec-program-user 22
Exec-Program-Wait 181
exit . 154
expect . 155
Extended comparison 68
Extended Comparison 67
Extensions . 95

F
Fall-Through . 184
FDL, GNU Free Documentation License

. 215
field . 112
file . 26, 32
filter . 38
filters . 38
Filters . 95
FORWARD . 212
framed-address . 124
Framed-Compression 167
Framed-IP-Address 168
Framed-IP-Netmask 168
Framed-MTU . 168
Framed-Protocol . 169
Framed-Route . 169
Framed-Routing . 169

G
g . 91
gc-interval . 35
gecos . 124
getopt . 153
gettext . 114
Group . 185
group_query . 54
gsub . 113
Guest accounts, setting up 71
guile . 35, 91
Guile . 115
Guile interface . 131
Guile interface configuration 35
Guile, representation of Radius data . . 115

H
Hint . 185
Hints . 14, 50
‘hints’ file . 50
hook . 105

Index 225

htonl . 112
htons . 112
Huntgroup-Name . 186
Huntgroups . 15, 50
‘huntgroups’ file 50

I
ident . 32
Identifiers, Rewrite 108
Idle-Timeout . 169
index . 111
inet_aton . 112
inet_ntoa . 112
input . 154
input-format . 38
Invoking Scheme authentication

function . 117
Invoking the radius daemon 17
IP pools for MAX Ascend 105

L
Label, Matching Rule 11
length . 111
level . 26
LHS, Matching Rule 11
listen . 28, 30
load . 35
load-module . 35
load-path . 35
Local Password Auth 71
Log directory . 5
log-dir . 22
Log-Mode-Mask . 186
logging . 24
Logging . 85
Logging category . 26
Logging channel . 26
Logging hook . 25
logging statement 27
Logging, ‘config’ statement 24
login . 124
Login verification functions 104
Login-Time . 187
logit . 112

M
master-read-timeout 22
master-write-timeout 22

Match-Profile . 188
Matching Rule . 11
MAX Ascend, broken passwords 45
max-nas-count . 32
max-port-count . 32
max-processes . 22
max-requests 22, 28, 30, 32
Menu . 189
menu, syntax . 62
‘menus’ file . 62
‘menus’, configuration subdirectory 62
message . 37
Messages: configuring 37
mlc . 39
Multiple Login Checking 74
multiple-login . 37

N
Naming conventions . 5
nas . 7, 201
NAS types, standard 49
nas-address . 124
NAS-Identifier . 170
NAS-IP-Address . 170
nas-port . 124
NAS-Port-Id . 170
NAS-Port-Type . 171
nas.scm . 163
‘naslist’ file . 45
‘naslist’ file . 47
‘nastypes’ file . 47
‘nastypes’ file . 49
‘nastypes’ file, syntax of 47
network . 32
Network Access Server 7, 201
newline . 123
ngettext . 114
‘NOREALM’, special realm name 51
ntohl . 112
ntohs . 112

O
option . 22
orig-login . 124
outfile . 35

P
PAM Authentication Type 73
Pam-Auth . 189

226 GNU Radius Reference Manual

pam_radius.so . 164
password-expire-warning 28, 37
password-expired . 37
perms . 32
port . 28, 30, 32
port-type . 124
Prefix . 189
prefix-hook . 25, 26
print . 154
print-auth . 26
print-category . 26
print-cons . 26
print-failed-pass 26
print-level . 26
print-milliseconds 26
print-pass . 26
print-pid . 26
print-priority . 26
print-tid . 26
Problem Tracking . 87
process-idle-timeout 22
Processing requests . 12
Propagation of an attribute 7
Properties of an attribute 7
PROPERTY . 44
protocol . 124
PROXY . 212
Proxy Service . 13
Proxy-Replied . 190
Proxying . 13

