
Short Contents

1 perl . 1

2 perlapio . 9

3 perlartistic . 18

4 perlbook . 21

5 perlboot . 26

6 perlbot . 27

7 perlcall . 28

8 perlcheat . 59

9 perlclib . 62

10 perlcommunity . 67

11 perldata . 70

12 perldbmfilter . 87

13 perldebguts . 90

14 perldebtut . 107

15 perldebug . 120
16 perldiag . 137

17 perldsc . 246

18 perldtrace . 262

19 perlebcdic . 266

20 perlembed . 301

21 perlexperiment . 322

22 perlfilter . 327

23 perlfork . 337

24 perlform . 343

25 perlfunc . 351

26 perlgit . 492

27 perlgpl . 506

28 perlguts . 512

29 perlhack . 562

30 perlhacktips . 578

31 perlhacktut . 601

32 perlhist . 604

33 perlinterp . 627

34 perlintro . 639
35 perliol . 651

36 perlipc . 667

37 perllexwarn . 700

38 perllocale . 701

39 perllol . 725

40 perlmod . 732

41 perlmodinstall . 742

42 perlmodstyle . 748

43 perlmroapi . 758

44 perlnewmod . 760

45 perlnumber . 765

46 perlobj . 769

47 perlootut . 786

48 perlop . 798

49 perlopentut . 852

50 perlpacktut . 857

51 perlperf . 877

52 perlpod . 900

53 perlpodspec . 910

54 perlpodstyle . 938

55 perlpolicy . 943

56 perlport . 951

57 perlpragma . 986

58 perlre . 989

59 perlreapi . 1032

60 perlrebackslash . 1046

61 perlrecharclass . 1059

62 perlref . 1077

63 perlreftut . 1092

64 perlreguts . 1100
65 perlrepository . 1115

66 perlrequick . 1116

67 perlreref . 1124

68 perlretut . 1131

69 perlrun . 1176

70 perlsec . 1198

71 perlsource . 1208

72 perlstyle . 1212

73 perlsub . 1216

74 perlsyn . 1249

75 perlthrtut . 1269

76 perltie . 1289

77 perltodo . 1309

78 perltooc . 1310

79 perltoot . 1311

80 perltrap . 1312

81 perlunicode . 1317

82 perlunifaq . 1346

83 perluniintro . 1352

84 perlunitut . 1367

85 perlutil . 1371

86 perlvar . 1375

87 perlvms . 1409

Table of Contents

1 perl . 1
1.1 NAME . 1
1.2 SYNOPSIS . 1
1.3 GETTING HELP . 1

1.3.1 Overview . 1
1.3.2 Tutorials . 1
1.3.3 Reference Manual . 2
1.3.4 Internals and C Language Interface . 3
1.3.5 Miscellaneous . 4
1.3.6 Language-Specific . 5
1.3.7 Platform-Specific . 5
1.3.8 Stubs for Deleted Documents . 6

1.4 DESCRIPTION . 6
1.5 AVAILABILITY . 7
1.6 ENVIRONMENT . 7
1.7 AUTHOR . 7
1.8 FILES . 7
1.9 SEE ALSO . 7
1.10 DIAGNOSTICS . 7
1.11 BUGS . 8
1.12 NOTES . 8

2 perlapio . 9
2.1 NAME . 9
2.2 SYNOPSIS . 9
2.3 DESCRIPTION . 10

2.3.1 Co-existence with stdio . 13
2.3.2 "Fast gets" Functions . 14
2.3.3 Other Functions . 16

3 perlartistic . 18
3.1 NAME . 18
3.2 SYNOPSIS . 18
3.3 DESCRIPTION . 18
3.4 The "Artistic License" . 18

3.4.1 Preamble . 18
3.4.2 Definitions . 18
3.4.3 Conditions . 19

4 perlbook . 21
4.1 NAME . 21
4.2 DESCRIPTION . 21

4.2.1 The most popular books . 21
4.2.2 References . 22
4.2.3 Tutorials . 22
4.2.4 Task-Oriented . 23
4.2.5 Special Topics . 23
4.2.6 Free (as in beer) books . 24
4.2.7 Other interesting, non-Perl books . 25
4.2.8 A note on freshness . 25
4.2.9 Get your book listed . 25

5 perlboot . 26
5.1 NAME . 26
5.2 DESCRIPTION . 26

6 perlbot . 27
6.1 NAME . 27
6.2 DESCRIPTION . 27

7 perlcall . 28
7.1 NAME . 28
7.2 DESCRIPTION . 28
7.3 THE CALL FUNCTIONS . 28
7.4 FLAG VALUES . 29

7.4.1 G VOID . 29
7.4.2 G SCALAR . 30
7.4.3 G ARRAY . 30
7.4.4 G DISCARD . 31
7.4.5 G NOARGS . 31
7.4.6 G EVAL . 31
7.4.7 G KEEPERR . 32
7.4.8 Determining the Context . 32

7.5 EXAMPLES . 32
7.5.1 No Parameters, Nothing Returned . 33
7.5.2 Passing Parameters . 33
7.5.3 Returning a Scalar . 35
7.5.4 Returning a List of Values . 37
7.5.5 Returning a List in a Scalar Context . 38
7.5.6 Returning Data from Perl via the Parameter List 39
7.5.7 Using G EVAL . 40
7.5.8 Using G KEEPERR . 42
7.5.9 Using call sv . 42
7.5.10 Using call argv . 45
7.5.11 Using call method . 45
7.5.12 Using GIMME V . 47

7.5.13 Using Perl to Dispose of Temporaries . 47
7.5.14 Strategies for Storing Callback Context Information 49
7.5.15 Alternate Stack Manipulation . 55
7.5.16 Creating and Calling an Anonymous Subroutine in C 57

7.6 LIGHTWEIGHT CALLBACKS . 57
7.7 SEE ALSO . 58
7.8 AUTHOR . 58
7.9 DATE . 58

8 perlcheat . 59
8.1 NAME . 59
8.2 DESCRIPTION . 59

8.2.1 The sheet . 59
8.3 ACKNOWLEDGEMENTS . 60
8.4 AUTHOR . 60
8.5 SEE ALSO . 60

9 perlclib . 62
9.1 NAME . 62
9.2 DESCRIPTION . 62

9.2.1 Conventions . 62
9.2.2 File Operations . 62
9.2.3 File Input and Output . 63
9.2.4 File Positioning . 63
9.2.5 Memory Management and String Handling 63
9.2.6 Character Class Tests . 64
9.2.7 stdlib.h functions . 65
9.2.8 Miscellaneous functions . 66

9.3 SEE ALSO . 66

10 perlcommunity . 67
10.1 NAME . 67
10.2 DESCRIPTION . 67

10.2.1 Where to Find the Community . 67
10.2.2 Mailing Lists and Newsgroups . 67
10.2.3 IRC . 67
10.2.4 Websites . 67

10.2.4.1 News sites . 68
10.2.4.2 Forums . 68

10.2.5 User Groups . 68
10.2.6 Workshops . 68
10.2.7 Hackathons . 68
10.2.8 Conventions . 69
10.2.9 Calendar of Perl Events . 69

10.3 AUTHOR . 69

11 perldata . 70
11.1 NAME . 70
11.2 DESCRIPTION . 70

11.2.1 Variable names . 70
11.2.2 Identifier parsing . 71
11.2.3 Context . 73
11.2.4 Scalar values . 74
11.2.5 Scalar value constructors . 76

11.2.5.1 Special floating point: infinity (Inf) and not-a-number
(NaN) . 77

11.2.5.2 Version Strings . 77
11.2.5.3 Special Literals . 78
11.2.5.4 Barewords . 78
11.2.5.5 Array Interpolation . 79

11.2.6 List value constructors . 79
11.2.7 Subscripts . 83
11.2.8 Multi-dimensional array emulation . 83
11.2.9 Slices . 83

11.2.9.1 Key/Value Hash Slices . 85
11.2.9.2 Index/Value Array Slices . 85

11.2.10 Typeglobs and Filehandles . 85
11.3 SEE ALSO . 86

12 perldbmfilter . 87
12.1 NAME . 87
12.2 SYNOPSIS . 87
12.3 DESCRIPTION . 87

12.3.1 The Filter . 87
12.3.2 An Example: the NULL termination problem. 88
12.3.3 Another Example: Key is a C int. 89

12.4 SEE ALSO . 89
12.5 AUTHOR . 89

13 perldebguts . 90
13.1 NAME . 90
13.2 DESCRIPTION . 90
13.3 Debugger Internals . 90

13.3.1 Writing Your Own Debugger . 91
13.3.1.1 Environment Variables . 91
13.3.1.2 Debugger Internal Variables . 92
13.3.1.3 Debugger Customization Functions 92

13.4 Frame Listing Output Examples . 92
13.5 Debugging Regular Expressions . 96

13.5.1 Compile-time Output . 96
13.5.2 Types of Nodes . 98
13.5.3 Run-time Output . 103

13.6 Debugging Perl Memory Usage . 104

13.6.1 Using $ENV{PERL_DEBUG_MSTATS} . 105
13.7 SEE ALSO . 106

14 perldebtut . 107
14.1 NAME . 107
14.2 DESCRIPTION . 107
14.3 use strict . 107
14.4 Looking at data and -w and v . 108
14.5 help . 109
14.6 Stepping through code . 114
14.7 Placeholder for a, w, t, T . 117
14.8 REGULAR EXPRESSIONS . 117
14.9 OUTPUT TIPS . 118
14.10 CGI . 118
14.11 GUIs . 118
14.12 SUMMARY . 119
14.13 SEE ALSO . 119
14.14 AUTHOR . 119
14.15 CONTRIBUTORS . 119

15 perldebug . 120
15.1 NAME . 120
15.2 DESCRIPTION . 120
15.3 The Perl Debugger . 120

15.3.1 Calling the Debugger . 120
15.3.2 Debugger Commands . 121
15.3.3 Configurable Options . 128
15.3.4 Debugger Input/Output . 132
15.3.5 Debugging Compile-Time Statements 133
15.3.6 Debugger Customization . 134
15.3.7 Readline Support / History in the Debugger 134
15.3.8 Editor Support for Debugging . 135
15.3.9 The Perl Profiler . 135

15.4 Debugging Regular Expressions . 135
15.5 Debugging Memory Usage . 135
15.6 SEE ALSO . 135
15.7 BUGS . 136

16 perldiag . 137
16.1 NAME . 137
16.2 DESCRIPTION . 137
16.3 SEE ALSO . 245

17 perldsc . 246
17.1 NAME . 246
17.2 DESCRIPTION . 246
17.3 REFERENCES . 247
17.4 COMMON MISTAKES . 247
17.5 CAVEAT ON PRECEDENCE . 250
17.6 WHY YOU SHOULD ALWAYS use strict 250
17.7 DEBUGGING . 250
17.8 CODE EXAMPLES . 251
17.9 ARRAYS OF ARRAYS . 251

17.9.1 Declaration of an ARRAY OF ARRAYS 251
17.9.2 Generation of an ARRAY OF ARRAYS 251
17.9.3 Access and Printing of an ARRAY OF ARRAYS 252

17.10 HASHES OF ARRAYS . 252
17.10.1 Declaration of a HASH OF ARRAYS 252
17.10.2 Generation of a HASH OF ARRAYS 252
17.10.3 Access and Printing of a HASH OF ARRAYS 253

17.11 ARRAYS OF HASHES . 254
17.11.1 Declaration of an ARRAY OF HASHES 254
17.11.2 Generation of an ARRAY OF HASHES 254
17.11.3 Access and Printing of an ARRAY OF HASHES 255

17.12 HASHES OF HASHES . 256
17.12.1 Declaration of a HASH OF HASHES 256
17.12.2 Generation of a HASH OF HASHES 256
17.12.3 Access and Printing of a HASH OF HASHES 257

17.13 MORE ELABORATE RECORDS . 258
17.13.1 Declaration of MORE ELABORATE RECORDS 258
17.13.2 Declaration of a HASH OF COMPLEX RECORDS . . . 259
17.13.3 Generation of a HASH OF COMPLEX RECORDS 260

17.14 Database Ties . 261
17.15 SEE ALSO . 261
17.16 AUTHOR . 261

18 perldtrace . 262
18.1 NAME . 262
18.2 SYNOPSIS . 262
18.3 DESCRIPTION . 262
18.4 HISTORY . 262
18.5 PROBES . 263
18.6 EXAMPLES . 264
18.7 REFERENCES . 265
18.8 SEE ALSO . 265
18.9 AUTHORS . 265

19 perlebcdic . 266
19.1 NAME . 266
19.2 DESCRIPTION . 266
19.3 COMMON CHARACTER CODE SETS . 266

19.3.1 ASCII . 267
19.3.2 ISO 8859 . 267
19.3.3 Latin 1 (ISO 8859-1) . 267
19.3.4 EBCDIC . 267

19.3.4.1 The 13 variant characters . 268
19.3.4.2 EBCDIC code sets recognized by Perl 268

19.3.5 Unicode code points versus EBCDIC code points 268
19.3.6 Unicode and UTF . 269
19.3.7 Using Encode . 270

19.4 SINGLE OCTET TABLES . 271
19.4.1 Table in hex, sorted in 1047 order . 278

19.5 IDENTIFYING CHARACTER CODE SETS 284
19.6 CONVERSIONS . 285

19.6.1 utf8::unicode_to_native() and
utf8::native_to_unicode() . 285

19.6.2 tr/// . 285
19.6.3 iconv . 286
19.6.4 C RTL . 286

19.7 OPERATOR DIFFERENCES . 286
19.8 FUNCTION DIFFERENCES . 288
19.9 REGULAR EXPRESSION DIFFERENCES 290
19.10 SOCKETS . 292
19.11 SORTING . 293

19.11.1 Ignore ASCII vs. EBCDIC sort differences. 293
19.11.2 Use a sort helper function . 293
19.11.3 MONO CASE then sort data (for non-digits,

non-underscore) . 294
19.11.4 Perform sorting on one type of platform only. 294

19.12 TRANSFORMATION FORMATS . 294
19.12.1 URL decoding and encoding . 294
19.12.2 uu encoding and decoding . 295
19.12.3 Quoted-Printable encoding and decoding 296
19.12.4 Caesarean ciphers . 297

19.13 Hashing order and checksums . 297
19.14 I18N AND L10N . 297
19.15 MULTI-OCTET CHARACTER SETS . 297
19.16 OS ISSUES . 297

19.16.1 OS/400 . 297
19.16.2 OS/390, z/OS . 298
19.16.3 POSIX-BC? . 298

19.17 BUGS . 298
19.18 SEE ALSO . 299
19.19 REFERENCES . 299
19.20 HISTORY . 299

19.21 AUTHOR . 299

20 perlembed . 301
20.1 NAME . 301
20.2 DESCRIPTION . 301

20.2.1 PREAMBLE . 301
20.2.2 ROADMAP . 301
20.2.3 Compiling your C program . 301
20.2.4 Adding a Perl interpreter to your C program 303
20.2.5 Calling a Perl subroutine from your C program 304
20.2.6 Evaluating a Perl statement from your C program 305
20.2.7 Performing Perl pattern matches and substitutions from

your C program . 306
20.2.8 Fiddling with the Perl stack from your C program 311
20.2.9 Maintaining a persistent interpreter . 312
20.2.10 Execution of END blocks . 316
20.2.11 $0 assignments . 316
20.2.12 Maintaining multiple interpreter instances 316
20.2.13 Using Perl modules, which themselves use C libraries, from

your C program . 318
20.2.14 Using embedded Perl with POSIX locales 320

20.3 Hiding Perl . 320
20.4 MORAL . 320
20.5 AUTHOR . 320
20.6 COPYRIGHT . 321

21 perlexperiment . 322
21.1 NAME . 322
21.2 DESCRIPTION . 322

21.2.1 Current experiments . 322
21.2.2 Accepted features . 324
21.2.3 Removed features . 325

21.3 SEE ALSO . 326
21.4 AUTHORS . 326
21.5 COPYRIGHT . 326
21.6 LICENSE . 326

22 perlfilter . 327
22.1 NAME . 327
22.2 DESCRIPTION . 327
22.3 CONCEPTS . 327
22.4 USING FILTERS . 328
22.5 WRITING A SOURCE FILTER . 329
22.6 WRITING A SOURCE FILTER IN C . 329
22.7 CREATING A SOURCE FILTER AS A SEPARATE

EXECUTABLE . 330
22.8 WRITING A SOURCE FILTER IN PERL 331

22.9 USING CONTEXT: THE DEBUG FILTER 332
22.10 CONCLUSION . 335
22.11 LIMITATIONS . 336
22.12 THINGS TO LOOK OUT FOR . 336
22.13 REQUIREMENTS . 336
22.14 AUTHOR . 336
22.15 Copyrights . 336

23 perlfork . 337
23.1 NAME . 337
23.2 SYNOPSIS . 337
23.3 DESCRIPTION . 337

23.3.1 Behavior of other Perl features in forked pseudo-processes
. 337

23.3.2 Resource limits . 339
23.3.3 Killing the parent process . 339
23.3.4 Lifetime of the parent process and pseudo-processes 339

23.4 CAVEATS AND LIMITATIONS . 339
23.5 PORTABILITY CAVEATS . 342
23.6 BUGS . 342
23.7 AUTHOR . 342
23.8 SEE ALSO . 342

24 perlform . 343
24.1 NAME . 343
24.2 DESCRIPTION . 343

24.2.1 Text Fields . 344
24.2.2 Numeric Fields . 344
24.2.3 The Field @* for Variable-Width Multi-Line Text 345
24.2.4 The Field ^* for Variable-Width One-line-at-a-time Text

. 345
24.2.5 Specifying Values . 345
24.2.6 Using Fill Mode . 345
24.2.7 Suppressing Lines Where All Fields Are Void 346
24.2.8 Repeating Format Lines . 346
24.2.9 Top of Form Processing . 346
24.2.10 Format Variables . 347

24.3 NOTES . 348
24.3.1 Footers . 349
24.3.2 Accessing Formatting Internals . 349

24.4 WARNINGS . 350

25 perlfunc . 351
25.1 NAME . 351
25.2 DESCRIPTION . 351

25.2.1 Perl Functions by Category . 352
25.2.2 Portability . 354
25.2.3 Alphabetical Listing of Perl Functions 354
25.2.4 Non-function Keywords by Cross-reference 490

25.2.4.1 perldata . 490
25.2.4.2 perlmod . 490
25.2.4.3 perlobj . 490
25.2.4.4 perlop . 490
25.2.4.5 perlsub . 491
25.2.4.6 perlsyn . 491

26 perlgit . 492
26.1 NAME . 492
26.2 DESCRIPTION . 492
26.3 CLONING THE REPOSITORY . 492
26.4 WORKING WITH THE REPOSITORY . 492

26.4.1 Finding out your status . 493
26.4.2 Patch workflow . 494
26.4.3 Committing your changes . 496
26.4.4 Sending patch emails . 497
26.4.5 A note on derived files . 497
26.4.6 Cleaning a working directory . 497
26.4.7 Bisecting . 498
26.4.8 Topic branches and rewriting history 499
26.4.9 Grafts . 500

26.5 WRITE ACCESS TO THE GIT REPOSITORY 500
26.5.1 Accepting a patch . 501
26.5.2 Committing to blead . 502
26.5.3 On merging and rebasing . 502
26.5.4 Committing to maintenance versions 503
26.5.5 Merging from a branch via GitHub . 504
26.5.6 Using a smoke-me branch to test changes 504
26.5.7 A note on camel and dromedary . 505

27 perlgpl . 506
27.1 NAME . 506
27.2 SYNOPSIS . 506
27.3 DESCRIPTION . 506
27.4 GNU GENERAL PUBLIC LICENSE . 506

28 perlguts . 512
28.1 NAME . 512
28.2 DESCRIPTION . 512
28.3 Variables . 512

28.3.1 Datatypes . 512
28.3.2 What is an "IV"? . 512
28.3.3 Working with SVs . 512
28.3.4 Offsets . 516
28.3.5 What’s Really Stored in an SV? . 517
28.3.6 Working with AVs . 518
28.3.7 Working with HVs . 519
28.3.8 Hash API Extensions . 520
28.3.9 AVs, HVs and undefined values . 521
28.3.10 References . 522
28.3.11 Blessed References and Class Objects 523
28.3.12 Creating New Variables . 523
28.3.13 Reference Counts and Mortality . 524
28.3.14 Stashes and Globs . 525
28.3.15 Double-Typed SVs . 526
28.3.16 Read-Only Values . 527
28.3.17 Copy on Write . 527
28.3.18 Magic Variables . 528
28.3.19 Assigning Magic . 528
28.3.20 Magic Virtual Tables . 529
28.3.21 Finding Magic . 533
28.3.22 Understanding the Magic of Tied Hashes and Arrays . . 533
28.3.23 Localizing changes . 534

28.4 Subroutines . 537
28.4.1 XSUBs and the Argument Stack . 537
28.4.2 Autoloading with XSUBs . 538
28.4.3 Calling Perl Routines from within C Programs 538
28.4.4 Putting a C value on Perl stack . 539
28.4.5 Scratchpads . 539
28.4.6 Scratchpads and recursion . 540

28.5 Memory Allocation . 540
28.5.1 Allocation . 540
28.5.2 Reallocation . 541
28.5.3 Moving . 541

28.6 PerlIO . 541
28.7 Compiled code . 541

28.7.1 Code tree . 541
28.7.2 Examining the tree . 542
28.7.3 Compile pass 1: check routines . 543
28.7.4 Compile pass 1a: constant folding . 544
28.7.5 Compile pass 2: context propagation 544
28.7.6 Compile pass 3: peephole optimization 544
28.7.7 Pluggable runops . 545
28.7.8 Compile-time scope hooks . 545

28.8 Examining internal data structures with the dump functions . . 546
28.9 How multiple interpreters and concurrency are supported 547

28.9.1 Background and PERL IMPLICIT CONTEXT 547
28.9.2 So what happened to dTHR? . 549
28.9.3 How do I use all this in extensions? . 549
28.9.4 Should I do anything special if I call perl from multiple

threads? . 551
28.9.5 Future Plans and PERL IMPLICIT SYS 551

28.10 Internal Functions . 552
28.10.1 Formatted Printing of IVs, UVs, and NVs 553
28.10.2 Pointer-To-Integer and Integer-To-Pointer 554
28.10.3 Exception Handling . 554
28.10.4 Source Documentation . 554
28.10.5 Backwards compatibility . 555

28.11 Unicode Support . 555
28.11.1 What is Unicode, anyway? . 555
28.11.2 How can I recognise a UTF-8 string? 556
28.11.3 How does UTF-8 represent Unicode characters? 556
28.11.4 How does Perl store UTF-8 strings? 557
28.11.5 How do I convert a string to UTF-8? 558
28.11.6 How do I compare strings? . 559
28.11.7 Is there anything else I need to know? 559

28.12 Custom Operators . 559
28.13 AUTHORS . 561
28.14 SEE ALSO . 561

29 perlhack . 562
29.1 NAME . 562
29.2 DESCRIPTION . 562
29.3 SUPER QUICK PATCH GUIDE . 562
29.4 BUG REPORTING . 563
29.5 PERL 5 PORTERS . 563

29.5.1 perl-changes mailing list . 564
29.5.2 #p5p on IRC . 564

29.6 GETTING THE PERL SOURCE . 564
29.6.1 Read access via Git . 564
29.6.2 Read access via the web . 564
29.6.3 Read access via rsync . 564
29.6.4 Write access via git . 565

29.7 PATCHING PERL . 565
29.7.1 Submitting patches . 565
29.7.2 Getting your patch accepted . 565

29.7.2.1 Patch style . 565
29.7.2.2 Commit message . 566
29.7.2.3 Comments, Comments, Comments 567
29.7.2.4 Style . 567
29.7.2.5 Test suite . 567

29.7.3 Patching a core module . 568

29.7.4 Updating perldelta . 568
29.7.5 What makes for a good patch? . 569

29.7.5.1 Does the concept match the general goals of Perl? . . 569
29.7.5.2 Where is the implementation? . 569
29.7.5.3 Backwards compatibility . 569
29.7.5.4 Could it be a module instead? . 569
29.7.5.5 Is the feature generic enough? . 570
29.7.5.6 Does it potentially introduce new bugs? 570
29.7.5.7 How big is it? . 570
29.7.5.8 Does it preclude other desirable features? 570
29.7.5.9 Is the implementation robust? . 570
29.7.5.10 Is the implementation generic enough to be portable?

. 570
29.7.5.11 Is the implementation tested? . 570
29.7.5.12 Is there enough documentation? 570
29.7.5.13 Is there another way to do it? . 571
29.7.5.14 Does it create too much work? 571
29.7.5.15 Patches speak louder than words 571

29.8 TESTING . 571
29.8.1 Special make test targets . 572
29.8.2 Parallel tests . 573
29.8.3 Running tests by hand . 573
29.8.4 Using t/harness for testing . 573

29.8.4.1 Other environment variables that may influence tests
. 574

29.8.5 Performance testing . 575
29.9 MORE READING FOR GUTS HACKERS 575
29.10 CPAN TESTERS AND PERL SMOKERS 576
29.11 WHAT NEXT? . 576

29.11.1 "The Road goes ever on and on, down from the door where
it began." . 576

29.11.2 Metaphoric Quotations . 577
29.12 AUTHOR . 577

30 perlhacktips . 578
30.1 NAME . 578
30.2 DESCRIPTION . 578
30.3 COMMON PROBLEMS . 578

30.3.1 Perl environment problems . 578
30.3.2 Portability problems . 579
30.3.3 Problematic System Interfaces . 586
30.3.4 Security problems . 586

30.4 DEBUGGING . 587
30.4.1 Poking at Perl . 587
30.4.2 Using a source-level debugger . 587
30.4.3 gdb macro support . 589
30.4.4 Dumping Perl Data Structures . 589
30.4.5 Using gdb to look at specific parts of a program 591

30.4.6 Using gdb to look at what the parser/lexer are doing . . . 591
30.5 SOURCE CODE STATIC ANALYSIS . 591

30.5.1 lint, splint . 591
30.5.2 Coverity . 592
30.5.3 cpd (cut-and-paste detector) . 592
30.5.4 gcc warnings . 592
30.5.5 Warnings of other C compilers . 593

30.6 MEMORY DEBUGGERS . 593
30.6.1 valgrind . 593
30.6.2 AddressSanitizer . 594

30.7 PROFILING . 594
30.7.1 Gprof Profiling . 595
30.7.2 GCC gcov Profiling . 596

30.8 MISCELLANEOUS TRICKS . 596
30.8.1 PERL DESTRUCT LEVEL . 596
30.8.2 PERL MEM LOG . 597
30.8.3 DDD over gdb . 598
30.8.4 C backtrace . 598
30.8.5 Poison . 599
30.8.6 Read-only optrees . 599
30.8.7 When is a bool not a bool? . 600
30.8.8 The .i Targets . 600

30.9 AUTHOR . 600

31 perlhacktut . 601
31.1 NAME . 601
31.2 DESCRIPTION . 601
31.3 EXAMPLE OF A SIMPLE PATCH . 601

31.3.1 Writing the patch . 601
31.3.2 Testing the patch . 602
31.3.3 Documenting the patch . 603
31.3.4 Submit . 603

31.4 AUTHOR . 603

32 perlhist . 604
32.1 NAME . 604
32.2 DESCRIPTION . 604
32.3 INTRODUCTION . 604
32.4 THE KEEPERS OF THE PUMPKIN . 604

32.4.1 PUMPKIN? . 604
32.5 THE RECORDS . 605

32.5.1 SELECTED RELEASE SIZES . 615
32.5.2 SELECTED PATCH SIZES . 624

32.5.2.1 The patch-free era . 625
32.6 THE KEEPERS OF THE RECORDS . 626

33 perlinterp . 627
33.1 NAME . 627
33.2 DESCRIPTION . 627
33.3 ELEMENTS OF THE INTERPRETER . 627

33.3.1 Startup . 627
33.3.2 Parsing . 628
33.3.3 Optimization . 628
33.3.4 Running . 628
33.3.5 Exception handing . 629
33.3.6 INTERNAL VARIABLE TYPES . 631

33.4 OP TREES . 633
33.5 STACKS . 636

33.5.1 Argument stack . 636
33.5.2 Mark stack . 636
33.5.3 Save stack . 637

33.6 MILLIONS OF MACROS . 638
33.7 FURTHER READING . 638

34 perlintro . 639
34.1 NAME . 639
34.2 DESCRIPTION . 639

34.2.1 What is Perl? . 639
34.2.2 Running Perl programs . 640
34.2.3 Safety net . 640
34.2.4 Basic syntax overview . 640
34.2.5 Perl variable types . 641
34.2.6 Variable scoping . 643
34.2.7 Conditional and looping constructs . 644
34.2.8 Builtin operators and functions . 645
34.2.9 Files and I/O . 646
34.2.10 Regular expressions . 647
34.2.11 Writing subroutines . 649
34.2.12 OO Perl . 649
34.2.13 Using Perl modules . 649

34.3 AUTHOR . 650

35 perliol . 651
35.1 NAME . 651
35.2 SYNOPSIS . 651
35.3 DESCRIPTION . 651

35.3.1 History and Background . 651
35.3.2 Basic Structure . 651
35.3.3 Layers vs Disciplines . 652
35.3.4 Data Structures . 652
35.3.5 Functions and Attributes . 653
35.3.6 Per-instance Data . 654
35.3.7 Layers in action. 654

35.3.8 Per-instance flag bits . 655
35.3.9 Methods in Detail . 656
35.3.10 Utilities . 661
35.3.11 Implementing PerlIO Layers . 662
35.3.12 Core Layers . 663
35.3.13 Extension Layers . 664

35.4 TODO . 665

36 perlipc . 667
36.1 NAME . 667
36.2 DESCRIPTION . 667
36.3 Signals . 667

36.3.1 Handling the SIGHUP Signal in Daemons 670
36.3.2 Deferred Signals (Safe Signals) . 671

36.4 Named Pipes . 673
36.5 Using open() for IPC . 674

36.5.1 Filehandles . 675
36.5.2 Background Processes . 675
36.5.3 Complete Dissociation of Child from Parent 675
36.5.4 Safe Pipe Opens . 676
36.5.5 Avoiding Pipe Deadlocks . 679
36.5.6 Bidirectional Communication with Another Process 680
36.5.7 Bidirectional Communication with Yourself 680

36.6 Sockets: Client/Server Communication . 682
36.6.1 Internet Line Terminators . 682
36.6.2 Internet TCP Clients and Servers . 683
36.6.3 Unix-Domain TCP Clients and Servers 687

36.7 TCP Clients with IO::Socket . 690
36.7.1 A Simple Client . 690
36.7.2 A Webget Client . 691
36.7.3 Interactive Client with IO::Socket . 692

36.8 TCP Servers with IO::Socket . 693
36.9 UDP: Message Passing . 695
36.10 SysV IPC . 696
36.11 NOTES . 698
36.12 BUGS . 699
36.13 AUTHOR . 699
36.14 SEE ALSO . 699

37 perllexwarn . 700
37.1 NAME . 700
37.2 DESCRIPTION . 700

38 perllocale . 701
38.1 NAME . 701
38.2 DESCRIPTION . 701
38.3 WHAT IS A LOCALE . 701
38.4 PREPARING TO USE LOCALES . 702
38.5 USING LOCALES . 703

38.5.1 The "use locale" pragma . 703
38.5.2 The setlocale function . 705
38.5.3 Finding locales . 707
38.5.4 LOCALE PROBLEMS . 708
38.5.5 Testing for broken locales . 708
38.5.6 Temporarily fixing locale problems . 708
38.5.7 Permanently fixing locale problems . 709
38.5.8 Permanently fixing your system’s locale configuration . . . 709
38.5.9 Fixing system locale configuration . 710
38.5.10 The localeconv function . 710
38.5.11 I18N::Langinfo . 711

38.6 LOCALE CATEGORIES . 711
38.6.1 Category LC_COLLATE: Collation . 712
38.6.2 Category LC_CTYPE: Character Types 713
38.6.3 Category LC_NUMERIC: Numeric Formatting 714
38.6.4 Category LC_MONETARY: Formatting of monetary amounts

. 715
38.6.5 LC_TIME . 715
38.6.6 Other categories . 715

38.7 SECURITY . 716
38.8 ENVIRONMENT . 718

38.8.1 Examples . 719
38.9 NOTES . 720

38.9.1 String eval and LC_NUMERIC . 720
38.9.2 Backward compatibility . 720
38.9.3 I18N:Collate obsolete . 720
38.9.4 Sort speed and memory use impacts . 721
38.9.5 Freely available locale definitions . 721
38.9.6 I18n and l10n . 721
38.9.7 An imperfect standard . 721

38.10 Unicode and UTF-8 . 721
38.11 BUGS . 724

38.11.1 Broken systems . 724
38.12 SEE ALSO . 724
38.13 HISTORY . 724

39 perllol . 725
39.1 NAME . 725
39.2 DESCRIPTION . 725

39.2.1 Declaration and Access of Arrays of Arrays 725
39.2.2 Growing Your Own . 726
39.2.3 Access and Printing . 728
39.2.4 Slices . 730

39.3 SEE ALSO . 731
39.4 AUTHOR . 731

40 perlmod . 732
40.1 NAME . 732
40.2 DESCRIPTION . 732

40.2.1 Is this the document you were after? 732
40.2.2 Packages . 732
40.2.3 Symbol Tables . 733
40.2.4 BEGIN, UNITCHECK, CHECK, INIT and END 736
40.2.5 Perl Classes . 738
40.2.6 Perl Modules . 738
40.2.7 Making your module threadsafe . 740

40.3 SEE ALSO . 741

41 perlmodinstall . 742
41.1 NAME . 742
41.2 DESCRIPTION . 742

41.2.1 PREAMBLE . 742
41.3 PORTABILITY . 746
41.4 HEY . 747
41.5 AUTHOR . 747
41.6 COPYRIGHT . 747

42 perlmodstyle . 748
42.1 NAME . 748
42.2 INTRODUCTION . 748
42.3 QUICK CHECKLIST . 748

42.3.1 Before you start . 748
42.3.2 The API . 748
42.3.3 Stability . 749
42.3.4 Documentation . 749
42.3.5 Release considerations . 749

42.4 BEFORE YOU START WRITING A MODULE 749
42.4.1 Has it been done before? . 749
42.4.2 Do one thing and do it well . 749
42.4.3 What’s in a name? . 750
42.4.4 Get feedback before publishing . 750

42.5 DESIGNING AND WRITING YOUR MODULE 750
42.5.1 To OO or not to OO? . 750

42.5.2 Designing your API . 751
42.5.3 Strictness and warnings . 752
42.5.4 Backwards compatibility . 753
42.5.5 Error handling and messages . 753

42.6 DOCUMENTING YOUR MODULE . 753
42.6.1 POD . 753
42.6.2 README, INSTALL, release notes, changelogs 754

42.7 RELEASE CONSIDERATIONS . 755
42.7.1 Version numbering . 755
42.7.2 Pre-requisites . 755
42.7.3 Testing . 756
42.7.4 Packaging . 756
42.7.5 Licensing . 756

42.8 COMMON PITFALLS . 756
42.8.1 Reinventing the wheel . 756
42.8.2 Trying to do too much . 756
42.8.3 Inappropriate documentation . 757

42.9 SEE ALSO . 757
42.10 AUTHOR . 757

43 perlmroapi . 758
43.1 NAME . 758
43.2 DESCRIPTION . 758
43.3 Callbacks . 758
43.4 Caching . 759
43.5 Examples . 759
43.6 AUTHORS . 759

44 perlnewmod . 760
44.1 NAME . 760
44.2 DESCRIPTION . 760

44.2.1 Warning . 760
44.2.2 What should I make into a module? . 760
44.2.3 Step-by-step: Preparing the ground . 761
44.2.4 Step-by-step: Making the module . 762
44.2.5 Step-by-step: Distributing your module 763

44.3 AUTHOR . 764
44.4 SEE ALSO . 764

45 perlnumber . 765
45.1 NAME . 765
45.2 SYNOPSIS . 765
45.3 DESCRIPTION . 765
45.4 Storing numbers . 765
45.5 Numeric operators and numeric conversions 766
45.6 Flavors of Perl numeric operations . 767
45.7 AUTHOR . 768
45.8 SEE ALSO . 768

46 perlobj . 769
46.1 NAME . 769
46.2 DESCRIPTION . 769

46.2.1 An Object is Simply a Data Structure 769
46.2.1.1 Objects Are Blessed; Variables Are Not 771

46.2.2 A Class is Simply a Package . 771
46.2.3 A Method is Simply a Subroutine . 772
46.2.4 Method Invocation >> . 772
46.2.5 Inheritance . 772

46.2.5.1 How SUPER is Resolved . 773
46.2.5.2 Multiple Inheritance . 774
46.2.5.3 Method Resolution Order . 775
46.2.5.4 Method Resolution Caching . 776

46.2.6 Writing Constructors . 776
46.2.7 Attributes . 777

46.2.7.1 Writing Accessors . 777
46.2.8 An Aside About Smarter and Safer Code 777
46.2.9 Method Call Variations . 778

46.2.9.1 Method Names as Strings . 778
46.2.9.2 Class Names as Strings . 778
46.2.9.3 Subroutine References as Methods 778
46.2.9.4 Deferencing Method Call . 778
46.2.9.5 Method Calls on Filehandles . 779

46.2.10 Invoking Class Methods . 779
46.2.10.1 Indirect Object Syntax . 779

46.2.11 bless, blessed, and ref . 780
46.2.12 The UNIVERSAL Class . 780
46.2.13 AUTOLOAD . 781
46.2.14 Destructors . 782

46.2.14.1 Global Destruction . 783
46.2.15 Non-Hash Objects . 783
46.2.16 Inside-Out objects . 784
46.2.17 Pseudo-hashes . 785

46.3 SEE ALSO . 785

47 perlootut . 786
47.1 NAME . 786
47.2 DATE . 786
47.3 DESCRIPTION . 786
47.4 OBJECT-ORIENTED FUNDAMENTALS 786

47.4.1 Object . 787
47.4.2 Class . 787

47.4.2.1 Blessing . 787
47.4.2.2 Constructor . 788

47.4.3 Methods . 788
47.4.4 Attributes . 788
47.4.5 Polymorphism . 789
47.4.6 Inheritance . 789

47.4.6.1 Overriding methods and method resolution 790
47.4.7 Encapsulation . 791
47.4.8 Composition . 791
47.4.9 Roles . 791
47.4.10 When to Use OO . 792

47.5 PERL OO SYSTEMS . 792
47.5.1 Moose . 792

47.5.1.1 Moo . 794
47.5.2 Class::Accessor . 795
47.5.3 Class::Tiny . 795
47.5.4 Role::Tiny . 796
47.5.5 OO System Summary . 796
47.5.6 Other OO Systems . 797

47.6 CONCLUSION . 797

48 perlop . 798
48.1 NAME . 798
48.2 DESCRIPTION . 798

48.2.1 Operator Precedence and Associativity 798
48.2.2 Terms and List Operators (Leftward) 799
48.2.3 The Arrow Operator >> . 800
48.2.4 Auto-increment and Auto-decrement 800
48.2.5 Exponentiation . 801
48.2.6 Symbolic Unary Operators . 801
48.2.7 Binding Operators . 802
48.2.8 Multiplicative Operators . 802
48.2.9 Additive Operators . 803
48.2.10 Shift Operators > >>> . 803
48.2.11 Named Unary Operators . 804
48.2.12 Relational Operators . 804
48.2.13 Equality Operators . 805
48.2.14 Smartmatch Operator . 805

48.2.14.1 Smartmatching of Objects . 810
48.2.15 Bitwise And . 810
48.2.16 Bitwise Or and Exclusive Or . 811
48.2.17 C-style Logical And . 811
48.2.18 C-style Logical Or . 811
48.2.19 Logical Defined-Or . 811
48.2.20 Range Operators . 812
48.2.21 Conditional Operator . 815
48.2.22 Assignment Operators . 815
48.2.23 Comma Operator . 816
48.2.24 List Operators (Rightward) . 817
48.2.25 Logical Not . 817
48.2.26 Logical And . 817
48.2.27 Logical or and Exclusive Or . 817
48.2.28 C Operators Missing From Perl . 818
48.2.29 Quote and Quote-like Operators . 818

48.2.30 Regexp Quote-Like Operators . 823
48.2.31 Quote-Like Operators . 832
48.2.32 Gory details of parsing quoted constructs 839
48.2.33 I/O Operators . 844
48.2.34 Constant Folding . 847
48.2.35 No-ops . 848
48.2.36 Bitwise String Operators . 848
48.2.37 Integer Arithmetic . 849
48.2.38 Floating-point Arithmetic . 849
48.2.39 Bigger Numbers . 850

49 perlopentut . 852
49.1 NAME . 852
49.2 DESCRIPTION . 852
49.3 Opening Text Files . 853

49.3.1 Opening Text Files for Reading . 853
49.3.2 Opening Text Files for Writing . 854

49.4 Opening Binary Files . 855
49.5 Opening Pipes . 856
49.6 Low-level File Opens via sysopen . 856
49.7 SEE ALSO . 856
49.8 AUTHOR and COPYRIGHT . 856