Q
q . 91
qprn . 113
query-nas . 91
quit . 94
quote_string . 113

R
r . 92
rad-add-server . 134
rad-client-add-server 133
rad-client-list-servers 132
rad-client-retry 133
rad-client-set-server 132
rad-client-source-ip 133
rad-client-timeout 133
rad-closelog . 119
rad-dict-name->attr 118
rad-dict-name->value 119

rad-dict-pec->vendor 119
rad-dict-value->name 118
rad-format-code . 133
rad-format-pair . 133
rad-format-reply-msg 134
rad-get-server . 132
rad-list-servers 134
rad-log-close . 119
rad-log-open . 119
rad-openlog . 119
rad-print-pairs . 133
rad-read-no-echo 133
rad-rewrite-execute 119
rad-rewrite-execute-string 119
rad-select-server 134
rad-send . 132
rad-send-internal 132
rad-server-list . 131
rad-syslog . 119
rad-utmp-putent . 119
‘radacct’, accounting directory 5
radauth . 129
radctl . 130
‘raddb’ . 5
‘raddb/access.deny’ file 53
‘raddb/client.conf’ 135
‘raddb/clients’ file 45
‘raddb/config’ file . 22
‘raddb/hints’ file . 50
‘raddb/huntgroups’ file 50
‘raddb/menus’, configuration subdirectory

. 62
‘raddb/naslist’ file 45
‘raddb/realms’ file . 51
‘raddb/rewrite’, configuration file 62
‘raddb/sqlserver’ file. 53
‘raddb/users’ file . 52
radgrep . 128
Radius daemon invocation 17
Radius dictionary . 40
Radius-Specific Scheme Functions 118
radiusd . 17
Radiusd configuration 22
Radiusd configuration files 21
radiusd-user . 22
radlast . 126
radlast, options . 126
‘radlog’ . 5
radping . 129
radscm . 131
radsession . 162
radtest . 136

Index 227

radwho . 121
radwho, command line options 121
radwho, format strings 123
radwho, predefined formats 125
radzap . 127
rd . 93
realm . 125
Realm-Name . 190
realm-quota . 37
Realms . 14
‘realms’ file . 51
‘realms’ file . 52
Regular Expressions, Rewrite 110
Reject Authentication Type 71
Replace-User-Name 190
REPLY . 211
Reply-Message . 171
Request . 8
request queue, configuring 69
request-cleanup-delay 28, 30, 32
request-define . 93
request-print . 94
request_code . 115
request_code_string 113
request_id . 115
request_source_ip 115
request_source_port 115
Requests, accounting 9
Requests, authentication 8
resolve . 22
return . 154
RETURN . 210
rewrite . 35
Rewrite . 98
Rewrite functions 100
Rewrite identifiers . 108
Rewrite language settings 35
Rewrite, applying functions 99
Rewrite, attribute creation functions

. 104
‘rewrite’, configuration file 62
Rewrite, data types 105
Rewrite, Logging Hook Functions 105
Rewrite, login verification functions . . 103
Rewrite, quick start introduction 98
Rewrite, symbols . 106
Rewrite, syntax of the language 105
Rewrite, syntax overview 98
Rewrite, usage . 99
Rewrite-Function 191
rewrite-stack . 92
Rewriting incoming requests 99

RHS, Matching Rule 11
rindex . 112
rp . 94
rs . 92
Rule Tracing . 87
run-rewrite . 92
Run-time options (radiusd) 22

S
s . 92
Scheme accounting function 118
Scheme authentication function 116
Scheme authentication function,

invocation . 117
Scheme-Acct-Procedure 191
Scheme-Procedure 191
second-login . 37
send . 155
Service . 201
Service-Type . 171
Session . 201
Session ID . 201
session-id . 124
Session-Timeout . 173
set . 154
shift . 154
Simultaneous logins, checking for 74
Simultaneous-Use 192
snmp . 32
SNMP service parameters 32
source . 92
source-ip . 22
sql . 39
SQL Accounting . 83
SQL accounting query templates 59
SQL accounting query templates, writing

of . 59
SQL Authentication Type 73
‘sqlserver’ file. 53
State . 173
Statements, Rewrite 109
storage . 32
strip-names . 28
Strip-User-Name . 192
substr . 112
Suffix . 193
suffix-hook . 25, 26
Symbols, Rewrite . 106
Syntax of ‘nastypes’ 47
syslog . 26
system . 39

228 GNU Radius Reference Manual

System Accounting . 81
System Authentication Type 72

T
t . 92
tab . 123
Termination-Action 173
Termination-Menu 193
Test Mode . 90
textdomain . 114
time . 124
time-to-live 28, 30, 32
timespan . 92
timespan-violation 37
tolower . 113
toupper . 113

U
unquote_string . 113

usedbm . 32
User Profiles . 16
User-Name . 174
User-Password . 174
username-chars . 22
‘users’ file . 52
‘users’ file . 53
Utility Programs . 121
utmp-entry . 119

V
VALUE . 44
VENDOR . 41
Vendor-Specific . 175

W
wait-reply . 38
Writing SQL accounting query templates

. 59

i

Short Contents

Introduction to Radius . 1

1 Naming Conventions . 5

2 How Radius Operates . 7

3 How to Start the Daemon. 17

4 Radius Configuration Files . 21

5 Request Comparison Methods . 67

6 Authentication . 71

7 Accounting . 81

8 Logging . 85

9 Problem Tracking . 87

10 Extensions . 95

11 Utility Programs . 121

12 Client Package . 135

13 Attribute List . 165

14 Reporting Bugs . 195

15 Where to Get Information about GNU Radius 197

How to Obtain Radius . 199

Radius Glossary . 201

Acknowledgements . 203

A New Configuration Approach (draft) . 205

B GNU Free Documentation License . 215

Index . 223

iii

Table of Contents

Introduction to Radius . 1
Overview . 1

1 Naming Conventions . 5

2 How Radius Operates . 7
2.1 Attributes . 7
2.2 radius Requests . 8

2.2.1 Authentication Requests . 8
2.2.2 Accounting Requests . 9

2.3 Matching Rule . 11
2.4 Processing Requests . 12

2.4.1 Checking for Duplicate Requests . 12
2.4.2 Proxying . 13

2.4.2.1 Proxy Service . 13
2.4.2.2 Realms . 14

2.4.3 Hints . 14
2.4.4 Huntgroups . 15
2.4.5 User Profiles . 16

3 How to Start the Daemon. 17

4 Radius Configuration Files 21
4.1 Run-Time Configuration Options — ‘raddb/config’ 22

4.1.1 option block . 22
4.1.2 logging block . 24

4.1.2.1 Logging hooks . 25
4.1.2.2 category statement . 26
4.1.2.3 channel statement . 26
4.1.2.4 Example of the logging statement 27

4.1.3 auth statement . 28
4.1.4 acct statement . 30
4.1.5 usedbm statement . 32
4.1.6 snmp statement . 32
4.1.7 rewrite statement. 35
4.1.8 guile statement . 35
4.1.9 message statement . 37
4.1.10 filters statement . 38
4.1.11 mlc statement . 39

4.2 Dictionary of Attributes — ‘raddb/dictionary’ 40

iv GNU Radius Reference Manual

4.2.1 Comments . 40
4.2.2 $INCLUDE Statement . 40
4.2.3 VENDOR Statement . 41
4.2.4 ATTRIBUTE statement . 41
4.2.5 Blocks of Vendor-Specific Attributes . 42
4.2.6 ALIAS statement . 43
4.2.7 PROPERTY statement . 44
4.2.8 VALUE Statement . 44

4.3 Clients List — ‘raddb/clients’ . 45
4.3.1 Example of ‘clients’ file . 45

4.4 NAS List — ‘raddb/naslist’ . 45
4.4.1 Example of ‘naslist’ file . 47

4.5 NAS Types — ‘raddb/nastypes’ . 47
4.5.1 Syntax of ‘raddb/nastypes’ . 47
4.5.2 Example of nastypes file. 49
4.5.3 Standard nas types . 49