50 perlpacktut . 857
50.1 NAME . 857
50.2 DESCRIPTION . 857
50.3 The Basic Principle . 857
50.4 Packing Text . 858
50.5 Packing Numbers . 861

50.5.1 Integers . 861
50.5.2 Unpacking a Stack Frame . 862
50.5.3 How to Eat an Egg on a Net . 863
50.5.4 Byte-order modifiers . 863
50.5.5 Floating point Numbers . 864

50.6 Exotic Templates . 864
50.6.1 Bit Strings . 864
50.6.2 Uuencoding . 865
50.6.3 Doing Sums . 865
50.6.4 Unicode . 866
50.6.5 Another Portable Binary Encoding . 867

50.7 Template Grouping . 867
50.8 Lengths and Widths . 868

50.8.1 String Lengths . 868
50.8.2 Dynamic Templates . 869
50.8.3 Counting Repetitions . 869
50.8.4 Intel HEX . 870

50.9 Packing and Unpacking C Structures . 870

50.9.1 The Alignment Pit . 870
50.9.2 Dealing with Endian-ness . 873
50.9.3 Alignment, Take 2 . 873
50.9.4 Alignment, Take 3 . 873
50.9.5 Pointers for How to Use Them . 874

50.10 Pack Recipes . 875
50.11 Funnies Section . 876
50.12 Authors . 876

51 perlperf . 877
51.1 NAME . 877
51.2 DESCRIPTION . 877
51.3 OVERVIEW . 877

51.3.1 ONE STEP SIDEWAYS . 877
51.3.2 ONE STEP FORWARD . 877
51.3.3 ANOTHER STEP SIDEWAYS . 877

51.4 GENERAL GUIDELINES . 878
51.5 BENCHMARKS . 878

51.5.1 Assigning and Dereferencing Variables. 878
51.5.2 Search and replace or tr . 880

51.6 PROFILING TOOLS . 881
51.6.1 Devel::DProf . 883
51.6.2 Devel::Profiler . 884
51.6.3 Devel::SmallProf . 885
51.6.4 Devel::FastProf . 886
51.6.5 Devel::NYTProf . 887

51.7 SORTING . 891
51.8 LOGGING . 895

51.8.1 Logging if DEBUG (constant) . 896
51.9 POSTSCRIPT . 897
51.10 SEE ALSO . 898

51.10.1 PERLDOCS . 898
51.10.2 MAN PAGES . 898
51.10.3 MODULES . 898
51.10.4 URLS . 898

51.11 AUTHOR . 899

52 perlpod . 900
52.1 NAME . 900
52.2 DESCRIPTION . 900

52.2.1 Ordinary Paragraph . 900
52.2.2 Verbatim Paragraph . 900
52.2.3 Command Paragraph . 900
52.2.4 Formatting Codes . 904
52.2.5 The Intent . 907
52.2.6 Embedding Pods in Perl Modules . 908
52.2.7 Hints for Writing Pod . 908

52.3 SEE ALSO . 909
52.4 AUTHOR . 909

53 perlpodspec . 910
53.1 NAME . 910
53.2 DESCRIPTION . 910
53.3 Pod Definitions . 910
53.4 Pod Commands . 912
53.5 Pod Formatting Codes . 915
53.6 Notes on Implementing Pod Processors . 918
53.7 About L<...> Codes . 925
53.8 About =over...=back Regions . 928
53.9 About Data Paragraphs and "=begin/=end" Regions 932
53.10 SEE ALSO . 937
53.11 AUTHOR . 937

54 perlpodstyle . 938
54.1 NAME . 938
54.2 DESCRIPTION . 938
54.3 SEE ALSO . 942
54.4 AUTHOR . 942
54.5 COPYRIGHT AND LICENSE . 942

55 perlpolicy . 943
55.1 NAME . 943
55.2 DESCRIPTION . 943
55.3 GOVERNANCE . 943

55.3.1 Perl 5 Porters . 943
55.4 MAINTENANCE AND SUPPORT . 943
55.5 BACKWARD COMPATIBILITY AND DEPRECATION 944

55.5.1 Terminology . 945
55.6 MAINTENANCE BRANCHES . 946

55.6.1 Getting changes into a maint branch 947
55.7 CONTRIBUTED MODULES . 948

55.7.1 A Social Contract about Artistic Control 948
55.8 DOCUMENTATION . 949
55.9 STANDARDS OF CONDUCT . 950
55.10 CREDITS . 950

56 perlport . 951
56.1 NAME . 951
56.2 DESCRIPTION . 951
56.3 ISSUES . 952

56.3.1 Newlines . 952
56.3.2 Numbers endianness and Width . 954
56.3.3 Files and Filesystems . 955
56.3.4 System Interaction . 957
56.3.5 Command names versus file pathnames 958
56.3.6 Networking . 958
56.3.7 Interprocess Communication (IPC) . 959
56.3.8 External Subroutines (XS) . 959
56.3.9 Standard Modules . 960
56.3.10 Time and Date . 960
56.3.11 Character sets and character encoding 960
56.3.12 Internationalisation . 961
56.3.13 System Resources . 961
56.3.14 Security . 962
56.3.15 Style . 962

56.4 CPAN Testers . 962
56.5 PLATFORMS . 963

56.5.1 Unix . 963
56.5.2 DOS and Derivatives . 964
56.5.3 VMS . 965
56.5.4 VOS . 967
56.5.5 EBCDIC Platforms . 968
56.5.6 Acorn RISC OS . 969
56.5.7 Other perls . 971

56.6 FUNCTION IMPLEMENTATIONS . 971
56.6.1 Alphabetical Listing of Perl Functions 972

56.7 Supported Platforms . 980
56.8 EOL Platforms . 982

56.8.1 (Perl 5.20) . 982
56.8.2 (Perl 5.14) . 982
56.8.3 (Perl 5.12) . 982

56.9 Supported Platforms (Perl 5.8) . 982
56.10 SEE ALSO . 985
56.11 AUTHORS / CONTRIBUTORS . 985

57 perlpragma . 986
57.1 NAME . 986
57.2 DESCRIPTION . 986
57.3 A basic example . 986
57.4 Key naming . 988
57.5 Implementation details . 988

58 perlre . 989
58.1 NAME . 989
58.2 DESCRIPTION . 989

58.2.1 Modifiers . 989
58.2.1.1 /x . 991
58.2.1.2 Character set modifiers . 992
58.2.1.3 /l . 993
58.2.1.4 /u . 993
58.2.1.5 /d . 994
58.2.1.6 /a (and /aa) . 995
58.2.1.7 Which character set modifier is in effect? 996
58.2.1.8 Character set modifier behavior prior to Perl 5.14 . . 996

58.2.2 Regular Expressions . 996
58.2.2.1 Metacharacters . 996
58.2.2.2 Quantifiers . 997
58.2.2.3 Escape sequences . 998
58.2.2.4 Character Classes and other Special Escapes 999
58.2.2.5 Assertions . 1000
58.2.2.6 Capture groups . 1001

58.2.3 Quoting metacharacters . 1004
58.2.4 Extended Patterns . 1004
58.2.5 Special Backtracking Control Verbs 1017
58.2.6 Backtracking . 1021
58.2.7 Version 8 Regular Expressions . 1024
58.2.8 Warning on \1 Instead of $1 . 1026
58.2.9 Repeated Patterns Matching a Zero-length Substring . . 1026
58.2.10 Combining RE Pieces . 1027
58.2.11 Creating Custom RE Engines . 1029
58.2.12 Embedded Code Execution Frequency 1030
58.2.13 PCRE/Python Support . 1030

58.3 BUGS . 1031
58.4 SEE ALSO . 1031

59 perlreapi . 1032
59.1 NAME . 1032
59.2 DESCRIPTION . 1032
59.3 Callbacks . 1033

59.3.1 comp . 1033
59.3.2 exec . 1035
59.3.3 intuit . 1036
59.3.4 checkstr . 1036
59.3.5 free . 1037
59.3.6 Numbered capture callbacks . 1037

59.3.6.1 numbered buff FETCH . 1037
59.3.6.2 numbered buff STORE . 1037
59.3.6.3 numbered buff LENGTH . 1038

59.3.7 Named capture callbacks . 1039
59.3.7.1 named buff . 1039

59.3.7.2 named buff iter . 1040
59.3.8 qr package . 1040
59.3.9 dupe . 1040
59.3.10 op comp . 1041

59.4 The REGEXP structure . 1041
59.4.1 engine . 1042
59.4.2 mother_re . 1042
59.4.3 extflags . 1042
59.4.4 minlen minlenret . 1043
59.4.5 gofs . 1043
59.4.6 substrs . 1043
59.4.7 nparens, lastparen, and lastcloseparen 1043
59.4.8 intflags . 1043
59.4.9 pprivate . 1043
59.4.10 swap . 1043
59.4.11 offs . 1043
59.4.12 precomp prelen . 1044
59.4.13 paren_names . 1044
59.4.14 substrs . 1044
59.4.15 subbeg sublen saved_copy suboffset subcoffset . . 1044
59.4.16 wrapped wraplen . 1044
59.4.17 seen_evals . 1045
59.4.18 refcnt . 1045

59.5 HISTORY . 1045
59.6 AUTHORS . 1045
59.7 LICENSE . 1045

60 perlrebackslash . 1046
60.1 NAME . 1046
60.2 DESCRIPTION . 1046

60.2.1 The backslash . 1046
60.2.2 All the sequences and escapes . 1046
60.2.3 Character Escapes . 1048

60.2.3.1 Fixed characters . 1048
60.2.3.2 Example . 1048
60.2.3.3 Control characters . 1048
60.2.3.4 Example . 1048
60.2.3.5 Named or numbered characters and character sequences

. 1049
60.2.3.6 Example . 1049
60.2.3.7 Octal escapes . 1049
60.2.3.8 Examples (assuming an ASCII platform) 1050
60.2.3.9 Disambiguation rules between old-style octal escapes

and backreferences . 1050
60.2.3.10 Hexadecimal escapes . 1051
60.2.3.11 Examples (assuming an ASCII platform) 1051

60.2.4 Modifiers . 1051
60.2.4.1 Examples . 1051

60.2.5 Character classes . 1052
60.2.5.1 Unicode classes . 1052

60.2.6 Referencing . 1052
60.2.6.1 Absolute referencing . 1052
60.2.6.2 Examples . 1053
60.2.6.3 Relative referencing . 1053
60.2.6.4 Examples . 1053
60.2.6.5 Named referencing . 1053
60.2.6.6 Examples . 1053

60.2.7 Assertions . 1053
60.2.7.1 Examples . 1056

60.2.8 Misc . 1056
60.2.8.1 Examples . 1058

61 perlrecharclass . 1059
61.1 NAME . 1059
61.2 DESCRIPTION . 1059

61.2.1 The dot . 1059
61.2.2 Backslash sequences . 1059

61.2.2.1 \N . 1060
61.2.2.2 Digits . 1060
61.2.2.3 Word characters . 1061
61.2.2.4 Whitespace . 1062
61.2.2.5 Unicode Properties . 1064
61.2.2.6 Examples . 1064

61.2.3 Bracketed Character Classes . 1065
61.2.3.1 Special Characters Inside a Bracketed Character Class

. 1066
61.2.3.2 Character Ranges . 1067
61.2.3.3 Negation . 1068
61.2.3.4 Backslash Sequences . 1069
61.2.3.5 POSIX Character Classes . 1069
61.2.3.6 Negation of POSIX character classes 1073
61.2.3.7 [= =] and [. .] . 1073
61.2.3.8 Examples . 1073
61.2.3.9 Extended Bracketed Character Classes 1073

62 perlref . 1077
62.1 NAME . 1077
62.2 NOTE . 1077
62.3 DESCRIPTION . 1077

62.3.1 Making References . 1078
62.3.2 Using References . 1081
62.3.3 Circular References . 1084
62.3.4 Symbolic references . 1084
62.3.5 Not-so-symbolic references . 1085
62.3.6 Pseudo-hashes: Using an array as a hash 1086

62.3.7 Function Templates . 1086
62.4 WARNING . 1087
62.5 Postfix Dereference Syntax . 1088

62.5.1 Postfix Reference Slicing . 1088
62.6 Assigning to References . 1089
62.7 SEE ALSO . 1091

63 perlreftut . 1092
63.1 NAME . 1092
63.2 DESCRIPTION . 1092
63.3 Who Needs Complicated Data Structures? 1092
63.4 The Solution . 1093
63.5 Syntax . 1093

63.5.1 Making References . 1093
63.5.1.1 Make Rule 1 . 1093

63.5.2 Using References . 1094
63.5.2.1 Use Rule 1 . 1094
63.5.2.2 Use Rule 2 . 1095

63.5.3 An Example . 1095
63.5.4 Arrow Rule . 1096

63.6 Solution . 1096
63.7 The Rest . 1098
63.8 Summary . 1099
63.9 Credits . 1099

63.9.1 Distribution Conditions . 1099

64 perlreguts . 1100
64.1 NAME . 1100
64.2 DESCRIPTION . 1100
64.3 OVERVIEW . 1100

64.3.1 A quick note on terms . 1100
64.3.2 What is a regular expression engine? 1100
64.3.3 Structure of a Regexp Program . 1101

64.3.3.1 High Level . 1101
64.3.3.2 Regops . 1102
64.3.3.3 What regop is next? . 1103

64.4 Process Overview . 1103
64.4.1 Compilation . 1104

64.4.1.1 Parsing for size . 1104
64.4.1.2 Parsing for construction . 1104
64.4.1.3 Parse Call Graph and a Grammar 1105
64.4.1.4 Parsing complications . 1106
64.4.1.5 Debug Output . 1106
64.4.1.6 Peep-hole Optimisation and Analysis 1110

64.4.2 Execution . 1110
64.4.2.1 Start position and no-match optimisations 1111
64.4.2.2 Program execution . 1111

64.5 MISCELLANEOUS . 1111
64.5.1 Unicode and Localisation Support . 1112
64.5.2 Base Structures . 1112

64.5.2.1 Perl’s pprivate structure . 1113
64.6 SEE ALSO . 1114
64.7 AUTHOR . 1114
64.8 LICENCE . 1114
64.9 REFERENCES . 1114

65 perlrepository . 1115
65.1 NAME . 1115
65.2 DESCRIPTION . 1115

66 perlrequick . 1116
66.1 NAME . 1116
66.2 DESCRIPTION . 1116
66.3 The Guide . 1116

66.3.1 Simple word matching . 1116
66.3.2 Using character classes . 1117
66.3.3 Matching this or that . 1119
66.3.4 Grouping things and hierarchical matching 1119
66.3.5 Extracting matches . 1120
66.3.6 Matching repetitions . 1120
66.3.7 More matching . 1121
66.3.8 Search and replace . 1121
66.3.9 The split operator . 1122
66.3.10 use re ’strict’ . 1123

66.4 BUGS . 1123
66.5 SEE ALSO . 1123
66.6 AUTHOR AND COPYRIGHT . 1123

66.6.1 Acknowledgments . 1123

67 perlreref . 1124
67.1 NAME . 1124
67.2 DESCRIPTION . 1124

67.2.1 OPERATORS . 1124
67.2.2 SYNTAX . 1125
67.2.3 ESCAPE SEQUENCES . 1125
67.2.4 CHARACTER CLASSES . 1126
67.2.5 ANCHORS . 1127
67.2.6 QUANTIFIERS . 1128
67.2.7 EXTENDED CONSTRUCTS . 1128
67.2.8 VARIABLES . 1129
67.2.9 FUNCTIONS . 1129
67.2.10 TERMINOLOGY . 1130

67.2.10.1 Titlecase . 1130
67.2.10.2 Foldcase . 1130

67.3 AUTHOR . 1130
67.4 SEE ALSO . 1130
67.5 THANKS . 1130

68 perlretut . 1131
68.1 NAME . 1131
68.2 DESCRIPTION . 1131
68.3 Part 1: The basics . 1131

68.3.1 Simple word matching . 1132
68.3.2 Using character classes . 1135
68.3.3 Matching this or that . 1139
68.3.4 Grouping things and hierarchical matching 1140
68.3.5 Extracting matches . 1141
68.3.6 Backreferences . 1142
68.3.7 Relative backreferences . 1143
68.3.8 Named backreferences . 1143
68.3.9 Alternative capture group numbering 1144
68.3.10 Position information . 1144
68.3.11 Non-capturing groupings . 1145
68.3.12 Matching repetitions . 1145
68.3.13 Possessive quantifiers . 1150
68.3.14 Building a regexp . 1151
68.3.15 Using regular expressions in Perl . 1153

68.3.15.1 Prohibiting substitution . 1153
68.3.15.2 Global matching . 1153
68.3.15.3 Search and replace . 1155
68.3.15.4 The split function . 1157

68.4 Part 2: Power tools . 1158
68.4.1 More on characters, strings, and character classes 1158
68.4.2 Compiling and saving regular expressions 1161
68.4.3 Composing regular expressions at runtime 1162
68.4.4 Embedding comments and modifiers in a regular expression

. 1163
68.4.5 Looking ahead and looking behind . 1164
68.4.6 Using independent subexpressions to prevent backtracking

. 1165
68.4.7 Conditional expressions . 1166
68.4.8 Defining named patterns . 1167
68.4.9 Recursive patterns . 1167
68.4.10 A bit of magic: executing Perl code in a regular expression

. 1168
68.4.11 Backtracking control verbs . 1172
68.4.12 Pragmas and debugging . 1172

68.5 BUGS . 1175
68.6 SEE ALSO . 1175
68.7 AUTHOR AND COPYRIGHT . 1175

68.7.1 Acknowledgments . 1175

69 perlrun . 1176
69.1 NAME . 1176
69.2 SYNOPSIS . 1176
69.3 DESCRIPTION . 1176

69.3.1 #! and quoting on non-Unix systems 1177
69.3.2 Location of Perl . 1178
69.3.3 Command Switches . 1179

69.4 ENVIRONMENT . 1190

70 perlsec . 1198
70.1 NAME . 1198
70.2 DESCRIPTION . 1198
70.3 SECURITY VULNERABILITY CONTACT INFORMATION

. 1198
70.4 SECURITY MECHANISMS AND CONCERNS 1198

70.4.1 Taint mode . 1198
70.4.2 Laundering and Detecting Tainted Data 1200
70.4.3 Switches On the "#!" Line . 1201
70.4.4 Taint mode and @INC . 1201
70.4.5 Cleaning Up Your Path . 1202
70.4.6 Security Bugs . 1203
70.4.7 Protecting Your Programs . 1204
70.4.8 Unicode . 1205
70.4.9 Algorithmic Complexity Attacks . 1205

70.5 SEE ALSO . 1207

71 perlsource . 1208
71.1 NAME . 1208
71.2 DESCRIPTION . 1208
71.3 FINDING YOUR WAY AROUND . 1208

71.3.1 C code . 1208
71.3.2 Core modules . 1208
71.3.3 Tests . 1209
71.3.4 Documentation . 1210
71.3.5 Hacking tools and documentation . 1210
71.3.6 Build system . 1210
71.3.7 AUTHORS . 1210
71.3.8 MANIFEST . 1210

72 perlstyle . 1212
72.1 NAME . 1212
72.2 DESCRIPTION . 1212

73 perlsub . 1216
73.1 NAME . 1216
73.2 SYNOPSIS . 1216
73.3 DESCRIPTION . 1216

73.3.1 Signatures . 1220
73.3.2 Private Variables via my() . 1223
73.3.3 Persistent Private Variables . 1226

73.3.3.1 Persistent variables via state() . 1226
73.3.3.2 Persistent variables with closures 1227

73.3.4 Temporary Values via local() . 1228
73.3.4.1 Grammatical note on local() . 1229
73.3.4.2 Localization of special variables 1229
73.3.4.3 Localization of globs . 1229
73.3.4.4 Localization of elements of composite types 1230
73.3.4.5 Localized deletion of elements of composite types

. 1230
73.3.5 Lvalue subroutines . 1231
73.3.6 Lexical Subroutines . 1232

73.3.6.1 state sub vs my sub . 1233
73.3.6.2 our subroutines . 1233

73.3.7 Passing Symbol Table Entries (typeglobs) 1234
73.3.8 When to Still Use local() . 1235
73.3.9 Pass by Reference . 1236
73.3.10 Prototypes . 1238
73.3.11 Constant Functions . 1241
73.3.12 Overriding Built-in Functions . 1244
73.3.13 Autoloading . 1246
73.3.14 Subroutine Attributes . 1247

73.4 SEE ALSO . 1248

74 perlsyn . 1249
74.1 NAME . 1249
74.2 DESCRIPTION . 1249

74.2.1 Declarations . 1249
74.2.2 Comments . 1250
74.2.3 Simple Statements . 1250
74.2.4 Truth and Falsehood . 1250
74.2.5 Statement Modifiers . 1250
74.2.6 Compound Statements . 1252
74.2.7 Loop Control . 1254
74.2.8 For Loops . 1255
74.2.9 Foreach Loops . 1256
74.2.10 Basic BLOCKs . 1257
74.2.11 Switch Statements . 1258
74.2.12 Goto . 1259
74.2.13 The Ellipsis Statement . 1260
74.2.14 PODs: Embedded Documentation 1261
74.2.15 Plain Old Comments (Not!) . 1262

74.2.16 Experimental Details on given and when 1263
74.2.16.1 Breaking out . 1266
74.2.16.2 Fall-through . 1266
74.2.16.3 Return value . 1266
74.2.16.4 Switching in a loop . 1267
74.2.16.5 Differences from Perl 6 . 1267

75 perlthrtut . 1269
75.1 NAME . 1269
75.2 DESCRIPTION . 1269
75.3 What Is A Thread Anyway? . 1269
75.4 Threaded Program Models . 1269

75.4.1 Boss/Worker . 1269
75.4.2 Work Crew . 1270
75.4.3 Pipeline . 1270

75.5 What kind of threads are Perl threads? . 1270
75.6 Thread-Safe Modules . 1270
75.7 Thread Basics . 1271

75.7.1 Basic Thread Support . 1271
75.7.2 A Note about the Examples . 1272
75.7.3 Creating Threads . 1272
75.7.4 Waiting For A Thread To Exit . 1273
75.7.5 Ignoring A Thread . 1273
75.7.6 Process and Thread Termination . 1274

75.8 Threads And Data . 1274
75.8.1 Shared And Unshared Data . 1275
75.8.2 Thread Pitfalls: Races . 1276

75.9 Synchronization and control . 1276
75.9.1 Controlling access: lock() . 1277
75.9.2 A Thread Pitfall: Deadlocks . 1278
75.9.3 Queues: Passing Data Around . 1279
75.9.4 Semaphores: Synchronizing Data Access 1280
75.9.5 Basic semaphores . 1280
75.9.6 Advanced Semaphores . 1280
75.9.7 Waiting for a Condition . 1281
75.9.8 Giving up control . 1282

75.10 General Thread Utility Routines . 1282
75.10.1 What Thread Am I In? . 1282
75.10.2 Thread IDs . 1282
75.10.3 Are These Threads The Same? . 1283
75.10.4 What Threads Are Running? . 1283

75.11 A Complete Example . 1283
75.12 Different implementations of threads . 1285
75.13 Performance considerations . 1286
75.14 Process-scope Changes . 1286
75.15 Thread-Safety of System Libraries . 1286
75.16 Conclusion . 1287
75.17 SEE ALSO . 1287

75.18 Bibliography . 1287
75.18.1 Introductory Texts . 1287
75.18.2 OS-Related References . 1288
75.18.3 Other References . 1288

75.19 Acknowledgements . 1288
75.20 AUTHOR . 1288
75.21 Copyrights . 1288

76 perltie . 1289
76.1 NAME . 1289
76.2 SYNOPSIS . 1289
76.3 DESCRIPTION . 1289

76.3.1 Tying Scalars . 1289
76.3.2 Tying Arrays . 1292
76.3.3 Tying Hashes . 1297
76.3.4 Tying FileHandles . 1302
76.3.5 UNTIE this . 1305
76.3.6 The untie Gotcha . 1305

76.4 SEE ALSO . 1308
76.5 BUGS . 1308
76.6 AUTHOR . 1308

77 perltodo . 1309
77.1 NAME . 1309
77.2 DESCRIPTION . 1309

78 perltooc . 1310
78.1 NAME . 1310
78.2 DESCRIPTION . 1310

79 perltoot . 1311
79.1 NAME . 1311
79.2 DESCRIPTION . 1311

80 perltrap . 1312
80.1 NAME . 1312
80.2 DESCRIPTION . 1312

80.2.1 Awk Traps . 1312
80.2.2 C/C++ Traps . 1313
80.2.3 JavaScript Traps . 1314
80.2.4 Sed Traps . 1315
80.2.5 Shell Traps . 1315
80.2.6 Perl Traps . 1315

81 perlunicode . 1317
81.1 NAME . 1317
81.2 DESCRIPTION . 1317

81.2.1 Important Caveats . 1317
81.2.2 Byte and Character Semantics . 1318
81.2.3 ASCII Rules versus Unicode Rules . 1319
81.2.4 Extended Grapheme Clusters (Logical characters) 1321
81.2.5 Unicode Character Properties . 1321

81.2.5.1 General Category . 1323
81.2.5.2 Bidirectional Character Types 1324
81.2.5.3 Scripts . 1325
81.2.5.4 Use of the "Is" Prefix . 1326
81.2.5.5 Blocks . 1326
81.2.5.6 Other Properties . 1327

81.2.6 User-Defined Character Properties . 1329
81.2.7 User-Defined Case Mappings (for serious hackers only)

. 1332
81.2.8 Character Encodings for Input and Output 1332
81.2.9 Unicode Regular Expression Support Level 1332
81.2.10 Unicode Encodings . 1334
81.2.11 Noncharacter code points . 1336
81.2.12 Beyond Unicode code points . 1337
81.2.13 Security Implications of Unicode . 1339
81.2.14 Unicode in Perl on EBCDIC . 1340
81.2.15 Locales . 1340
81.2.16 When Unicode Does Not Happen . 1340
81.2.17 The "Unicode Bug" . 1340
81.2.18 Forcing Unicode in Perl (Or Unforcing Unicode in Perl)

. 1342
81.2.19 Using Unicode in XS . 1342
81.2.20 Hacking Perl to work on earlier Unicode versions (for very

serious hackers only) . 1342
81.2.21 Porting code from perl-5.6.X . 1342

81.3 BUGS . 1344
81.3.1 Interaction with Extensions . 1344
81.3.2 Speed . 1345

81.4 SEE ALSO . 1345

82 perlunifaq . 1346
82.1 NAME . 1346
82.2 Q and A . 1346

82.2.1 perlunitut isn’t really a Unicode tutorial, is it? 1346
82.2.2 What character encodings does Perl support? 1346
82.2.3 Which version of perl should I use? . 1346
82.2.4 What about binary data, like images? 1346
82.2.5 When should I decode or encode? . 1346
82.2.6 What if I don’t decode? . 1346
82.2.7 What if I don’t encode? . 1347

82.2.8 Is there a way to automatically decode or encode? 1347
82.2.9 What if I don’t know which encoding was used? 1347
82.2.10 Can I use Unicode in my Perl sources? 1347
82.2.11 Data::Dumper doesn’t restore the UTF8 flag; is it broken?

. 1348
82.2.12 Why do regex character classes sometimes match only in

the ASCII range? . 1348
82.2.13 Why do some characters not uppercase or lowercase

correctly? . 1348
82.2.14 How can I determine if a string is a text string or a binary

string? . 1348
82.2.15 How do I convert from encoding FOO to encoding BAR?

. 1349
82.2.16 What are decode_utf8 and encode_utf8? 1349
82.2.17 What is a "wide character"? . 1349

82.3 INTERNALS . 1349
82.3.1 What is "the UTF8 flag"? . 1349
82.3.2 What about the use bytes pragma? 1350
82.3.3 What about the use encoding pragma? 1350
82.3.4 What is the difference between :encoding and :utf8?

. 1350
82.3.5 What’s the difference between UTF-8 and utf8? 1350
82.3.6 I lost track; what encoding is the internal format really?

. 1351
82.4 AUTHOR . 1351
82.5 SEE ALSO . 1351

83 perluniintro . 1352
83.1 NAME . 1352
83.2 DESCRIPTION . 1352

83.2.1 Unicode . 1352
83.2.2 Perl’s Unicode Support . 1354
83.2.3 Perl’s Unicode Model . 1354
83.2.4 Unicode and EBCDIC . 1355
83.2.5 Creating Unicode . 1355

83.2.5.1 Earlier releases caveats . 1356
83.2.6 Handling Unicode . 1357
83.2.7 Legacy Encodings . 1357
83.2.8 Unicode I/O . 1357
83.2.9 Displaying Unicode As Text . 1359
83.2.10 Special Cases . 1360
83.2.11 Advanced Topics . 1360
83.2.12 Miscellaneous . 1361
83.2.13 Questions With Answers . 1361
83.2.14 Hexadecimal Notation . 1364
83.2.15 Further Resources . 1365

83.3 UNICODE IN OLDER PERLS . 1365
83.4 SEE ALSO . 1366

83.5 ACKNOWLEDGMENTS . 1366
83.6 AUTHOR, COPYRIGHT, AND LICENSE 1366

84 perlunitut . 1367
84.1 NAME . 1367
84.2 DESCRIPTION . 1367

84.2.1 Definitions . 1367
84.2.1.1 Unicode . 1367
84.2.1.2 UTF-8 . 1367
84.2.1.3 Text strings (character strings) 1368
84.2.1.4 Binary strings (byte strings) . 1368
84.2.1.5 Encoding . 1368
84.2.1.6 Decoding . 1368
84.2.1.7 Internal format . 1368

84.2.2 Your new toolkit . 1368
84.2.3 I/O flow (the actual 5 minute tutorial) 1369

84.3 SUMMARY . 1369
84.4 Q and A (or FAQ) . 1370
84.5 ACKNOWLEDGEMENTS . 1370
84.6 AUTHOR . 1370
84.7 SEE ALSO . 1370

85 perlutil . 1371
85.1 NAME . 1371
85.2 DESCRIPTION . 1371
85.3 LIST OF UTILITIES . 1371

85.3.1 Documentation . 1371
85.3.2 Converters . 1372
85.3.3 Administration . 1372
85.3.4 Development . 1372
85.3.5 General tools . 1373
85.3.6 Installation . 1374

85.4 SEE ALSO . 1374

86 perlvar . 1375
86.1 NAME . 1375
86.2 DESCRIPTION . 1375

86.2.1 The Syntax of Variable Names . 1375
86.3 SPECIAL VARIABLES . 1375

86.3.1 General Variables . 1376
86.3.2 Variables related to regular expressions 1386

86.3.2.1 Performance issues . 1387
86.3.3 Variables related to filehandles . 1392

86.3.3.1 Variables related to formats . 1397
86.3.4 Error Variables . 1398
86.3.5 Variables related to the interpreter state 1402
86.3.6 Deprecated and removed variables . 1407

87 perlvms . 1409
87.1 NAME . 1409
87.2 DESCRIPTION . 1409
87.3 Installation . 1409
87.4 Organization of Perl Images . 1409

87.4.1 Core Images . 1409
87.4.2 Perl Extensions . 1409
87.4.3 Installing static extensions . 1410
87.4.4 Installing dynamic extensions . 1410

87.5 File specifications . 1411
87.5.1 Syntax . 1411
87.5.2 Filename Case . 1412
87.5.3 Symbolic Links . 1412
87.5.4 Wildcard expansion . 1412
87.5.5 Pipes . 1413

87.6 PERL5LIB and PERLLIB . 1413
87.7 The Perl Forked Debugger . 1414
87.8 PERL VMS EXCEPTION DEBUG . 1414
87.9 Command line . 1414

87.9.1 I/O redirection and backgrounding . 1414
87.9.2 Command line switches . 1415

87.10 Perl functions . 1415
87.11 Perl variables . 1422
87.12 Standard modules with VMS-specific differences 1426

87.12.1 SDBM File . 1426
87.13 Revision date . 1426
87.14 AUTHOR . 1426

1 perl

1.1 NAME

perl - The Perl 5 language interpreter

1.2 SYNOPSIS

perl [-sTtuUWX] [-hv] [-V[:configvar]] [-cw] [-d[t][:debugger]] [-D[number/list]]
[-pna] [-Fpattern] [-l[octal]] [-0[octal/hexadecimal]] [-Idir] [-m[-]module] [-M[-]’module...’] [-f]
[-C [number/list]] [-S] [-x[dir]] [-i[extension]] [[-e|-E] ’command’] [–] [programfile] [argument]...

For more information on these options, you can run perldoc perlrun.

1.3 GETTING HELP

The perldoc program gives you access to all the documentation that comes with Perl.
You can get more documentation, tutorials and community support online at http://www.
perl.org/.

If you’re new to Perl, you should start by running perldoc perlintro, which is a general
intro for beginners and provides some background to help you navigate the rest of Perl’s
extensive documentation. Run perldoc perldoc to learn more things you can do with
perldoc.

For ease of access, the Perl manual has been split up into several sections.

1.3.1 Overview

perl Perl overview (this section)

perlintro Perl introduction for beginners

perlrun Perl execution and options

perltoc Perl documentation table of contents

1.3.2 Tutorials

perlreftut Perl references short introduction

perldsc Perl data structures intro

perllol Perl data structures: arrays of arrays

perlrequick Perl regular expressions quick start

perlretut Perl regular expressions tutorial

perlootut Perl OO tutorial for beginners

perlperf Perl Performance and Optimization Techniques

perlstyle Perl style guide

perlcheat Perl cheat sheet

perltrap Perl traps for the unwary

http://www.perl.org/
http://www.perl.org/

perldebtut Perl debugging tutorial

perlfaq Perl frequently asked questions

perlfaq1 General Questions About Perl

perlfaq2 Obtaining and Learning about Perl

perlfaq3 Programming Tools

perlfaq4 Data Manipulation

perlfaq5 Files and Formats

perlfaq6 Regexes

perlfaq7 Perl Language Issues

perlfaq8 System Interaction

perlfaq9 Networking

1.3.3 Reference Manual

perlsyn Perl syntax

perldata Perl data structures

perlop Perl operators and precedence

perlsub Perl subroutines

perlfunc Perl built-in functions

perlopentut Perl open() tutorial

perlpacktut Perl pack() and unpack() tutorial

perlpod Perl plain old documentation

perlpodspec Perl plain old documentation format specification

perlpodstyle Perl POD style guide

perldiag Perl diagnostic messages

perllexwarn Perl warnings and their control

perldebug Perl debugging

perlvar Perl predefined variables

perlre Perl regular expressions, the rest of the story

perlrebackslash Perl regular expression backslash sequences

perlrecharclass Perl regular expression character classes

perlreref Perl regular expressions quick reference

perlref Perl references, the rest of the story

perlform Perl formats

perlobj Perl objects

perltie Perl objects hidden behind simple variables

perldbmfilter Perl DBM filters

perlipc Perl interprocess communication

perlfork Perl fork() information

perlnumber Perl number semantics

perlthrtut Perl threads tutorial

perlport Perl portability guide

perllocale Perl locale support

perluniintro Perl Unicode introduction

perlunicode Perl Unicode support

perlunicook Perl Unicode cookbook

perlunifaq Perl Unicode FAQ

perluniprops Index of Unicode properties in Perl

perlunitut Perl Unicode tutorial

perlebcdic Considerations for running Perl on EBCDIC platforms

perlsec Perl security

perlmod Perl modules: how they work

perlmodlib Perl modules: how to write and use

perlmodstyle Perl modules: how to write modules with style

perlmodinstall Perl modules: how to install from CPAN

perlnewmod Perl modules: preparing a new module for distribution

perlpragma Perl modules: writing a user pragma

perlutil utilities packaged with the Perl distribution

perlfilter Perl source filters

perldtrace Perl’s support for DTrace

perlglossary Perl Glossary

1.3.4 Internals and C Language Interface

perlembed Perl ways to embed perl in your C or C++ application

perldebguts Perl debugging guts and tips

perlxstut Perl XS tutorial

perlxs Perl XS application programming interface

perlxstypemap Perl XS C/Perl type conversion tools

perlclib Internal replacements for standard C library functions

perlguts Perl internal functions for those doing extensions

perlcall Perl calling conventions from C

perlmroapi Perl method resolution plugin interface

perlreapi Perl regular expression plugin interface

perlreguts Perl regular expression engine internals

perlapi Perl API listing (autogenerated)

perlintern Perl internal functions (autogenerated)

perliol C API for Perl’s implementation of IO in Layers

perlapio Perl internal IO abstraction interface

perlhack Perl hackers guide

perlsource Guide to the Perl source tree

perlinterp Overview of the Perl interpreter source and how it works

perlhacktut Walk through the creation of a simple C code patch

perlhacktips Tips for Perl core C code hacking

perlpolicy Perl development policies

perlgit Using git with the Perl repository

1.3.5 Miscellaneous

perlbook Perl book information

perlcommunity Perl community information

perldoc Look up Perl documentation in Pod format

perlhist Perl history records

perldelta Perl changes since previous version

perl52111delta Perl changes in version 5.21.11

perl52110delta Perl changes in version 5.21.10

perl5219delta Perl changes in version 5.21.9

perl5218delta Perl changes in version 5.21.8

perl5217delta Perl changes in version 5.21.7

perl5216delta Perl changes in version 5.21.6

perl5215delta Perl changes in version 5.21.5

perl5214delta Perl changes in version 5.21.4

perl5213delta Perl changes in version 5.21.3

perl5212delta Perl changes in version 5.21.2

perl5211delta Perl changes in version 5.21.1

perl5210delta Perl changes in version 5.21.0

perl5202delta Perl changes in version 5.20.2

perl5201delta Perl changes in version 5.20.1

perl5200delta Perl changes in version 5.20.0

perl5184delta Perl changes in version 5.18.4

perl5182delta Perl changes in version 5.18.2

perl5181delta Perl changes in version 5.18.1

perl5180delta Perl changes in version 5.18.0

perl5163delta Perl changes in version 5.16.3

perl5162delta Perl changes in version 5.16.2

perl5161delta Perl changes in version 5.16.1

perl5160delta Perl changes in version 5.16.0

perl5144delta Perl changes in version 5.14.4

perl5143delta Perl changes in version 5.14.3

perl5142delta Perl changes in version 5.14.2

perl5141delta Perl changes in version 5.14.1

perl5140delta Perl changes in version 5.14.0

perl5125delta Perl changes in version 5.12.5

perl5124delta Perl changes in version 5.12.4

perl5123delta Perl changes in version 5.12.3

perl5122delta Perl changes in version 5.12.2

perl5121delta Perl changes in version 5.12.1

perl5120delta Perl changes in version 5.12.0

perl5101delta Perl changes in version 5.10.1

perl5100delta Perl changes in version 5.10.0

perl589delta Perl changes in version 5.8.9

perl588delta Perl changes in version 5.8.8

perl587delta Perl changes in version 5.8.7

perl586delta Perl changes in version 5.8.6

perl585delta Perl changes in version 5.8.5

perl584delta Perl changes in version 5.8.4

perl583delta Perl changes in version 5.8.3

perl582delta Perl changes in version 5.8.2

perl581delta Perl changes in version 5.8.1

perl58delta Perl changes in version 5.8.0

perl561delta Perl changes in version 5.6.1

perl56delta Perl changes in version 5.6

perl5005delta Perl changes in version 5.005

perl5004delta Perl changes in version 5.004

perlexperiment A listing of experimental features in Perl

perlartistic Perl Artistic License

perlgpl GNU General Public License

1.3.6 Language-Specific

perlcn Perl for Simplified Chinese (in EUC-CN)

perljp Perl for Japanese (in EUC-JP)

perlko Perl for Korean (in EUC-KR)

perltw Perl for Traditional Chinese (in Big5)

1.3.7 Platform-Specific

perlaix Perl notes for AIX

perlamiga Perl notes for AmigaOS

perlandroid Perl notes for Android

perlbs2000 Perl notes for POSIX-BC BS2000

perlce Perl notes for WinCE

perlcygwin Perl notes for Cygwin

perldos Perl notes for DOS

perlfreebsd Perl notes for FreeBSD

perlhaiku Perl notes for Haiku

perlhpux Perl notes for HP-UX

perlhurd Perl notes for Hurd

perlirix Perl notes for Irix

perllinux Perl notes for Linux

perlmacos Perl notes for Mac OS (Classic)

perlmacosx Perl notes for Mac OS X

perlnetware Perl notes for NetWare

perlopenbsd Perl notes for OpenBSD

perlos2 Perl notes for OS/2

perlos390 Perl notes for OS/390

perlos400 Perl notes for OS/400

perlplan9 Perl notes for Plan 9

perlqnx Perl notes for QNX

perlriscos Perl notes for RISC OS

perlsolaris Perl notes for Solaris

perlsymbian Perl notes for Symbian

perlsynology Perl notes for Synology

perltru64 Perl notes for Tru64

perlvms Perl notes for VMS

perlvos Perl notes for Stratus VOS

perlwin32 Perl notes for Windows

1.3.8 Stubs for Deleted Documents

perlboot

perlbot

perlrepository

perltodo

perltooc

perltoot

On a Unix-like system, these documentation files will usually also be available as manpages
for use with the man program.