4.6 Request Processing Hints — ‘raddb/hints’ . 50
4.6.1 Example of ‘hints’ file . 50

4.7 Huntgroups — ‘raddb/huntgroups’ . 50
4.7.1 Example of ‘huntgroups’ file. 50

4.8 List of Proxy Realms — ‘raddb/realms’ . 51
4.8.1 Example of ‘realms’ file . 52

4.9 User Profiles — ‘raddb/users’ . 52
4.9.1 Example of ‘users’ file . 53

4.10 List of Blocked Users — ‘raddb/access.deny’ 53
4.11 SQL Configuration — ‘raddb/sqlserver’ . 53

4.11.1 SQL Client Parameters . 54
4.11.2 Authentication Server Parameters . 54
4.11.3 Authorization Parameters . 56
4.11.4 Accounting Parameters . 58

4.11.4.1 Writing SQL Accounting Query Templates 59
4.12 Rewrite functions — ‘raddb/rewrite’ . 62
4.13 Login Menus — ‘raddb/menus’ . 62

4.13.1 A menu file syntax. 62
4.13.2 An example of menu files . 62

4.14 Macro Substitution . 64

5 Request Comparison Methods 67
5.1 Extended Comparison . 67

5.1.1 An example of extended comparison configuration 68
5.1.2 List of attributes that can be declared comparable. 68

5.2 Fine-Tuning the Request Queue . 69

v

6 Authentication . 71
6.1 Accept Authentication Type . 71
6.2 Reject Authentication Type . 71
6.3 Local Password Authentication Type . 71
6.4 Encrypted Password Authentication Type . 72
6.5 System Authentication Type . 72
6.6 SQL Authentication Type . 73
6.7 PAM Authentication Type . 73
6.8 Defining Custom Authentication Types . 73
6.9 Multiple Login Checking . 74

6.9.1 Retrieving Session Data . 74
6.9.2 Verifying Active Sessions . 75

6.10 Controlling Authentication Probes . 76

7 Accounting . 81
7.1 System Accounting . 81
7.2 Detailed Request Accounting . 81
7.3 sql Accounting . 83
7.4 Defining Custom Accounting Types . 83

8 Logging . 85

9 Problem Tracking . 87
9.1 Rule Tracing . 87
9.2 Debugging . 89
9.3 Test Mode . 90

10 Extensions . 95
10.1 Filters . 95

10.1.1 Getting Acquainted with Filters . 95
10.1.2 Declaring the Filter . 95
10.1.3 Invoking the Filter from a User Profile 96
10.1.4 Adding Reply Attributes . 96
10.1.5 Accounting Filters . 97
10.1.6 Invoking the Accounting Filter . 98

10.2 Rewrite . 98
10.2.1 Syntax Overview . 98
10.2.2 Quick Start . 98
10.2.3 Interaction with Radius . 99
10.2.4 Rewriting Incoming Requests . 99

10.2.4.1 Examples of Various Rewrite Functions 100
10.2.5 Login Verification Functions . 103

10.2.5.1 Examples of Login Verification Functions 104
10.2.6 Attribute Creation Functions . 104

vi GNU Radius Reference Manual

10.2.7 Logging Hook Functions . 105
10.2.8 Full Syntax Description . 105

10.2.8.1 Rewrite Data Types . 105
10.2.8.2 Rewrite Symbols . 106
10.2.8.3 Rewrite Identifiers . 108
10.2.8.4 Rewrite Declarations . 108
10.2.8.5 Rewrite Statements . 109
10.2.8.6 Regular Expressions . 110
10.2.8.7 Rewrite Built-in Functions . 111

10.3 Guile . 115
10.3.1 Data Representation . 115
10.3.2 Authentication with Scheme . 116
10.3.3 Accounting with Scheme . 117
10.3.4 Radius-Specific Functions . 118

11 Utility Programs . 121
11.1 radwho . 121

11.1.1 radwho Command Line Options . 121
11.1.2 radwho Format Strings . 123
11.1.3 radwho Predefined Formats . 125

11.2 radlast . 126
11.2.1 radlast Command Line Options . 126

11.3 radzap . 127
11.4 radgrep . 128
11.5 radping . 129
11.6 radauth . 129
11.7 radctl . 130
11.8 builddbm . 130
11.9 radscm: A Guile Interface to Radius Functions 131