Some documentation is not available as man pages, so if a cross-reference is not found by
man, try it with perldoc. Perldoc can also take you directly to documentation for functions
(with the -f switch). See perldoc --help (or perldoc perldoc or man perldoc) for other
helpful options perldoc has to offer.

In general, if something strange has gone wrong with your program and you’re not sure
where you should look for help, try making your code comply with use strict and use
warnings. These will often point out exactly where the trouble is.

1.4 DESCRIPTION

Perl officially stands for Practical Extraction and Report Language, except when it doesn’t.

Perl was originally a language optimized for scanning arbitrary text files, extracting
information from those text files, and printing reports based on that information. It quickly
became a good language for many system management tasks. Over the years, Perl has grown
into a general-purpose programming language. It’s widely used for everything from quick
"one-liners" to full-scale application development.

The language is intended to be practical (easy to use, efficient, complete) rather than
beautiful (tiny, elegant, minimal). It combines (in the author’s opinion, anyway) some of
the best features of sed, awk, and sh, making it familiar and easy to use for Unix users to
whip up quick solutions to annoying problems. Its general-purpose programming facilities
support procedural, functional, and object-oriented programming paradigms, making Perl
a comfortable language for the long haul on major projects, whatever your bent.

Perl’s roots in text processing haven’t been forgotten over the years. It still boasts some
of the most powerful regular expressions to be found anywhere, and its support for Unicode
text is world-class. It handles all kinds of structured text, too, through an extensive col-
lection of extensions. Those libraries, collected in the CPAN, provide ready-made solutions
to an astounding array of problems. When they haven’t set the standard themselves, they
steal from the best – just like Perl itself.

1.5 AVAILABILITY

Perl is available for most operating systems, including virtually all Unix-like platforms. See
Section 56.7 [perlport Supported Platforms], page 980 for a listing.

1.6 ENVIRONMENT

See Section 69.1 [perlrun NAME], page 1176.

1.7 AUTHOR

Larry Wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wish to advocate
the use of Perl in their applications, or if you wish to simply express your gratitude to Larry
and the Perl developers, please write to perl-thanks@perl.org .

1.8 FILES

"@INC" locations of perl libraries

1.9 SEE ALSO

http://www.perl.org/ the Perl homepage

http://www.perl.com/ Perl articles (O’Reilly)

http://www.cpan.org/ the Comprehensive Perl Archive

http://www.pm.org/ the Perl Mongers

1.10 DIAGNOSTICS

Using the use strict pragma ensures that all variables are properly declared and prevents
other misuses of legacy Perl features.

The use warnings pragma produces some lovely diagnostics. One can also use the -w
flag, but its use is normally discouraged, because it gets applied to all executed Perl code,
including that not under your control.

See Section 16.1 [perldiag NAME], page 137 for explanations of all Perl’s diagnostics.
The use diagnostics pragma automatically turns Perl’s normally terse warnings and errors
into these longer forms.

Compilation errors will tell you the line number of the error, with an indication of the
next token or token type that was to be examined. (In a script passed to Perl via -e switches,
each -e is counted as one line.)

Setuid scripts have additional constraints that can produce error messages such as "In-
secure dependency". See Section 70.1 [perlsec NAME], page 1198.

Did we mention that you should definitely consider using the use warnings pragma?

1.11 BUGS

The behavior implied by the use warnings pragma is not mandatory.

Perl is at the mercy of your machine’s definitions of various operations such as type
casting, atof(), and floating-point output with sprintf().

If your stdio requires a seek or eof between reads and writes on a particular stream, so
does Perl. (This doesn’t apply to sysread() and syswrite().)

While none of the built-in data types have any arbitrary size limits (apart from memory
size), there are still a few arbitrary limits: a given variable name may not be longer than 251
characters. Line numbers displayed by diagnostics are internally stored as short integers,
so they are limited to a maximum of 65535 (higher numbers usually being affected by
wraparound).

You may mail your bug reports (be sure to include full configuration information as
output by the myconfig program in the perl source tree, or by perl -V) to perlbug@perl.org
. If you’ve succeeded in compiling perl, the perlbug script in the utils/ subdirectory can
be used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don’t tell anyone I
said that.

1.12 NOTES

The Perl motto is "There’s more than one way to do it." Divining how many more is left
as an exercise to the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See
the Camel Book for why.

2 perlapio

2.1 NAME

perlapio - perl’s IO abstraction interface.

2.2 SYNOPSIS

#define PERLIO_NOT_STDIO 0 /* For co-existence with stdio only */

#include <perlio.h> /* Usually via #include <perl.h> */

PerlIO *PerlIO_stdin(void);

PerlIO *PerlIO_stdout(void);

PerlIO *PerlIO_stderr(void);

PerlIO *PerlIO_open(const char *path,const char *mode);

PerlIO *PerlIO_fdopen(int fd, const char *mode);

PerlIO *PerlIO_reopen(const char *path, const char *mode, PerlIO *old); /* deprecated */

int PerlIO_close(PerlIO *f);

int PerlIO_stdoutf(const char *fmt,...)

int PerlIO_puts(PerlIO *f,const char *string);

int PerlIO_putc(PerlIO *f,int ch);

SSize_t PerlIO_write(PerlIO *f,const void *buf,size_t numbytes);

int PerlIO_printf(PerlIO *f, const char *fmt,...);

int PerlIO_vprintf(PerlIO *f, const char *fmt, va_list args);

int PerlIO_flush(PerlIO *f);

int PerlIO_eof(PerlIO *f);

int PerlIO_error(PerlIO *f);

void PerlIO_clearerr(PerlIO *f);

int PerlIO_getc(PerlIO *d);

int PerlIO_ungetc(PerlIO *f,int ch);

SSize_t PerlIO_read(PerlIO *f, void *buf, size_t numbytes);

int PerlIO_fileno(PerlIO *f);

void PerlIO_setlinebuf(PerlIO *f);

Off_t PerlIO_tell(PerlIO *f);

int PerlIO_seek(PerlIO *f, Off_t offset, int whence);

void PerlIO_rewind(PerlIO *f);

int PerlIO_getpos(PerlIO *f, SV *save); /* prototype changed */

int PerlIO_setpos(PerlIO *f, SV *saved); /* prototype changed */

int PerlIO_fast_gets(PerlIO *f);

int PerlIO_has_cntptr(PerlIO *f);

SSize_t PerlIO_get_cnt(PerlIO *f);

char *PerlIO_get_ptr(PerlIO *f);

void PerlIO_set_ptrcnt(PerlIO *f, char *ptr, SSize_t count);

int PerlIO_canset_cnt(PerlIO *f); /* deprecated */

void PerlIO_set_cnt(PerlIO *f, int count); /* deprecated */

int PerlIO_has_base(PerlIO *f);

char *PerlIO_get_base(PerlIO *f);

SSize_t PerlIO_get_bufsiz(PerlIO *f);

PerlIO *PerlIO_importFILE(FILE *stdio, const char *mode);

FILE *PerlIO_exportFILE(PerlIO *f, int flags);

FILE *PerlIO_findFILE(PerlIO *f);

void PerlIO_releaseFILE(PerlIO *f,FILE *stdio);

int PerlIO_apply_layers(PerlIO *f, const char *mode, const char *layers);

int PerlIO_binmode(PerlIO *f, int ptype, int imode, const char *layers);

void PerlIO_debug(const char *fmt,...)

2.3 DESCRIPTION

Perl’s source code, and extensions that want maximum portability, should use the above
functions instead of those defined in ANSI C’s stdio.h. The perl headers (in particular
"perlio.h") will #define them to the I/O mechanism selected at Configure time.

The functions are modeled on those in stdio.h, but parameter order has been "tidied up
a little".

PerlIO * takes the place of FILE *. Like FILE * it should be treated as opaque (it is
probably safe to assume it is a pointer to something).

There are currently three implementations:

1. USE STDIO
All above are #define’d to stdio functions or are trivial wrapper functions which
call stdio. In this case only PerlIO * is a FILE *. This has been the default
implementation since the abstraction was introduced in perl5.003 02.

2. USE PERLIO
Introduced just after perl5.7.0, this is a re-implementation of the above ab-
straction which allows perl more control over how IO is done as it decouples
IO from the way the operating system and C library choose to do things. For
USE PERLIO PerlIO * has an extra layer of indirection - it is a pointer-to-a-
pointer. This allows the PerlIO * to remain with a known value while swapping
the implementation around underneath at run time. In this case all the above
are true (but very simple) functions which call the underlying implementation.

This is the only implementation for which PerlIO_apply_layers() does any-
thing "interesting".

The USE PERLIO implementation is described in Section 35.1 [perliol NAME],
page 651.

Because "perlio.h" is a thin layer (for efficiency) the semantics of these functions are
somewhat dependent on the underlying implementation. Where these variations are under-
stood they are noted below.

Unless otherwise noted, functions return 0 on success, or a negative value (usually EOF

which is usually -1) and set errno on error.

PerlIO stdin(), PerlIO stdout(), PerlIO stderr()
Use these rather than stdin, stdout, stderr. They are written to look like
"function calls" rather than variables because this makes it easier to make
them function calls if platform cannot export data to loaded modules, or if
(say) different "threads" might have different values.

PerlIO open(path, mode), PerlIO fdopen(fd,mode)
These correspond to fopen()/fdopen() and the arguments are the same. Return
NULL and set errno if there is an error. There may be an implementation limit
on the number of open handles, which may be lower than the limit on the
number of open files - errno may not be set when NULL is returned if this limit
is exceeded.

PerlIO reopen(path,mode,f)
While this currently exists in all three implementations perl itself does not use
it. As perl does not use it, it is not well tested.

Perl prefers to dup the new low-level descriptor to the descriptor used by the
existing PerlIO. This may become the behaviour of this function in the future.

PerlIO printf(f,fmt,...), PerlIO vprintf(f,fmt,a)
These are fprintf()/vfprintf() equivalents.

PerlIO stdoutf(fmt,...)
This is printf() equivalent. printf is #defined to this function, so it is (currently)
legal to use printf(fmt,...) in perl sources.

PerlIO read(f,buf,count), PerlIO write(f,buf,count)
These correspond functionally to fread() and fwrite() but the arguments and
return values are different. The PerlIO read() and PerlIO write() signatures
have been modeled on the more sane low level read() and write() functions
instead: The "file" argument is passed first, there is only one "count", and the
return value can distinguish between error and EOF.

Returns a byte count if successful (which may be zero or positive), returns
negative value and sets errno on error. Depending on implementation errno

may be EINTR if operation was interrupted by a signal.

PerlIO close(f)
Depending on implementation errnomay be EINTR if operation was interrupted
by a signal.

PerlIO puts(f,s), PerlIO putc(f,c)
These correspond to fputs() and fputc(). Note that arguments have been revised
to have "file" first.

PerlIO ungetc(f,c)
This corresponds to ungetc(). Note that arguments have been revised to have
"file" first. Arranges that next read operation will return the byte c. Despite the
implied "character" in the name only values in the range 0..0xFF are defined.
Returns the byte c on success or -1 (EOF) on error. The number of bytes that
can be "pushed back" may vary, only 1 character is certain, and then only if it
is the last character that was read from the handle.

PerlIO getc(f)
This corresponds to getc(). Despite the c in the name only byte range 0..0xFF
is supported. Returns the character read or -1 (EOF) on error.

PerlIO eof(f)
This corresponds to feof(). Returns a true/false indication of whether the han-
dle is at end of file. For terminal devices this may or may not be "sticky"
depending on the implementation. The flag is cleared by PerlIO seek(), or
PerlIO rewind().

PerlIO error(f)
This corresponds to ferror(). Returns a true/false indication of whether there
has been an IO error on the handle.

PerlIO fileno(f)
This corresponds to fileno(), note that on some platforms, the meaning of
"fileno" may not match Unix. Returns -1 if the handle has no open descriptor
associated with it.

PerlIO clearerr(f)
This corresponds to clearerr(), i.e., clears ’error’ and (usually) ’eof’ flags for the
"stream". Does not return a value.

PerlIO flush(f)
This corresponds to fflush(). Sends any buffered write data to the underlying
file. If called with NULL this may flush all open streams (or core dump with
some USE STDIO implementations). Calling on a handle open for read only,
or on which last operation was a read of some kind may lead to undefined
behaviour on some USE STDIO implementations. The USE PERLIO (layers)
implementation tries to behave better: it flushes all open streams when passed
NULL, and attempts to retain data on read streams either in the buffer or by
seeking the handle to the current logical position.

PerlIO seek(f,offset,whence)
This corresponds to fseek(). Sends buffered write data to the underlying file, or
discards any buffered read data, then positions the file descriptor as specified
by offset and whence (sic). This is the correct thing to do when switching
between read and write on the same handle (see issues with PerlIO flush()
above). Offset is of type Off_t which is a perl Configure value which may not
be same as stdio’s off_t.

PerlIO tell(f)
This corresponds to ftell(). Returns the current file position, or (Off t) -1 on
error. May just return value system "knows" without making a system call or

checking the underlying file descriptor (so use on shared file descriptors is not
safe without a PerlIO seek()). Return value is of type Off_t which is a perl
Configure value which may not be same as stdio’s off_t.

PerlIO getpos(f,p), PerlIO setpos(f,p)
These correspond (loosely) to fgetpos() and fsetpos(). Rather than stdio’s
Fpos t they expect a "Perl Scalar Value" to be passed. What is stored there
should be considered opaque. The layout of the data may vary from handle to
handle. When not using stdio or if platform does not have the stdio calls then
they are implemented in terms of PerlIO tell() and PerlIO seek().

PerlIO rewind(f)
This corresponds to rewind(). It is usually defined as being

PerlIO_seek(f,(Off_t)0L, SEEK_SET);

PerlIO_clearerr(f);

PerlIO tmpfile()
This corresponds to tmpfile(), i.e., returns an anonymous PerlIO or NULL on
error. The system will attempt to automatically delete the file when closed.
On Unix the file is usually unlink-ed just after it is created so it does not
matter how it gets closed. On other systems the file may only be deleted if
closed via PerlIO close() and/or the program exits via exit. Depending on the
implementation there may be "race conditions" which allow other processes
access to the file, though in general it will be safer in this regard than ad. hoc.
schemes.

PerlIO setlinebuf(f)
This corresponds to setlinebuf(). Does not return a value. What constitutes a
"line" is implementation dependent but usually means that writing "\n" flushes
the buffer. What happens with things like "this\nthat" is uncertain. (Perl core
uses it only when "dumping"; it has nothing to do with $| auto-flush.)

2.3.1 Co-existence with stdio

There is outline support for co-existence of PerlIO with stdio. Obviously if PerlIO is im-
plemented in terms of stdio there is no problem. However in other cases then mechanisms
must exist to create a FILE * which can be passed to library code which is going to use
stdio calls.

The first step is to add this line:

#define PERLIO_NOT_STDIO 0

before including any perl header files. (This will probably become the default at some
point). That prevents "perlio.h" from attempting to #define stdio functions onto PerlIO
functions.

XS code is probably better using "typemap" if it expects FILE * arguments. The
standard typemap will be adjusted to comprehend any changes in this area.

PerlIO importFILE(f,mode)
Used to get a PerlIO * from a FILE *.

The mode argument should be a string as would be passed to
fopen/PerlIO open. If it is NULL then - for legacy support - the code will

(depending upon the platform and the implementation) either attempt to
empirically determine the mode in which f is open, or use "r+" to indicate a
read/write stream.

Once called the FILE * should ONLY be closed by calling PerlIO_close() on
the returned PerlIO *.

The PerlIO is set to textmode. Use PerlIO binmode if this is not the desired
mode.

This is not the reverse of PerlIO exportFILE().

PerlIO exportFILE(f,mode)
Given a PerlIO * create a ’native’ FILE * suitable for passing to code expecting
to be compiled and linked with ANSI C stdio.h. The mode argument should
be a string as would be passed to fopen/PerlIO open. If it is NULL then - for
legacy support - the FILE * is opened in same mode as the PerlIO *.

The fact that such a FILE * has been ’exported’ is recorded, (normally by
pushing a new :stdio "layer" onto the PerlIO *), which may affect future PerlIO
operations on the original PerlIO *. You should not call fclose() on the file
unless you call PerlIO_releaseFILE() to disassociate it from the PerlIO *.
(Do not use PerlIO importFILE() for doing the disassociation.)

Calling this function repeatedly will create a FILE * on each call (and will push
an :stdio layer each time as well).

PerlIO releaseFILE(p,f)
Calling PerlIO releaseFILE informs PerlIO that all use of FILE * is complete.
It is removed from the list of ’exported’ FILE *s, and the associated PerlIO *
should revert to its original behaviour.

Use this to disassociate a file from a PerlIO * that was associated using Per-
lIO exportFILE().

PerlIO findFILE(f)
Returns a native FILE * used by a stdio layer. If there is none, it will create
one with PerlIO exportFILE. In either case the FILE * should be considered
as belonging to PerlIO subsystem and should only be closed by calling PerlIO_

close().

2.3.2 "Fast gets" Functions

In addition to standard-like API defined so far above there is an "implementation" interface
which allows perl to get at internals of PerlIO. The following calls correspond to the various
FILE xxx macros determined by Configure - or their equivalent in other implementations.
This section is really of interest to only those concerned with detailed perl-core behaviour,
implementing a PerlIO mapping or writing code which can make use of the "read ahead"
that has been done by the IO system in the same way perl does. Note that any code that
uses these interfaces must be prepared to do things the traditional way if a handle does not
support them.

PerlIO fast gets(f)
Returns true if implementation has all the interfaces required to allow perl’s
sv_gets to "bypass" normal IO mechanism. This can vary from handle to
handle.

PerlIO_fast_gets(f) = PerlIO_has_cntptr(f) && \

PerlIO_canset_cnt(f) && \

’Can set pointer into buffer’

PerlIO has cntptr(f)
Implementation can return pointer to current position in the "buffer" and a
count of bytes available in the buffer. Do not use this - use PerlIO fast gets.

PerlIO get cnt(f)
Return count of readable bytes in the buffer. Zero or negative return means no
more bytes available.

PerlIO get ptr(f)
Return pointer to next readable byte in buffer, accessing via the pointer (deref-
erencing) is only safe if PerlIO get cnt() has returned a positive value. Only
positive offsets up to value returned by PerlIO get cnt() are allowed.

PerlIO set ptrcnt(f,p,c)
Set pointer into buffer, and a count of bytes still in the buffer. Should be used
only to set pointer to within range implied by previous calls to PerlIO_get_

ptr and PerlIO_get_cnt. The two values must be consistent with each other
(implementation may only use one or the other or may require both).

PerlIO canset cnt(f)
Implementation can adjust its idea of number of bytes in the buffer. Do not
use this - use PerlIO fast gets.

PerlIO set cnt(f,c)
Obscure - set count of bytes in the buffer. Deprecated. Only usable if Per-
lIO canset cnt() returns true. Currently used in only doio.c to force count less
than -1 to -1. Perhaps should be PerlIO set empty or similar. This call may
actually do nothing if "count" is deduced from pointer and a "limit". Do not
use this - use PerlIO set ptrcnt().

PerlIO has base(f)
Returns true if implementation has a buffer, and can return pointer to whole
buffer and its size. Used by perl for -T / -B tests. Other uses would be very
obscure...

PerlIO get base(f)
Return start of buffer. Access only positive offsets in the buffer up to the value
returned by PerlIO get bufsiz().

PerlIO get bufsiz(f)
Return the total number of bytes in the buffer, this is neither the number that
can be read, nor the amount of memory allocated to the buffer. Rather it
is what the operating system and/or implementation happened to read() (or
whatever) last time IO was requested.

2.3.3 Other Functions

PerlIO apply layers(f,mode,layers)
The new interface to the USE PERLIO implementation. The layers ":crlf" and
":raw" are only ones allowed for other implementations and those are silently
ignored. (As of perl5.8 ":raw" is deprecated.) Use PerlIO binmode() below for
the portable case.

PerlIO binmode(f,ptype,imode,layers)
The hook used by perl’s binmode operator. ptype is perl’s character for the
kind of IO:

’<’ read

’>’ write

’+’ read/write

imode is O_BINARY or O_TEXT.

layers is a string of layers to apply, only ":crlf" makes sense in the non
USE PERLIO case. (As of perl5.8 ":raw" is deprecated in favour of passing
NULL.)

Portable cases are:

PerlIO_binmode(f,ptype,O_BINARY,NULL);

and

PerlIO_binmode(f,ptype,O_TEXT,":crlf");

On Unix these calls probably have no effect whatsoever. Elsewhere they alter
"\n" to CR,LF translation and possibly cause a special text "end of file" in-
dicator to be written or honoured on read. The effect of making the call after
doing any IO to the handle depends on the implementation. (It may be ignored,
affect any data which is already buffered as well, or only apply to subsequent
data.)

PerlIO debug(fmt,...)
PerlIO debug is a printf()-like function which can be used for debugging. No
return value. Its main use is inside PerlIO where using real printf, warn() etc.
would recursively call PerlIO and be a problem.

PerlIO debug writes to the file named by $ENV{’PERLIO DEBUG’} typical
use might be

Bourne shells (sh, ksh, bash, zsh, ash, ...):

PERLIO_DEBUG=/dev/tty ./perl somescript some args

Csh/Tcsh:

setenv PERLIO_DEBUG /dev/tty

./perl somescript some args

If you have the "env" utility:

env PERLIO_DEBUG=/dev/tty ./perl somescript some args

Win32:

set PERLIO_DEBUG=CON

perl somescript some args

If $ENV{’PERLIO DEBUG’} is not set PerlIO debug() is a no-op.

3 perlartistic

3.1 NAME

perlartistic - the Perl Artistic License

3.2 SYNOPSIS

You can refer to this document in Pod via "L<perlartistic>"

Or you can see this document by entering "perldoc perlartistic"

3.3 DESCRIPTION

Perl is free software; you can redistribute it and/or modify it under the terms of either:

a) the GNU General Public License as published by the Free

Software Foundation; either version 1, or (at your option) any

later version, or

b) the "Artistic License" which comes with this Kit.

This is "The Artistic License". It’s here so that modules, programs, etc., that want to
declare this as their distribution license can link to it.

For the GNU General Public License, see Section 27.1 [perlgpl NAME], page 506.

3.4 The "Artistic License"

3.4.1 Preamble

The intent of this document is to state the conditions under which a Package may be
copied, such that the Copyright Holder maintains some semblance of artistic control over
the development of the package, while giving the users of the package the right to use
and distribute the Package in a more-or-less customary fashion, plus the right to make
reasonable modifications.

3.4.2 Definitions

"Package"

refers to the collection of files distributed by the Copyright Holder, and deriva-
tives of that collection of files created through textual modification.

"Standard Version"
refers to such a Package if it has not been modified, or has been modified in
accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder"
is whoever is named in the copyright or copyrights for the package.

"You"

is you, if you’re thinking about copying or distributing this Package.

"Reasonable copying fee"
is whatever you can justify on the basis of media cost, duplication charges,
time of people involved, and so on. (You will not be required to justify it to the
Copyright Holder, but only to the computing community at large as a market
that must bear the fee.)

"Freely Available"
means that no fee is charged for the item itself, though there may be fees
involved in handling the item. It also means that recipients of the item may
redistribute it under the same conditions they received it.

3.4.3 Conditions

1. You may make and give away verbatim copies of the source form of the Standard
Version of this Package without restriction, provided that you duplicate all of the
original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from the
Public Domain or from the Copyright Holder. A Package modified in such a way shall
still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided that you
insert a prominent notice in each changed file stating how and when you changed that
file, and provided that you do at least ONE of the following:

a)

place your modifications in the Public Domain or otherwise make them
Freely Available, such as by posting said modifications to Usenet or an
equivalent medium, or placing the modifications on a major archive site
such as uunet.uu.net, or by allowing the Copyright Holder to include your
modifications in the Standard Version of the Package.

b)

use the modified Package only within your corporation or organization.

c)

rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided, and provide a separate
manual page for each non-standard executable that clearly documents how
it differs from the Standard Version.

d)

make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable form,
provided that you do at least ONE of the following:

a)

distribute a Standard Version of the executables and library files, together
with instructions (in the manual page or equivalent) on where to get the
Standard Version.

b)

accompany the distribution with the machine-readable source of the Pack-
age with your modifications.

c)

give non-standard executables non-standard names, and clearly document
the differences in manual pages (or equivalent), together with instructions
on where to get the Standard Version.

d)

make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package. You
may charge any fee you choose for support of this Package. You may not charge a
fee for this Package itself. However, you may distribute this Package in aggregate
with other (possibly commercial) programs as part of a larger (possibly commercial)
software distribution provided that you do not advertise this Package as a product of
your own. You may embed this Package’s interpreter within an executable of yours
(by linking); this shall be construed as a mere form of aggregation, provided that the
complete Standard Version of the interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as output from the pro-
grams of this Package do not automatically fall under the copyright of this Package,
but belong to whoever generated them, and may be sold commercially, and may be
aggregated with this Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing a binary ex-
ecutable image, then distribution of such an image shall neither be construed as a
distribution of this Package nor shall it fall under the restrictions of Paragraphs 3 and
4, provided that you do not represent such an executable image as a Standard Version
of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) supplied by
you and linked into this Package in order to emulate subroutines and variables of the
language defined by this Package shall not be considered part of this Package, but are
the equivalent of input as in Paragraph 6, provided these subroutines do not change the
language in any way that would cause it to fail the regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permitted pro-
vided that the use of this Package is embedded; that is, when no overt attempt is made
to make this Package’s interfaces visible to the end user of the commercial distribution.
Such use shall not be construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote products
derived from this software without specific prior written permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

The End

4 perlbook

4.1 NAME

perlbook - Books about and related to Perl

4.2 DESCRIPTION

There are many books on Perl and Perl-related. A few of these are good, some are OK, but
many aren’t worth your money. There is a list of these books, some with extensive reviews,
at http://books.perl.org/ . We list some of the books here, and while listing a book implies
our endorsement, don’t think that not including a book means anything.

Most of these books are available online through Safari Books Online (
http://safaribooksonline.com/).

4.2.1 The most popular books

The major reference book on Perl, written by the creator of Perl, is Programming Perl :

Programming Perl (the "Camel Book"):
by Tom Christiansen, brian d foy, Larry Wall with Jon Orwant

ISBN 978-0-596-00492-7 [4th edition February 2012]

ISBN 978-1-4493-9890-3 [ebook]

http://oreilly.com/catalog/9780596004927

The Ram is a cookbook with hundreds of examples of using Perl to accomplish specific
tasks:

The Perl Cookbook (the "Ram Book"):
by Tom Christiansen and Nathan Torkington,

with Foreword by Larry Wall

ISBN 978-0-596-00313-5 [2nd Edition August 2003]

ISBN 978-0-596-15888-0 [ebook]

http://oreilly.com/catalog/9780596003135/

If you want to learn the basics of Perl, you might start with the Llama book, which
assumes that you already know a little about programming:

Learning Perl (the "Llama Book")
by Randal L. Schwartz, Tom Phoenix, and brian d foy

ISBN 978-1-4493-0358-7 [6th edition June 2011]

ISBN 978-1-4493-0458-4 [ebook]

http://www.learning-perl.com/

The tutorial started in the Llama continues in the Alpaca, which introduces the inter-
mediate features of references, data structures, object-oriented programming, and modules:

Intermediate Perl (the "Alpaca Book")
by Randal L. Schwartz and brian d foy, with Tom Phoenix

foreword by Damian Conway

ISBN 978-1-4493-9309-0 [2nd edition August 2012]

ISBN 978-1-4493-0459-1 [ebook]

http://www.intermediateperl.com/

4.2.2 References

You might want to keep these desktop references close by your keyboard:

Perl 5 Pocket Reference
by Johan Vromans

ISBN 978-1-4493-0370-9 [5th edition July 2011]

ISBN 978-1-4493-0813-1 [ebook]

http://oreilly.com/catalog/0636920018476/

Perl Debugger Pocket Reference
by Richard Foley

ISBN 978-0-596-00503-0 [1st edition January 2004]

ISBN 978-0-596-55625-9 [ebook]

http://oreilly.com/catalog/9780596005030/

Regular Expression Pocket Reference
by Tony Stubblebine

ISBN 978-0-596-51427-3 [2nd edition July 2007]

ISBN 978-0-596-55782-9 [ebook]

http://oreilly.com/catalog/9780596514273/

4.2.3 Tutorials

Beginning Perl
by James Lee

ISBN 1-59059-391-X [3rd edition April 2010 & ebook]

http://www.apress.com/9781430227939

Learning Perl (the "Llama Book")
by Randal L. Schwartz, Tom Phoenix, and brian d foy

ISBN 978-1-4493-0358-7 [6th edition June 2011]

ISBN 978-1-4493-0458-4 [ebook]

http://www.learning-perl.com/

Intermediate Perl (the "Alpaca Book")
by Randal L. Schwartz and brian d foy, with Tom Phoenix

foreword by Damian Conway

ISBN 978-1-4493-9309-0 [2nd edition August 2012]

ISBN 978-1-4493-0459-1 [ebook]

http://www.intermediateperl.com/

Mastering Perl
by brian d foy

ISBN 9978-1-4493-9311-3 [2st edition January 2014]

ISBN 978-1-4493-6487-8 [ebook]

http://www.masteringperl.org/

Effective Perl Programming
by Joseph N. Hall, Joshua A. McAdams, brian d foy

ISBN 0-321-49694-9 [2nd edition 2010]

http://www.effectiveperlprogramming.com/

4.2.4 Task-Oriented

Writing Perl Modules for CPAN
by Sam Tregar

ISBN 1-59059-018-X [1st edition August 2002 & ebook]

http://www.apress.com/9781590590188

The Perl Cookbook
by Tom Christiansen and Nathan Torkington,

with Foreword by Larry Wall

ISBN 978-0-596-00313-5 [2nd Edition August 2003]

ISBN 978-0-596-15888-0 [ebook]

http://oreilly.com/catalog/9780596003135/

Automating System Administration with Perl
by David N. Blank-Edelman

ISBN 978-0-596-00639-6 [2nd edition May 2009]

ISBN 978-0-596-80251-6 [ebook]

http://oreilly.com/catalog/9780596006396

Real World SQL Server Administration with Perl
by Linchi Shea

ISBN 1-59059-097-X [1st edition July 2003 & ebook]

http://www.apress.com/9781590590973

4.2.5 Special Topics

Regular Expressions Cookbook
by Jan Goyvaerts and Steven Levithan

ISBN 978-1-4493-1943-4 [2nd edition August 2012]

ISBN 978-1-4493-2747-7 [ebook]

http://shop.oreilly.com/product/0636920023630.do

Programming the Perl DBI
by Tim Bunce and Alligator Descartes

ISBN 978-1-56592-699-8 [February 2000]

ISBN 978-1-4493-8670-2 [ebook]

http://oreilly.com/catalog/9781565926998

Perl Best Practices
by Damian Conway

ISBN 978-0-596-00173-5 [1st edition July 2005]

ISBN 978-0-596-15900-9 [ebook]

http://oreilly.com/catalog/9780596001735

Higher-Order Perl
by Mark-Jason Dominus

ISBN 1-55860-701-3 [1st edition March 2005]

free ebook http://hop.perl.plover.com/book/

http://hop.perl.plover.com/

Mastering Regular Expressions
by Jeffrey E. F. Friedl

ISBN 978-0-596-52812-6 [3rd edition August 2006]

ISBN 978-0-596-55899-4 [ebook]

http://oreilly.com/catalog/9780596528126

Network Programming with Perl
by Lincoln Stein

ISBN 0-201-61571-1 [1st edition 2001]

http://www.pearsonhighered.com/educator/product/Network-Programming-with-Perl/9780201615715.page

Perl Template Toolkit
by Darren Chamberlain, Dave Cross, and Andy Wardley

ISBN 978-0-596-00476-7 [December 2003]

ISBN 978-1-4493-8647-4 [ebook]

http://oreilly.com/catalog/9780596004767

Object Oriented Perl
by Damian Conway

with foreword by Randal L. Schwartz

ISBN 1-884777-79-1 [1st edition August 1999 & ebook]

http://www.manning.com/conway/

Data Munging with Perl
by Dave Cross

ISBN 1-930110-00-6 [1st edition 2001 & ebook]

http://www.manning.com/cross

Mastering Perl/Tk
by Steve Lidie and Nancy Walsh

ISBN 978-1-56592-716-2 [1st edition January 2002]

ISBN 978-0-596-10344-6 [ebook]

http://oreilly.com/catalog/9781565927162

Extending and Embedding Perl
by Tim Jenness and Simon Cozens

ISBN 1-930110-82-0 [1st edition August 2002 & ebook]

http://www.manning.com/jenness

Pro Perl Debugging
by Richard Foley with Andy Lester

ISBN 1-59059-454-1 [1st edition July 2005 & ebook]

http://www.apress.com/9781590594544

4.2.6 Free (as in beer) books

Some of these books are available as free downloads.

Higher-Order Perl : http://hop.perl.plover.com/

4.2.7 Other interesting, non-Perl books

You might notice several familiar Perl concepts in this collection of ACM columns from
Jon Bentley. The similarity to the title of the major Perl book (which came later) is not
completely accidental:

Programming Pearls
by Jon Bentley

ISBN 978-0-201-65788-3 [2 edition, October 1999]

More Programming Pearls
by Jon Bentley

ISBN 0-201-11889-0 [January 1988]

4.2.8 A note on freshness

Each version of Perl comes with the documentation that was current at the time of release.
This poses a problem for content such as book lists. There are probably very nice books
published after this list was included in your Perl release, and you can check the latest
released version at http://perldoc.perl.org/perlbook.html .

Some of the books we’ve listed appear almost ancient in internet scale, but we’ve included
those books because they still describe the current way of doing things. Not everything in
Perl changes every day. Many of the beginner-level books, too, go over basic features and
techniques that are still valid today. In general though, we try to limit this list to books
published in the past five years.

4.2.9 Get your book listed

If your Perl book isn’t listed and you think it should be, let us know.

5 perlboot

5.1 NAME

perlboot - Links to information on object-oriented programming in Perl

5.2 DESCRIPTION

For information on OO programming with Perl, please see Section 47.1 [perlootut NAME],
page 786 and Section 46.1 [perlobj NAME], page 769.

(The above documents supersede the tutorial that was formerly here in perlboot.)

6 perlbot

6.1 NAME

perlbot - Links to information on object-oriented programming in Perl

6.2 DESCRIPTION

For information on OO programming with Perl, please see Section 47.1 [perlootut NAME],
page 786 and Section 46.1 [perlobj NAME], page 769.

(The above documents supersede the collection of tricks that was formerly here in perl-
bot.)

7 perlcall

7.1 NAME

perlcall - Perl calling conventions from C

7.2 DESCRIPTION

The purpose of this document is to show you how to call Perl subroutines directly from C,
i.e., how to write callbacks.

Apart from discussing the C interface provided by Perl for writing callbacks the document
uses a series of examples to show how the interface actually works in practice. In addition
some techniques for coding callbacks are covered.

Examples where callbacks are necessary include

• An Error Handler

You have created an XSUB interface to an application’s C API.

A fairly common feature in applications is to allow you to define a C function that will
be called whenever something nasty occurs. What we would like is to be able to specify
a Perl subroutine that will be called instead.

• An Event-Driven Program

The classic example of where callbacks are used is when writing an event driven pro-
gram, such as for an X11 application. In this case you register functions to be called
whenever specific events occur, e.g., a mouse button is pressed, the cursor moves into
a window or a menu item is selected.

Although the techniques described here are applicable when embedding Perl in a C
program, this is not the primary goal of this document. There are other details that must
be considered and are specific to embedding Perl. For details on embedding Perl in C refer
to Section 20.1 [perlembed NAME], page 301.

Before you launch yourself head first into the rest of this document, it would be a good
idea to have read the following two documents–perlxs and Section 28.1 [perlguts NAME],
page 512.

7.3 THE CALL FUNCTIONS

Although this stuff is easier to explain using examples, you first need be aware of a few
important definitions.

Perl has a number of C functions that allow you to call Perl subroutines. They are

I32 call_sv(SV* sv, I32 flags);

I32 call_pv(char *subname, I32 flags);

I32 call_method(char *methname, I32 flags);

I32 call_argv(char *subname, I32 flags, char **argv);

The key function is call sv. All the other functions are fairly simple wrappers which
make it easier to call Perl subroutines in special cases. At the end of the day they will all
call call sv to invoke the Perl subroutine.

All the call * functions have a flags parameter which is used to pass a bit mask of
options to Perl. This bit mask operates identically for each of the functions. The settings
available in the bit mask are discussed in Section 7.4 [FLAG VALUES], page 29.

Each of the functions will now be discussed in turn.

call sv

call sv takes two parameters. The first, sv, is an SV*. This allows you to
specify the Perl subroutine to be called either as a C string (which has first
been converted to an SV) or a reference to a subroutine. The section, Using
call sv, shows how you can make use of call sv.

call pv

The function, call pv, is similar to call sv except it expects its first parameter
to be a C char* which identifies the Perl subroutine you want to call, e.g.,
call_pv("fred", 0). If the subroutine you want to call is in another package,
just include the package name in the string, e.g., "pkg::fred".

call method
The function call method is used to call a method from a Perl class. The
parameter methname corresponds to the name of the method to be called. Note
that the class that the method belongs to is passed on the Perl stack rather
than in the parameter list. This class can be either the name of the class
(for a static method) or a reference to an object (for a virtual method). See
Section 46.1 [perlobj NAME], page 769 for more information on static and
virtual methods and Section 7.5.11 [Using call method], page 45 for an example
of using call method.

call argv

call argv calls the Perl subroutine specified by the C string stored in the
subname parameter. It also takes the usual flags parameter. The final
parameter, argv, consists of a NULL-terminated list of C strings to be passed
as parameters to the Perl subroutine. See Using call argv.

All the functions return an integer. This is a count of the number of items returned by
the Perl subroutine. The actual items returned by the subroutine are stored on the Perl
stack.

As a general rule you should always check the return value from these functions. Even if
you are expecting only a particular number of values to be returned from the Perl subroutine,
there is nothing to stop someone from doing something unexpected–don’t say you haven’t
been warned.

7.4 FLAG VALUES

The flags parameter in all the call * functions is one of G VOID, G SCALAR, or
G ARRAY, which indicate the call context, OR’ed together with a bit mask of any
combination of the other G * symbols defined below.

7.4.1 G VOID

Calls the Perl subroutine in a void context.

This flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in a void context (if it
executes wantarray the result will be the undefined value).

2. It ensures that nothing is actually returned from the subroutine.

The value returned by the call * function indicates how many items have been returned
by the Perl subroutine–in this case it will be 0.

7.4.2 G SCALAR

Calls the Perl subroutine in a scalar context. This is the default context flag setting for all
the call * functions.

This flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in a scalar context (if it
executes wantarray the result will be false).

2. It ensures that only a scalar is actually returned from the subroutine. The subroutine
can, of course, ignore the wantarray and return a list anyway. If so, then only the last
element of the list will be returned.

The value returned by the call * function indicates how many items have been returned
by the Perl subroutine - in this case it will be either 0 or 1.

If 0, then you have specified the G DISCARD flag.

If 1, then the item actually returned by the Perl subroutine will be stored on the Perl
stack - the section Returning a Scalar shows how to access this value on the stack. Remem-
ber that regardless of how many items the Perl subroutine returns, only the last one will
be accessible from the stack - think of the case where only one value is returned as being a
list with only one element. Any other items that were returned will not exist by the time
control returns from the call * function. The section Returning a list in a scalar context
shows an example of this behavior.

7.4.3 G ARRAY

Calls the Perl subroutine in a list context.

As with G SCALAR, this flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in a list context (if it
executes wantarray the result will be true).

2. It ensures that all items returned from the subroutine will be accessible when control
returns from the call * function.

The value returned by the call * function indicates how many items have been returned
by the Perl subroutine.

If 0, then you have specified the G DISCARD flag.

If not 0, then it will be a count of the number of items returned by the subroutine.
These items will be stored on the Perl stack. The section Returning a list of values gives
an example of using the G ARRAY flag and the mechanics of accessing the returned items
from the Perl stack.

7.4.4 G DISCARD

By default, the call * functions place the items returned from by the Perl subroutine on
the stack. If you are not interested in these items, then setting this flag will make Perl get
rid of them automatically for you. Note that it is still possible to indicate a context to the
Perl subroutine by using either G SCALAR or G ARRAY.

If you do not set this flag then it is very important that you make sure that any tem-
poraries (i.e., parameters passed to the Perl subroutine and values returned from the sub-
routine) are disposed of yourself. The section Returning a Scalar gives details of how to
dispose of these temporaries explicitly and the section Using Perl to dispose of temporaries
discusses the specific circumstances where you can ignore the problem and let Perl deal
with it for you.

7.4.5 G NOARGS

Whenever a Perl subroutine is called using one of the call * functions, it is assumed by
default that parameters are to be passed to the subroutine. If you are not passing any
parameters to the Perl subroutine, you can save a bit of time by setting this flag. It has
the effect of not creating the @_ array for the Perl subroutine.

Although the functionality provided by this flag may seem straightforward, it should be
used only if there is a good reason to do so. The reason for being cautious is that, even if
you have specified the G NOARGS flag, it is still possible for the Perl subroutine that has
been called to think that you have passed it parameters.

In fact, what can happen is that the Perl subroutine you have called can access the @_

array from a previous Perl subroutine. This will occur when the code that is executing
the call * function has itself been called from another Perl subroutine. The code below
illustrates this

sub fred

{ print "@_\n" }

sub joe

{ &fred }

&joe(1,2,3);

This will print

1 2 3

What has happened is that fred accesses the @_ array which belongs to joe.

7.4.6 G EVAL

It is possible for the Perl subroutine you are calling to terminate abnormally, e.g., by calling
die explicitly or by not actually existing. By default, when either of these events occurs,
the process will terminate immediately. If you want to trap this type of event, specify the
G EVAL flag. It will put an eval { } around the subroutine call.

Whenever control returns from the call * function you need to check the $@ variable as
you would in a normal Perl script.

The value returned from the call * function is dependent on what other flags have been
specified and whether an error has occurred. Here are all the different cases that can occur:

• If the call * function returns normally, then the value returned is as specified in the
previous sections.

• If G DISCARD is specified, the return value will always be 0.

• If G ARRAY is specified and an error has occurred, the return value will always be 0.

• If G SCALAR is specified and an error has occurred, the return value will be 1 and
the value on the top of the stack will be undef. This means that if you have already
detected the error by checking $@ and you want the program to continue, you must
remember to pop the undef from the stack.

See Using G EVAL for details on using G EVAL.

7.4.7 G KEEPERR

Using the G EVAL flag described above will always set $@: clearing it if there was no error,
and setting it to describe the error if there was an error in the called code. This is what
you want if your intention is to handle possible errors, but sometimes you just want to trap
errors and stop them interfering with the rest of the program.

This scenario will mostly be applicable to code that is meant to be called from within
destructors, asynchronous callbacks, and signal handlers. In such situations, where the code
being called has little relation to the surrounding dynamic context, the main program needs
to be insulated from errors in the called code, even if they can’t be handled intelligently. It
may also be useful to do this with code for __DIE__ or __WARN__ hooks, and tie functions.

The G KEEPERR flag is meant to be used in conjunction with G EVAL in call *
functions that are used to implement such code, or with eval_sv. This flag has no effect
on the call_* functions when G EVAL is not used.

When G KEEPERR is used, any error in the called code will terminate the call as usual,
and the error will not propagate beyond the call (as usual for G EVAL), but it will not go
into $@. Instead the error will be converted into a warning, prefixed with the string "\t(in
cleanup)". This can be disabled using no warnings ’misc’. If there is no error, $@ will not
be cleared.

Note that the G KEEPERR flag does not propagate into inner evals; these may still set
$@.

The G KEEPERR flag was introduced in Perl version 5.002.

See Using G KEEPERR for an example of a situation that warrants the use of this flag.

7.4.8 Determining the Context

As mentioned above, you can determine the context of the currently executing subroutine
in Perl with wantarray. The equivalent test can be made in C by using the GIMME_V macro,
which returns G_ARRAY if you have been called in a list context, G_SCALAR if in a scalar
context, or G_VOID if in a void context (i.e., the return value will not be used). An older
version of this macro is called GIMME; in a void context it returns G_SCALAR instead of
G_VOID. An example of using the GIMME_V macro is shown in section Using GIMME V.

7.5 EXAMPLES

Enough of the definition talk! Let’s have a few examples.

Perl provides many macros to assist in accessing the Perl stack. Wherever possible, these
macros should always be used when interfacing to Perl internals. We hope this should make
the code less vulnerable to any changes made to Perl in the future.

Another point worth noting is that in the first series of examples I have made use of
only the call pv function. This has been done to keep the code simpler and ease you into
the topic. Wherever possible, if the choice is between using call pv and call sv, you should
always try to use call sv. See Using call sv for details.

7.5.1 No Parameters, Nothing Returned

This first trivial example will call a Perl subroutine, PrintUID, to print out the UID of the
process.

sub PrintUID

{

print "UID is $<\n";

}

and here is a C function to call it

static void

call_PrintUID()

{

dSP;

PUSHMARK(SP);

call_pv("PrintUID", G_DISCARD|G_NOARGS);

}

Simple, eh?

A few points to note about this example:

1. Ignore dSP and PUSHMARK(SP) for now. They will be discussed in the next example.

2. We aren’t passing any parameters to PrintUID so G NOARGS can be specified.

3. We aren’t interested in anything returned from PrintUID, so G DISCARD is specified.
Even if PrintUID was changed to return some value(s), having specified G DISCARD
will mean that they will be wiped by the time control returns from call pv.

4. As call pv is being used, the Perl subroutine is specified as a C string. In this case the
subroutine name has been ’hard-wired’ into the code.

5. Because we specified G DISCARD, it is not necessary to check the value returned from
call pv. It will always be 0.

7.5.2 Passing Parameters

Now let’s make a slightly more complex example. This time we want to call a Perl sub-
routine, LeftString, which will take 2 parameters–a string ($s) and an integer ($n). The
subroutine will simply print the first $n characters of the string.

So the Perl subroutine would look like this:

sub LeftString

{

my($s, $n) = @_;

print substr($s, 0, $n), "\n";

}

The C function required to call LeftString would look like this:

static void

call_LeftString(a, b)

char * a;

int b;

{

dSP;

ENTER;

SAVETMPS;

PUSHMARK(SP);

XPUSHs(sv_2mortal(newSVpv(a, 0)));

XPUSHs(sv_2mortal(newSViv(b)));

PUTBACK;

call_pv("LeftString", G_DISCARD);

FREETMPS;

LEAVE;

}

Here are a few notes on the C function call LeftString.

1. Parameters are passed to the Perl subroutine using the Perl stack. This is the purpose
of the code beginning with the line dSP and ending with the line PUTBACK. The dSP

declares a local copy of the stack pointer. This local copy should always be accessed
as SP.

2. If you are going to put something onto the Perl stack, you need to know where to put
it. This is the purpose of the macro dSP–it declares and initializes a local copy of the
Perl stack pointer.

All the other macros which will be used in this example require you to have used this
macro.

The exception to this rule is if you are calling a Perl subroutine directly from an XSUB
function. In this case it is not necessary to use the dSP macro explicitly–it will be
declared for you automatically.

3. Any parameters to be pushed onto the stack should be bracketed by the PUSHMARK and
PUTBACK macros. The purpose of these two macros, in this context, is to count the
number of parameters you are pushing automatically. Then whenever Perl is creating
the @_ array for the subroutine, it knows how big to make it.

The PUSHMARK macro tells Perl to make a mental note of the current stack pointer.
Even if you aren’t passing any parameters (like the example shown in the section No
Parameters, Nothing Returned) you must still call the PUSHMARK macro before you can
call any of the call * functions–Perl still needs to know that there are no parameters.

The PUTBACK macro sets the global copy of the stack pointer to be the same as our local
copy. If we didn’t do this, call pv wouldn’t know where the two parameters we pushed
were–remember that up to now all the stack pointer manipulation we have done is with
our local copy, not the global copy.

4. Next, we come to XPUSHs. This is where the parameters actually get pushed onto the
stack. In this case we are pushing a string and an integer.

See Section 28.4.1 [perlguts XSUBs and the Argument Stack], page 537 for details on
how the XPUSH macros work.

5. Because we created temporary values (by means of sv 2mortal() calls) we will have to
tidy up the Perl stack and dispose of mortal SVs.

This is the purpose of

ENTER;

SAVETMPS;

at the start of the function, and

FREETMPS;

LEAVE;

at the end. The ENTER/SAVETMPS pair creates a boundary for any temporaries we
create. This means that the temporaries we get rid of will be limited to those which
were created after these calls.

The FREETMPS/LEAVE pair will get rid of any values returned by the Perl subroutine
(see next example), plus it will also dump the mortal SVs we have created. Having
ENTER/SAVETMPS at the beginning of the code makes sure that no other mortals are
destroyed.

Think of these macros as working a bit like { and } in Perl to limit the scope of local
variables.

See the section Using Perl to Dispose of Temporaries for details of an alternative to
using these macros.

6. Finally, LeftString can now be called via the call pv function. The only flag specified
this time is G DISCARD. Because we are passing 2 parameters to the Perl subroutine
this time, we have not specified G NOARGS.

7.5.3 Returning a Scalar

Now for an example of dealing with the items returned from a Perl subroutine.

Here is a Perl subroutine, Adder, that takes 2 integer parameters and simply returns
their sum.

sub Adder

{

my($a, $b) = @_;

$a + $b;

}

Because we are now concerned with the return value from Adder, the C function required
to call it is now a bit more complex.

static void

call_Adder(a, b)

int a;

int b;

{

dSP;

int count;

ENTER;

SAVETMPS;

PUSHMARK(SP);

XPUSHs(sv_2mortal(newSViv(a)));

XPUSHs(sv_2mortal(newSViv(b)));

PUTBACK;

count = call_pv("Adder", G_SCALAR);

SPAGAIN;

if (count != 1)

croak("Big trouble\n");

printf ("The sum of %d and %d is %d\n", a, b, POPi);

PUTBACK;

FREETMPS;

LEAVE;

}

Points to note this time are

1. The only flag specified this time was G SCALAR. That means that the @_ array will
be created and that the value returned by Adder will still exist after the call to call pv.

2. The purpose of the macro SPAGAIN is to refresh the local copy of the stack pointer.
This is necessary because it is possible that the memory allocated to the Perl stack has
been reallocated during the call pv call.

If you are making use of the Perl stack pointer in your code you must always refresh
the local copy using SPAGAIN whenever you make use of the call * functions or any
other Perl internal function.

3. Although only a single value was expected to be returned from Adder, it is still good
practice to check the return code from call pv anyway.

Expecting a single value is not quite the same as knowing that there will be one. If
someone modified Adder to return a list and we didn’t check for that possibility and
take appropriate action the Perl stack would end up in an inconsistent state. That is
something you really don’t want to happen ever.

4. The POPi macro is used here to pop the return value from the stack. In this case we
wanted an integer, so POPi was used.

Here is the complete list of POP macros available, along with the types they return.

POPs SV

POPp pointer

POPn double

POPi integer

POPl long

5. The final PUTBACK is used to leave the Perl stack in a consistent state before exiting the
function. This is necessary because when we popped the return value from the stack
with POPi it updated only our local copy of the stack pointer. Remember, PUTBACK
sets the global stack pointer to be the same as our local copy.

7.5.4 Returning a List of Values

Now, let’s extend the previous example to return both the sum of the parameters and the
difference.

Here is the Perl subroutine

sub AddSubtract

{

my($a, $b) = @_;

($a+$b, $a-$b);

}

and this is the C function

static void

call_AddSubtract(a, b)

int a;

int b;

{

dSP;

int count;

ENTER;

SAVETMPS;

PUSHMARK(SP);

XPUSHs(sv_2mortal(newSViv(a)));

XPUSHs(sv_2mortal(newSViv(b)));

PUTBACK;

count = call_pv("AddSubtract", G_ARRAY);

SPAGAIN;

if (count != 2)

croak("Big trouble\n");

printf ("%d - %d = %d\n", a, b, POPi);

printf ("%d + %d = %d\n", a, b, POPi);

PUTBACK;

FREETMPS;

LEAVE;

}

If call AddSubtract is called like this

call_AddSubtract(7, 4);

then here is the output

7 - 4 = 3

7 + 4 = 11

Notes

1. We wanted list context, so G ARRAY was used.

2. Not surprisingly POPi is used twice this time because we were retrieving 2 values from
the stack. The important thing to note is that when using the POP* macros they come
off the stack in reverse order.

7.5.5 Returning a List in a Scalar Context

Say the Perl subroutine in the previous section was called in a scalar context, like this

static void

call_AddSubScalar(a, b)

int a;

int b;

{

dSP;

int count;

int i;

ENTER;

SAVETMPS;

PUSHMARK(SP);

XPUSHs(sv_2mortal(newSViv(a)));

XPUSHs(sv_2mortal(newSViv(b)));

PUTBACK;

count = call_pv("AddSubtract", G_SCALAR);

SPAGAIN;

printf ("Items Returned = %d\n", count);

for (i = 1; i <= count; ++i)

printf ("Value %d = %d\n", i, POPi);

PUTBACK;

FREETMPS;

LEAVE;

}

The other modification made is that call AddSubScalar will print the number of items
returned from the Perl subroutine and their value (for simplicity it assumes that they are
integer). So if call AddSubScalar is called

call_AddSubScalar(7, 4);

then the output will be

Items Returned = 1

Value 1 = 3

In this case the main point to note is that only the last item in the list is returned from
the subroutine. AddSubtract actually made it back to call AddSubScalar.

7.5.6 Returning Data from Perl via the Parameter List

It is also possible to return values directly via the parameter list–whether it is actually
desirable to do it is another matter entirely.

The Perl subroutine, Inc, below takes 2 parameters and increments each directly.

sub Inc

{

++ $_[0];

++ $_[1];

}

and here is a C function to call it.

static void

call_Inc(a, b)

int a;

int b;

{

dSP;

int count;

SV * sva;

SV * svb;

ENTER;

SAVETMPS;

sva = sv_2mortal(newSViv(a));

svb = sv_2mortal(newSViv(b));

PUSHMARK(SP);

XPUSHs(sva);

XPUSHs(svb);

PUTBACK;

count = call_pv("Inc", G_DISCARD);

if (count != 0)

croak ("call_Inc: expected 0 values from ’Inc’, got %d\n",

count);

printf ("%d + 1 = %d\n", a, SvIV(sva));

printf ("%d + 1 = %d\n", b, SvIV(svb));

FREETMPS;

LEAVE;

}

To be able to access the two parameters that were pushed onto the stack after they
return from call pv it is necessary to make a note of their addresses–thus the two variables
sva and svb.

The reason this is necessary is that the area of the Perl stack which held them will very
likely have been overwritten by something else by the time control returns from call pv.

7.5.7 Using G EVAL

Now an example using G EVAL. Below is a Perl subroutine which computes the difference
of its 2 parameters. If this would result in a negative result, the subroutine calls die.

sub Subtract

{

my ($a, $b) = @_;

die "death can be fatal\n" if $a < $b;

$a - $b;

}

and some C to call it

static void

call_Subtract(a, b)

int a;

int b;

{

dSP;

int count;

ENTER;

SAVETMPS;

PUSHMARK(SP);

XPUSHs(sv_2mortal(newSViv(a)));

XPUSHs(sv_2mortal(newSViv(b)));

PUTBACK;

count = call_pv("Subtract", G_EVAL|G_SCALAR);

SPAGAIN;

/* Check the eval first */

if (SvTRUE(ERRSV))

{

printf ("Uh oh - %s\n", SvPV_nolen(ERRSV));

POPs;

}

else

{

if (count != 1)

croak("call_Subtract: wanted 1 value from ’Subtract’, got %d\n",

count);

printf ("%d - %d = %d\n", a, b, POPi);

}

PUTBACK;

FREETMPS;

LEAVE;

}

If call Subtract is called thus

call_Subtract(4, 5)

the following will be printed

Uh oh - death can be fatal

Notes

1. We want to be able to catch the die so we have used the G EVAL flag. Not speci-
fying this flag would mean that the program would terminate immediately at the die
statement in the subroutine Subtract.

2. The code

if (SvTRUE(ERRSV))

{

printf ("Uh oh - %s\n", SvPV_nolen(ERRSV));

POPs;

}

is the direct equivalent of this bit of Perl

print "Uh oh - $@\n" if $@;

PL_errgv is a perl global of type GV * that points to the symbol table entry containing
the error. ERRSV therefore refers to the C equivalent of $@.

3. Note that the stack is popped using POPs in the block where SvTRUE(ERRSV)

is true. This is necessary because whenever a call * function invoked with
G EVAL|G SCALAR returns an error, the top of the stack holds the value undef.

Because we want the program to continue after detecting this error, it is essential that
the stack be tidied up by removing the undef.

7.5.8 Using G KEEPERR

Consider this rather facetious example, where we have used an XS version of the
call Subtract example above inside a destructor:

package Foo;

sub new { bless {}, $_[0] }

sub Subtract {

my($a,$b) = @_;

die "death can be fatal" if $a < $b;

$a - $b;

}

sub DESTROY { call_Subtract(5, 4); }

sub foo { die "foo dies"; }

package main;

{

my $foo = Foo->new;

eval { $foo->foo };

}

print "Saw: $@" if $@; # should be, but isn’t

This example will fail to recognize that an error occurred inside the eval {}. Here’s why:
the call Subtract code got executed while perl was cleaning up temporaries when exiting
the outer braced block, and because call Subtract is implemented with call pv using the
G EVAL flag, it promptly reset $@. This results in the failure of the outermost test for $@,
and thereby the failure of the error trap.

Appending the G KEEPERR flag, so that the call pv call in call Subtract reads:

count = call_pv("Subtract", G_EVAL|G_SCALAR|G_KEEPERR);

will preserve the error and restore reliable error handling.

7.5.9 Using call sv

In all the previous examples I have ’hard-wired’ the name of the Perl subroutine to be called
from C. Most of the time though, it is more convenient to be able to specify the name of
the Perl subroutine from within the Perl script.

Consider the Perl code below

sub fred

{

print "Hello there\n";

}

CallSubPV("fred");

Here is a snippet of XSUB which defines CallSubPV.

void

CallSubPV(name)

char * name

CODE:

PUSHMARK(SP);

call_pv(name, G_DISCARD|G_NOARGS);

That is fine as far as it goes. The thing is, the Perl subroutine can be specified as only
a string, however, Perl allows references to subroutines and anonymous subroutines. This
is where call sv is useful.

The code below for CallSubSV is identical to CallSubPV except that the name parameter
is now defined as an SV* and we use call sv instead of call pv.

void

CallSubSV(name)

SV * name

CODE:

PUSHMARK(SP);

call_sv(name, G_DISCARD|G_NOARGS);

Because we are using an SV to call fred the following can all be used:

CallSubSV("fred");

CallSubSV(\&fred);

$ref = \&fred;

CallSubSV($ref);

CallSubSV(sub { print "Hello there\n" });

As you can see, call sv gives you much greater flexibility in how you can specify the Perl
subroutine.

You should note that, if it is necessary to store the SV (name in the example above)
which corresponds to the Perl subroutine so that it can be used later in the program, it not
enough just to store a copy of the pointer to the SV. Say the code above had been like this:

static SV * rememberSub;

void

SaveSub1(name)

SV * name

CODE:

rememberSub = name;

void

CallSavedSub1()

CODE:

PUSHMARK(SP);

call_sv(rememberSub, G_DISCARD|G_NOARGS);

The reason this is wrong is that, by the time you come to use the pointer rememberSub
in CallSavedSub1, it may or may not still refer to the Perl subroutine that was recorded
in SaveSub1. This is particularly true for these cases:

SaveSub1(\&fred);

CallSavedSub1();

SaveSub1(sub { print "Hello there\n" });

CallSavedSub1();

By the time each of the SaveSub1 statements above has been executed, the SV*s which
corresponded to the parameters will no longer exist. Expect an error message from Perl of
the form

Can’t use an undefined value as a subroutine reference at ...

for each of the CallSavedSub1 lines.

Similarly, with this code

$ref = \&fred;

SaveSub1($ref);

$ref = 47;

CallSavedSub1();

you can expect one of these messages (which you actually get is dependent on the version
of Perl you are using)

Not a CODE reference at ...

Undefined subroutine &main::47 called ...

The variable $ref may have referred to the subroutine fred whenever the call to SaveSub1
was made but by the time CallSavedSub1 gets called it now holds the number 47. Because
we saved only a pointer to the original SV in SaveSub1, any changes to $ref will be tracked
by the pointer rememberSub. This means that whenever CallSavedSub1 gets called, it will
attempt to execute the code which is referenced by the SV* rememberSub. In this case
though, it now refers to the integer 47, so expect Perl to complain loudly.

A similar but more subtle problem is illustrated with this code:

$ref = \&fred;

SaveSub1($ref);

$ref = \&joe;

CallSavedSub1();

This time whenever CallSavedSub1 gets called it will execute the Perl subroutine joe

(assuming it exists) rather than fred as was originally requested in the call to SaveSub1.

To get around these problems it is necessary to take a full copy of the SV. The code
below shows SaveSub2 modified to do that.

static SV * keepSub = (SV*)NULL;

void

SaveSub2(name)

SV * name

CODE:

/* Take a copy of the callback */

if (keepSub == (SV*)NULL)

/* First time, so create a new SV */

keepSub = newSVsv(name);

else

/* Been here before, so overwrite */

SvSetSV(keepSub, name);

void

CallSavedSub2()

CODE:

PUSHMARK(SP);

call_sv(keepSub, G_DISCARD|G_NOARGS);

To avoid creating a new SV every time SaveSub2 is called, the function first checks to see
if it has been called before. If not, then space for a new SV is allocated and the reference to
the Perl subroutine name is copied to the variable keepSub in one operation using newSVsv.
Thereafter, whenever SaveSub2 is called, the existing SV, keepSub, is overwritten with the
new value using SvSetSV.

7.5.10 Using call argv

Here is a Perl subroutine which prints whatever parameters are passed to it.

sub PrintList

{

my(@list) = @_;

foreach (@list) { print "$_\n" }

}

And here is an example of call argv which will call PrintList.

static char * words[] = {"alpha", "beta", "gamma", "delta", NULL};

static void

call_PrintList()

{

dSP;

call_argv("PrintList", G_DISCARD, words);

}

Note that it is not necessary to call PUSHMARK in this instance. This is because call argv
will do it for you.

7.5.11 Using call method

Consider the following Perl code:

{

package Mine;

sub new

{

my($type) = shift;

bless [@_]

}

sub Display

{

my ($self, $index) = @_;

print "$index: $$self[$index]\n";

}

sub PrintID

{

my($class) = @_;

print "This is Class $class version 1.0\n";

}

}

It implements just a very simple class to manage an array. Apart from the constructor,
new, it declares methods, one static and one virtual. The static method, PrintID, prints
out simply the class name and a version number. The virtual method, Display, prints out
a single element of the array. Here is an all-Perl example of using it.

$a = Mine->new(’red’, ’green’, ’blue’);

$a->Display(1);

Mine->PrintID;

will print

1: green

This is Class Mine version 1.0

Calling a Perl method from C is fairly straightforward. The following things are required:

• A reference to the object for a virtual method or the name of the class for a static
method

• The name of the method

• Any other parameters specific to the method

Here is a simple XSUB which illustrates the mechanics of calling both the PrintID and
Display methods from C.

void

call_Method(ref, method, index)

SV * ref

char * method

int index

CODE:

PUSHMARK(SP);

XPUSHs(ref);

XPUSHs(sv_2mortal(newSViv(index)));

PUTBACK;

call_method(method, G_DISCARD);

void

call_PrintID(class, method)

char * class

char * method

CODE:

PUSHMARK(SP);

XPUSHs(sv_2mortal(newSVpv(class, 0)));

PUTBACK;

call_method(method, G_DISCARD);

So the methods PrintID and Display can be invoked like this:

$a = Mine->new(’red’, ’green’, ’blue’);

call_Method($a, ’Display’, 1);

call_PrintID(’Mine’, ’PrintID’);

The only thing to note is that, in both the static and virtual methods, the method name
is not passed via the stack–it is used as the first parameter to call method.

7.5.12 Using GIMME V

Here is a trivial XSUB which prints the context in which it is currently executing.

void

PrintContext()

CODE:

I32 gimme = GIMME_V;

if (gimme == G_VOID)

printf ("Context is Void\n");

else if (gimme == G_SCALAR)

printf ("Context is Scalar\n");

else

printf ("Context is Array\n");

And here is some Perl to test it.

PrintContext;

$a = PrintContext;

@a = PrintContext;

The output from that will be

Context is Void

Context is Scalar

Context is Array

7.5.13 Using Perl to Dispose of Temporaries

In the examples given to date, any temporaries created in the callback (i.e., parameters
passed on the stack to the call * function or values returned via the stack) have been freed
by one of these methods:

• Specifying the G DISCARD flag with call *

• Explicitly using the ENTER/SAVETMPS–FREETMPS/LEAVE pairing

There is another method which can be used, namely letting Perl do it for you automat-
ically whenever it regains control after the callback has terminated. This is done by simply
not using the

ENTER;

SAVETMPS;

...

FREETMPS;

LEAVE;

sequence in the callback (and not, of course, specifying the G DISCARD flag).

If you are going to use this method you have to be aware of a possible memory leak
which can arise under very specific circumstances. To explain these circumstances you need
to know a bit about the flow of control between Perl and the callback routine.

The examples given at the start of the document (an error handler and an event driven
program) are typical of the two main sorts of flow control that you are likely to encounter
with callbacks. There is a very important distinction between them, so pay attention.

In the first example, an error handler, the flow of control could be as follows. You have
created an interface to an external library. Control can reach the external library like this

perl --> XSUB --> external library

Whilst control is in the library, an error condition occurs. You have previously set up a
Perl callback to handle this situation, so it will get executed. Once the callback has finished,
control will drop back to Perl again. Here is what the flow of control will be like in that
situation

perl --> XSUB --> external library

...

error occurs

...

external library --> call_* --> perl

|

perl <-- XSUB <-- external library <-- call_* <----+

After processing of the error using call * is completed, control reverts back to Perl more
or less immediately.

In the diagram, the further right you go the more deeply nested the scope is. It is only
when control is back with perl on the extreme left of the diagram that you will have dropped
back to the enclosing scope and any temporaries you have left hanging around will be freed.

In the second example, an event driven program, the flow of control will be more like
this

perl --> XSUB --> event handler

...

event handler --> call_* --> perl

|

event handler <-- call_* <----+

...

event handler --> call_* --> perl

|

event handler <-- call_* <----+

...

event handler --> call_* --> perl

|

event handler <-- call_* <----+

In this case the flow of control can consist of only the repeated sequence

event handler --> call_* --> perl

for practically the complete duration of the program. This means that control may never
drop back to the surrounding scope in Perl at the extreme left.

So what is the big problem? Well, if you are expecting Perl to tidy up those temporaries
for you, you might be in for a long wait. For Perl to dispose of your temporaries, control
must drop back to the enclosing scope at some stage. In the event driven scenario that may
never happen. This means that, as time goes on, your program will create more and more
temporaries, none of which will ever be freed. As each of these temporaries consumes some
memory your program will eventually consume all the available memory in your system–
kapow!

So here is the bottom line–if you are sure that control will revert back to the enclosing
Perl scope fairly quickly after the end of your callback, then it isn’t absolutely necessary
to dispose explicitly of any temporaries you may have created. Mind you, if you are at all
uncertain about what to do, it doesn’t do any harm to tidy up anyway.

7.5.14 Strategies for Storing Callback Context Information

Potentially one of the trickiest problems to overcome when designing a callback interface
can be figuring out how to store the mapping between the C callback function and the Perl
equivalent.

To help understand why this can be a real problem first consider how a callback is set up
in an all C environment. Typically a C API will provide a function to register a callback.
This will expect a pointer to a function as one of its parameters. Below is a call to a
hypothetical function register_fatal which registers the C function to get called when a
fatal error occurs.

register_fatal(cb1);

The single parameter cb1 is a pointer to a function, so you must have defined cb1 in
your code, say something like this

static void

cb1()

{

printf ("Fatal Error\n");

exit(1);

}

Now change that to call a Perl subroutine instead

static SV * callback = (SV*)NULL;

static void

cb1()

{

dSP;

PUSHMARK(SP);

/* Call the Perl sub to process the callback */

call_sv(callback, G_DISCARD);

}

void

register_fatal(fn)

SV * fn

CODE:

/* Remember the Perl sub */

if (callback == (SV*)NULL)

callback = newSVsv(fn);

else

SvSetSV(callback, fn);

/* register the callback with the external library */

register_fatal(cb1);

where the Perl equivalent of register_fatal and the callback it registers, pcb1, might
look like this

Register the sub pcb1

register_fatal(\&pcb1);

sub pcb1

{

die "I’m dying...\n";

}

The mapping between the C callback and the Perl equivalent is stored in the global
variable callback.

This will be adequate if you ever need to have only one callback registered at any time.
An example could be an error handler like the code sketched out above. Remember though,
repeated calls to register_fatal will replace the previously registered callback function
with the new one.

Say for example you want to interface to a library which allows asynchronous file i/o. In
this case you may be able to register a callback whenever a read operation has completed.
To be of any use we want to be able to call separate Perl subroutines for each file that is
opened. As it stands, the error handler example above would not be adequate as it allows
only a single callback to be defined at any time. What we require is a means of storing the
mapping between the opened file and the Perl subroutine we want to be called for that file.

Say the i/o library has a function asynch_read which associates a C function
ProcessRead with a file handle fh–this assumes that it has also provided some routine to
open the file and so obtain the file handle.

asynch_read(fh, ProcessRead)

This may expect the C ProcessRead function of this form

void

ProcessRead(fh, buffer)

int fh;

char * buffer;

{

...

}

To provide a Perl interface to this library we need to be able to map between the fh

parameter and the Perl subroutine we want called. A hash is a convenient mechanism for
storing this mapping. The code below shows a possible implementation

static HV * Mapping = (HV*)NULL;

void

asynch_read(fh, callback)

int fh

SV * callback

CODE:

/* If the hash doesn’t already exist, create it */

if (Mapping == (HV*)NULL)

Mapping = newHV();

/* Save the fh -> callback mapping */

hv_store(Mapping, (char*)&fh, sizeof(fh), newSVsv(callback), 0);

/* Register with the C Library */

asynch_read(fh, asynch_read_if);

and asynch_read_if could look like this

static void

asynch_read_if(fh, buffer)

int fh;

char * buffer;

{

dSP;

SV ** sv;

/* Get the callback associated with fh */

sv = hv_fetch(Mapping, (char*)&fh , sizeof(fh), FALSE);

if (sv == (SV**)NULL)

croak("Internal error...\n");

PUSHMARK(SP);

XPUSHs(sv_2mortal(newSViv(fh)));

XPUSHs(sv_2mortal(newSVpv(buffer, 0)));

PUTBACK;

/* Call the Perl sub */

call_sv(*sv, G_DISCARD);

}

For completeness, here is asynch_close. This shows how to remove the entry from the
hash Mapping.

void

asynch_close(fh)

int fh

CODE:

/* Remove the entry from the hash */

(void) hv_delete(Mapping, (char*)&fh, sizeof(fh), G_DISCARD);

/* Now call the real asynch_close */

asynch_close(fh);

So the Perl interface would look like this

sub callback1

{

my($handle, $buffer) = @_;

}

Register the Perl callback

asynch_read($fh, \&callback1);

asynch_close($fh);

The mapping between the C callback and Perl is stored in the global hash Mapping

this time. Using a hash has the distinct advantage that it allows an unlimited number of
callbacks to be registered.

What if the interface provided by the C callback doesn’t contain a parameter which
allows the file handle to Perl subroutine mapping? Say in the asynchronous i/o package,
the callback function gets passed only the buffer parameter like this

void

ProcessRead(buffer)

char * buffer;

{

...

}

Without the file handle there is no straightforward way to map from the C callback to
the Perl subroutine.

In this case a possible way around this problem is to predefine a series of C functions to
act as the interface to Perl, thus

#define MAX_CB 3

#define NULL_HANDLE -1

typedef void (*FnMap)();

struct MapStruct {

FnMap Function;

SV * PerlSub;

int Handle;

};

static void fn1();

static void fn2();

static void fn3();

static struct MapStruct Map [MAX_CB] =

{

{ fn1, NULL, NULL_HANDLE },

{ fn2, NULL, NULL_HANDLE },

{ fn3, NULL, NULL_HANDLE }

};

static void

Pcb(index, buffer)

int index;

char * buffer;

{

dSP;

PUSHMARK(SP);

XPUSHs(sv_2mortal(newSVpv(buffer, 0)));

PUTBACK;

/* Call the Perl sub */

call_sv(Map[index].PerlSub, G_DISCARD);

}

static void

fn1(buffer)

char * buffer;

{

Pcb(0, buffer);

}

static void

fn2(buffer)

char * buffer;

{

Pcb(1, buffer);

}

static void

fn3(buffer)

char * buffer;

{

Pcb(2, buffer);

}

void

array_asynch_read(fh, callback)

int fh

SV * callback

CODE:

int index;

int null_index = MAX_CB;

/* Find the same handle or an empty entry */

for (index = 0; index < MAX_CB; ++index)

{

if (Map[index].Handle == fh)

break;

if (Map[index].Handle == NULL_HANDLE)

null_index = index;

}

if (index == MAX_CB && null_index == MAX_CB)

croak ("Too many callback functions registered\n");

if (index == MAX_CB)

index = null_index;

/* Save the file handle */

Map[index].Handle = fh;

/* Remember the Perl sub */

if (Map[index].PerlSub == (SV*)NULL)

Map[index].PerlSub = newSVsv(callback);

else

SvSetSV(Map[index].PerlSub, callback);

asynch_read(fh, Map[index].Function);

void

array_asynch_close(fh)

int fh

CODE:

int index;

/* Find the file handle */

for (index = 0; index < MAX_CB; ++ index)

if (Map[index].Handle == fh)

break;

if (index == MAX_CB)

croak ("could not close fh %d\n", fh);

Map[index].Handle = NULL_HANDLE;

SvREFCNT_dec(Map[index].PerlSub);

Map[index].PerlSub = (SV*)NULL;

asynch_close(fh);

In this case the functions fn1, fn2, and fn3 are used to remember the Perl subroutine
to be called. Each of the functions holds a separate hard-wired index which is used in the
function Pcb to access the Map array and actually call the Perl subroutine.

There are some obvious disadvantages with this technique.

Firstly, the code is considerably more complex than with the previous example.

Secondly, there is a hard-wired limit (in this case 3) to the number of callbacks that can
exist simultaneously. The only way to increase the limit is by modifying the code to add
more functions and then recompiling. None the less, as long as the number of functions
is chosen with some care, it is still a workable solution and in some cases is the only one
available.

To summarize, here are a number of possible methods for you to consider for storing the
mapping between C and the Perl callback

1. Ignore the problem - Allow only 1 callback
For a lot of situations, like interfacing to an error handler, this may be a per-
fectly adequate solution.

2. Create a sequence of callbacks - hard wired limit
If it is impossible to tell from the parameters passed back from the C callback
what the context is, then you may need to create a sequence of C callback
interface functions, and store pointers to each in an array.

3. Use a parameter to map to the Perl callback
A hash is an ideal mechanism to store the mapping between C and Perl.

7.5.15 Alternate Stack Manipulation

Although I have made use of only the POP* macros to access values returned from Perl
subroutines, it is also possible to bypass these macros and read the stack using the ST

macro (See perlxs for a full description of the ST macro).

Most of the time the POP* macros should be adequate; the main problem with them is
that they force you to process the returned values in sequence. This may not be the most
suitable way to process the values in some cases. What we want is to be able to access the
stack in a random order. The ST macro as used when coding an XSUB is ideal for this
purpose.

The code below is the example given in the section Returning a List of Values recoded
to use ST instead of POP*.

static void

call_AddSubtract2(a, b)

int a;

int b;

{

dSP;

I32 ax;

int count;

ENTER;

SAVETMPS;

PUSHMARK(SP);

XPUSHs(sv_2mortal(newSViv(a)));

XPUSHs(sv_2mortal(newSViv(b)));

PUTBACK;

count = call_pv("AddSubtract", G_ARRAY);

SPAGAIN;

SP -= count;

ax = (SP - PL_stack_base) + 1;

if (count != 2)

croak("Big trouble\n");

printf ("%d + %d = %d\n", a, b, SvIV(ST(0)));

printf ("%d - %d = %d\n", a, b, SvIV(ST(1)));

PUTBACK;

FREETMPS;

LEAVE;

}

Notes

1. Notice that it was necessary to define the variable ax. This is because the ST macro
expects it to exist. If we were in an XSUB it would not be necessary to define ax as it
is already defined for us.

2. The code

SPAGAIN;

SP -= count;

ax = (SP - PL_stack_base) + 1;

sets the stack up so that we can use the ST macro.

3. Unlike the original coding of this example, the returned values are not accessed in
reverse order. So ST(0) refers to the first value returned by the Perl subroutine and
ST(count-1) refers to the last.

7.5.16 Creating and Calling an Anonymous Subroutine in C

As we’ve already shown, call_sv can be used to invoke an anonymous subroutine. However,
our example showed a Perl script invoking an XSUB to perform this operation. Let’s see
how it can be done inside our C code:

...

SV *cvrv = eval_pv("sub { print ’You will not find me cluttering any namespace!’ }", TRUE);

...

call_sv(cvrv, G_VOID|G_NOARGS);

eval_pv is used to compile the anonymous subroutine, which will be the return value as
well (read more about eval_pv in Section “eval pv” in perlapi). Once this code reference
is in hand, it can be mixed in with all the previous examples we’ve shown.

7.6 LIGHTWEIGHT CALLBACKS

Sometimes you need to invoke the same subroutine repeatedly. This usually happens with
a function that acts on a list of values, such as Perl’s built-in sort(). You can pass a
comparison function to sort(), which will then be invoked for every pair of values that
needs to be compared. The first() and reduce() functions from List-Util follow a similar
pattern.

In this case it is possible to speed up the routine (often quite substantially) by using the
lightweight callback API. The idea is that the calling context only needs to be created and
destroyed once, and the sub can be called arbitrarily many times in between.

It is usual to pass parameters using global variables (typically $ for one parameter, or
$a and $b for two parameters) rather than via @ . (It is possible to use the @ mechanism
if you know what you’re doing, though there is as yet no supported API for it. It’s also
inherently slower.)

The pattern of macro calls is like this:

dMULTICALL; /* Declare local variables */

I32 gimme = G_SCALAR; /* context of the call: G_SCALAR,

* G_ARRAY, or G_VOID */

PUSH_MULTICALL(cv); /* Set up the context for calling cv,

and set local vars appropriately */

/* loop */ {

/* set the value(s) af your parameter variables */

MULTICALL; /* Make the actual call */

} /* end of loop */

POP_MULTICALL; /* Tear down the calling context */

For some concrete examples, see the implementation of the first() and reduce() functions
of List::Util 1.18. There you will also find a header file that emulates the multicall API on
older versions of perl.

7.7 SEE ALSO

perlxs, Section 28.1 [perlguts NAME], page 512, Section 20.1 [perlembed NAME], page 301

7.8 AUTHOR

Paul Marquess

Special thanks to the following people who assisted in the creation of the document.

Jeff Okamoto, Tim Bunce, Nick Gianniotis, Steve Kelem, Gurusamy Sarathy and Larry
Wall.

7.9 DATE

Version 1.3, 14th Apr 1997

8 perlcheat

8.1 NAME

perlcheat - Perl 5 Cheat Sheet

8.2 DESCRIPTION

This ’cheat sheet’ is a handy reference, meant for beginning Perl programmers. Not every-
thing is mentioned, but 195 features may already be overwhelming.

8.2.1 The sheet

CONTEXTS SIGILS ref ARRAYS HASHES

void $scalar SCALAR @array %hash

scalar @array ARRAY @array[0, 2] @hash{’a’, ’b’}

list %hash HASH $array[0] $hash{’a’}

&sub CODE

*glob GLOB SCALAR VALUES

FORMAT number, string, ref, glob, undef

REFERENCES

\ reference $$foo[1] aka $foo->[1]

$@%&* dereference $$foo{bar} aka $foo->{bar}

[] anon. arrayref ${$$foo[1]}[2] aka $foo->[1]->[2]

{} anon. hashref ${$$foo[1]}[2] aka $foo->[1][2]

\() list of refs

SYNTAX

OPERATOR PRECEDENCE foreach (LIST) { } for (a;b;c) { }

-> while (e) { } until (e) { }

++ -- if (e) { } elsif (e) { } else { }

** unless (e) { } elsif (e) { } else { }

! ~ \ u+ u- given (e) { when (e) {} default {} }

=~ !~

* / % x NUMBERS vs STRINGS FALSE vs TRUE

+ - . = = undef, "", 0, "0"

<< >> + . anything else

named uops == != eq ne

< > <= >= lt gt le ge < > <= >= lt gt le ge

== != <=> eq ne cmp ~~ <=> cmp

&

| ^ REGEX MODIFIERS REGEX METACHARS

&& /i case insensitive ^ string begin

|| // /m line based ^$ $ str end (bfr \n)

.. ... /s . includes \n + one or more

?: /x ignore wh.space * zero or more

= += last goto /p preserve ? zero or one

, => /a ASCII /aa safe {3,7} repeat in range

list ops /l locale /d dual | alternation

not /u Unicode [] character class

and /e evaluate /ee rpts \b boundary

or xor /g global \z string end

/o compile pat once () capture

DEBUG (?:p) no capture

-MO=Deparse REGEX CHARCLASSES (?#t) comment

-MO=Terse . [^\n] (?=p) ZW pos ahead

-D## \s whitespace (?!p) ZW neg ahead

-d:Trace \w word chars (?<=p) ZW pos behind \K

\d digits (?<!p) ZW neg behind

CONFIGURATION \pP named property (?>p) no backtrack

perl -V:ivsize \h horiz.wh.space (?|p|p)branch reset

\R linebreak (?<n>p)named capture

\S \W \D \H negate \g{n} ref to named cap

\K keep left part

FUNCTION RETURN LISTS

stat localtime caller SPECIAL VARIABLES

0 dev 0 second 0 package $_ default variable

1 ino 1 minute 1 filename $0 program name

2 mode 2 hour 2 line $/ input separator

3 nlink 3 day 3 subroutine $\ output separator

4 uid 4 month-1 4 hasargs $| autoflush

5 gid 5 year-1900 5 wantarray $! sys/libcall error

6 rdev 6 weekday 6 evaltext $@ eval error

7 size 7 yearday 7 is_require $$ process ID

8 atime 8 is_dst 8 hints $. line number

9 mtime 9 bitmask @ARGV command line args

10 ctime 10 hinthash @INC include paths

11 blksz 3..10 only @_ subroutine args

12 blcks with EXPR %ENV environment

8.3 ACKNOWLEDGEMENTS

The first version of this document appeared on Perl Monks, where several people had useful
suggestions. Thank you, Perl Monks.