12 Client Package . 135
12.1 Client Configuration . 135
12.2 radtest . 136

12.2.1 Invoking radtest . 136
12.2.2 Literal Values . 137

12.2.2.1 Numeric Values . 137
12.2.2.2 Character Strings . 137
12.2.2.3 Lists of A/V pairs . 139

12.2.3 Reserved Keywords . 139
12.2.4 Variables . 139

12.2.4.1 Using Variables . 139
12.2.4.2 Variable Assignments . 140
12.2.4.3 Dereferencing Variables . 140
12.2.4.4 Accessing Elements of A/V Pair Lists 142
12.2.4.5 Assignment Options . 142

vii

12.2.4.6 Built-in Variables . 143
12.2.5 Positional Parameters . 143
12.2.6 Expressions . 144

12.2.6.1 Arithmetic Operations . 144
12.2.6.2 String Operations . 145
12.2.6.3 Operations on A/V Lists . 145
12.2.6.4 Comparison Operations . 146
12.2.6.5 Boolean Operations . 147
12.2.6.6 Conversion Between Data Types 147
12.2.6.7 Function Calls . 148
12.2.6.8 Operator Precedence (How Operators Nest) 148

12.2.7 Function Definitions . 149
12.2.8 Interacting with Radius Servers . 149
12.2.9 Conditional Statements . 150
12.2.10 Loops . 152
12.2.11 Built-in Primitives . 153
12.2.12 Sample Radtest Program . 155

12.3 radsession . 162
12.4 nas.scm . 163
12.5 pam_radius.so . 164

13 Attribute List . 165
13.1 Authentication Attributes . 165

13.1.1 CHAP-Password . 166
13.1.2 Callback-Id . 166
13.1.3 Callback-Number . 166
13.1.4 Called-Station-Id . 166
13.1.5 Calling-Station-Id . 167
13.1.6 Class . 167
13.1.7 Framed-Compression . 167
13.1.8 Framed-IP-Address . 168
13.1.9 Framed-IP-Netmask . 168
13.1.10 Framed-MTU . 168
13.1.11 Framed-Protocol . 169
13.1.12 Framed-Route . 169
13.1.13 Framed-Routing . 169
13.1.14 Idle-Timeout . 169
13.1.15 NAS-IP-Address . 170
13.1.16 NAS-Identifier . 170
13.1.17 NAS-Port-Id . 170
13.1.18 NAS-Port-Type . 171
13.1.19 Reply-Message . 171
13.1.20 Service-Type . 171
13.1.21 Session-Timeout . 173
13.1.22 State . 173
13.1.23 Termination-Action . 173

viii GNU Radius Reference Manual

13.1.24 User-Name . 174
13.1.25 User-Password . 174
13.1.26 Vendor-Specific . 175

13.2 Accounting Attributes . 175
13.2.1 Acct-Authentic . 175
13.2.2 Acct-Delay-Time . 175
13.2.3 Acct-Input-Octets . 176
13.2.4 Acct-Input-Packets . 176
13.2.5 Acct-Output-Octets . 176
13.2.6 Acct-Output-Packets . 176
13.2.7 Acct-Session-Id . 177
13.2.8 Acct-Session-Time . 177
13.2.9 Acct-Status-Type . 177
13.2.10 Acct-Terminate-Cause . 178

13.3 Radius Internal Attributes . 178
13.3.1 Acct-Ext-Program . 178
13.3.2 Acct-Type . 179
13.3.3 Auth-Failure-Trigger . 179
13.3.4 Auth-Data . 180
13.3.5 Auth-Type . 180
13.3.6 Crypt-Password . 181
13.3.7 Exec-Program-Wait . 181