A special thanks to Damian Conway, who didn’t only suggest important changes, but
also took the time to count the number of listed features and make a Perl 6 version to show
that Perl will stay Perl.

8.4 AUTHOR

Juerd Waalboer <#####@juerd.nl>, with the help of many Perl Monks.

8.5 SEE ALSO

• http://perlmonks.org/?node_id=216602 - the original PM post

• http://perlmonks.org/?node_id=238031 - Damian Conway’s Perl 6 version

http://perlmonks.org/?node_id=216602
http://perlmonks.org/?node_id=238031

• http://juerd.nl/site.plp/perlcheat - home of the Perl Cheat Sheet

http://juerd.nl/site.plp/perlcheat

9 perlclib

9.1 NAME

perlclib - Internal replacements for standard C library functions

9.2 DESCRIPTION

One thing Perl porters should note is that perl doesn’t tend to use that much of the C
standard library internally; you’ll see very little use of, for example, the ctype.h functions
in there. This is because Perl tends to reimplement or abstract standard library functions,
so that we know exactly how they’re going to operate.

This is a reference card for people who are familiar with the C library and who want to
do things the Perl way; to tell them which functions they ought to use instead of the more
normal C functions.

9.2.1 Conventions

In the following tables:

t

is a type.

p

is a pointer.

n

is a number.

s

is a string.

sv, av, hv, etc. represent variables of their respective types.

9.2.2 File Operations

Instead of the stdio.h functions, you should use the Perl abstraction layer. Instead of FILE*
types, you need to be handling PerlIO* types. Don’t forget that with the new PerlIO
layered I/O abstraction FILE* types may not even be available. See also the perlapio

documentation for more information about the following functions:

Instead Of: Use:

stdin PerlIO_stdin()

stdout PerlIO_stdout()

stderr PerlIO_stderr()

fopen(fn, mode) PerlIO_open(fn, mode)

freopen(fn, mode, stream) PerlIO_reopen(fn, mode, perlio) (Dep-

recated)

fflush(stream) PerlIO_flush(perlio)

fclose(stream) PerlIO_close(perlio)

9.2.3 File Input and Output

Instead Of: Use:

fprintf(stream, fmt, ...) PerlIO_printf(perlio, fmt, ...)

[f]getc(stream) PerlIO_getc(perlio)

[f]putc(stream, n) PerlIO_putc(perlio, n)

ungetc(n, stream) PerlIO_ungetc(perlio, n)

Note that the PerlIO equivalents of fread and fwrite are slightly different from their C
library counterparts:

fread(p, size, n, stream) PerlIO_read(perlio, buf, numbytes)

fwrite(p, size, n, stream) PerlIO_write(perlio, buf, numbytes)

fputs(s, stream) PerlIO_puts(perlio, s)

There is no equivalent to fgets; one should use sv_gets instead:

fgets(s, n, stream) sv_gets(sv, perlio, append)

9.2.4 File Positioning

Instead Of: Use:

feof(stream) PerlIO_eof(perlio)

fseek(stream, n, whence) PerlIO_seek(perlio, n, whence)

rewind(stream) PerlIO_rewind(perlio)

fgetpos(stream, p) PerlIO_getpos(perlio, sv)

fsetpos(stream, p) PerlIO_setpos(perlio, sv)

ferror(stream) PerlIO_error(perlio)

clearerr(stream) PerlIO_clearerr(perlio)

9.2.5 Memory Management and String Handling

Instead Of: Use:

t* p = malloc(n) Newx(p, n, t)

t* p = calloc(n, s) Newxz(p, n, t)

p = realloc(p, n) Renew(p, n, t)

memcpy(dst, src, n) Copy(src, dst, n, t)

memmove(dst, src, n) Move(src, dst, n, t)

memcpy(dst, src, sizeof(t)) StructCopy(src, dst, t)

memset(dst, 0, n * sizeof(t)) Zero(dst, n, t)

memzero(dst, 0) Zero(dst, n, char)

free(p) Safefree(p)

strdup(p) savepv(p)

strndup(p, n) savepvn(p, n) (Hey, strndup doesn’t

exist!)

strstr(big, little) instr(big, little)

strcmp(s1, s2) strLE(s1, s2) / strEQ(s1, s2)

/ strGT(s1,s2)

strncmp(s1, s2, n) strnNE(s1, s2, n) / strnEQ(s1, s2, n)

memcmp(p1, p2, n) memNE(p1, p2, n)

!memcmp(p1, p2, n) memEQ(p1, p2, n)

Notice the different order of arguments to Copy and Move than used in memcpy and memmove.

Most of the time, though, you’ll want to be dealing with SVs internally instead of raw
char * strings:

strlen(s) sv_len(sv)

strcpy(dt, src) sv_setpv(sv, s)

strncpy(dt, src, n) sv_setpvn(sv, s, n)

strcat(dt, src) sv_catpv(sv, s)

strncat(dt, src) sv_catpvn(sv, s)

sprintf(s, fmt, ...) sv_setpvf(sv, fmt, ...)

Note also the existence of sv_catpvf and sv_vcatpvfn, combining concatenation with
formatting.

Sometimes instead of zeroing the allocated heap by using Newxz() you should consider
"poisoning" the data. This means writing a bit pattern into it that should be illegal as
pointers (and floating point numbers), and also hopefully surprising enough as integers, so
that any code attempting to use the data without forethought will break sooner rather than
later. Poisoning can be done using the Poison() macros, which have similar arguments to
Zero():

PoisonWith(dst, n, t, b) scribble memory with byte b

PoisonNew(dst, n, t) equal to PoisonWith(dst, n, t, 0xAB)

PoisonFree(dst, n, t) equal to PoisonWith(dst, n, t, 0xEF)

Poison(dst, n, t) equal to PoisonFree(dst, n, t)

9.2.6 Character Class Tests

There are several types of character class tests that Perl implements. The only ones de-
scribed here are those that directly correspond to C library functions that operate on 8-bit
characters, but there are equivalents that operate on wide characters, and UTF-8 encoded
strings. All are more fully described in Section “Character classification” in perlapi and
Section “Character case changing” in perlapi.

The C library routines listed in the table below return values based on the current locale.
Use the entries in the final column for that functionality. The other two columns always
assume a POSIX (or C) locale. The entries in the ASCII column are only meaningful for
ASCII inputs, returning FALSE for anything else. Use these only when you know that
is what you want. The entries in the Latin1 column assume that the non-ASCII 8-bit
characters are as Unicode defines, them, the same as ISO-8859-1, often called Latin 1.

Instead Of: Use for ASCII: Use for Latin1: Use for locale:

isalnum(c) isALPHANUMERIC(c) isALPHANUMERIC_L1(c) isALPHANUMERIC_LC(c)

isalpha(c) isALPHA(c) isALPHA_L1(c) isALPHA_LC(u)

isascii(c) isASCII(c) isASCII_LC(c)

isblank(c) isBLANK(c) isBLANK_L1(c) isBLANK_LC(c)

iscntrl(c) isCNTRL(c) isCNTRL_L1(c) isCNTRL_LC(c)

isdigit(c) isDIGIT(c) isDIGIT_L1(c) isDIGIT_LC(c)

isgraph(c) isGRAPH(c) isGRAPH_L1(c) isGRAPH_LC(c)

islower(c) isLOWER(c) isLOWER_L1(c) isLOWER_LC(c)

isprint(c) isPRINT(c) isPRINT_L1(c) isPRINT_LC(c)

ispunct(c) isPUNCT(c) isPUNCT_L1(c) isPUNCT_LC(c)

isspace(c) isSPACE(c) isSPACE_L1(c) isSPACE_LC(c)

isupper(c) isUPPER(c) isUPPER_L1(c) isUPPER_LC(c)

isxdigit(c) isXDIGIT(c) isXDIGIT_L1(c) isXDIGIT_LC(c)

tolower(c) toLOWER(c) toLOWER_L1(c) toLOWER_LC(c)

toupper(c) toUPPER(c) toUPPER_LC(c)

To emphasize that you are operating only on ASCII characters, you can append _A to
each of the macros in the ASCII column: isALPHA_A, isDIGIT_A, and so on.

(There is no entry in the Latin1 column for isascii even though there is an isASCII_

L1, which is identical to isASCII; the latter name is clearer. There is no entry in the Latin1
column for toupper because the result can be non-Latin1. You have to use toUPPER_uni,
as described in Section “Character case changing” in perlapi.)

9.2.7 stdlib.h functions

Instead Of: Use:

atof(s) Atof(s)

atoi(s) grok_atoUV(s, &uv, &e)

atol(s) grok_atoUV(s, &uv, &e)

strtod(s, &p) Nothing. Just don’t use it.

strtol(s, &p, n) grok_atoUV(s, &uv, &e)

strtoul(s, &p, n) grok_atoUV(s, &uv, &e)

Typical use is to do range checks on uv before casting:

int i; UV uv; char* end_ptr;

if (grok_atoUV(input, &uv, &end_ptr)

&& uv <= INT_MAX)

i = (int)uv;

... /* continue parsing from end_ptr */

} else {

... /* parse error: not a decimal integer in range 0 .. MAX_IV */

}

Notice also the grok_bin, grok_hex, and grok_oct functions in numeric.c for convert-
ing strings representing numbers in the respective bases into NVs. Note that grok atoUV()
doesn’t handle negative inputs, or leading whitespace (being purposefully strict).

Note that strtol() and strtoul() may be disguised as Strtol(), Strtoul(), Atol(), Atoul().
Avoid those, too.

In theory Strtol and Strtoul may not be defined if the machine perl is built on doesn’t
actually have strtol and strtoul. But as those 2 functions are part of the 1989 ANSI C spec
we suspect you’ll find them everywhere by now.

int rand() double Drand01()

srand(n) { seedDrand01((Rand_seed_t)n);

PL_srand_called = TRUE; }

exit(n) my_exit(n)

system(s) Don’t. Look at pp_system or use my_popen.

getenv(s) PerlEnv_getenv(s)

setenv(s, val) my_setenv(s, val)

9.2.8 Miscellaneous functions

You should not even want to use setjmp.h functions, but if you think you do, use the
JMPENV stack in scope.h instead.

For signal/sigaction, use rsignal(signo, handler).

9.3 SEE ALSO

perlapi, Section 2.1 [perlapio NAME], page 9, Section 28.1 [perlguts NAME], page 512

10 perlcommunity

10.1 NAME

perlcommunity - a brief overview of the Perl community

10.2 DESCRIPTION

This document aims to provide an overview of the vast perl community, which is far too
large and diverse to provide a detailed listing. If any specific niche has been forgotten, it is
not meant as an insult but an omission for the sake of brevity.

The Perl community is as diverse as Perl, and there is a large amount of evidence that
the Perl users apply TMTOWTDI to all endeavors, not just programming. From websites,
to IRC, to mailing lists, there is more than one way to get involved in the community.

10.2.1 Where to Find the Community

There is a central directory for the Perl community: http://perl.org maintained by the
Perl Foundation (http://www.perlfoundation.org/), which tracks and provides services
for a variety of other community sites.

10.2.2 Mailing Lists and Newsgroups

Perl runs on e-mail; there is no doubt about it. The Camel book was originally written
mostly over e-mail and today Perl’s development is co-ordinated through mailing lists. The
largest repository of Perl mailing lists is located at http://lists.perl.org.

Most Perl-related projects set up mailing lists for both users and contributors. If you
don’t see a certain project listed at http://lists.perl.org, check the particular website
for that project. Most mailing lists are archived at http://nntp.perl.org/.

There are also plenty of Perl related newsgroups located under comp.lang.perl.*.

10.2.3 IRC

The Perl community has a rather large IRC presence. For starters, it has its own IRC
network, irc://irc.perl.org. General (not help-oriented) chat can be found at irc://
irc.perl.org/#perl. Many other more specific chats are also hosted on the network.
Information about irc.perl.org is located on the network’s website: http://www.irc.perl.
org. For a more help-oriented #perl, check out irc://irc.freenode.net/#perl. Perl 6
development also has a presence in irc://irc.freenode.net/#perl6. Most Perl-related
channels will be kind enough to point you in the right direction if you ask nicely.

Any large IRC network (Dalnet, EFnet) is also likely to have a #perl channel, with
varying activity levels.

10.2.4 Websites

Perl websites come in a variety of forms, but they fit into two large categories: forums and
news websites. There are many Perl-related websites, so only a few of the community’s
largest are mentioned here.

http://perl.org
http://www.perlfoundation.org/
http://lists.perl.org
http://lists.perl.org
http://nntp.perl.org/
irc://irc.perl.org
irc://irc.perl.org/#perl
irc://irc.perl.org/#perl
http://www.irc.perl.org
http://www.irc.perl.org
irc://irc.freenode.net/#perl
irc://irc.freenode.net/#perl6

10.2.4.1 News sites

http://perl.com/

Run by O’Reilly Media (the publisher of Section 4.1 [the Camel Book], page 21,
among other Perl-related literature), perl.com provides current Perl news, ar-
ticles, and resources for Perl developers as well as a directory of other useful
websites.

http://blogs.perl.org/

Many members of the community have a Perl-related blog on this site. If you’d
like to join them, you can sign up for free.

http://use.perl.org/

use Perl; used to provide a slashdot-style news/blog website covering all things
Perl, from minutes of the meetings of the Perl 6 Design team to conference
announcements with (ir)relevant discussion. It no longer accepts updates, but
you can still use the site to read old entries and comments.

10.2.4.2 Forums

http://www.perlmonks.org/

PerlMonks is one of the largest Perl forums, and describes itself as "A place for
individuals to polish, improve, and showcase their Perl skills." and "A commu-
nity which allows everyone to grow and learn from each other."

http://stackoverflow.com/

Stack Overflow is a free question-and-answer site for programmers. It’s not
focussed solely on Perl, but it does have an active group of users who do their
best to help people with their Perl programming questions.

10.2.5 User Groups

Many cities around the world have local Perl Mongers chapters. A Perl Mongers chapter is a
local user group which typically holds regular in-person meetings, both social and technical;
helps organize local conferences, workshops, and hackathons; and provides a mailing list or
other continual contact method for its members to keep in touch.

To find your local Perl Mongers (or PM as they’re commonly abbreviated) group check
the international Perl Mongers directory at http://www.pm.org/.

10.2.6 Workshops

Perl workshops are, as the name might suggest, workshops where Perl is taught in a variety
of ways. At the workshops, subjects range from a beginner’s introduction (such as the
Pittsburgh Perl Workshop’s "Zero To Perl") to much more advanced subjects.

There are several great resources for locating workshops: the Section 10.2.4 [websites],
page 67 mentioned above, the Section 10.2.9 [calendar], page 69 mentioned below, and the
YAPC Europe website, http://www.yapceurope.org/, which is probably the best resource
for European Perl events.

10.2.7 Hackathons

Hackathons are a very different kind of gathering where Perl hackers gather to do just that,
hack nonstop for an extended (several day) period on a specific project or projects. Informa-

http://perl.com/
http://blogs.perl.org/
http://use.perl.org/
http://www.perlmonks.org/
http://stackoverflow.com/
http://www.pm.org/
http://www.yapceurope.org/

tion about hackathons can be located in the same place as information about Section 10.2.6
[workshops], page 68 as well as in irc://irc.perl.org/#perl.

If you have never been to a hackathon, here are a few basic things you need to know
before attending: have a working laptop and know how to use it; check out the involved
projects beforehand; have the necessary version control client; and bring backup equipment
(an extra LAN cable, additional power strips, etc.) because someone will forget.

10.2.8 Conventions

Perl has two major annual conventions: The Perl Conference (now part of OSCON), put
on by O’Reilly, and Yet Another Perl Conference or YAPC (pronounced yap-see), which is
localized into several regional YAPCs (North America, Europe, Asia) in a stunning grass-
roots display by the Perl community. For more information about either conference, check
out their respective web pages: OSCON http://conferences.oreillynet.com/; YAPC
http://www.yapc.org.

A relatively new conference franchise with a large Perl portion is the Open Source De-
velopers Conference or OSDC. First held in Australia it has recently also spread to Israel
and France. More information can be found at: http://www.osdc.com.au/ for Australia,
http://www.osdc.org.il for Israel, and http://www.osdc.fr/ for France.

10.2.9 Calendar of Perl Events

The Perl Review, http://www.theperlreview.com maintains a website and Google cal-
endar (http://www.theperlreview.com/community_calendar) for tracking workshops,
hackathons, Perl Mongers meetings, and other events. Views of this calendar are at http://
www.perl.org/events.html and http://www.yapc.org.

Not every event or Perl Mongers group is on that calendar, so don’t lose heart if
you don’t see yours posted. To have your event or group listed, contact brian d foy
(brian@theperlreview.com).

10.3 AUTHOR

Edgar "Trizor" Bering <trizor@gmail.com>

irc://irc.perl.org/#perl
http://conferences.oreillynet.com/
http://www.yapc.org
http://www.osdc.com.au/
http://www.osdc.org.il
http://www.osdc.fr/
http://www.theperlreview.com
http://www.theperlreview.com/community_calendar
http://www.perl.org/events.html
http://www.perl.org/events.html
http://www.yapc.org

11 perldata

11.1 NAME

perldata - Perl data types

11.2 DESCRIPTION

11.2.1 Variable names

Perl has three built-in data types: scalars, arrays of scalars, and associative arrays of scalars,
known as "hashes". A scalar is a single string (of any size, limited only by the available
memory), number, or a reference to something (which will be discussed in Section 62.1
[perlref NAME], page 1077). Normal arrays are ordered lists of scalars indexed by number,
starting with 0. Hashes are unordered collections of scalar values indexed by their associated
string key.

Values are usually referred to by name, or through a named reference. The first character
of the name tells you to what sort of data structure it refers. The rest of the name tells you
the particular value to which it refers. Usually this name is a single identifier, that is, a
string beginning with a letter or underscore, and containing letters, underscores, and digits.
In some cases, it may be a chain of identifiers, separated by :: (or by the slightly archaic
’); all but the last are interpreted as names of packages, to locate the namespace in which
to look up the final identifier (see Section 40.2.2 [perlmod Packages], page 732 for details).
For a more in-depth discussion on identifiers, see Section 11.2.2 [Identifier parsing], page 71.
It’s possible to substitute for a simple identifier, an expression that produces a reference to
the value at runtime. This is described in more detail below and in Section 62.1 [perlref
NAME], page 1077.

Perl also has its own built-in variables whose names don’t follow these rules. They have
strange names so they don’t accidentally collide with one of your normal variables. Strings
that match parenthesized parts of a regular expression are saved under names containing
only digits after the $ (see Section 48.1 [perlop NAME], page 798 and Section 58.1 [perlre
NAME], page 989). In addition, several special variables that provide windows into the
inner working of Perl have names containing punctuation characters and control characters.
These are documented in Section 86.1 [perlvar NAME], page 1375.

Scalar values are always named with ’$’, even when referring to a scalar that is part of
an array or a hash. The ’$’ symbol works semantically like the English word "the" in that
it indicates a single value is expected.

$days # the simple scalar value "days"

$days[28] # the 29th element of array @days

$days{’Feb’} # the ’Feb’ value from hash %days

$#days # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by ’@’, which works much
as the word "these" or "those" does in English, in that it indicates multiple values are
expected.

@days # ($days[0], $days[1],... $days[n])

@days[3,4,5] # same as ($days[3],$days[4],$days[5])

@days{’a’,’c’} # same as ($days{’a’},$days{’c’})

Entire hashes are denoted by ’%’:

%days # (key1, val1, key2, val2 ...)

In addition, subroutines are named with an initial ’&’, though this is optional when
unambiguous, just as the word "do" is often redundant in English. Symbol table entries
can be named with an initial ’*’, but you don’t really care about that yet (if ever :-).

Every variable type has its own namespace, as do several non-variable identifiers. This
means that you can, without fear of conflict, use the same name for a scalar variable, an
array, or a hash–or, for that matter, for a filehandle, a directory handle, a subroutine name,
a format name, or a label. This means that $foo and @foo are two different variables. It
also means that $foo[1] is a part of @foo, not a part of $foo. This may seem a bit weird,
but that’s okay, because it is weird.

Because variable references always start with ’$’, ’@’, or ’%’, the "reserved" words aren’t
in fact reserved with respect to variable names. They are reserved with respect to labels
and filehandles, however, which don’t have an initial special character. You can’t have a
filehandle named "log", for instance. Hint: you could say open(LOG,’logfile’) rather
than open(log,’logfile’). Using uppercase filehandles also improves readability and
protects you from conflict with future reserved words. Case is significant–"FOO", "Foo",
and "foo" are all different names. Names that start with a letter or underscore may also
contain digits and underscores.

It is possible to replace such an alphanumeric name with an expression that returns a
reference to the appropriate type. For a description of this, see Section 62.1 [perlref NAME],
page 1077.

Names that start with a digit may contain only more digits. Names that do not start
with a letter, underscore, digit or a caret (i.e. a control character) are limited to one
character, e.g., $% or $$. (Most of these one character names have a predefined significance
to Perl. For instance, $$ is the current process id.)

11.2.2 Identifier parsing

Up until Perl 5.18, the actual rules of what a valid identifier was were a bit fuzzy. However,
in general, anything defined here should work on previous versions of Perl, while the opposite
– edge cases that work in previous versions, but aren’t defined here – probably won’t work
on newer versions. As an important side note, please note that the following only applies
to bareword identifiers as found in Perl source code, not identifiers introduced through
symbolic references, which have much fewer restrictions. If working under the effect of the
use utf8; pragma, the following rules apply:

/ (?[(\p{Word} & \p{XID_Start}) + [_]])

(?[(\p{Word} & \p{XID_Continue})]) * /x

That is, a "start" character followed by any number of "continue" characters. Perl
requires every character in an identifier to also match \w (this prevents some problematic
cases); and Perl additionally accepts identfier names beginning with an underscore.

If not under use utf8, the source is treated as ASCII + 128 extra controls, and identifiers
should match

/ (?aa) (?!\d) \w+ /x

That is, any word character in the ASCII range, as long as the first character is not a
digit.

There are two package separators in Perl: A double colon (::) and a single quote (’).
Normal identifiers can start or end with a double colon, and can contain several parts
delimited by double colons. Single quotes have similar rules, but with the exception that
they are not legal at the end of an identifier: That is, $’foo and $foo’bar are legal, but
$foo’bar’ is not.

Additionally, if the identifier is preceded by a sigil – that is, if the identifier is part of a
variable name – it may optionally be enclosed in braces.

While you can mix double colons with singles quotes, the quotes must come after the
colons: $::::’foo and $foo::’bar are legal, but $::’::foo and $foo’::bar are not.

Put together, a grammar to match a basic identifier becomes

/

(?(DEFINE)

(?<variable>

(?&sigil)

(?:

(?&normal_identifier)

| \{ \s* (?&normal_identifier) \s* \}

)

)

(?<normal_identifier>

(?: ::)* ’?

(?&basic_identifier)

(?: (?= (?: ::)+ ’? | (?: ::)* ’) (?&normal_identifier))?

(?: ::)*

)

(?<basic_identifier>

is use utf8 on?

(?(?{ (caller(0))[8] & $utf8::hint_bits })

(?&Perl_XIDS) (?&Perl_XIDC)*

| (?aa) (?!\d) \w+

)

)

(?<sigil> [&*\$\@\%])

(?<Perl_XIDS> (?[(\p{Word} & \p{XID_Start}) + [_]]))

(?<Perl_XIDC> (?[\p{Word} & \p{XID_Continue}]))

)

/x

Meanwhile, special identifiers don’t follow the above rules; For the most part, all of the
identifiers in this category have a special meaning given by Perl. Because they have special
parsing rules, these generally can’t be fully-qualified. They come in four forms:

• A sigil, followed solely by digits matching \p{POSIX_Digit}, like $0, $1, or $10000.

• A sigil, followed by either a caret and a single POSIX uppercase letter, like $^V or
$^W, or a sigil followed by a literal non-space, non-NUL control character matching the
\p{POSIX_Cntrl} property. Due to a historical oddity, if not running under use utf8,
the 128 characters in the [0x80-0xff] range are considered to be controls, and may
also be used in length-one variables. However, the use of non-graphical characters is
deprecated as of v5.22, and support for them will be removed in a future version of perl.
ASCII space characters and NUL already aren’t allowed, so this means that a single-
character variable name with that name being any other C0 control [0x01-0x1F],
or DEL will generate a deprecated warning. Already, under "use utf8", non-ASCII
characters must match Perl_XIDS. As of v5.22, when not under "use utf8" C1 controls
[0x80-0x9F], NO BREAK SPACE, and SOFT HYPHEN (SHY)) generate a deprecated
warning.

• Similar to the above, a sigil, followed by bareword text in brackets, where the first
character is either a caret followed by an uppercase letter, like ${^GLOBAL_PHASE} or
a non-NUL, non-space literal control like ${\7LOBAL_PHASE}. Like the above, when not
under "use utf8", the characters in [0x80-0xFF] are considered controls, but as of
v5.22, the use of any that are non-graphical are deprecated, and as of v5.20 the use of
any ASCII-range literal control is deprecated. Support for these will be removed in a
future version of perl.

• A sigil followed by a single character matching the \p{POSIX_Punct} property, like $!
or %+, except the character "{" doesn’t work.

Note that as of Perl 5.20, literal control characters in variable names are deprecated;
and as of Perl 5.22, any other non-graphic characters are also deprecated.

11.2.3 Context

The interpretation of operations and values in Perl sometimes depends on the requirements
of the context around the operation or value. There are two major contexts: list and scalar.
Certain operations return list values in contexts wanting a list, and scalar values otherwise.
If this is true of an operation it will be mentioned in the documentation for that operation.
In other words, Perl overloads certain operations based on whether the expected return
value is singular or plural. Some words in English work this way, like "fish" and "sheep".

In a reciprocal fashion, an operation provides either a scalar or a list context to each of
its arguments. For example, if you say

int(<STDIN>)

the integer operation provides scalar context for the <> operator, which responds by
reading one line from STDIN and passing it back to the integer operation, which will then
find the integer value of that line and return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation provides list context for <>, which will proceed to read every line
available up to the end of file, and pass that list of lines back to the sort routine, which will
then sort those lines and return them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the
context for the right argument. Assignment to a scalar evaluates the right-hand side in
scalar context, while assignment to an array or hash evaluates the righthand side in list

context. Assignment to a list (or slice, which is just a list anyway) also evaluates the
right-hand side in list context.

When you use the use warnings pragma or Perl’s -w command-line option, you may
see warnings about useless uses of constants or functions in "void context". Void context
just means the value has been discarded, such as a statement containing only "fred";

or getpwuid(0);. It still counts as scalar context for functions that care whether or not
they’re being called in list context.

User-defined subroutines may choose to care whether they are being called in a void,
scalar, or list context. Most subroutines do not need to bother, though. That’s because
both scalars and lists are automatically interpolated into lists. See [perlfunc wantarray],
page 488 for how you would dynamically discern your function’s calling context.

11.2.4 Scalar values

All data in Perl is a scalar, an array of scalars, or a hash of scalars. A scalar may contain
one single value in any of three different flavors: a number, a string, or a reference. In
general, conversion from one form to another is transparent. Although a scalar may not
directly hold multiple values, it may contain a reference to an array or hash which in turn
contains multiple values.

Scalars aren’t necessarily one thing or another. There’s no place to declare a scalar
variable to be of type "string", type "number", type "reference", or anything else. Because
of the automatic conversion of scalars, operations that return scalars don’t need to care (and
in fact, cannot care) whether their caller is looking for a string, a number, or a reference. Perl
is a contextually polymorphic language whose scalars can be strings, numbers, or references
(which includes objects). Although strings and numbers are considered pretty much the
same thing for nearly all purposes, references are strongly-typed, uncastable pointers with
builtin reference-counting and destructor invocation.

A scalar value is interpreted as FALSE in the Boolean sense if it is undefined, the null
string or the number 0 (or its string equivalent, "0"), and TRUE if it is anything else. The
Boolean context is just a special kind of scalar context where no conversion to a string or
a number is ever performed.

There are actually two varieties of null strings (sometimes referred to as "empty" strings),
a defined one and an undefined one. The defined version is just a string of length zero, such
as "". The undefined version is the value that indicates that there is no real value for
something, such as when there was an error, or at end of file, or when you refer to an
uninitialized variable or element of an array or hash. Although in early versions of Perl, an
undefined scalar could become defined when first used in a place expecting a defined value,
this no longer happens except for rare cases of autovivification as explained in Section 62.1
[perlref NAME], page 1077. You can use the defined() operator to determine whether a
scalar value is defined (this has no meaning on arrays or hashes), and the undef() operator
to produce an undefined value.

To find out whether a given string is a valid non-zero number, it’s sometimes enough
to test it against both numeric 0 and also lexical "0" (although this will cause noises if
warnings are on). That’s because strings that aren’t numbers count as 0, just as they do in
awk:

if ($str == 0 && $str ne "0") {

warn "That doesn’t look like a number";

}

That method may be best because otherwise you won’t treat IEEE notations like NaN or
Infinity properly. At other times, you might prefer to determine whether string data can
be used numerically by calling the POSIX::strtod() function or by inspecting your string
with a regular expression (as documented in Section 58.1 [perlre NAME], page 989).

warn "has nondigits" if /\D/;

warn "not a natural number" unless /^\d+$/; # rejects -3

warn "not an integer" unless /^-?\d+$/; # rejects +3

warn "not an integer" unless /^[+-]?\d+$/;

warn "not a decimal number" unless /^-?\d+\.?\d*$/; # rejects .2

warn "not a decimal number" unless /^-?(?:\d+(?:\.\d*)?|\.\d+)$/;

warn "not a C float"

unless /^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/;

The length of an array is a scalar value. You may find the length of array @days by
evaluating $#days, as in csh. However, this isn’t the length of the array; it’s the subscript of
the last element, which is a different value since there is ordinarily a 0th element. Assigning
to $#days actually changes the length of the array. Shortening an array this way destroys
intervening values. Lengthening an array that was previously shortened does not recover
values that were in those elements.

You can also gain some minuscule measure of efficiency by pre-extending an array that
is going to get big. You can also extend an array by assigning to an element that is off the
end of the array. You can truncate an array down to nothing by assigning the null list ()
to it. The following are equivalent:

@whatever = ();

$#whatever = -1;

If you evaluate an array in scalar context, it returns the length of the array. (Note that
this is not true of lists, which return the last value, like the C comma operator, nor of
built-in functions, which return whatever they feel like returning.) The following is always
true:

scalar(@whatever) == $#whatever + 1;

Some programmers choose to use an explicit conversion so as to leave nothing to doubt:

$element_count = scalar(@whatever);

If you evaluate a hash in scalar context, it returns false if the hash is empty. If there are
any key/value pairs, it returns true; more precisely, the value returned is a string consisting
of the number of used buckets and the number of allocated buckets, separated by a slash.
This is pretty much useful only to find out whether Perl’s internal hashing algorithm is
performing poorly on your data set. For example, you stick 10,000 things in a hash, but
evaluating %HASH in scalar context reveals "1/16", which means only one out of sixteen
buckets has been touched, and presumably contains all 10,000 of your items. This isn’t
supposed to happen. If a tied hash is evaluated in scalar context, the SCALAR method is
called (with a fallback to FIRSTKEY).

You can preallocate space for a hash by assigning to the keys() function. This rounds
up the allocated buckets to the next power of two:

keys(%users) = 1000; # allocate 1024 buckets

11.2.5 Scalar value constructors

Numeric literals are specified in any of the following floating point or integer formats:

12345

12345.67

.23E-10 # a very small number

3.14_15_92 # a very important number

4_294_967_296 # underscore for legibility

0xff # hex

0xdead_beef # more hex

0377 # octal (only numbers, begins with 0)

0b011011 # binary

0x1.999ap-4 # hexadecimal floating point (the ’p’ is required)

You are allowed to use underscores (underbars) in numeric literals between digits for
legibility (but not multiple underscores in a row: 23__500 is not legal; 23_500 is). You
could, for example, group binary digits by threes (as for a Unix-style mode argument such
as 0b110 100 100) or by fours (to represent nibbles, as in 0b1010 0110) or in other groups.

String literals are usually delimited by either single or double quotes. They work much
like quotes in the standard Unix shells: double-quoted string literals are subject to backslash
and variable substitution; single-quoted strings are not (except for \’ and \\). The usual C-
style backslash rules apply for making characters such as newline, tab, etc., as well as some
more exotic forms. See Section 48.2.29 [perlop Quote and Quote-like Operators], page 818
for a list.

Hexadecimal, octal, or binary, representations in string literals (e.g. ’0xff’) are not
automatically converted to their integer representation. The hex() and oct() functions
make these conversions for you. See [perlfunc hex], page 395 and [perlfunc oct], page 406
for more details.

Hexadecimal floating point can start just like a hexadecimal literal, and it can be followed
by an optional fractional hexadecimal part, but it must be followed by p, an optional sign,
and a power of two. The format is useful for accurately presenting floating point values,
avoiding conversions to or from decimal floating point, and therefore avoiding possible loss
in precision. Notice that while most current platforms use the 64-bit IEEE 754 floating
point, not all do. Another potential source of (low-order) differences are the floating point
rounding modes, which can differ between CPUs, operating systems, and compilers, and
which Perl doesn’t control.

You can also embed newlines directly in your strings, i.e., they can end on a different
line than they begin. This is nice, but if you forget your trailing quote, the error will not be
reported until Perl finds another line containing the quote character, which may be much
further on in the script. Variable substitution inside strings is limited to scalar variables,
arrays, and array or hash slices. (In other words, names beginning with $ or @, followed
by an optional bracketed expression as a subscript.) The following code segment prints out
"The price is $100."

$Price = ’$100’; # not interpolated

print "The price is $Price.\n"; # interpolated

There is no double interpolation in Perl, so the $100 is left as is.

By default floating point numbers substituted inside strings use the dot (".") as the
decimal separator. If use locale is in effect, and POSIX::setlocale() has been called, the
character used for the decimal separator is affected by the LC NUMERIC locale. See
Section 38.1 [perllocale NAME], page 701 and POSIX.

As in some shells, you can enclose the variable name in braces to disambiguate it from
following alphanumerics (and underscores). You must also do this when interpolating a
variable into a string to separate the variable name from a following double-colon or an
apostrophe, since these would be otherwise treated as a package separator:

$who = "Larry";

print PASSWD "${who}::0:0:Superuser:/:/bin/perl\n";

print "We use ${who}speak when ${who}’s here.\n";

Without the braces, Perl would have looked for a $whospeak, a $who::0, and a $who’s

variable. The last two would be the $0 and the $s variables in the (presumably) non-existent
package who.

In fact, a simple identifier within such curlies is forced to be a string, and likewise
within a hash subscript. Neither need quoting. Our earlier example, $days{’Feb’} can be
written as $days{Feb} and the quotes will be assumed automatically. But anything more
complicated in the subscript will be interpreted as an expression. This means for example
that $version{2.0}++ is equivalent to $version{2}++, not to $version{’2.0’}++.

11.2.5.1 Special floating point: infinity (Inf) and not-a-number
(NaN)

Floating point values include the special values Inf and NaN, for infinity and not-a-number.
The infinity can be also negative.

The infinity is the result of certain math operations that overflow the floating point range,
like 9**9**9. The not-a-number is the result when the result is undefined or unrepresentable.
Though note that you cannot get NaN from some common "undefined" or "out-of-range"
operations like dividing by zero, or square root of a negative number, since Perl generates
fatal errors for those.

The infinity and not-a-number have their own special arithmetic rules. The general rule
is that they are "contagious": Inf plus one is Inf, and NaN plus one is NaN. Where things
get interesting is when you combine infinities and not-a-numbers: Inf minus Inf and Inf

divided by INf are NaN (while Inf plus Inf is Inf and Inf times Inf is Inf). NaN is also
curious in that it does not equal any number, including itself: NaN != NaN.

Perl doesn’t understand Inf and NaN as numeric literals, but you can have them as
strings, and Perl will convert them as needed: "Inf" + 1. (You can, however, import them
from the POSIX extension; use POSIX qw(Inf NaN); and then use them as literals.)

Note that on input (string to number) Perl accepts Inf and NaN in many forms. Case is
ignored, and the Win32-specific forms like 1.#INF are understood, but on output the values
are normalized to Inf and NaN.

11.2.5.2 Version Strings

A literal of the form v1.20.300.4000 is parsed as a string composed of characters with the
specified ordinals. This form, known as v-strings, provides an alternative, more readable
way to construct strings, rather than use the somewhat less readable interpolation form

"\x{1}\x{14}\x{12c}\x{fa0}". This is useful for representing Unicode strings, and for
comparing version "numbers" using the string comparison operators, cmp, gt, lt etc. If
there are two or more dots in the literal, the leading v may be omitted.

print v9786; # prints SMILEY, "\x{263a}"

print v102.111.111; # prints "foo"

print 102.111.111; # same

Such literals are accepted by both require and use for doing a version check. Note
that using the v-strings for IPv4 addresses is not portable unless you also use the
inet aton()/inet ntoa() routines of the Socket package.

Note that since Perl 5.8.1 the single-number v-strings (like v65) are not v-strings before
the => operator (which is usually used to separate a hash key from a hash value); instead
they are interpreted as literal strings (’v65’). They were v-strings from Perl 5.6.0 to Perl
5.8.0, but that caused more confusion and breakage than good. Multi-number v-strings like
v65.66 and 65.66.67 continue to be v-strings always.

11.2.5.3 Special Literals

The special literals FILE , LINE , and PACKAGE represent the current file-
name, line number, and package name at that point in your program. SUB gives a
reference to the current subroutine. They may be used only as separate tokens; they will
not be interpolated into strings. If there is no current package (due to an empty package;

directive), PACKAGE is the undefined value. (But the empty package; is no longer
supported, as of version 5.10.) Outside of a subroutine, SUB is the undefined value.
SUB is only available in 5.16 or higher, and only with a use v5.16 or use feature

"current_sub" declaration.

The two control characters ^D and ^Z, and the tokens END and DATA may be
used to indicate the logical end of the script before the actual end of file. Any following
text is ignored.

Text after DATA may be read via the filehandle PACKNAME::DATA, where PACKNAME
is the package that was current when the DATA token was encountered. The filehandle
is left open pointing to the line after DATA . The program should close DATA when
it is done reading from it. (Leaving it open leaks filehandles if the module is reloaded for
any reason, so it’s a safer practice to close it.) For compatibility with older scripts written
before DATA was introduced, END behaves like DATA in the top level script
(but not in files loaded with require or do) and leaves the remaining contents of the file
accessible via main::DATA.

See SelfLoader for more description of DATA , and an example of its use. Note that
you cannot read from the DATA filehandle in a BEGIN block: the BEGIN block is executed
as soon as it is seen (during compilation), at which point the corresponding DATA (or
END) token has not yet been seen.

11.2.5.4 Barewords

A word that has no other interpretation in the grammar will be treated as if it were a quoted
string. These are known as "barewords". As with filehandles and labels, a bareword that
consists entirely of lowercase letters risks conflict with future reserved words, and if you use
the use warnings pragma or the -w switch, Perl will warn you about any such words. Perl

limits barewords (like identifiers) to about 250 characters. Future versions of Perl are likely
to eliminate these arbitrary limitations.

Some people may wish to outlaw barewords entirely. If you say

use strict ’subs’;

then any bareword that would NOT be interpreted as a subroutine call produces a
compile-time error instead. The restriction lasts to the end of the enclosing block. An inner
block may countermand this by saying no strict ’subs’.

11.2.5.5 Array Interpolation

Arrays and slices are interpolated into double-quoted strings by joining the elements with
the delimiter specified in the $" variable ($LIST_SEPARATOR if "use English;" is specified),
space by default. The following are equivalent:

$temp = join($", @ARGV);

system "echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution) there is an
unfortunate ambiguity: Is /$foo[bar]/ to be interpreted as /${foo}[bar]/ (where [bar]
is a character class for the regular expression) or as /${foo[bar]}/ (where [bar] is the
subscript to array @foo)? If @foo doesn’t otherwise exist, then it’s obviously a character
class. If @foo exists, Perl takes a good guess about [bar], and is almost always right. If it
does guess wrong, or if you’re just plain paranoid, you can force the correct interpretation
with curly braces as above.