13.3.7.1 Running an External Program . 182
13.3.7.2 Using an External Filter . 182

13.3.8 Exec-Program . 183
13.3.9 Fall-Through . 184
13.3.10 Group . 185
13.3.11 Hint . 185
13.3.12 Huntgroup-Name . 186
13.3.13 Log-Mode-Mask . 186
13.3.14 Login-Time . 187
13.3.15 Match-Profile . 188
13.3.16 Menu . 189
13.3.17 Pam-Auth . 189
13.3.18 Prefix . 189
13.3.19 Proxy-Replied . 190
13.3.20 Realm-Name . 190
13.3.21 Replace-User-Name . 190
13.3.22 Rewrite-Function . 191
13.3.23 Scheme-Acct-Procedure . 191
13.3.24 Scheme-Procedure . 191
13.3.25 Simultaneous-Use . 192
13.3.26 Strip-User-Name . 192
13.3.27 Suffix . 193
13.3.28 Termination-Menu . 193

ix

14 Reporting Bugs . 195

15 Where to Get Information about GNU
Radius . 197

How to Obtain Radius . 199

Radius Glossary . 201

Acknowledgements . 203

Appendix A New Configuration Approach
(draft) . 205

A.1 A brief description of Currently Used Approach 205
A.2 Deficiencies of Current Operation Model and Configuration Suite

. 206
A.3 Proposed Solution . 207

A.3.1 Request-processing Instruction . 207
A.3.2 grad instr conditional . 208
A.3.3 grad instr call . 209
A.3.4 grad instr return . 210
A.3.5 grad instr action . 210
A.3.6 grad instr reply . 211
A.3.7 grad instr proxy . 211
A.3.8 grad instr forward . 212
A.3.9 RPL representation . 212

A.4 Changes to Rewrite Language . 212
A.5 Support for Traditional Configuration Files. 212
A.6 New Configuration Files . 214

Appendix B GNU Free Documentation License
. 215

B.1 ADDENDUM: How to use this License for your documents . . . 222

Index . 223

	Introduction to Radius
	Overview

	Naming Conventions
	How Radius Operates
	Attributes
	radius Requests
	Authentication Requests
	Accounting Requests

	Matching Rule
	Processing Requests
	Checking for Duplicate Requests
	Proxying
	Proxy Service
	Realms

	Hints
	Huntgroups
	User Profiles

	How to Start the Daemon.
	Radius Configuration Files
	Run-Time Configuration Options --- raddb/config
	option block
	logging block
	Logging hooks
	category statement
	channel statement
	Example of the logging statement

	auth statement
	acct statement
	usedbm statement
	snmp statement
	rewrite statement.
	guile statement
	message statement
	filters statement
	mlc statement

	Dictionary of Attributes --- raddb/dictionary
	Comments
	$INCLUDE Statement
	VENDOR Statement
	ATTRIBUTE statement
	Blocks of Vendor-Specific Attributes
	ALIAS statement
	PROPERTY statement
	VALUE Statement

	Clients List --- raddb/clients
	Example of clients file

	NAS List --- raddb/naslist
	Example of naslist file

	NAS Types --- raddb/nastypes
	Syntax of raddb/nastypes
	Example of nastypes file.
	Standard nas types

	Request Processing Hints --- raddb/hints
	Example of hints file

	Huntgroups --- raddb/huntgroups
	Example of huntgroups file.

	List of Proxy Realms --- raddb/realms
	Example of realms file

	User Profiles --- raddb/users
	Example of users file

	List of Blocked Users --- raddb/access.deny
	SQL Configuration --- raddb/sqlserver
	SQL Client Parameters
	Authentication Server Parameters
	Authorization Parameters
	Accounting Parameters
	Writing SQL Accounting Query Templates

	Rewrite functions --- raddb/rewrite
	Login Menus --- raddb/menus
	A menu file syntax.
	An example of menu files

	Macro Substitution

	Request Comparison Methods
	Extended Comparison
	An example of extended comparison configuration
	List of attributes that can be declared comparable.

	Fine-Tuning the Request Queue

	Authentication
	Accept Authentication Type
	Reject Authentication Type
	Local Password Authentication Type
	Encrypted Password Authentication Type
	System Authentication Type
	SQL Authentication Type
	PAM Authentication Type
	Defining Custom Authentication Types
	Multiple Login Checking
	Retrieving Session Data
	Verifying Active Sessions

	Controlling Authentication Probes

	Accounting
	System Accounting
	Detailed Request Accounting
	sql Accounting
	Defining Custom Accounting Types

	Logging
	Problem Tracking
	Rule Tracing
	Debugging
	Test Mode

	Extensions
	Filters
	Getting Acquainted with Filters
	Declaring the Filter
	Invoking the Filter from a User Profile
	Adding Reply Attributes
	Accounting Filters
	Invoking the Accounting Filter

	Rewrite
	Syntax Overview
	Quick Start
	Interaction with Radius
	Rewriting Incoming Requests
	Examples of Various Rewrite Functions

	Login Verification Functions
	Examples of Login Verification Functions

	Attribute Creation Functions
	Logging Hook Functions
	Full Syntax Description
	Rewrite Data Types
	Rewrite Symbols
	Rewrite Identifiers
	Rewrite Declarations
	Rewrite Statements
	Regular Expressions
	Rewrite Built-in Functions

	Guile
	Data Representation
	Authentication with Scheme
	Accounting with Scheme
	Radius-Specific Functions

	Utility Programs
	radwho
	radwho Command Line Options
	radwho Format Strings
	radwho Predefined Formats

	radlast
	radlast Command Line Options

	radzap
	radgrep
	radping
	radauth
	radctl
	builddbm
	radscm: A Guile Interface to Radius Functions

	Client Package
	Client Configuration
	radtest
	Invoking radtest
	Literal Values
	Numeric Values
	Character Strings
	Lists of A/V pairs

	Reserved Keywords
	Variables
	Using Variables
	Variable Assignments
	Dereferencing Variables
	Accessing Elements of A/V Pair Lists
	Assignment Options
	Built-in Variables

	Positional Parameters
	Expressions
	Arithmetic Operations
	String Operations
	Operations on A/V Lists
	Comparison Operations
	Boolean Operations
	Conversion Between Data Types
	Function Calls
	Operator Precedence (How Operators Nest)

	Function Definitions
	Interacting with Radius Servers
	Conditional Statements
	Loops
	Built-in Primitives
	Sample Radtest Program

	radsession
	nas.scm
	pam_radius.so

	Attribute List
	Authentication Attributes
	CHAP-Password
	Callback-Id
	Callback-Number
	Called-Station-Id
	Calling-Station-Id
	Class
	Framed-Compression
	Framed-IP-Address
	Framed-IP-Netmask
	Framed-MTU
	Framed-Protocol
	Framed-Route
	Framed-Routing
	Idle-Timeout
	NAS-IP-Address
	NAS-Identifier
	NAS-Port-Id
	NAS-Port-Type
	Reply-Message
	Service-Type
	Session-Timeout
	State
	Termination-Action
	User-Name
	User-Password
	Vendor-Specific

	Accounting Attributes
	Acct-Authentic
	Acct-Delay-Time
	Acct-Input-Octets
	Acct-Input-Packets
	Acct-Output-Octets
	Acct-Output-Packets
	Acct-Session-Id
	Acct-Session-Time
	Acct-Status-Type
	Acct-Terminate-Cause

	Radius Internal Attributes
	Acct-Ext-Program
	Acct-Type
	Auth-Failure-Trigger
	Auth-Data
	Auth-Type
	Crypt-Password
	Exec-Program-Wait
	Running an External Program
	Using an External Filter

	Exec-Program
	Fall-Through
	Group
	Hint
	Huntgroup-Name
	Log-Mode-Mask
	Login-Time
	Match-Profile
	Menu
	Pam-Auth
	Prefix
	Proxy-Replied
	Realm-Name
	Replace-User-Name
	Rewrite-Function
	Scheme-Acct-Procedure
	Scheme-Procedure
	Simultaneous-Use
	Strip-User-Name
	Suffix
	Termination-Menu

	Reporting Bugs
	Where to Get Information about GNU Radius
	How to Obtain Radius
	Radius Glossary
	Acknowledgements
	New Configuration Approach (draft)
	A brief description of Currently Used Approach
	Deficiencies of Current Operation Model and Configuration Suite
	Proposed Solution
	Request-processing Instruction
	grad_instr_conditional
	grad_instr_call
	grad_instr_return
	grad_instr_action
	grad_instr_reply
	grad_instr_proxy
	grad_instr_forward
	RPL representation

	Changes to Rewrite Language
	Support for Traditional Configuration Files.
	New Configuration Files

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