If you’re looking for the information on how to use here-documents, which used to
be here, that’s been moved to Section 48.2.29 [perlop Quote and Quote-like Operators],
page 818.

11.2.6 List value constructors

List values are denoted by separating individual values by commas (and enclosing the list
in parentheses where precedence requires it):

(LIST)

In a context not requiring a list value, the value of what appears to be a list literal is
simply the value of the final element, as with the C comma operator. For example,

@foo = (’cc’, ’-E’, $bar);

assigns the entire list value to array @foo, but

$foo = (’cc’, ’-E’, $bar);

assigns the value of variable $bar to the scalar variable $foo. Note that the value of an
actual array in scalar context is the length of the array; the following assigns the value 3 to
$foo:

@foo = (’cc’, ’-E’, $bar);

$foo = @foo; # $foo gets 3

You may have an optional comma before the closing parenthesis of a list literal, so that
you can say:

@foo = (

1,

2,

3,

);

To use a here-document to assign an array, one line per element, you might use an
approach like this:

@sauces = <<End_Lines =~ m/(\S.*\S)/g;

normal tomato

spicy tomato

green chile

pesto

white wine

End_Lines

LISTs do automatic interpolation of sublists. That is, when a LIST is evaluated, each
element of the list is evaluated in list context, and the resulting list value is interpolated
into LIST just as if each individual element were a member of LIST. Thus arrays and hashes
lose their identity in a LIST–the list

(@foo,@bar,&SomeSub,%glarch)

contains all the elements of @foo followed by all the elements of @bar, followed by all
the elements returned by the subroutine named SomeSub called in list context, followed by
the key/value pairs of %glarch. To make a list reference that does NOT interpolate, see
Section 62.1 [perlref NAME], page 1077.

The null list is represented by (). Interpolating it in a list has no effect. Thus ((),(),())
is equivalent to (). Similarly, interpolating an array with no elements is the same as if no
array had been interpolated at that point.

This interpolation combines with the facts that the opening and closing parentheses are
optional (except when necessary for precedence) and lists may end with an optional comma
to mean that multiple commas within lists are legal syntax. The list 1,,3 is a concatenation
of two lists, 1, and 3, the first of which ends with that optional comma. 1,,3 is (1,),(3)
is 1,3 (And similarly for 1,,,3 is (1,),(,),3 is 1,3 and so on.) Not that we’d advise you
to use this obfuscation.

A list value may also be subscripted like a normal array. You must put the list in
parentheses to avoid ambiguity. For example:

Stat returns list value.

$time = (stat($file))[8];

SYNTAX ERROR HERE.

$time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

Find a hex digit.

$hexdigit = (’a’,’b’,’c’,’d’,’e’,’f’)[$digit-10];

A "reverse comma operator".

return (pop(@foo),pop(@foo))[0];

Lists may be assigned to only when each element of the list is itself legal to assign to:

($a, $b, $c) = (1, 2, 3);

($map{’red’}, $map{’blue’}, $map{’green’}) = (0x00f, 0x0f0, 0xf00);

An exception to this is that you may assign to undef in a list. This is useful for throwing
away some of the return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

As of Perl 5.22, you can also use (undef)x2 instead of undef, undef. (You can also do
($x) x 2, which is less useful, because it assigns to the same variable twice, clobbering the
first value assigned.)

List assignment in scalar context returns the number of elements produced by the ex-
pression on the right side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2

$x = (($foo,$bar) = f()); # set $x to f()’s return count

This is handy when you want to do a list assignment in a Boolean context, because most
list functions return a null list when finished, which when assigned produces a 0, which is
interpreted as FALSE.

It’s also the source of a useful idiom for executing a function or performing an operation
in list context and then counting the number of return values, by assigning to an empty list
and then using that assignment in scalar context. For example, this code:

$count = () = $string =~ /\d+/g;

will place into $count the number of digit groups found in $string. This happens because
the pattern match is in list context (since it is being assigned to the empty list), and will
therefore return a list of all matching parts of the string. The list assignment in scalar
context will translate that into the number of elements (here, the number of times the
pattern matched) and assign that to $count. Note that simply using

$count = $string =~ /\d+/g;

would not have worked, since a pattern match in scalar context will only return true or
false, rather than a count of matches.

The final element of a list assignment may be an array or a hash:

($a, $b, @rest) = split;

my($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the list, but the first one in the list
will soak up all the values, and anything after it will become undefined. This may be useful
in a my() or local().

A hash can be initialized using a literal list holding pairs of items to be interpreted as a
key and a value:

same as map assignment above

%map = (’red’,0x00f,’blue’,0x0f0,’green’,0xf00);

While literal lists and named arrays are often interchangeable, that’s not the case for
hashes. Just because you can subscript a list value like a normal array does not mean that
you can subscript a list value as a hash. Likewise, hashes included as parts of other lists

(including parameters lists and return lists from functions) always flatten out into key/value
pairs. That’s why it’s good to use references sometimes.

It is often more readable to use the => operator between key/value pairs. The => operator
is mostly just a more visually distinctive synonym for a comma, but it also arranges for
its left-hand operand to be interpreted as a string if it’s a bareword that would be a legal
simple identifier. => doesn’t quote compound identifiers, that contain double colons. This
makes it nice for initializing hashes:

%map = (

red => 0x00f,

blue => 0x0f0,

green => 0xf00,

);

or for initializing hash references to be used as records:

$rec = {

witch => ’Mable the Merciless’,

cat => ’Fluffy the Ferocious’,

date => ’10/31/1776’,

};

or for using call-by-named-parameter to complicated functions:

$field = $query->radio_group(

name => ’group_name’,

values => [’eenie’,’meenie’,’minie’],

default => ’meenie’,

linebreak => ’true’,

labels => \%labels

);

Note that just because a hash is initialized in that order doesn’t mean that it comes
out in that order. See 〈undefined〉 [perlfunc sort], page 〈undefined〉 for examples of how to
arrange for an output ordering.

If a key appears more than once in the initializer list of a hash, the last occurrence wins:

%circle = (

center => [5, 10],

center => [27, 9],

radius => 100,

color => [0xDF, 0xFF, 0x00],

radius => 54,

);

same as

%circle = (

center => [27, 9],

color => [0xDF, 0xFF, 0x00],

radius => 54,

);

This can be used to provide overridable configuration defaults:

values in %args take priority over %config_defaults

%config = (%config_defaults, %args);

11.2.7 Subscripts

An array can be accessed one scalar at a time by specifying a dollar sign ($), then the name
of the array (without the leading @), then the subscript inside square brackets. For example:

@myarray = (5, 50, 500, 5000);

print "The Third Element is", $myarray[2], "\n";

The array indices start with 0. A negative subscript retrieves its value from the end.
In our example, $myarray[-1] would have been 5000, and $myarray[-2] would have been
500.

Hash subscripts are similar, only instead of square brackets curly brackets are used. For
example:

%scientists =

(

"Newton" => "Isaac",

"Einstein" => "Albert",

"Darwin" => "Charles",

"Feynman" => "Richard",

);

print "Darwin’s First Name is ", $scientists{"Darwin"}, "\n";

You can also subscript a list to get a single element from it:

$dir = (getpwnam("daemon"))[7];

11.2.8 Multi-dimensional array emulation

Multidimensional arrays may be emulated by subscripting a hash with a list. The elements
of the list are joined with the subscript separator (see [perlvar $;], page 1380).

$foo{$a,$b,$c}

is equivalent to

$foo{join($;, $a, $b, $c)}

The default subscript separator is "\034", the same as SUBSEP in awk.

11.2.9 Slices

A slice accesses several elements of a list, an array, or a hash simultaneously using a list
of subscripts. It’s more convenient than writing out the individual elements as a list of
separate scalar values.

($him, $her) = @folks[0,-1]; # array slice

@them = @folks[0 .. 3]; # array slice

($who, $home) = @ENV{"USER", "HOME"}; # hash slice

($uid, $dir) = (getpwnam("daemon"))[2,7]; # list slice

Since you can assign to a list of variables, you can also assign to an array or hash slice.

@days[3..5] = qw/Wed Thu Fri/;

@colors{’red’,’blue’,’green’}

= (0xff0000, 0x0000ff, 0x00ff00);

@folks[0, -1] = @folks[-1, 0];

The previous assignments are exactly equivalent to

($days[3], $days[4], $days[5]) = qw/Wed Thu Fri/;

($colors{’red’}, $colors{’blue’}, $colors{’green’})

= (0xff0000, 0x0000ff, 0x00ff00);

($folks[0], $folks[-1]) = ($folks[-1], $folks[0]);

Since changing a slice changes the original array or hash that it’s slicing, a foreach

construct will alter some–or even all–of the values of the array or hash.

foreach (@array[4 .. 10]) { s/peter/paul/ }

foreach (@hash{qw[key1 key2]}) {

s/^\s+//; # trim leading whitespace

s/\s+$//; # trim trailing whitespace

s/(\w+)/\u\L$1/g; # "titlecase" words

}

As a special exception, when you slice a list (but not an array or a hash), if the list
evaluates to empty, then taking a slice of that empty list will always yield the empty list in
turn. Thus:

@a = ()[0,1]; # @a has no elements

@b = (@a)[0,1]; # @b has no elements

@c = (sub{}->())[0,1]; # @c has no elements

@d = (’a’,’b’)[0,1]; # @d has two elements

@e = (@d)[0,1,8,9]; # @e has four elements

@f = (@d)[8,9]; # @f has two elements

This makes it easy to write loops that terminate when a null list is returned:

while (($home, $user) = (getpwent)[7,0]) {

printf "%-8s %s\n", $user, $home;

}

As noted earlier in this document, the scalar sense of list assignment is the number of
elements on the right-hand side of the assignment. The null list contains no elements, so
when the password file is exhausted, the result is 0, not 2.

Slices in scalar context return the last item of the slice.

@a = qw/first second third/;

%h = (first => ’A’, second => ’B’);

$t = @a[0, 1]; # $t is now ’second’

$u = @h{’first’, ’second’}; # $u is now ’B’

If you’re confused about why you use an ’@’ there on a hash slice instead of a ’%’, think
of it like this. The type of bracket (square or curly) governs whether it’s an array or a hash
being looked at. On the other hand, the leading symbol (’$’ or ’@’) on the array or hash
indicates whether you are getting back a singular value (a scalar) or a plural one (a list).

11.2.9.1 Key/Value Hash Slices

Starting in Perl 5.20, a hash slice operation with the % symbol is a variant of slice operation
returning a list of key/value pairs rather than just values:

%h = (blonk => 2, foo => 3, squink => 5, bar => 8);

%subset = %h{’foo’, ’bar’}; # key/value hash slice

%subset is now (foo => 3, bar => 8)

However, the result of such a slice cannot be localized, deleted or used in assignment.
These are otherwise very much consistent with hash slices using the @ symbol.

11.2.9.2 Index/Value Array Slices

Similar to key/value hash slices (and also introduced in Perl 5.20), the % array slice syntax
returns a list of index/value pairs:

@a = "a".."z";

@list = %a[3,4,6];

@list is now (3, "d", 4, "e", 6, "g")

11.2.10 Typeglobs and Filehandles

Perl uses an internal type called a typeglob to hold an entire symbol table entry. The type
prefix of a typeglob is a *, because it represents all types. This used to be the preferred way
to pass arrays and hashes by reference into a function, but now that we have real references,
this is seldom needed.

The main use of typeglobs in modern Perl is create symbol table aliases. This assignment:

*this = *that;

makes $this an alias for $that, @this an alias for @that, %this an alias for %that, &this
an alias for &that, etc. Much safer is to use a reference. This:

local *Here::blue = \$There::green;

temporarily makes $Here::blue an alias for $There::green, but doesn’t make @Here::blue
an alias for @There::green, or %Here::blue an alias for %There::green, etc. See Section 40.2.3
[perlmod Symbol Tables], page 733 for more examples of this. Strange though this may
seem, this is the basis for the whole module import/export system.

Another use for typeglobs is to pass filehandles into a function or to create new filehan-
dles. If you need to use a typeglob to save away a filehandle, do it this way:

$fh = *STDOUT;

or perhaps as a real reference, like this:

$fh = *STDOUT;

See Section 73.1 [perlsub NAME], page 1216 for examples of using these as indirect
filehandles in functions.

Typeglobs are also a way to create a local filehandle using the local() operator. These
last until their block is exited, but may be passed back. For example:

sub newopen {

my $path = shift;

local *FH; # not my!

open (FH, $path) or return undef;

return *FH;

}

$fh = newopen(’/etc/passwd’);

Now that we have the *foo{THING} notation, typeglobs aren’t used as much for filehandle
manipulations, although they’re still needed to pass brand new file and directory handles
into or out of functions. That’s because *HANDLE{IO} only works if HANDLE has already
been used as a handle. In other words, *FH must be used to create new symbol table entries;
*foo{THING} cannot. When in doubt, use *FH.

All functions that are capable of creating filehandles (open(), opendir(), pipe(), socket-
pair(), sysopen(), socket(), and accept()) automatically create an anonymous filehandle if
the handle passed to them is an uninitialized scalar variable. This allows the constructs
such as open(my $fh, ...) and open(local $fh,...) to be used to create filehandles that
will conveniently be closed automatically when the scope ends, provided there are no other
references to them. This largely eliminates the need for typeglobs when opening filehandles
that must be passed around, as in the following example:

sub myopen {

open my $fh, "@_"

or die "Can’t open ’@_’: $!";

return $fh;

}

{

my $f = myopen("</etc/motd");

print <$f>;

$f implicitly closed here

}

Note that if an initialized scalar variable is used instead the result is different: my

$fh=’zzz’; open($fh, ...) is equivalent to open(*{’zzz’}, ...). use strict ’refs’

forbids such practice.

Another way to create anonymous filehandles is with the Symbol module or with the
IO::Handle module and its ilk. These modules have the advantage of not hiding different
types of the same name during the local(). See the bottom of 〈undefined〉 [perlfunc open],
page 〈undefined〉 for an example.

11.3 SEE ALSO

See Section 86.1 [perlvar NAME], page 1375 for a description of Perl’s built-in variables
and a discussion of legal variable names. See Section 62.1 [perlref NAME], page 1077,
Section 73.1 [perlsub NAME], page 1216, and Section 40.2.3 [perlmod Symbol Tables],
page 733 for more discussion on typeglobs and the *foo{THING} syntax.

12 perldbmfilter

12.1 NAME

perldbmfilter - Perl DBM Filters

12.2 SYNOPSIS

$db = tie %hash, ’DBM’, ...

$old_filter = $db->filter_store_key (sub { ... });

$old_filter = $db->filter_store_value(sub { ... });

$old_filter = $db->filter_fetch_key (sub { ... });

$old_filter = $db->filter_fetch_value(sub { ... });

12.3 DESCRIPTION

The four filter_* methods shown above are available in all the DBM modules that ship
with Perl, namely DB File, GDBM File, NDBM File, ODBM File and SDBM File.

Each of the methods works identically, and is used to install (or uninstall) a single DBM
Filter. The only difference between them is the place that the filter is installed.

To summarise:

filter store key
If a filter has been installed with this method, it will be invoked every time you
write a key to a DBM database.

filter store value
If a filter has been installed with this method, it will be invoked every time you
write a value to a DBM database.

filter fetch key
If a filter has been installed with this method, it will be invoked every time you
read a key from a DBM database.

filter fetch value
If a filter has been installed with this method, it will be invoked every time you
read a value from a DBM database.

You can use any combination of the methods from none to all four.

All filter methods return the existing filter, if present, or undef if not.

To delete a filter pass undef to it.

12.3.1 The Filter

When each filter is called by Perl, a local copy of $_ will contain the key or value to be
filtered. Filtering is achieved by modifying the contents of $_. The return code from the
filter is ignored.

12.3.2 An Example: the NULL termination problem.

DBM Filters are useful for a class of problems where you always want to make the same
transformation to all keys, all values or both.

For example, consider the following scenario. You have a DBM database that you need
to share with a third-party C application. The C application assumes that all keys and
values are NULL terminated. Unfortunately when Perl writes to DBM databases it doesn’t
use NULL termination, so your Perl application will have to manage NULL termination
itself. When you write to the database you will have to use something like this:

$hash{"$key\0"} = "$value\0";

Similarly the NULL needs to be taken into account when you are considering the length
of existing keys/values.

It would be much better if you could ignore the NULL terminations issue in the main
application code and have a mechanism that automatically added the terminating NULL
to all keys and values whenever you write to the database and have them removed when
you read from the database. As I’m sure you have already guessed, this is a problem that
DBM Filters can fix very easily.

use strict;

use warnings;

use SDBM_File;

use Fcntl;

my %hash;

my $filename = "filt";

unlink $filename;

my $db = tie(%hash, ’SDBM_File’, $filename, O_RDWR|O_CREAT, 0640)

or die "Cannot open $filename: $!\n";

Install DBM Filters

$db->filter_fetch_key (sub { s/\0$// });

$db->filter_store_key (sub { $_ .= "\0" });

$db->filter_fetch_value(

sub { no warnings ’uninitialized’; s/\0$// });

$db->filter_store_value(sub { $_ .= "\0" });

$hash{"abc"} = "def";

my $a = $hash{"ABC"};

...

undef $db;

untie %hash;

The code above uses SDBM File, but it will work with any of the DBM modules.

Hopefully the contents of each of the filters should be self-explanatory. Both "fetch"
filters remove the terminating NULL, and both "store" filters add a terminating NULL.

12.3.3 Another Example: Key is a C int.

Here is another real-life example. By default, whenever Perl writes to a DBM database it
always writes the key and value as strings. So when you use this:

$hash{12345} = "something";

the key 12345 will get stored in the DBM database as the 5 byte string "12345". If you
actually want the key to be stored in the DBM database as a C int, you will have to use
pack when writing, and unpack when reading.

Here is a DBM Filter that does it:

use strict;

use warnings;

use DB_File;

my %hash;

my $filename = "filt";

unlink $filename;

my $db = tie %hash, ’DB_File’, $filename, O_CREAT|O_RDWR, 0666,

$DB_HASH or die "Cannot open $filename: $!\n";

$db->filter_fetch_key (sub { $_ = unpack("i", $_) });

$db->filter_store_key (sub { $_ = pack ("i", $_) });

$hash{123} = "def";

...

undef $db;

untie %hash;

The code above uses DB File, but again it will work with any of the DBM modules.

This time only two filters have been used; we only need to manipulate the contents of
the key, so it wasn’t necessary to install any value filters.

12.4 SEE ALSO

DB_File, GDBM_File, NDBM_File, ODBM_File and SDBM_File.

12.5 AUTHOR

Paul Marquess

13 perldebguts

13.1 NAME

perldebguts - Guts of Perl debugging

13.2 DESCRIPTION

This is not Section 15.1 [perldebug NAME], page 120, which tells you how to use the
debugger. This manpage describes low-level details concerning the debugger’s internals,
which range from difficult to impossible to understand for anyone who isn’t incredibly
intimate with Perl’s guts. Caveat lector.

13.3 Debugger Internals

Perl has special debugging hooks at compile-time and run-time used to create debugging
environments. These hooks are not to be confused with the perl -Dxxx command described
in Section 69.1 [perlrun NAME], page 1176, which is usable only if a special Perl is built
per the instructions in the INSTALL podpage in the Perl source tree.

For example, whenever you call Perl’s built-in caller function from the package DB, the
arguments that the corresponding stack frame was called with are copied to the @DB::args
array. These mechanisms are enabled by calling Perl with the -d switch. Specifically, the
following additional features are enabled (cf. [perlvar $^P], page 1405):

• Perl inserts the contents of $ENV{PERL5DB} (or BEGIN {require ’perl5db.pl’} if not
present) before the first line of your program.

• Each array @{"_<$filename"} holds the lines of $filename for a file compiled by Perl.
The same is also true for evaled strings that contain subroutines, or which are currently
being executed. The $filename for evaled strings looks like (eval 34).

Values in this array are magical in numeric context: they compare equal to zero only
if the line is not breakable.

• Each hash %{"_<$filename"} contains breakpoints and actions keyed by line number.
Individual entries (as opposed to the whole hash) are settable. Perl only cares about
Boolean true here, although the values used by perl5db.pl have the form "$break_

condition\0$action".

The same holds for evaluated strings that contain subroutines, or which are currently
being executed. The $filename for evaled strings looks like (eval 34).

• Each scalar ${"_<$filename"} contains "_<$filename". This is also the case for
evaluated strings that contain subroutines, or which are currently being executed. The
$filename for evaled strings looks like (eval 34).

• After each required file is compiled, but before it is executed, DB::postponed(*{"_
<$filename"}) is called if the subroutine DB::postponed exists. Here, the $filename
is the expanded name of the required file, as found in the values of %INC.

• After each subroutine subname is compiled, the existence of $DB::postponed{subname}
is checked. If this key exists, DB::postponed(subname) is called if the DB::postponed
subroutine also exists.

• A hash %DB::sub is maintained, whose keys are subroutine names and whose values
have the form filename:startline-endline. filename has the form (eval 34) for
subroutines defined inside evals.

• When the execution of your program reaches a point that can hold a breakpoint,
the DB::DB() subroutine is called if any of the variables $DB::trace, $DB::single, or
$DB::signal is true. These variables are not localizable. This feature is disabled when
executing inside DB::DB(), including functions called from it unless $^D & (1<<30) is
true.

• When execution of the program reaches a subroutine call, a call to &DB::sub(args) is
made instead, with $DB::sub holding the name of the called subroutine. (This doesn’t
happen if the subroutine was compiled in the DB package.)

If the call is to an lvalue subroutine, and &DB::lsub is defined &DB::lsub(args) is
called instead, otherwise falling back to &DB::sub(args).

• When execution of the program uses goto to enter a non-XS subroutine and the 0x80
bit is set in $^P, a call to &DB::goto is made, with $DB::sub holding the name of the
subroutine being entered.

Note that if &DB::sub needs external data for it to work, no subroutine call is possible
without it. As an example, the standard debugger’s &DB::sub depends on the $DB::deep

variable (it defines how many levels of recursion deep into the debugger you can go before
a mandatory break). If $DB::deep is not defined, subroutine calls are not possible, even
though &DB::sub exists.

13.3.1 Writing Your Own Debugger

13.3.1.1 Environment Variables

The PERL5DB environment variable can be used to define a debugger. For example, the
minimal "working" debugger (it actually doesn’t do anything) consists of one line:

sub DB::DB {}

It can easily be defined like this:

$ PERL5DB="sub DB::DB {}" perl -d your-script

Another brief debugger, slightly more useful, can be created with only the line:

sub DB::DB {print ++$i; scalar <STDIN>}

This debugger prints a number which increments for each statement encountered and
waits for you to hit a newline before continuing to the next statement.

The following debugger is actually useful:

{

package DB;

sub DB {}

sub sub {print ++$i, " $sub\n"; &$sub}

}

It prints the sequence number of each subroutine call and the name of the called sub-
routine. Note that &DB::sub is being compiled into the package DB through the use of the
package directive.

When it starts, the debugger reads your rc file (./.perldb or ~/.perldb under Unix),
which can set important options. (A subroutine (&afterinit) can be defined here as well;
it is executed after the debugger completes its own initialization.)

After the rc file is read, the debugger reads the PERLDB OPTS environment variable
and uses it to set debugger options. The contents of this variable are treated as if they were
the argument of an o ... debugger command (q.v. in Section 15.3.3 [perldebug Configurable
Options], page 128).

13.3.1.2 Debugger Internal Variables

In addition to the file and subroutine-related variables mentioned above, the debugger also
maintains various magical internal variables.

• @DB::dbline is an alias for @{"::_<current_file"}, which holds the lines of the
currently-selected file (compiled by Perl), either explicitly chosen with the debugger’s
f command, or implicitly by flow of execution.

Values in this array are magical in numeric context: they compare equal to zero only
if the line is not breakable.

• %DB::dbline is an alias for %{"::_<current_file"}, which contains breakpoints and
actions keyed by line number in the currently-selected file, either explicitly chosen with
the debugger’s f command, or implicitly by flow of execution.

As previously noted, individual entries (as opposed to the whole hash) are settable.
Perl only cares about Boolean true here, although the values used by perl5db.pl have
the form "$break_condition\0$action".

13.3.1.3 Debugger Customization Functions

Some functions are provided to simplify customization.

• See Section 15.3.3 [perldebug Configurable Options], page 128 for a description of
options parsed by DB::parse_options(string).

• DB::dump_trace(skip[,count]) skips the specified number of frames and returns a
list containing information about the calling frames (all of them, if count is missing).
Each entry is reference to a hash with keys context (either ., $, or @), sub (subroutine
name, or info about eval), args (undef or a reference to an array), file, and line.

• DB::print_trace(FH, skip[, count[, short]]) prints formatted info about caller
frames. The last two functions may be convenient as arguments to <, << commands.

Note that any variables and functions that are not documented in this manpages (or in
Section 15.1 [perldebug NAME], page 120) are considered for internal use only, and as such
are subject to change without notice.

13.4 Frame Listing Output Examples

The frame option can be used to control the output of frame information. For example,
contrast this expression trace:

$ perl -de 42

Stack dump during die enabled outside of evals.

Loading DB routines from perl5db.pl patch level 0.94

Emacs support available.

Enter h or ’h h’ for help.

main::(-e:1): 0

DB<1> sub foo { 14 }

DB<2> sub bar { 3 }

DB<3> t print foo() * bar()

main::((eval 172):3): print foo() + bar();

main::foo((eval 168):2):

main::bar((eval 170):2):

42

with this one, once the option frame=2 has been set:

DB<4> o f=2

frame = ’2’

DB<5> t print foo() * bar()

3: foo() * bar()

entering main::foo

2: sub foo { 14 };

exited main::foo

entering main::bar

2: sub bar { 3 };

exited main::bar

42

By way of demonstration, we present below a laborious listing resulting from setting
your PERLDB_OPTS environment variable to the value f=n N, and running perl -d -V from
the command line. Examples using various values of n are shown to give you a feel for the
difference between settings. Long though it may be, this is not a complete listing, but only
excerpts.

1.

entering main::BEGIN

entering Config::BEGIN

Package lib/Exporter.pm.

Package lib/Carp.pm.

Package lib/Config.pm.

entering Config::TIEHASH

entering Exporter::import

entering Exporter::export

entering Config::myconfig

entering Config::FETCH

entering Config::FETCH

entering Config::FETCH

entering Config::FETCH

2.

entering main::BEGIN

entering Config::BEGIN

Package lib/Exporter.pm.

Package lib/Carp.pm.

exited Config::BEGIN

Package lib/Config.pm.

entering Config::TIEHASH

exited Config::TIEHASH

entering Exporter::import

entering Exporter::export

exited Exporter::export

exited Exporter::import

exited main::BEGIN

entering Config::myconfig

entering Config::FETCH

exited Config::FETCH

entering Config::FETCH

exited Config::FETCH

entering Config::FETCH

3.

in $=main::BEGIN() from /dev/null:0

in $=Config::BEGIN() from lib/Config.pm:2

Package lib/Exporter.pm.

Package lib/Carp.pm.

Package lib/Config.pm.

in $=Config::TIEHASH(’Config’) from lib/Config.pm:644

in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from li

in @=Config::myconfig() from /dev/null:0

in $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’PERL_VERSION’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’PERL_SUBVERSION’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’osname’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’osvers’) from lib/Config.pm:574

4.

in $=main::BEGIN() from /dev/null:0

in $=Config::BEGIN() from lib/Config.pm:2

Package lib/Exporter.pm.

Package lib/Carp.pm.

out $=Config::BEGIN() from lib/Config.pm:0

Package lib/Config.pm.

in $=Config::TIEHASH(’Config’) from lib/Config.pm:644

out $=Config::TIEHASH(’Config’) from lib/Config.pm:644

in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/

out $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/

out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

out $=main::BEGIN() from /dev/null:0

in @=Config::myconfig() from /dev/null:0

in $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574

out $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574

out $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’PERL_VERSION’) from lib/Config.pm:574

out $=Config::FETCH(ref(Config), ’PERL_VERSION’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’PERL_SUBVERSION’) from lib/Config.pm:574

5.

in $=main::BEGIN() from /dev/null:0

in $=Config::BEGIN() from lib/Config.pm:2

Package lib/Exporter.pm.

Package lib/Carp.pm.

out $=Config::BEGIN() from lib/Config.pm:0

Package lib/Config.pm.

in $=Config::TIEHASH(’Config’) from lib/Config.pm:644

out $=Config::TIEHASH(’Config’) from lib/Config.pm:644

in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/E

out $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/E

out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

out $=main::BEGIN() from /dev/null:0

in @=Config::myconfig() from /dev/null:0

in $=Config::FETCH(’Config=HASH(0x1aa444)’, ’package’) from lib/Config.pm:574

out $=Config::FETCH(’Config=HASH(0x1aa444)’, ’package’) from lib/Config.pm:574

in $=Config::FETCH(’Config=HASH(0x1aa444)’, ’baserev’) from lib/Config.pm:574

out $=Config::FETCH(’Config=HASH(0x1aa444)’, ’baserev’) from lib/Config.pm:574

6.

in $=CODE(0x15eca4)() from /dev/null:0

in $=CODE(0x182528)() from lib/Config.pm:2

Package lib/Exporter.pm.

out $=CODE(0x182528)() from lib/Config.pm:0

scalar context return from CODE(0x182528): undef

Package lib/Config.pm.

in $=Config::TIEHASH(’Config’) from lib/Config.pm:628

out $=Config::TIEHASH(’Config’) from lib/Config.pm:628

scalar context return from Config::TIEHASH: empty hash

in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/Exporter.pm:171

out $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/Exporter.pm:171

scalar context return from Exporter::export: ’’

out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

scalar context return from Exporter::import: ’’

In all cases shown above, the line indentation shows the call tree. If bit 2 of frame is
set, a line is printed on exit from a subroutine as well. If bit 4 is set, the arguments are
printed along with the caller info. If bit 8 is set, the arguments are printed even if they are
tied or references. If bit 16 is set, the return value is printed, too.

When a package is compiled, a line like this

Package lib/Carp.pm.

is printed with proper indentation.

13.5 Debugging Regular Expressions

There are two ways to enable debugging output for regular expressions.

If your perl is compiled with -DDEBUGGING, you may use the -Dr flag on the command
line.

Otherwise, one can use re ’debug’, which has effects at compile time and run time.
Since Perl 5.9.5, this pragma is lexically scoped.

13.5.1 Compile-time Output

The debugging output at compile time looks like this:

Compiling REx ’[bc]d(ef*g)+h[ij]k$’

size 45 Got 364 bytes for offset annotations.

first at 1

rarest char g at 0

rarest char d at 0

1: ANYOF[bc](12)

12: EXACT <d>(14)

14: CURLYX[0] {1,32767}(28)

16: OPEN1(18)

18: EXACT <e>(20)

20: STAR(23)

21: EXACT <f>(0)

23: EXACT <g>(25)

25: CLOSE1(27)

27: WHILEM[1/1](0)

28: NOTHING(29)

29: EXACT <h>(31)

31: ANYOF[ij](42)

42: EXACT <k>(44)

44: EOL(45)

45: END(0)

anchored ’de’ at 1 floating ’gh’ at 3..2147483647 (checking floating)

stclass ’ANYOF[bc]’ minlen 7

Offsets: [45]

1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]

0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]

11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]

0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]

Omitting $‘ $& $’ support.

The first line shows the pre-compiled form of the regex. The second shows the size of
the compiled form (in arbitrary units, usually 4-byte words) and the total number of bytes
allocated for the offset/length table, usually 4+size*8. The next line shows the label id of
the first node that does a match.

The

anchored ’de’ at 1 floating ’gh’ at 3..2147483647 (checking floating)

stclass ’ANYOF[bc]’ minlen 7

line (split into two lines above) contains optimizer information. In the example shown,
the optimizer found that the match should contain a substring de at offset 1, plus substring
gh at some offset between 3 and infinity. Moreover, when checking for these substrings (to
abandon impossible matches quickly), Perl will check for the substring gh before checking
for the substring de. The optimizer may also use the knowledge that the match starts (at
the first id) with a character class, and no string shorter than 7 characters can possibly
match.

The fields of interest which may appear in this line are

anchored STRING at POS
floating STRING at POS1..POS2

See above.

matching floating/anchored

Which substring to check first.

minlen

The minimal length of the match.

stclass TYPE
Type of first matching node.

noscan

Don’t scan for the found substrings.

isall

Means that the optimizer information is all that the regular expression contains,
and thus one does not need to enter the regex engine at all.

GPOS

Set if the pattern contains \G.

plus

Set if the pattern starts with a repeated char (as in x+y).

implicit

Set if the pattern starts with .*.

with eval

Set if the pattern contain eval-groups, such as (?{ code }) and (??{ code }).

anchored(TYPE)

If the pattern may match only at a handful of places, with TYPE being SBOL,
MBOL, or GPOS. See the table below.

If a substring is known to match at end-of-line only, it may be followed by $, as in
floating ’k’$.

The optimizer-specific information is used to avoid entering (a slow) regex engine on
strings that will not definitely match. If the isall flag is set, a call to the regex engine
may be avoided even when the optimizer found an appropriate place for the match.

Above the optimizer section is the list of nodes of the compiled form of the regex. Each
line has format

id : TYPE OPTIONAL-INFO (next-id)

13.5.2 Types of Nodes

Here are the current possible types, with short descriptions:

TYPE arg-description [num-args] [longjump-len] DESCRIPTION

Exit points

END no End of program.

SUCCEED no Return from a subroutine, basically.

Line Start Anchors:

SBOL no Match "" at beginning of line: /^/, /\A/

MBOL no Same, assuming multiline: /^/m

Line End Anchors:

SEOL no Match "" at end of line: /$/

MEOL no Same, assuming multiline: /$/m

EOS no Match "" at end of string: /\z/

Match Start Anchors:

GPOS no Matches where last m//g left off.

Word Boundary Opcodes:

BOUND no Like BOUNDA for non-utf8, otherwise match ""

between any Unicode \w\W or \W\w

BOUNDL no Like BOUND/BOUNDU, but \w and \W are defined

by current locale

BOUNDU no Match "" at any boundary of a given type

using Unicode rules

BOUNDA no Match "" at any boundary between \w\W or

\W\w, where \w is [_a-zA-Z0-9]

NBOUND no Like NBOUNDA for non-utf8, otherwise match

"" between any Unicode \w\w or \W\W

NBOUNDL no Like NBOUND/NBOUNDU, but \w and \W are

defined by current locale

NBOUNDU no Match "" at any non-boundary of a given type

using using Unicode rules

NBOUNDA no Match "" betweeen any \w\w or \W\W, where \w

is [_a-zA-Z0-9]

[Special] alternatives:

REG_ANY no Match any one character (except newline).

SANY no Match any one character.

CANY no Match any one byte.

ANYOF sv 1 Match character in (or not in) this class,

single char match only

ANYOFL sv 1 Like ANYOF, but /l is in effect

POSIX Character Classes:

POSIXD none Some [[:class:]] under /d; the FLAGS field

gives which one

POSIXL none Some [[:class:]] under /l; the FLAGS field

gives which one

POSIXU none Some [[:class:]] under /u; the FLAGS field

gives which one

POSIXA none Some [[:class:]] under /a; the FLAGS field

gives which one

NPOSIXD none complement of POSIXD, [[:^class:]]

NPOSIXL none complement of POSIXL, [[:^class:]]

NPOSIXU none complement of POSIXU, [[:^class:]]

NPOSIXA none complement of POSIXA, [[:^class:]]

CLUMP no Match any extended grapheme cluster sequence

Alternation

BRANCH The set of branches constituting a single choice are

hooked together with their "next" pointers, since

precedence prevents anything being concatenated to

any individual branch. The "next" pointer of the last

BRANCH in a choice points to the thing following the

whole choice. This is also where the final "next"

pointer of each individual branch points; each branch

starts with the operand node of a BRANCH node.

#

BRANCH node Match this alternative, or the next...

Literals

EXACT str Match this string (preceded by length).

EXACTL str Like EXACT, but /l is in effect.

EXACTF str Match this non-UTF-8 string (not guaranteed

to be folded) using /id rules (w/len).

EXACTFL str Match this string (not guaranteed to be

folded) using /il rules (w/len).

EXACTFU str Match this string (folded iff in UTF-8,

length in folding doesn’t change if not in

UTF-8) using /iu rules (w/len).

EXACTFA str Match this string (not guaranteed to be

folded) using /iaa rules (w/len).

EXACTFU_SS str Match this string (folded iff in UTF-8,

length in folding may change even if not in

UTF-8) using /iu rules (w/len).

EXACTFLU8 str Rare cirucmstances: like EXACTFU, but is

under /l, UTF-8, folded, and everything in

it is above 255.

EXACTFA_NO_TRIE str Match this string (which is not trie-able;

not guaranteed to be folded) using /iaa

rules (w/len).

Do nothing types

NOTHING no Match empty string.

A variant of above which delimits a group, thus stops optimizations

TAIL no Match empty string. Can jump here from

outside.

Loops

STAR,PLUS ’?’, and complex ’*’ and ’+’, are implemented as

circular BRANCH structures. Simple cases

(one character per match) are implemented with STAR

and PLUS for speed and to minimize recursive plunges.

#

STAR node Match this (simple) thing 0 or more times.

PLUS node Match this (simple) thing 1 or more times.

CURLY sv 2 Match this simple thing {n,m} times.

CURLYN no 2 Capture next-after-this simple thing

CURLYM no 2 Capture this medium-complex thing {n,m}

times.

CURLYX sv 2 Match this complex thing {n,m} times.

This terminator creates a loop structure for CURLYX

WHILEM no Do curly processing and see if rest matches.

Buffer related

OPEN,CLOSE,GROUPP ...are numbered at compile time.

OPEN num 1 Mark this point in input as start of #n.

CLOSE num 1 Analogous to OPEN.

REF num 1 Match some already matched string

REFF num 1 Match already matched string, folded using

native charset rules for non-utf8

REFFL num 1 Match already matched string, folded in loc.

REFFU num 1 Match already matched string, folded using

unicode rules for non-utf8

REFFA num 1 Match already matched string, folded using

unicode rules for non-utf8, no mixing ASCII,

non-ASCII

Named references. Code in regcomp.c assumes that these all are after

the numbered references

NREF no-sv 1 Match some already matched string

NREFF no-sv 1 Match already matched string, folded using

native charset rules for non-utf8

NREFFL no-sv 1 Match already matched string, folded in loc.

NREFFU num 1 Match already matched string, folded using

unicode rules for non-utf8

NREFFA num 1 Match already matched string, folded using

unicode rules for non-utf8, no mixing ASCII,

non-ASCII

Support for long RE

LONGJMP off 1 1 Jump far away.

BRANCHJ off 1 1 BRANCH with long offset.

Special Case Regops

IFMATCH off 1 2 Succeeds if the following matches.

UNLESSM off 1 2 Fails if the following matches.

SUSPEND off 1 1 "Independent" sub-RE.

IFTHEN off 1 1 Switch, should be preceded by switcher.

GROUPP num 1 Whether the group matched.

The heavy worker

EVAL evl/flags Execute some Perl code.

2L

Modifiers

MINMOD no Next operator is not greedy.

LOGICAL no Next opcode should set the flag only.

This is not used yet

RENUM off 1 1 Group with independently numbered parens.

Trie Related

Behave the same as A|LIST|OF|WORDS would. The ’..C’ variants

have inline charclass data (ascii only), the ’C’ store it in the

structure.

TRIE trie 1 Match many EXACT(F[ALU]?)? at once.

flags==type

TRIEC trie Same as TRIE, but with embedded charclass

charclass data

AHOCORASICK trie 1 Aho Corasick stclass. flags==type

AHOCORASICKC trie Same as AHOCORASICK, but with embedded

charclass charclass data

Regex Subroutines

GOSUB num/ofs 2L recurse to paren arg1 at (signed) ofs arg2

GOSTART no recurse to start of pattern

Special conditionals

NGROUPP no-sv 1 Whether the group matched.

INSUBP num 1 Whether we are in a specific recurse.

DEFINEP none 1 Never execute directly.

Backtracking Verbs

ENDLIKE none Used only for the type field of verbs

OPFAIL none Same as (?!)

ACCEPT parno 1 Accepts the current matched string.

Verbs With Arguments

VERB no-sv 1 Used only for the type field of verbs

PRUNE no-sv 1 Pattern fails at this startpoint if no-

backtracking through this

MARKPOINT no-sv 1 Push the current location for rollback by

cut.

SKIP no-sv 1 On failure skip forward (to the mark) before

retrying

COMMIT no-sv 1 Pattern fails outright if backtracking

through this

CUTGROUP no-sv 1 On failure go to the next alternation in the

group

Control what to keep in $&.

KEEPS no $& begins here.

New charclass like patterns

LNBREAK none generic newline pattern

SPECIAL REGOPS

This is not really a node, but an optimized away piece of a "long"

node. To simplify debugging output, we mark it as if it were a node

OPTIMIZED off Placeholder for dump.

Special opcode with the property that no opcode in a compiled program

will ever be of this type. Thus it can be used as a flag value that

no other opcode has been seen. END is used similarly, in that an END

node cant be optimized. So END implies "unoptimizable" and PSEUDO

mean "not seen anything to optimize yet".

PSEUDO off Pseudo opcode for internal use.

Following the optimizer information is a dump of the offset/length table, here split across
several lines:

Offsets: [45]

1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]

0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]

11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]

0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]

The first line here indicates that the offset/length table contains 45 entries. Each entry
is a pair of integers, denoted by offset[length]. Entries are numbered starting with 1,
so entry #1 here is 1[4] and entry #12 is 5[1]. 1[4] indicates that the node labeled 1:

(the 1: ANYOF[bc]) begins at character position 1 in the pre-compiled form of the regex,
and has a length of 4 characters. 5[1] in position 12 indicates that the node labeled 12:

(the 12: EXACT <d>) begins at character position 5 in the pre-compiled form of the regex,
and has a length of 1 character. 12[1] in position 14 indicates that the node labeled 14:

(the 14: CURLYX[0] {1,32767}) begins at character position 12 in the pre-compiled form
of the regex, and has a length of 1 character—that is, it corresponds to the + symbol in the
precompiled regex.

0[0] items indicate that there is no corresponding node.

13.5.3 Run-time Output

First of all, when doing a match, one may get no run-time output even if debugging is
enabled. This means that the regex engine was never entered and that all of the job was
therefore done by the optimizer.

If the regex engine was entered, the output may look like this:

Matching ’[bc]d(ef*g)+h[ij]k$’ against ’abcdefg__gh__’

Setting an EVAL scope, savestack=3

2 <ab> <cdefg__gh_> | 1: ANYOF

3 <abc> <defg__gh_> | 11: EXACT <d>

4 <abcd> <efg__gh_> | 13: CURLYX {1,32767}

4 <abcd> <efg__gh_> | 26: WHILEM

0 out of 1..32767 cc=effff31c

4 <abcd> <efg__gh_> | 15: OPEN1

4 <abcd> <efg__gh_> | 17: EXACT <e>

5 <abcde> <fg__gh_> | 19: STAR

EXACT <f> can match 1 times out of 32767...

Setting an EVAL scope, savestack=3

6 <bcdef> <g__gh__> | 22: EXACT <g>

7 <bcdefg> <__gh__> | 24: CLOSE1

7 <bcdefg> <__gh__> | 26: WHILEM

1 out of 1..32767 cc=effff31c

Setting an EVAL scope, savestack=12

7 <bcdefg> <__gh__> | 15: OPEN1

7 <bcdefg> <__gh__> | 17: EXACT <e>

restoring \1 to 4(4)..7

failed, try continuation...

7 <bcdefg> <__gh__> | 27: NOTHING

7 <bcdefg> <__gh__> | 28: EXACT <h>

failed...

failed...

The most significant information in the output is about the particular node of the com-
piled regex that is currently being tested against the target string. The format of these
lines is

STRING-OFFSET <PRE-STRING> <POST-STRING> |ID : TYPE

The TYPE info is indented with respect to the backtracking level. Other incidental
information appears interspersed within.

13.6 Debugging Perl Memory Usage

Perl is a profligate wastrel when it comes to memory use. There is a saying that to estimate
memory usage of Perl, assume a reasonable algorithm for memory allocation, multiply that
estimate by 10, and while you still may miss the mark, at least you won’t be quite so
astonished. This is not absolutely true, but may provide a good grasp of what happens.

Assume that an integer cannot take less than 20 bytes of memory, a float cannot take
less than 24 bytes, a string cannot take less than 32 bytes (all these examples assume 32-
bit architectures, the result are quite a bit worse on 64-bit architectures). If a variable is
accessed in two of three different ways (which require an integer, a float, or a string), the
memory footprint may increase yet another 20 bytes. A sloppy malloc(3) implementation
can inflate these numbers dramatically.

On the opposite end of the scale, a declaration like

sub foo;

may take up to 500 bytes of memory, depending on which release of Perl you’re running.

Anecdotal estimates of source-to-compiled code bloat suggest an eightfold increase. This
means that the compiled form of reasonable (normally commented, properly indented etc.)
code will take about eight times more space in memory than the code took on disk.

The -DL command-line switch is obsolete since circa Perl 5.6.0 (it was available only if
Perl was built with -DDEBUGGING). The switch was used to track Perl’s memory allocations
and possible memory leaks. These days the use of malloc debugging tools like Purify or
valgrind is suggested instead. See also Section 30.8.2 [perlhacktips PERL MEM LOG],
page 597.

One way to find out how much memory is being used by Perl data structures is to install
the Devel::Size module from CPAN: it gives you the minimum number of bytes required to
store a particular data structure. Please be mindful of the difference between the size() and
total size().

If Perl has been compiled using Perl’s malloc you can analyze Perl memory usage by
setting $ENV{PERL DEBUG MSTATS}.

13.6.1 Using $ENV{PERL_DEBUG_MSTATS}

If your perl is using Perl’s malloc() and was compiled with the necessary switches (this
is the default), then it will print memory usage statistics after compiling your code when
$ENV{PERL_DEBUG_MSTATS} > 1, and before termination of the program when $ENV{PERL_

DEBUG_MSTATS} >= 1. The report format is similar to the following example:

$ PERL_DEBUG_MSTATS=2 perl -e "require Carp"

Memory allocation statistics after compilation: (buckets 4(4)..8188(8192)

14216 free: 130 117 28 7 9 0 2 2 1 0 0

437 61 36 0 5

60924 used: 125 137 161 55 7 8 6 16 2 0 1

74 109 304 84 20

Total sbrk(): 77824/21:119. Odd ends: pad+heads+chain+tail: 0+636+0+2048.

Memory allocation statistics after execution: (buckets 4(4)..8188(8192)

30888 free: 245 78 85 13 6 2 1 3 2 0 1

315 162 39 42 11

175816 used: 265 176 1112 111 26 22 11 27 2 1 1

196 178 1066 798 39

Total sbrk(): 215040/47:145. Odd ends: pad+heads+chain+tail: 0+2192+0+6144.

It is possible to ask for such a statistic at arbitrary points in your execution using the
mstat() function out of the standard Devel::Peek module.

Here is some explanation of that format:

buckets SMALLEST(APPROX)..GREATEST(APPROX)

Perl’s malloc() uses bucketed allocations. Every request is rounded up to the
closest bucket size available, and a bucket is taken from the pool of buckets of
that size.

The line above describes the limits of buckets currently in use. Each bucket has
two sizes: memory footprint and the maximal size of user data that can fit into
this bucket. Suppose in the above example that the smallest bucket were size
4. The biggest bucket would have usable size 8188, and the memory footprint
would be 8192.

In a Perl built for debugging, some buckets may have negative usable size. This
means that these buckets cannot (and will not) be used. For larger buckets,
the memory footprint may be one page greater than a power of 2. If so, the
corresponding power of two is printed in the APPROX field above.

Free/Used

The 1 or 2 rows of numbers following that correspond to the number of buckets
of each size between SMALLEST and GREATEST. In the first row, the sizes (mem-
ory footprints) of buckets are powers of two–or possibly one page greater. In
the second row, if present, the memory footprints of the buckets are between
the memory footprints of two buckets "above".

For example, suppose under the previous example, the memory footprints were

free: 8 16 32 64 128 256 512 1024 2048 4096 8192

4 12 24 48 80

With a non-DEBUGGING perl, the buckets starting from 128 have a 4-byte over-
head, and thus an 8192-long bucket may take up to 8188-byte allocations.

Total sbrk(): SBRKed/SBRKs:CONTINUOUS

The first two fields give the total amount of memory perl sbrk(2)ed (ess-broken?
:-) and number of sbrk(2)s used. The third number is what perl thinks about
continuity of returned chunks. So long as this number is positive, malloc() will
assume that it is probable that sbrk(2) will provide continuous memory.

Memory allocated by external libraries is not counted.

pad: 0

The amount of sbrk(2)ed memory needed to keep buckets aligned.

heads: 2192

Although memory overhead of bigger buckets is kept inside the bucket, for
smaller buckets, it is kept in separate areas. This field gives the total size of
these areas.

chain: 0

malloc() may want to subdivide a bigger bucket into smaller buckets. If only a
part of the deceased bucket is left unsubdivided, the rest is kept as an element
of a linked list. This field gives the total size of these chunks.

tail: 6144

To minimize the number of sbrk(2)s, malloc() asks for more memory. This field
gives the size of the yet unused part, which is sbrk(2)ed, but never touched.

13.7 SEE ALSO

Section 15.1 [perldebug NAME], page 120, Section 28.1 [perlguts NAME], page 512,
Section 69.1 [perlrun NAME], page 1176 re, and Devel-DProf.

14 perldebtut

14.1 NAME

perldebtut - Perl debugging tutorial

14.2 DESCRIPTION

A (very) lightweight introduction in the use of the perl debugger, and a pointer to existing,
deeper sources of information on the subject of debugging perl programs.

There’s an extraordinary number of people out there who don’t appear to know anything
about using the perl debugger, though they use the language every day. This is for them.

14.3 use strict

First of all, there’s a few things you can do to make your life a lot more straightforward when
it comes to debugging perl programs, without using the debugger at all. To demonstrate,
here’s a simple script, named "hello", with a problem:

#!/usr/bin/perl

$var1 = ’Hello World’; # always wanted to do that :-)

$var2 = "$varl\n";

print $var2;

exit;

While this compiles and runs happily, it probably won’t do what’s expected, namely
it doesn’t print "Hello World\n" at all; It will on the other hand do exactly what it was
told to do, computers being a bit that way inclined. That is, it will print out a newline
character, and you’ll get what looks like a blank line. It looks like there’s 2 variables when
(because of the typo) there’s really 3:

$var1 = ’Hello World’;

$varl = undef;

$var2 = "\n";

To catch this kind of problem, we can force each variable to be declared before use by
pulling in the strict module, by putting ’use strict;’ after the first line of the script.

Now when you run it, perl complains about the 3 undeclared variables and we get four
error messages because one variable is referenced twice:

Global symbol "$var1" requires explicit package name at ./t1 line 4.

Global symbol "$var2" requires explicit package name at ./t1 line 5.

Global symbol "$varl" requires explicit package name at ./t1 line 5.

Global symbol "$var2" requires explicit package name at ./t1 line 7.

Execution of ./hello aborted due to compilation errors.

Luvverly! and to fix this we declare all variables explicitly and now our script looks like
this:

#!/usr/bin/perl

use strict;

my $var1 = ’Hello World’;

my $varl = undef;

my $var2 = "$varl\n";

print $var2;

exit;

We then do (always a good idea) a syntax check before we try to run it again:

> perl -c hello

hello syntax OK

And now when we run it, we get "\n" still, but at least we know why. Just getting this
script to compile has exposed the ’$varl’ (with the letter ’l’) variable, and simply changing
$varl to $var1 solves the problem.

14.4 Looking at data and -w and v

Ok, but how about when you want to really see your data, what’s in that dynamic variable,
just before using it?

#!/usr/bin/perl

use strict;

my $key = ’welcome’;

my %data = (

’this’ => qw(that),

’tom’ => qw(and jerry),

’welcome’ => q(Hello World),

’zip’ => q(welcome),

);

my @data = keys %data;

print "$data{$key}\n";

exit;

Looks OK, after it’s been through the syntax check (perl -c scriptname), we run it and
all we get is a blank line again! Hmmmm.

One common debugging approach here, would be to liberally sprinkle a few print state-
ments, to add a check just before we print out our data, and another just after:

print "All OK\n" if grep($key, keys %data);

print "$data{$key}\n";

print "done: ’$data{$key}’\n";

And try again:

> perl data

All OK

done: ’’

After much staring at the same piece of code and not seeing the wood for the trees for
some time, we get a cup of coffee and try another approach. That is, we bring in the cavalry
by giving perl the ’-d’ switch on the command line:

> perl -d data

Default die handler restored.

Loading DB routines from perl5db.pl version 1.07

Editor support available.

Enter h or ‘h h’ for help, or ‘man perldebug’ for more help.

main::(./data:4): my $key = ’welcome’;

Now, what we’ve done here is to launch the built-in perl debugger on our script. It’s
stopped at the first line of executable code and is waiting for input.

Before we go any further, you’ll want to know how to quit the debugger: use just the
letter ’q’, not the words ’quit’ or ’exit’:

DB<1> q

>

That’s it, you’re back on home turf again.

14.5 help

Fire the debugger up again on your script and we’ll look at the help menu. There’s a couple
of ways of calling help: a simple ’h’ will get the summary help list, ’|h’ (pipe-h) will pipe the
help through your pager (which is (probably ’more’ or ’less’), and finally, ’h h’ (h-space-h)
will give you the entire help screen. Here is the summary page:

D1h

List/search source lines: Control script execution:

l [ln|sub] List source code T Stack trace

- or . List previous/current line s [expr] Single step [in expr]

v [line] View around line n [expr] Next, steps over subs

f filename View source in file <CR/Enter> Repeat last n or s

/pattern/ ?patt? Search forw/backw r Return from subroutine

M Show module versions c [ln|sub] Continue until position

Debugger controls: L List break/watch/actions

o [...] Set debugger options t [expr] Toggle trace [trace expr]

<[<]|{[{]|>[>] [cmd] Do pre/post-prompt b [ln|event|sub] [cnd] Set breakpoint

! [N|pat] Redo a previous command B ln|* Delete a/all breakpoints

H [-num] Display last num commands a [ln] cmd Do cmd before line

= [a val] Define/list an alias A ln|* Delete a/all actions

h [db_cmd] Get help on command w expr Add a watch expression

h h Complete help page W expr|* Delete a/all watch exprs

|[|]db_cmd Send output to pager ![!] syscmd Run cmd in a subprocess

q or ^D Quit R Attempt a restart

Data Examination: expr Execute perl code, also see: s,n,t expr

x|m expr Evals expr in list context, dumps the result or lists methods.

p expr Print expression (uses script’s current package).

S [[!]pat] List subroutine names [not] matching pattern

V [Pk [Vars]] List Variables in Package. Vars can be ~pattern or !pattern.

X [Vars] Same as "V current_package [Vars]".

y [n [Vars]] List lexicals in higher scope <n>. Vars same as V.

For more help, type h cmd_letter, or run man perldebug for all docs.

More confusing options than you can shake a big stick at! It’s not as bad as it looks and
it’s very useful to know more about all of it, and fun too!

There’s a couple of useful ones to know about straight away. You wouldn’t think we’re
using any libraries at all at the moment, but ’M’ will show which modules are currently
loaded, and their version number, while ’m’ will show the methods, and ’S’ shows all
subroutines (by pattern) as shown below. ’V’ and ’X’ show variables in the program by
package scope and can be constrained by pattern.

DB<2>S str

dumpvar::stringify

strict::bits

strict::import

strict::unimport

Using ’X’ and cousins requires you not to use the type identifiers ($@%), just the ’name’:

DM<3>X ~err

FileHandle(stderr) => fileno(2)

Remember we’re in our tiny program with a problem, we should have a look at where we
are, and what our data looks like. First of all let’s view some code at our present position
(the first line of code in this case), via ’v’:

DB<4> v

1 #!/usr/bin/perl

2: use strict;

3

4==> my $key = ’welcome’;

5: my %data = (

6 ’this’ => qw(that),

7 ’tom’ => qw(and jerry),

8 ’welcome’ => q(Hello World),

9 ’zip’ => q(welcome),

10);

At line number 4 is a helpful pointer, that tells you where you are now. To see more
code, type ’v’ again:

DB<4> v

8 ’welcome’ => q(Hello World),

9 ’zip’ => q(welcome),

10);

11: my @data = keys %data;

12: print "All OK\n" if grep($key, keys %data);

13: print "$data{$key}\n";

14: print "done: ’$data{$key}’\n";

15: exit;

And if you wanted to list line 5 again, type ’l 5’, (note the space):

DB<4> l 5

5: my %data = (

In this case, there’s not much to see, but of course normally there’s pages of stuff to
wade through, and ’l’ can be very useful. To reset your view to the line we’re about to
execute, type a lone period ’.’:

DB<5> .

main::(./data_a:4): my $key = ’welcome’;

The line shown is the one that is about to be executed next, it hasn’t happened yet.
So while we can print a variable with the letter ’p’, at this point all we’d get is an empty
(undefined) value back. What we need to do is to step through the next executable statement
with an ’s’:

DB<6> s

main::(./data_a:5): my %data = (

main::(./data_a:6): ’this’ => qw(that),

main::(./data_a:7): ’tom’ => qw(and jerry),

main::(./data_a:8): ’welcome’ => q(Hello World),

main::(./data_a:9): ’zip’ => q(welcome),

main::(./data_a:10):);

Now we can have a look at that first ($key) variable:

DB<7> p $key

welcome

line 13 is where the action is, so let’s continue down to there via the letter ’c’, which by
the way, inserts a ’one-time-only’ breakpoint at the given line or sub routine:

DB<8> c 13

All OK

main::(./data_a:13): print "$data{$key}\n";

We’ve gone past our check (where ’All OK’ was printed) and have stopped just before the
meat of our task. We could try to print out a couple of variables to see what is happening:

DB<9> p $data{$key}

Not much in there, lets have a look at our hash:

DB<10> p %data

Hello Worldziptomandwelcomejerrywelcomethisthat

DB<11> p keys %data

Hello Worldtomwelcomejerrythis

Well, this isn’t very easy to read, and using the helpful manual (h h), the ’x’ command
looks promising:

DB<12> x %data

0 ’Hello World’

1 ’zip’

2 ’tom’

3 ’and’

4 ’welcome’

5 undef

6 ’jerry’

7 ’welcome’

8 ’this’

9 ’that’

That’s not much help, a couple of welcomes in there, but no indication of which are
keys, and which are values, it’s just a listed array dump and, in this case, not particularly
helpful. The trick here, is to use a reference to the data structure:

DB<13> x \%data

0 HASH(0x8194bc4)

’Hello World’ => ’zip’

’jerry’ => ’welcome’

’this’ => ’that’

’tom’ => ’and’

’welcome’ => undef

The reference is truly dumped and we can finally see what we’re dealing with. Our
quoting was perfectly valid but wrong for our purposes, with ’and jerry’ being treated as 2
separate words rather than a phrase, thus throwing the evenly paired hash structure out of
alignment.

The ’-w’ switch would have told us about this, had we used it at the start, and saved us
a lot of trouble:

> perl -w data

Odd number of elements in hash assignment at ./data line 5.

We fix our quoting: ’tom’ => q(and jerry), and run it again, this time we get our
expected output:

> perl -w data

Hello World

While we’re here, take a closer look at the ’x’ command, it’s really useful and will
merrily dump out nested references, complete objects, partial objects - just about whatever
you throw at it:

Let’s make a quick object and x-plode it, first we’ll start the debugger: it wants some
form of input from STDIN, so we give it something non-committal, a zero:

> perl -de 0

Default die handler restored.

Loading DB routines from perl5db.pl version 1.07

Editor support available.

Enter h or ‘h h’ for help, or ‘man perldebug’ for more help.

main::(-e:1): 0

Now build an on-the-fly object over a couple of lines (note the backslash):

DB<1> $obj = bless({’unique_id’=>’123’, ’attr’=> \

cont: {’col’ => ’black’, ’things’ => [qw(this that etc)]}}, ’MY_class’)

And let’s have a look at it:

DB<2> x $obj

0 MY_class=HASH(0x828ad98)

’attr’ => HASH(0x828ad68)

’col’ => ’black’

’things’ => ARRAY(0x828abb8)

0 ’this’

1 ’that’

2 ’etc’

’unique_id’ => 123

DB<3>

Useful, huh? You can eval nearly anything in there, and experiment with bits of code
or regexes until the cows come home:

DB<3> @data = qw(this that the other atheism leather theory scythe)

DB<4> p ’saw -> ’.($cnt += map { print "\t:\t$_\n" } grep(/the/, sort @data))

atheism

leather

other

scythe

the

theory

saw -> 6

If you want to see the command History, type an ’H’:

DB<5> H

4: p ’saw -> ’.($cnt += map { print "\t:\t$_\n" } grep(/the/, sort @data))

3: @data = qw(this that the other atheism leather theory scythe)

2: x $obj

1: $obj = bless({’unique_id’=>’123’, ’attr’=>

{’col’ => ’black’, ’things’ => [qw(this that etc)]}}, ’MY_class’)

DB<5>

And if you want to repeat any previous command, use the exclamation: ’!’:

DB<5> !4

p ’saw -> ’.($cnt += map { print "$_\n" } grep(/the/, sort @data))

atheism

leather

other

scythe

the

theory

saw -> 12

For more on references see Section 62.1 [perlref NAME], page 1077 and Section 63.1
[perlreftut NAME], page 1092

14.6 Stepping through code

Here’s a simple program which converts between Celsius and Fahrenheit, it too has a prob-
lem:

#!/usr/bin/perl -w

use strict;

my $arg = $ARGV[0] || ’-c20’;

if ($arg =~ /^\-(c|f)((\-|\+)*\d+(\.\d+)*)$/) {

my ($deg, $num) = ($1, $2);

my ($in, $out) = ($num, $num);

if ($deg eq ’c’) {

$deg = ’f’;

$out = &c2f($num);

} else {

$deg = ’c’;

$out = &f2c($num);

}

$out = sprintf(’%0.2f’, $out);

$out =~ s/^((\-|\+)*\d+)\.0+$/$1/;

print "$out $deg\n";

} else {

print "Usage: $0 -[c|f] num\n";

}

exit;

sub f2c {

my $f = shift;

my $c = 5 * $f - 32 / 9;

return $c;

}

sub c2f {

my $c = shift;

my $f = 9 * $c / 5 + 32;

return $f;

}

For some reason, the Fahrenheit to Celsius conversion fails to return the expected output.
This is what it does:

> temp -c0.72

33.30 f

> temp -f33.3

162.94 c

Not very consistent! We’ll set a breakpoint in the code manually and run it under the
debugger to see what’s going on. A breakpoint is a flag, to which the debugger will run
without interruption, when it reaches the breakpoint, it will stop execution and offer a
prompt for further interaction. In normal use, these debugger commands are completely
ignored, and they are safe - if a little messy, to leave in production code.

my ($in, $out) = ($num, $num);

$DB::single=2; # insert at line 9!

if ($deg eq ’c’)

...

> perl -d temp -f33.3

Default die handler restored.

Loading DB routines from perl5db.pl version 1.07

Editor support available.

Enter h or ‘h h’ for help, or ‘man perldebug’ for more help.

main::(temp:4): my $arg = $ARGV[0] || ’-c100’;

We’ll simply continue down to our pre-set breakpoint with a ’c’:

DB<1> c

main::(temp:10): if ($deg eq ’c’) {

Followed by a view command to see where we are:

DB<1> v

7: my ($deg, $num) = ($1, $2);

8: my ($in, $out) = ($num, $num);

9: $DB::single=2;

10==> if ($deg eq ’c’) {

11: $deg = ’f’;

12: $out = &c2f($num);

13 } else {

14: $deg = ’c’;

15: $out = &f2c($num);

16 }

And a print to show what values we’re currently using:

DB<1> p $deg, $num

f33.3

We can put another break point on any line beginning with a colon, we’ll use line 17 as
that’s just as we come out of the subroutine, and we’d like to pause there later on:

DB<2> b 17

There’s no feedback from this, but you can see what breakpoints are set by using the
list ’L’ command:

DB<3> L

temp:

17: print "$out $deg\n";

break if (1)

Note that to delete a breakpoint you use ’B’.

Now we’ll continue down into our subroutine, this time rather than by line number, we’ll
use the subroutine name, followed by the now familiar ’v’:

DB<3> c f2c

main::f2c(temp:30): my $f = shift;

DB<4> v

24: exit;

25

26 sub f2c {

27==> my $f = shift;

28: my $c = 5 * $f - 32 / 9;

29: return $c;

30 }

31

32 sub c2f {

33: my $c = shift;

Note that if there was a subroutine call between us and line 29, and we wanted to single-
step through it, we could use the ’s’ command, and to step over it we would use ’n’ which
would execute the sub, but not descend into it for inspection. In this case though, we simply
continue down to line 29:

DB<4> c 29

main::f2c(temp:29): return $c;

And have a look at the return value:

DB<5> p $c

162.944444444444

This is not the right answer at all, but the sum looks correct. I wonder if it’s anything
to do with operator precedence? We’ll try a couple of other possibilities with our sum:

DB<6> p (5 * $f - 32 / 9)

162.944444444444

DB<7> p 5 * $f - (32 / 9)

162.944444444444

DB<8> p (5 * $f) - 32 / 9

162.944444444444

DB<9> p 5 * ($f - 32) / 9

0.722222222222221

:-) that’s more like it! Ok, now we can set our return variable and we’ll return out of
the sub with an ’r’:

DB<10> $c = 5 * ($f - 32) / 9

DB<11> r

scalar context return from main::f2c: 0.722222222222221

Looks good, let’s just continue off the end of the script:

DB<12> c

0.72 c

Debugged program terminated. Use q to quit or R to restart,

use O inhibit_exit to avoid stopping after program termination,

h q, h R or h O to get additional info.

A quick fix to the offending line (insert the missing parentheses) in the actual program
and we’re finished.

14.7 Placeholder for a, w, t, T

Actions, watch variables, stack traces etc.: on the TODO list.

a

w

t

T

14.8 REGULAR EXPRESSIONS

Ever wanted to know what a regex looked like? You’ll need perl compiled with the DE-
BUGGING flag for this one:

> perl -Dr -e ’/^pe(a)*rl$/i’

Compiling REx ‘^pe(a)*rl$’

size 17 first at 2

rarest char

at 0

1: BOL(2)

2: EXACTF <pe>(4)

4: CURLYN[1] {0,32767}(14)

6: NOTHING(8)

8: EXACTF <a>(0)

12: WHILEM(0)

13: NOTHING(14)

14: EXACTF <rl>(16)

16: EOL(17)

17: END(0)

floating ‘’$ at 4..2147483647 (checking floating) stclass ‘EXACTF <pe>’

anchored(BOL) minlen 4

Omitting $‘ $& $’ support.

EXECUTING...

Freeing REx: ‘^pe(a)*rl$’

Did you really want to know? :-) For more gory details on getting regular expressions to
work, have a look at Section 58.1 [perlre NAME], page 989, Section 68.1 [perlretut NAME],
page 1131, and to decode the mysterious labels (BOL and CURLYN, etc. above), see
Section 13.1 [perldebguts NAME], page 90.

14.9 OUTPUT TIPS

To get all the output from your error log, and not miss any messages via helpful operating
system buffering, insert a line like this, at the start of your script:

$|=1;

To watch the tail of a dynamically growing logfile, (from the command line):

tail -f $error_log

Wrapping all die calls in a handler routine can be useful to see how, and from where,
they’re being called, Section 86.1 [perlvar NAME], page 1375 has more information:

BEGIN { $SIG{__DIE__} = sub { require Carp; Carp::confess(@_) } }

Various useful techniques for the redirection of STDOUT and STDERR filehandles are
explained in Section 49.1 [perlopentut NAME], page 852 and perlfaq8.

14.10 CGI

Just a quick hint here for all those CGI programmers who can’t figure out how on earth to
get past that ’waiting for input’ prompt, when running their CGI script from the command-
line, try something like this:

> perl -d my_cgi.pl -nodebug

Of course CGI and perlfaq9 will tell you more.

14.11 GUIs

The command line interface is tightly integrated with an emacs extension and there’s a vi
interface too.

You don’t have to do this all on the command line, though, there are a few GUI options
out there. The nice thing about these is you can wave a mouse over a variable and a dump
of its data will appear in an appropriate window, or in a popup balloon, no more tiresome
typing of ’x $varname’ :-)

In particular have a hunt around for the following:

ptkdb perlTK based wrapper for the built-in debugger

ddd data display debugger

PerlDevKit and PerlBuilder are NT specific

NB. (more info on these and others would be appreciated).

14.12 SUMMARY

We’ve seen how to encourage good coding practices with use strict and -w. We can run
the perl debugger perl -d scriptname to inspect your data from within the perl debugger
with the p and x commands. You can walk through your code, set breakpoints with b and
step through that code with s or n, continue with c and return from a sub with r. Fairly
intuitive stuff when you get down to it.

There is of course lots more to find out about, this has just scratched the surface. The
best way to learn more is to use perldoc to find out more about the language, to read the
on-line help (Section 15.1 [perldebug NAME], page 120 is probably the next place to go),
and of course, experiment.

14.13 SEE ALSO

Section 15.1 [perldebug NAME], page 120, Section 13.1 [perldebguts NAME], page 90,
Section 16.1 [perldiag NAME], page 137, Section 69.1 [perlrun NAME], page 1176

14.14 AUTHOR

Richard Foley <richard.foley@rfi.net> Copyright (c) 2000

14.15 CONTRIBUTORS

Various people have made helpful suggestions and contributions, in particular:

Ronald J Kimball <rjk@linguist.dartmouth.edu>

Hugo van der Sanden <hv@crypt0.demon.co.uk>

Peter Scott <Peter@PSDT.com>

15 perldebug

15.1 NAME

perldebug - Perl debugging

15.2 DESCRIPTION

First of all, have you tried using the -w switch?

If you’re new to the Perl debugger, you may prefer to read Section 14.1 [perldebtut
NAME], page 107, which is a tutorial introduction to the debugger.

15.3 The Perl Debugger

If you invoke Perl with the -d switch, your script runs under the Perl source debugger. This
works like an interactive Perl environment, prompting for debugger commands that let you
examine source code, set breakpoints, get stack backtraces, change the values of variables,
etc. This is so convenient that you often fire up the debugger all by itself just to test out
Perl constructs interactively to see what they do. For example:

$ perl -d -e 42

In Perl, the debugger is not a separate program the way it usually is in the typical
compiled environment. Instead, the -d flag tells the compiler to insert source information
into the parse trees it’s about to hand off to the interpreter. That means your code must
first compile correctly for the debugger to work on it. Then when the interpreter starts up,
it preloads a special Perl library file containing the debugger.

The program will halt right before the first run-time executable statement (but see below
regarding compile-time statements) and ask you to enter a debugger command. Contrary to
popular expectations, whenever the debugger halts and shows you a line of code, it always
displays the line it’s about to execute, rather than the one it has just executed.

Any command not recognized by the debugger is directly executed (eval’d) as Perl
code in the current package. (The debugger uses the DB package for keeping its own state
information.)

Note that the said eval is bound by an implicit scope. As a result any newly introduced
lexical variable or any modified capture buffer content is lost after the eval. The debugger
is a nice environment to learn Perl, but if you interactively experiment using material which
should be in the same scope, stuff it in one line.

For any text entered at the debugger prompt, leading and trailing whitespace is first
stripped before further processing. If a debugger command coincides with some function
in your own program, merely precede the function with something that doesn’t look like a
debugger command, such as a leading ; or perhaps a +, or by wrapping it with parentheses
or braces.

15.3.1 Calling the Debugger

There are several ways to call the debugger:

perl -d program name
On the given program identified by program_name.

perl -d -e 0
Interactively supply an arbitrary expression using -e.

perl -d:ptkdb program name
Debug a given program via the Devel::ptkdb GUI.

perl -dt threaded program name
Debug a given program using threads (experimental).

15.3.2 Debugger Commands

The interactive debugger understands the following commands:

h

Prints out a summary help message

h [command]
Prints out a help message for the given debugger command.

h h

The special argument of h h produces the entire help page, which is quite long.

If the output of the h h command (or any command, for that matter) scrolls
past your screen, precede the command with a leading pipe symbol so that it’s
run through your pager, as in

DB> |h h

You may change the pager which is used via o pager=... command.

p expr

Same as print {$DB::OUT} expr in the current package. In particular, because
this is just Perl’s own print function, this means that nested data structures
and objects are not dumped, unlike with the x command.

The DB::OUT filehandle is opened to /dev/tty, regardless of where STDOUT
may be redirected to.

x [maxdepth] expr
Evaluates its expression in list context and dumps out the result in a pretty-
printed fashion. Nested data structures are printed out recursively, unlike the
real print function in Perl. When dumping hashes, you’ll probably prefer ’x
\%h’ rather than ’x %h’. See Dumpvalue if you’d like to do this yourself.

The output format is governed by multiple options described under
Section 15.3.3 [Configurable Options], page 128.

If the maxdepth is included, it must be a numeral N ; the value is dumped only
N levels deep, as if the dumpDepth option had been temporarily set to N.

V [pkg [vars]]
Display all (or some) variables in package (defaulting to main) using a data
pretty-printer (hashes show their keys and values so you see what’s what, control
characters are made printable, etc.). Make sure you don’t put the type specifier
(like $) there, just the symbol names, like this:

V DB filename line

Use ~pattern and !pattern for positive and negative regexes.

This is similar to calling the x command on each applicable var.

X [vars]

Same as V currentpackage [vars].

y [level [vars]]
Display all (or some) lexical variables (mnemonic: mY variables) in the current
scope or level scopes higher. You can limit the variables that you see with
vars which works exactly as it does for the V and X commands. Requires
the PadWalker module version 0.08 or higher; will warn if this isn’t installed.
Output is pretty-printed in the same style as for V and the format is controlled
by the same options.

T

Produce a stack backtrace. See below for details on its output.

s [expr]

Single step. Executes until the beginning of another statement, descending into
subroutine calls. If an expression is supplied that includes function calls, it too
will be single-stepped.

n [expr]

Next. Executes over subroutine calls, until the beginning of the next statement.
If an expression is supplied that includes function calls, those functions will be
executed with stops before each statement.

r

Continue until the return from the current subroutine. Dump the return value
if the PrintRet option is set (default).

<CR>

Repeat last n or s command.

c [line|sub]
Continue, optionally inserting a one-time-only breakpoint at the specified line
or subroutine.

l

List next window of lines.

l min+incr

List incr+1 lines starting at min.

l min-max

List lines min through max. l - is synonymous to -.

l line

List a single line.

l subname

List first window of lines from subroutine. subname may be a variable that
contains a code reference.

-

List previous window of lines.

v [line]

View a few lines of code around the current line.

.

Return the internal debugger pointer to the line last executed, and print out
that line.

f filename

Switch to viewing a different file or eval statement. If filename is not a full
pathname found in the values of %INC, it is considered a regex.

evaled strings (when accessible) are considered to be filenames: f (eval 7) and
f eval 7\b access the body of the 7th evaled string (in the order of execution).
The bodies of the currently executed eval and of evaled strings that define
subroutines are saved and thus accessible.

/pattern/

Search forwards for pattern (a Perl regex); final / is optional. The search is
case-insensitive by default.

?pattern?

Search backwards for pattern; final ? is optional. The search is case-insensitive
by default.

L [abw]

List (default all) actions, breakpoints and watch expressions

S [[!]regex]

List subroutine names [not] matching the regex.

t [n]

Toggle trace mode (see also the AutoTrace option). Optional argument is the
maximum number of levels to trace below the current one; anything deeper
than that will be silent.

t [n] expr

Trace through execution of expr. Optional first argument is the maximum
number of levels to trace below the current one; anything deeper than that
will be silent. See Section 13.4 [perldebguts Frame Listing Output Examples],
page 92 for examples.

b

Sets breakpoint on current line

b [line] [condition]
Set a breakpoint before the given line. If a condition is specified, it’s evaluated
each time the statement is reached: a breakpoint is taken only if the condition is
true. Breakpoints may only be set on lines that begin an executable statement.
Conditions don’t use if:

b 237 $x > 30

b 237 ++$count237 < 11

b 33 /pattern/i

If the line number is ., sets a breakpoint on the current line:

b . $n > 100

b [file]:[line] [condition]
Set a breakpoint before the given line in a (possibly different) file. If a condition
is specified, it’s evaluated each time the statement is reached: a breakpoint is
taken only if the condition is true. Breakpoints may only be set on lines that
begin an executable statement. Conditions don’t use if:

b lib/MyModule.pm:237 $x > 30

b /usr/lib/perl5/site_perl/CGI.pm:100 ++$count100 < 11

b subname [condition]
Set a breakpoint before the first line of the named subroutine. subname may be
a variable containing a code reference (in this case condition is not supported).

b postpone subname [condition]
Set a breakpoint at first line of subroutine after it is compiled.

b load filename
Set a breakpoint before the first executed line of the filename, which should be
a full pathname found amongst the %INC values.

b compile subname
Sets a breakpoint before the first statement executed after the specified sub-
routine is compiled.

B line

Delete a breakpoint from the specified line.

B *

Delete all installed breakpoints.

disable [file]:[line]
Disable the breakpoint so it won’t stop the execution of the program. Break-
points are enabled by default and can be re-enabled using the enable command.

disable [line]
Disable the breakpoint so it won’t stop the execution of the program. Break-
points are enabled by default and can be re-enabled using the enable command.

This is done for a breakpoint in the current file.

enable [file]:[line]
Enable the breakpoint so it will stop the execution of the program.

enable [line]
Enable the breakpoint so it will stop the execution of the program.

This is done for a breakpoint in the current file.

a [line] command
Set an action to be done before the line is executed. If line is omitted, set an
action on the line about to be executed. The sequence of steps taken by the
debugger is

1. check for a breakpoint at this line

2. print the line if necessary (tracing)

3. do any actions associated with that line

4. prompt user if at a breakpoint or in single-step

5. evaluate line

For example, this will print out $foo every time line 53 is passed:

a 53 print "DB FOUND $foo\n"

A line

Delete an action from the specified line.

A *

Delete all installed actions.

w expr

Add a global watch-expression. Whenever a watched global changes the debug-
ger will stop and display the old and new values.

W expr

Delete watch-expression

W *

Delete all watch-expressions.

o

Display all options.

o booloption ...
Set each listed Boolean option to the value 1.

o anyoption? ...
Print out the value of one or more options.

o option=value ...
Set the value of one or more options. If the value has internal whitespace, it
should be quoted. For example, you could set o pager="less -MQeicsNfr" to
call less with those specific options. You may use either single or double quotes,
but if you do, you must escape any embedded instances of same sort of quote
you began with, as well as any escaping any escapes that immediately precede
that quote but which are not meant to escape the quote itself. In other words,
you follow single-quoting rules irrespective of the quote; eg: o option=’this

isn\’t bad’ or o option="She said, \"Isn’t it?\"".

For historical reasons, the =value is optional, but defaults to 1 only where
it is safe to do so–that is, mostly for Boolean options. It is always better to
assign a specific value using =. The option can be abbreviated, but for clarity
probably should not be. Several options can be set together. See Section 15.3.3
[Configurable Options], page 128 for a list of these.

< ?

List out all pre-prompt Perl command actions.

< [command]
Set an action (Perl command) to happen before every debugger prompt. A
multi-line command may be entered by backslashing the newlines.

< *

Delete all pre-prompt Perl command actions.

<< command
Add an action (Perl command) to happen before every debugger prompt. A
multi-line command may be entered by backwhacking the newlines.

> ? >>

List out post-prompt Perl command actions.

> command >>

Set an action (Perl command) to happen after the prompt when you’ve just
given a command to return to executing the script. A multi-line command may
be entered by backslashing the newlines (we bet you couldn’t have guessed this
by now).

> * >>

Delete all post-prompt Perl command actions.

>> command >>>

Adds an action (Perl command) to happen after the prompt when you’ve just
given a command to return to executing the script. A multi-line command may
be entered by backslashing the newlines.

{ ?

List out pre-prompt debugger commands.

{ [command]
Set an action (debugger command) to happen before every debugger prompt.
A multi-line command may be entered in the customary fashion.

Because this command is in some senses new, a warning is issued if you appear
to have accidentally entered a block instead. If that’s what you mean to do,
write it as with ;{ ... } or even do { ... }.

{ *

Delete all pre-prompt debugger commands.

{{ command
Add an action (debugger command) to happen before every debugger prompt.
A multi-line command may be entered, if you can guess how: see above.

! number

Redo a previous command (defaults to the previous command).

! -number

Redo number’th previous command.

! pattern

Redo last command that started with pattern. See o recallCommand, too.

!! cmd

Run cmd in a subprocess (reads from DB::IN, writes to DB::OUT) See o

shellBang, also. Note that the user’s current shell (well, their $ENV{SHELL}

variable) will be used, which can interfere with proper interpretation of exit
status or signal and coredump information.

source file

Read and execute debugger commands from file. file may itself contain source

commands.

H -number
Display last n commands. Only commands longer than one character are listed.
If number is omitted, list them all.

q or ^D

Quit. ("quit" doesn’t work for this, unless you’ve made an alias) This is the
only supported way to exit the debugger, though typing exit twice might work.

Set the inhibit_exit option to 0 if you want to be able to step off the end
the script. You may also need to set $finished to 0 if you want to step through
global destruction.

R

Restart the debugger by exec()ing a new session. We try to maintain your
history across this, but internal settings and command-line options may be
lost.

The following setting are currently preserved: history, breakpoints, actions,
debugger options, and the Perl command-line options -w, -I, and -e.

|dbcmd

Run the debugger command, piping DB::OUT into your current pager.

||dbcmd

Same as |dbcmd but DB::OUT is temporarily selected as well.

= [alias value]
Define a command alias, like

= quit q

or list current aliases.

command

Execute command as a Perl statement. A trailing semicolon will be supplied.
If the Perl statement would otherwise be confused for a Perl debugger, use a
leading semicolon, too.

m expr

List which methods may be called on the result of the evaluated expression.
The expression may evaluated to a reference to a blessed object, or to a package
name.

M

Display all loaded modules and their versions.

man [manpage]
Despite its name, this calls your system’s default documentation viewer on the
given page, or on the viewer itself if manpage is omitted. If that viewer is
man, the current Config information is used to invoke man using the proper
MANPATH or -M manpath option. Failed lookups of the form XXX that match
known manpages of the form perlXXX will be retried. This lets you type man

debug or man op from the debugger.

On systems traditionally bereft of a usableman command, the debugger invokes
perldoc. Occasionally this determination is incorrect due to recalcitrant vendors
or rather more felicitously, to enterprising users. If you fall into either category,
just manually set the $DB::doccmd variable to whatever viewer to view the Perl
documentation on your system. This may be set in an rc file, or through direct
assignment. We’re still waiting for a working example of something along the
lines of:

$DB::doccmd = ’netscape -remote http://something.here/’;

15.3.3 Configurable Options

The debugger has numerous options settable using the o command, either interactively or
from the environment or an rc file. (./.perldb or ~/.perldb under Unix.)

recallCommand, ShellBang
The characters used to recall a command or spawn a shell. By default, both
are set to !, which is unfortunate.

pager

Program to use for output of pager-piped commands (those beginning with a |

character.) By default, $ENV{PAGER} will be used. Because the debugger uses
your current terminal characteristics for bold and underlining, if the chosen
pager does not pass escape sequences through unchanged, the output of some
debugger commands will not be readable when sent through the pager.

tkRunning

Run Tk while prompting (with ReadLine).

signalLevel, warnLevel, dieLevel
Level of verbosity. By default, the debugger leaves your exceptions and warnings
alone, because altering them can break correctly running programs. It will
attempt to print a message when uncaught INT, BUS, or SEGV signals arrive.
(But see the mention of signals in Section 15.7 [BUGS], page 136 below.)

To disable this default safe mode, set these values to something higher than
0. At a level of 1, you get backtraces upon receiving any kind of warning

(this is often annoying) or exception (this is often valuable). Unfortunately,
the debugger cannot discern fatal exceptions from non-fatal ones. If dieLevel
is even 1, then your non-fatal exceptions are also traced and unceremoniously
altered if they came from eval’ed strings or from any kind of eval within
modules you’re attempting to load. If dieLevel is 2, the debugger doesn’t care
where they came from: It usurps your exception handler and prints out a trace,
then modifies all exceptions with its own embellishments. This may perhaps be
useful for some tracing purposes, but tends to hopelessly destroy any program
that takes its exception handling seriously.

AutoTrace

Trace mode (similar to t command, but can be put into PERLDB_OPTS).

LineInfo

File or pipe to print line number info to. If it is a pipe (say, |visual_perl_db),
then a short message is used. This is the mechanism used to interact with a
slave editor or visual debugger, such as the special vi or emacs hooks, or the
ddd graphical debugger.

inhibit_exit

If 0, allows stepping off the end of the script.

PrintRet

Print return value after r command if set (default).

ornaments

Affects screen appearance of the command line (see Term-ReadLine). There is
currently no way to disable these, which can render some output illegible on
some displays, or with some pagers. This is considered a bug.

frame

Affects the printing of messages upon entry and exit from subroutines. If frame
& 2 is false, messages are printed on entry only. (Printing on exit might be useful
if interspersed with other messages.)

If frame & 4, arguments to functions are printed, plus context and caller info.
If frame & 8, overloaded stringify and tied FETCH is enabled on the printed
arguments. If frame & 16, the return value from the subroutine is printed.

The length at which the argument list is truncated is governed by the next
option:

maxTraceLen

Length to truncate the argument list when the frame option’s bit 4 is set.

windowSize

Change the size of code list window (default is 10 lines).

The following options affect what happens with V, X, and x commands:

arrayDepth, hashDepth
Print only first N elements (” for all).

dumpDepth

Limit recursion depth to N levels when dumping structures. Negative values
are interpreted as infinity. Default: infinity.

compactDump, veryCompact
Change the style of array and hash output. If compactDump, short array may
be printed on one line.

globPrint

Whether to print contents of globs.

DumpDBFiles

Dump arrays holding debugged files.

DumpPackages

Dump symbol tables of packages.

DumpReused

Dump contents of "reused" addresses.

quote, HighBit, undefPrint
Change the style of string dump. The default value for quote is auto; one can
enable double-quotish or single-quotish format by setting it to " or ’, respec-
tively. By default, characters with their high bit set are printed verbatim.

UsageOnly

Rudimentary per-package memory usage dump. Calculates total size of strings
found in variables in the package. This does not include lexicals in a module’s
file scope, or lost in closures.

HistFile

The path of the file from which the history (assuming a usable Term::ReadLine
backend) will be read on the debugger’s startup, and to which it will be saved
on shutdown (for persistence across sessions). Similar in concept to Bash’s
.bash_history file.

HistSize

The count of the saved lines in the history (assuming HistFile above).

After the rc file is read, the debugger reads the $ENV{PERLDB_OPTS} environment variable
and parses this as the remainder of a "O ..." line as one might enter at the debugger prompt.
You may place the initialization options TTY, noTTY, ReadLine, and NonStop there.

If your rc file contains:

parse_options("NonStop=1 LineInfo=db.out AutoTrace");

then your script will run without human intervention, putting trace information into the
file db.out. (If you interrupt it, you’d better reset LineInfo to /dev/tty if you expect to
see anything.)

TTY

The TTY to use for debugging I/O.

noTTY

If set, the debugger goes into NonStop mode and will not connect to a TTY. If
interrupted (or if control goes to the debugger via explicit setting of $DB::signal
or $DB::single from the Perl script), it connects to a TTY specified in the TTY
option at startup, or to a tty found at runtime using the Term::Rendezvous

module of your choice.

This module should implement a method named new that returns an object
with two methods: IN and OUT. These should return filehandles to use for
debugging input and output correspondingly. The new method should in-
spect an argument containing the value of $ENV{PERLDB_NOTTY} at startup, or
"$ENV{HOME}/.perldbtty$$" otherwise. This file is not inspected for proper
ownership, so security hazards are theoretically possible.

ReadLine

If false, readline support in the debugger is disabled in order to debug applica-
tions that themselves use ReadLine.

NonStop

If set, the debugger goes into non-interactive mode until interrupted, or pro-
grammatically by setting $DB::signal or $DB::single.

Here’s an example of using the $ENV{PERLDB_OPTS} variable:

$ PERLDB_OPTS="NonStop frame=2" perl -d myprogram

That will run the script myprogram without human intervention, printing out the call
tree with entry and exit points. Note that NonStop=1 frame=2 is equivalent to N f=2, and
that originally, options could be uniquely abbreviated by the first letter (modulo the Dump*
options). It is nevertheless recommended that you always spell them out in full for legibility
and future compatibility.

Other examples include

$ PERLDB_OPTS="NonStop LineInfo=listing frame=2" perl -d myprogram

which runs script non-interactively, printing info on each entry into a subroutine and
each executed line into the file named listing. (If you interrupt it, you would better reset
LineInfo to something "interactive"!)

Other examples include (using standard shell syntax to show environment variable set-
tings):

$ (PERLDB_OPTS="NonStop frame=1 AutoTrace LineInfo=tperl.out"

perl -d myprogram)

which may be useful for debugging a program that uses Term::ReadLine itself. Do not
forget to detach your shell from the TTY in the window that corresponds to /dev/ttyXX,
say, by issuing a command like

$ sleep 1000000

See Section 13.3 [perldebguts Debugger Internals], page 90 for details.

15.3.4 Debugger Input/Output

Prompt

The debugger prompt is something like

DB<8>

or even

DB<<17>>

where that number is the command number, and which you’d use to access with
the built-in csh-like history mechanism. For example, !17 would repeat com-
mand number 17. The depth of the angle brackets indicates the nesting depth
of the debugger. You could get more than one set of brackets, for example, if
you’d already at a breakpoint and then printed the result of a function call that
itself has a breakpoint, or you step into an expression via s/n/t expression

command.

Multiline commands
If you want to enter a multi-line command, such as a subroutine definition with
several statements or a format, escape the newline that would normally end the
debugger command with a backslash. Here’s an example:

DB<1> for (1..4) { \

cont: print "ok\n"; \

cont: }

ok

ok

ok

ok

Note that this business of escaping a newline is specific to interactive commands
typed into the debugger.

Stack backtrace
Here’s an example of what a stack backtrace via T command might look like:

$ = main::infested called from file ’Ambulation.pm’ line 10

@ = Ambulation::legs(1, 2, 3, 4) called from file ’camel_flea’ line 7

$ = main::pests(’bactrian’, 4) called from file ’camel_flea’ line 4

The left-hand character up there indicates the context in which the function
was called, with $ and @ meaning scalar or list contexts respectively, and .

meaning void context (which is actually a sort of scalar context). The display
above says that you were in the function main::infested when you ran the
stack dump, and that it was called in scalar context from line 10 of the file
Ambulation.pm, but without any arguments at all, meaning it was called as
&infested. The next stack frame shows that the function Ambulation::legs

was called in list context from the camel flea file with four arguments. The last
stack frame shows that main::pests was called in scalar context, also from
camel flea, but from line 4.

If you execute the T command from inside an active use statement, the back-
trace will contain both a require frame and an eval frame.

Line Listing Format
This shows the sorts of output the l command can produce:

DB<<13>> l

101: @i{@i} = ();

102:b @isa{@i,$pack} = ()

103 if(exists $i{$prevpack} || exists $isa{$pack});

104 }

105

106 next

107==> if(exists $isa{$pack});

108

109:a if ($extra-- > 0) {

110: %isa = ($pack,1);

Breakable lines are marked with :. Lines with breakpoints are marked by b

and those with actions by a. The line that’s about to be executed is marked
by ==>.

Please be aware that code in debugger listings may not look the same as your
original source code. Line directives and external source filters can alter the
code before Perl sees it, causing code to move from its original positions or take
on entirely different forms.

Frame listing
When the frame option is set, the debugger would print entered (and optionally
exited) subroutines in different styles. See Section 13.1 [perldebguts NAME],
page 90 for incredibly long examples of these.

15.3.5 Debugging Compile-Time Statements

If you have compile-time executable statements (such as code within BEGIN,
UNITCHECK and CHECK blocks or use statements), these will not be stopped by
debugger, although requires and INIT blocks will, and compile-time statements can
be traced with the AutoTrace option set in PERLDB_OPTS). From your own Perl code,
however, you can transfer control back to the debugger using the following statement,
which is harmless if the debugger is not running:

$DB::single = 1;

If you set $DB::single to 2, it’s equivalent to having just typed the n command, whereas
a value of 1 means the s command. The $DB::trace variable should be set to 1 to simulate
having typed the t command.

Another way to debug compile-time code is to start the debugger, set a breakpoint on
the load of some module:

DB<7> b load f:/perllib/lib/Carp.pm

Will stop on load of ’f:/perllib/lib/Carp.pm’.

and then restart the debugger using the R command (if possible). One can use b compile

subname for the same purpose.

15.3.6 Debugger Customization

The debugger probably contains enough configuration hooks that you won’t ever have to
modify it yourself. You may change the behaviour of the debugger from within the debugger
using its o command, from the command line via the PERLDB_OPTS environment variable,
and from customization files.

You can do some customization by setting up a .perldb file, which contains initialization
code. For instance, you could make aliases like these (the last one is one people expect to
be there):

$DB::alias{’len’} = ’s/^len(.*)/p length($1)/’;

$DB::alias{’stop’} = ’s/^stop (at|in)/b/’;

$DB::alias{’ps’} = ’s/^ps\b/p scalar /’;

$DB::alias{’quit’} = ’s/^quit(\s*)/exit/’;

You can change options from .perldb by using calls like this one;

parse_options("NonStop=1 LineInfo=db.out AutoTrace=1 frame=2");

The code is executed in the package DB. Note that .perldb is processed before processing
PERLDB_OPTS. If .perldb defines the subroutine afterinit, that function is called after
debugger initialization ends. .perldb may be contained in the current directory, or in the
home directory. Because this file is sourced in by Perl and may contain arbitrary commands,
for security reasons, it must be owned by the superuser or the current user, and writable
by no one but its owner.

You can mock TTY input to debugger by adding arbitrary commands to
@DB::typeahead. For example, your .perldb file might contain:

sub afterinit { push @DB::typeahead, "b 4", "b 6"; }

Which would attempt to set breakpoints on lines 4 and 6 immediately after debugger
initialization. Note that @DB::typeahead is not a supported interface and is subject to
change in future releases.

If you want to modify the debugger, copy perl5db.pl from the Perl library to another
name and hack it to your heart’s content. You’ll then want to set your PERL5DB environment
variable to say something like this:

BEGIN { require "myperl5db.pl" }

As a last resort, you could also use PERL5DB to customize the debugger by directly setting
internal variables or calling debugger functions.

Note that any variables and functions that are not documented in this document (or in
Section 13.1 [perldebguts NAME], page 90) are considered for internal use only, and as such
are subject to change without notice.

15.3.7 Readline Support / History in the Debugger

As shipped, the only command-line history supplied is a simplistic one that checks for
leading exclamation points. However, if you install the Term::ReadKey and Term::ReadLine
modules from CPAN (such as Term::ReadLine::Gnu, Term::ReadLine::Perl, ...) you will
have full editing capabilities much like those GNU readline(3) provides. Look for these
in the modules/by-module/Term directory on CPAN. These do not support normal vi
command-line editing, however.

A rudimentary command-line completion is also available, including lexical variables in
the current scope if the PadWalker module is installed.

Without Readline support you may see the symbols "^[[A", "^[[C", "^[[B", "^[[D"",
"^H", ... when using the arrow keys and/or the backspace key.

15.3.8 Editor Support for Debugging

If you have the GNU’s version of emacs installed on your system, it can interact with the
Perl debugger to provide an integrated software development environment reminiscent of
its interactions with C debuggers.

Recent versions of Emacs come with a start file for making emacs act like a syntax-
directed editor that understands (some of) Perl’s syntax. See perlfaq3.

Users of vi should also look into vim and gvim, the mousey and windy version, for
coloring of Perl keywords.

Note that only perl can truly parse Perl, so all such CASE tools fall somewhat short of
the mark, especially if you don’t program your Perl as a C programmer might.

15.3.9 The Perl Profiler

If you wish to supply an alternative debugger for Perl to run, invoke your script with a
colon and a package argument given to the -d flag. Perl’s alternative debuggers include
a Perl profiler, Devel-NYTProf, which is available separately as a CPAN distribution. To
profile your Perl program in the file mycode.pl, just type:

$ perl -d:NYTProf mycode.pl

When the script terminates the profiler will create a database of the profile information
that you can turn into reports using the profiler’s tools. See <perlperf> for details.

15.4 Debugging Regular Expressions

use re ’debug’ enables you to see the gory details of how the Perl regular expression engine
works. In order to understand this typically voluminous output, one must not only have
some idea about how regular expression matching works in general, but also know how Perl’s
regular expressions are internally compiled into an automaton. These matters are explored
in some detail in Section 13.5 [perldebguts Debugging Regular Expressions], page 96.

15.5 Debugging Memory Usage

Perl contains internal support for reporting its own memory usage, but this is a fairly
advanced concept that requires some understanding of how memory allocation works. See
Section 13.6 [perldebguts Debugging Perl Memory Usage], page 104 for the details.

15.6 SEE ALSO

You did try the -w switch, didn’t you?

Section 14.1 [perldebtut NAME], page 107, Section 13.1 [perldebguts NAME], page 90,
re, DB, Devel-NYTProf, Dumpvalue, and Section 69.1 [perlrun NAME], page 1176.

When debugging a script that uses #! and is thus normally found in $PATH, the -S
option causes perl to search $PATH for it, so you don’t have to type the path or which

$scriptname.

$ perl -Sd foo.pl

15.7 BUGS

You cannot get stack frame information or in any fashion debug functions that were not
compiled by Perl, such as those from C or C++ extensions.

If you alter your @ arguments in a subroutine (such as with shift or pop), the stack
backtrace will not show the original values.

The debugger does not currently work in conjunction with the -W command-line switch,
because it itself is not free of warnings.

If you’re in a slow syscall (like waiting, accepting, or reading from your keyboard or a
socket) and haven’t set up your own $SIG{INT} handler, then you won’t be able to CTRL-
C your way back to the debugger, because the debugger’s own $SIG{INT} handler doesn’t
understand that it needs to raise an exception to longjmp(3) out of slow syscalls.

16 perldiag

16.1 NAME

perldiag - various Perl diagnostics

16.2 DESCRIPTION

These messages are classified as follows (listed in increasing order of desperation):

(W) A warning (optional).

(D) A deprecation (enabled by default).

(S) A severe warning (enabled by default).

(F) A fatal error (trappable).

(P) An internal error you should never see (trappable).

(X) A very fatal error (nontrappable).

(A) An alien error message (not generated by Perl).

The majority of messages from the first three classifications above (W, D & S) can be
controlled using the warnings pragma.

If a message can be controlled by the warnings pragma, its warning category is included
with the classification letter in the description below. E.g. (W closed) means a warning in
the closed category.

Optional warnings are enabled by using the warnings pragma or the -w and -W switches.
Warnings may be captured by setting $SIG{__WARN__} to a reference to a routine that will
be called on each warning instead of printing it. See Section 86.1 [perlvar NAME], page 1375.

Severe warnings are always enabled, unless they are explicitly disabled with the warnings
pragma or the -X switch.

Trappable errors may be trapped using the eval operator. See [perlfunc eval], page 377.
In almost all cases, warnings may be selectively disabled or promoted to fatal errors using
the warnings pragma. See warnings.

The messages are in alphabetical order, without regard to upper or lower-case. Some
of these messages are generic. Spots that vary are denoted with a %s or other printf-style
escape. These escapes are ignored by the alphabetical order, as are all characters other
than letters. To look up your message, just ignore anything that is not a letter.

accept() on closed socket %s
(W closed) You tried to do an accept on a closed socket. Did you forget to
check the return value of your socket() call? See 〈undefined〉 [perlfunc accept],
page 〈undefined〉.

Aliasing via reference is experimental
(S experimental::refaliasing) This warning is emitted if you use a reference con-
structor on the left-hand side of an assignment to alias one variable to another.
Simply suppress the warning if you want to use the feature, but know that in
doing so you are taking the risk of using an experimental feature which may
change or be removed in a future Perl version:

no warnings "experimental::refaliasing";

use feature "refaliasing";

\$x = \$y;

Allocation too large: %x
(X) You can’t allocate more than 64K on an MS-DOS machine.

’%c’ allowed only after types %s in %s
(F) The modifiers ’ !’, ’<’ and ’>’ are allowed in pack() or unpack() only after
certain types. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

Ambiguous call resolved as CORE::%s(), qualify as such or use &
(W ambiguous) A subroutine you have declared has the same name as a Perl
keyword, and you have used the name without qualification for calling one or the
other. Perl decided to call the builtin because the subroutine is not imported.

To force interpretation as a subroutine call, either put an ampersand before
the subroutine name, or qualify the name with its package. Alternatively, you
can import the subroutine (or pretend that it’s imported with the use subs

pragma).

To silently interpret it as the Perl operator, use the CORE:: prefix on the opera-
tor (e.g. CORE::log($x)) or declare the subroutine to be an object method (see
Section 73.3.14 [perlsub Subroutine Attributes], page 1247 or attributes).

Ambiguous range in transliteration operator
(F) You wrote something like tr/a-z-0// which doesn’t mean anything at all.
To include a - character in a transliteration, put it either first or last. (In
the past, tr/a-z-0// was synonymous with tr/a-y//, which was probably not
what you would have expected.)

Ambiguous use of %s resolved as %s
(S ambiguous) You said something that may not be interpreted the way you
thought. Normally it’s pretty easy to disambiguate it by supplying a missing
quote, operator, parenthesis pair or declaration.

Ambiguous use of -%s resolved as -&%s()
(S ambiguous) You wrote something like -foo, which might be the string
"-foo", or a call to the function foo, negated. If you meant the string, just
write "-foo". If you meant the function call, write -foo().

Ambiguous use of %c resolved as operator %c
(S ambiguous) %, &, and * are both infix operators (modulus, bitwise and, and
multiplication) and initial special characters (denoting hashes, subroutines and
typeglobs), and you said something like *foo * foo that might be interpreted
as either of them. We assumed you meant the infix operator, but please try
to make it more clear – in the example given, you might write *foo * foo() if
you really meant to multiply a glob by the result of calling a function.

Ambiguous use of %c{%s} resolved to %c%s
(W ambiguous) You wrote something like @{foo}, which might be asking for
the variable @foo, or it might be calling a function named foo, and dereferencing
it as an array reference. If you wanted the variable, you can just write @foo. If

you wanted to call the function, write @{foo()} ... or you could just not have a
variable and a function with the same name, and save yourself a lot of trouble.

Ambiguous use of %c{%s[...]} resolved to %c%s[...]
Ambiguous use of %c{%s{...}} resolved to %c%s{...}

(W ambiguous) You wrote something like ${foo[2]} (where foo represents the
name of a Perl keyword), which might be looking for element number 2 of the
array named @foo, in which case please write $foo[2], or you might have meant
to pass an anonymous arrayref to the function named foo, and then do a scalar
deref on the value it returns. If you meant that, write ${foo([2])}.

In regular expressions, the ${foo[2]} syntax is sometimes necessary to disam-
biguate between array subscripts and character classes. /$length[2345]/, for
instance, will be interpreted as $length followed by the character class [2345].
If an array subscript is what you want, you can avoid the warning by changing
/${length[2345]}/ to the unsightly /${\$length[2345]}/, by renaming your
array to something that does not coincide with a built-in keyword, or by simply
turning off warnings with no warnings ’ambiguous’;.

’|’ and ’<’ may not both be specified on command line
(F) An error peculiar to VMS. Perl does its own command line redirection, and
found that STDIN was a pipe, and that you also tried to redirect STDIN using
’<’. Only one STDIN stream to a customer, please.

’|’ and ’>’ may not both be specified on command line
(F) An error peculiar to VMS. Perl does its own command line redirection, and
thinks you tried to redirect stdout both to a file and into a pipe to another
command. You need to choose one or the other, though nothing’s stopping you
from piping into a program or Perl script which ’splits’ output into two streams,
such as

open(OUT,">$ARGV[0]") or die "Can’t write to $ARGV[0]: $!";

while (<STDIN>) {

print;

print OUT;

}

close OUT;

Applying %s to %s will act on scalar(%s)
(W misc) The pattern match (//), substitution (s///), and transliteration
(tr///) operators work on scalar values. If you apply one of them to an array or
a hash, it will convert the array or hash to a scalar value (the length of an array,
or the population info of a hash) and then work on that scalar value. This is
probably not what you meant to do. See 〈undefined〉 [perlfunc grep], page 〈un-
defined〉 and 〈undefined〉 [perlfunc map], page 〈undefined〉 for alternatives.

Arg too short for msgsnd
(F) msgsnd() requires a string at least as long as sizeof(long).

Argument "%s" isn’t numeric%s
(W numeric) The indicated string was fed as an argument to an operator that
expected a numeric value instead. If you’re fortunate the message will identify
which operator was so unfortunate.

Note that for the Inf and NaN (infinity and not-a-number) the definition of "nu-
meric" is somewhat unusual: the strings themselves (like "Inf") are considered
numeric, and anything following them is considered non-numeric.

Argument list not closed for PerlIO layer "%s"
(W layer) When pushing a layer with arguments onto the Perl I/O system you
forgot the) that closes the argument list. (Layers take care of transforming
data between external and internal representations.) Perl stopped parsing the
layer list at this point and did not attempt to push this layer. If your program
didn’t explicitly request the failing operation, it may be the result of the value
of the environment variable PERLIO.

Argument "%s" treated as 0 in increment (++)
(W numeric) The indicated string was fed as an argument to the ++ operator
which expects either a number or a string matching /^[a-zA-Z]*[0-9]*\z/.
See Section 48.2.4 [perlop Auto-increment and Auto-decrement], page 800 for
details.

assertion botched: %s
(X) The malloc package that comes with Perl had an internal failure.

Assertion %s failed: file "%s", line %d
(X) A general assertion failed. The file in question must be examined.

Assigned value is not a reference
(F) You tried to assign something that was not a reference to an lvalue reference
(e.g., \$x = $y). If you meant to make $x an alias to $y, use \$x = \$y.

Assigned value is not %s reference
(F) You tried to assign a reference to a reference constructor, but the two
references were not of the same type. You cannot alias a scalar to an array, or
an array to a hash; the two types must match.

\$x = \@y; # error

\@x = \%y; # error

$y = [];

\$x = $y; # error; did you mean \$y?

Assigning non-zero to $[is no longer possible
(F) When the "array base" feature is disabled (e.g., under use v5.16;) the
special variable $[, which is deprecated, is now a fixed zero value.

Assignment to both a list and a scalar
(F) If you assign to a conditional operator, the 2nd and 3rd arguments must
either both be scalars or both be lists. Otherwise Perl won’t know which context
to supply to the right side.

<> at require-statement should be quotes
(F) You wrote require <file> when you should have written require ’file’.

Attempt to access disallowed key ’%s’ in a restricted hash
(F) The failing code has attempted to get or set a key which is not in the current
set of allowed keys of a restricted hash.

Attempt to bless into a freed package
(F) You wrote bless $foo with one argument after somehow causing the cur-
rent package to be freed. Perl cannot figure out what to do, so it throws up in
hands in despair.

Attempt to bless into a reference
(F) The CLASSNAME argument to the bless() operator is expected to be the
name of the package to bless the resulting object into. You’ve supplied instead
a reference to something: perhaps you wrote

bless $self, $proto;

when you intended

bless $self, ref($proto) || $proto;

If you actually want to bless into the stringified version of the reference supplied,
you need to stringify it yourself, for example by:

bless $self, "$proto";

Attempt to clear deleted array
(S debugging) An array was assigned to when it was being freed. Freed values
are not supposed to be visible to Perl code. This can also happen if XS code
calls av_clear from a custom magic callback on the array.

Attempt to delete disallowed key ’%s’ from a restricted hash
(F) The failing code attempted to delete from a restricted hash a key which is
not in its key set.

Attempt to delete readonly key ’%s’ from a restricted hash
(F) The failing code attempted to delete a key whose value has been declared
readonly from a restricted hash.

Attempt to free non-arena SV: 0x%x
(S internal) All SV objects are supposed to be allocated from arenas that will
be garbage collected on exit. An SV was discovered to be outside any of those
arenas.

Attempt to free nonexistent shared string ’%s’%s
(S internal) Perl maintains a reference-counted internal table of strings to op-
timize the storage and access of hash keys and other strings. This indicates
someone tried to decrement the reference count of a string that can no longer
be found in the table.

Attempt to free temp prematurely: SV 0x%x
(S debugging) Mortalized values are supposed to be freed by the free tmps()
routine. This indicates that something else is freeing the SV before the
free tmps() routine gets a chance, which means that the free tmps() routine
will be freeing an unreferenced scalar when it does try to free it.

Attempt to free unreferenced glob pointers
(S internal) The reference counts got screwed up on symbol aliases.

Attempt to free unreferenced scalar: SV 0x%x
(S internal) Perl went to decrement the reference count of a scalar to see if
it would go to 0, and discovered that it had already gone to 0 earlier, and
should have been freed, and in fact, probably was freed. This could indicate
that SvREFCNT dec() was called too many times, or that SvREFCNT inc()
was called too few times, or that the SV was mortalized when it shouldn’t have
been, or that memory has been corrupted.

Attempt to pack pointer to temporary value
(W pack) You tried to pass a temporary value (like the result of a function,
or a computed expression) to the "p" pack() template. This means the result
contains a pointer to a location that could become invalid anytime, even before
the end of the current statement. Use literals or global values as arguments to
the "p" pack() template to avoid this warning.

Attempt to reload %s aborted.
(F) You tried to load a file with use or require that failed to compile once
already. Perl will not try to compile this file again unless you delete its entry
from %INC. See [perlfunc require], page 437 and [perlvar %INC], page 1382.

Attempt to set length of freed array
(W misc) You tried to set the length of an array which has been freed. You
can do this by storing a reference to the scalar representing the last index of an
array and later assigning through that reference. For example

$r = do {my @a; \$#a};

$$r = 503

Attempt to use reference as lvalue in substr
(W substr) You supplied a reference as the first argument to substr() used as
an lvalue, which is pretty strange. Perhaps you forgot to dereference it first.
See 〈undefined〉 [perlfunc substr], page 〈undefined〉.

Attribute "locked" is deprecated
(D deprecated) You have used the attributes pragma to modify the "locked"
attribute on a code reference. The :locked attribute is obsolete, has had no
effect since 5005 threads were removed, and will be removed in a future release
of Perl 5.

Attribute prototype(%s) discards earlier prototype attribute in same sub
(W misc) A sub was declared as sub foo : prototype(A) : prototype(B) {}, for
example. Since each sub can only have one prototype, the earlier declaration(s)
are discarded while the last one is applied.

Attribute "unique" is deprecated
(D deprecated) You have used the attributes pragma to modify the "unique"
attribute on an array, hash or scalar reference. The :unique attribute has had
no effect since Perl 5.8.8, and will be removed in a future release of Perl 5.

av reify called on tied array
(S debugging) This indicates that something went wrong and Perl got very
confused about @_ or @DB::args being tied.

Bad arg length for %s, is %u, should be %d
(F) You passed a buffer of the wrong size to one of msgctl(), semctl() or shmctl().
In C parlance, the correct sizes are, respectively, sizeof(struct msqid ds *),
sizeof(struct semid ds *), and sizeof(struct shmid ds *).

Bad evalled substitution pattern
(F) You’ve used the /e switch to evaluate the replacement for a substitution,
but perl found a syntax error in the code to evaluate, most likely an unexpected
right brace ’}’.

Bad filehandle: %s
(F) A symbol was passed to something wanting a filehandle, but the symbol
has no filehandle associated with it. Perhaps you didn’t do an open(), or did it
in another package.

Bad free() ignored
(S malloc) An internal routine called free() on something that had never been
malloc()ed in the first place. Mandatory, but can be disabled by setting envi-
ronment variable PERL_BADFREE to 0.

This message can be seen quite often with DB File on systems with "hard"
dynamic linking, like AIX and OS/2. It is a bug of Berkeley DB which is left
unnoticed if DB uses forgiving system malloc().

Bad hash

(P) One of the internal hash routines was passed a null HV pointer.

Badly placed ()’s
(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself.

Bad name after %s
(F) You started to name a symbol by using a package prefix, and then didn’t
finish the symbol. In particular, you can’t interpolate outside of quotes, so

$var = ’myvar’;

$sym = mypack::$var;

is not the same as

$var = ’myvar’;

$sym = "mypack::$var";

Bad plugin affecting keyword ’%s’
(F) An extension using the keyword plugin mechanism violated the plugin API.

Bad realloc() ignored
(S malloc) An internal routine called realloc() on something that had never
been malloc()ed in the first place. Mandatory, but can be disabled by setting
the environment variable PERL_BADFREE to 1.

Bad symbol for array
(P) An internal request asked to add an array entry to something that wasn’t
a symbol table entry.

Bad symbol for dirhandle
(P) An internal request asked to add a dirhandle entry to something that wasn’t
a symbol table entry.

Bad symbol for filehandle
(P) An internal request asked to add a filehandle entry to something that wasn’t
a symbol table entry.

Bad symbol for hash
(P) An internal request asked to add a hash entry to something that wasn’t a
symbol table entry.

Bad symbol for scalar
(P) An internal request asked to add a scalar entry to something that wasn’t a
symbol table entry.

Bareword found in conditional
(W bareword) The compiler found a bareword where it expected a conditional,
which often indicates that an || or && was parsed as part of the last argument
of the previous construct, for example:

open FOO || die;

It may also indicate a misspelled constant that has been interpreted as a bare-
word:

use constant TYPO => 1;

if (TYOP) { print "foo" }

The strict pragma is useful in avoiding such errors.

Bareword "%s" not allowed while "strict subs" in use
(F) With "strict subs" in use, a bareword is only allowed as a subroutine iden-
tifier, in curly brackets or to the left of the "=>" symbol. Perhaps you need to
predeclare a subroutine?

Bareword "%s" refers to nonexistent package
(W bareword) You used a qualified bareword of the form Foo::, but the com-
piler saw no other uses of that namespace before that point. Perhaps you need
to predeclare a package?

BEGIN failed–compilation aborted
(F) An untrapped exception was raised while executing a BEGIN subroutine.
Compilation stops immediately and the interpreter is exited.

BEGIN not safe after errors–compilation aborted
(F) Perl found a BEGIN {} subroutine (or a use directive, which implies a BEGIN
{}) after one or more compilation errors had already occurred. Since the in-
tended environment for the BEGIN {} could not be guaranteed (due to the er-
rors), and since subsequent code likely depends on its correct operation, Perl
just gave up.

\%d better written as $%d
(W syntax) Outside of patterns, backreferences live on as variables. The use
of backslashes is grandfathered on the right-hand side of a substitution, but

stylistically it’s better to use the variable form because other Perl programmers
will expect it, and it works better if there are more than 9 backreferences.

Binary number > 0b11111111111111111111111111111111 non-portable
(W portable) The binary number you specified is larger than 2**32-1
(4294967295) and therefore non-portable between systems. See Section 56.1
[perlport NAME], page 951 for more on portability concerns.

bind() on closed socket %s
(W closed) You tried to do a bind on a closed socket. Did you forget to check
the return value of your socket() call? See 〈undefined〉 [perlfunc bind], page 〈un-
defined〉.

binmode() on closed filehandle %s
(W unopened) You tried binmode() on a filehandle that was never opened.
Check your control flow and number of arguments.

Bit vector size > 32 non-portable
(W portable) Using bit vector sizes larger than 32 is non-portable.

Bizarre copy of %s
(P) Perl detected an attempt to copy an internal value that is not copiable.

Bizarre SvTYPE [%d]
(P) When starting a new thread or returning values from a thread, Perl en-
countered an invalid data type.

Both or neither range ends should be Unicode in regex; marked by <– HERE in m/%s/
(W regexp) (only under use re ’strict’ or within (?[...]))

In a bracketed character class in a regular expression pattern, you had a range
which has exactly one end of it specified using \N{}, and the other end is
specified using a non-portable mechanism. Perl treats the range as a Uni-
code range, that is, all the characters in it are considered to be the Unicode
characters, and which may be different code points on some platforms Perl
runs on. For example, [\N{U+06}-\x08] is treated as if you had instead said
[\N{U+06}-\N{U+08}], that is it matches the characters whose code points in
Unicode are 6, 7, and 8. But that \x08 might indicate that you meant some-
thing different, so the warning gets raised.

Buffer overflow in prime env iter: %s
(W internal) A warning peculiar to VMS. While Perl was preparing to iterate
over %ENV, it encountered a logical name or symbol definition which was too
long, so it was truncated to the string shown.

Callback called exit
(F) A subroutine invoked from an external package via call sv() exited by calling
exit.

%s() called too early to check prototype
(W prototype) You’ve called a function that has a prototype before the parser
saw a definition or declaration for it, and Perl could not check that the call
conforms to the prototype. You need to either add an early prototype decla-
ration for the subroutine in question, or move the subroutine definition ahead

of the call to get proper prototype checking. Alternatively, if you are certain
that you’re calling the function correctly, you may put an ampersand before
the name to avoid the warning. See Section 73.1 [perlsub NAME], page 1216.

Calling POSIX::%s() is deprecated
(D deprecated) You called a function whose use is deprecated. See the function’s
name in POSIX for details.

Cannot chr %f
(F) You passed an invalid number (like an infinity or not-a-number) to chr.

Cannot compress %f in pack
(F) You tried compressing an infinity or not-a-number as an unsigned integer
with BER, which makes no sense.

Cannot compress integer in pack
(F) An argument to pack("w",...) was too large to compress. The BER com-
pressed integer format can only be used with positive integers, and you at-
tempted to compress a very large number (> 1e308). See 〈undefined〉 [perlfunc
pack], page 〈undefined〉.

Cannot compress negative numbers in pack
(F) An argument to pack("w",...) was negative. The BER compressed integer
format can only be used with positive integers. See 〈undefined〉 [perlfunc pack],
page 〈undefined〉.

Cannot convert a reference to %s to typeglob
(F) You manipulated Perl’s symbol table directly, stored a reference in it, then
tried to access that symbol via conventional Perl syntax. The access triggers
Perl to autovivify that typeglob, but it there is no legal conversion from that
type of reference to a typeglob.

Cannot copy to %s
(P) Perl detected an attempt to copy a value to an internal type that cannot
be directly assigned to.

Cannot find encoding "%s"
(S io) You tried to apply an encoding that did not exist to a filehandle, either
with open() or binmode().

Cannot pack %f with ’%c’
(F) You tried converting an infinity or not-a-number to an integer, which makes
no sense.

Cannot printf %f with ’%c’
(F) You tried printing an infinity or not-a-number as a character (%c), which
makes no sense. Maybe you meant ’%s’, or just stringifying it?

Cannot set tied @DB::args
(F) caller tried to set @DB::args, but found it tied. Tying @DB::args is not
supported. (Before this error was added, it used to crash.)

Cannot tie unreifiable array
(P) You somehow managed to call tie on an array that does not keep a reference
count on its arguments and cannot be made to do so. Such arrays are not even
supposed to be accessible to Perl code, but are only used internally.

Can only compress unsigned integers in pack
(F) An argument to pack("w",...) was not an integer. The BER compressed
integer format can only be used with positive integers, and you attempted to
compress something else. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

Can’t bless non-reference value
(F) Only hard references may be blessed. This is how Perl "enforces" encapsu-
lation of objects. See Section 46.1 [perlobj NAME], page 769.

Can’t "break" in a loop topicalizer
(F) You called break, but you’re in a foreach block rather than a given block.
You probably meant to use next or last.

Can’t "break" outside a given block
(F) You called break, but you’re not inside a given block.

Can’t call method "%s" on an undefined value
(F) You used the syntax of a method call, but the slot filled by the object
reference or package name contains an undefined value. Something like this
will reproduce the error:

$BADREF = undef;

process $BADREF 1,2,3;

$BADREF->process(1,2,3);

Can’t call method "%s" on unblessed reference
(F) A method call must know in what package it’s supposed to run. It ordinarily
finds this out from the object reference you supply, but you didn’t supply an
object reference in this case. A reference isn’t an object reference until it has
been blessed. See Section 46.1 [perlobj NAME], page 769.

Can’t call method "%s" without a package or object reference
(F) You used the syntax of a method call, but the slot filled by the object
reference or package name contains an expression that returns a defined value
which is neither an object reference nor a package name. Something like this
will reproduce the error:

$BADREF = 42;

process $BADREF 1,2,3;

$BADREF->process(1,2,3);

Can’t call mro isa changed in() on anonymous symbol table
(P) Perl got confused as to whether a hash was a plain hash or a symbol table
hash when trying to update @ISA caches.

Can’t call mro method changed in() on anonymous symbol table
(F) An XS module tried to call mro_method_changed_in on a hash that was
not attached to the symbol table.

Can’t chdir to %s
(F) You called perl -x/foo/bar, but /foo/bar is not a directory that you can
chdir to, possibly because it doesn’t exist.

Can’t check filesystem of script "%s" for nosuid
(P) For some reason you can’t check the filesystem of the script for nosuid.

Can’t coerce %s to %s in %s
(F) Certain types of SVs, in particular real symbol table entries (typeglobs),
can’t be forced to stop being what they are. So you can’t say things like:

*foo += 1;

You CAN say

$foo = *foo;

$foo += 1;

but then $foo no longer contains a glob.

Can’t "continue" outside a when block
(F) You called continue, but you’re not inside a when or default block.

Can’t create pipe mailbox
(P) An error peculiar to VMS. The process is suffering from exhausted quotas
or other plumbing problems.

Can’t declare %s in "%s"
(F) Only scalar, array, and hash variables may be declared as "my", "our" or
"state" variables. They must have ordinary identifiers as names.

Can’t "default" outside a topicalizer
(F) You have used a default block that is neither inside a foreach loop nor
a given block. (Note that this error is issued on exit from the default block,
so you won’t get the error if you use an explicit continue.)

Can’t do inplace edit: %s is not a regular file
(S inplace) You tried to use the -i switch on a special file, such as a file in /dev,
a FIFO or an uneditable directory. The file was ignored.

Can’t do inplace edit on %s: %s
(S inplace) The creation of the new file failed for the indicated reason.

Can’t do inplace edit without backup
(F) You’re on a system such as MS-DOS that gets confused if you try reading
from a deleted (but still opened) file. You have to say -i.bak, or some such.

Can’t do inplace edit: %s would not be unique
(S inplace) Your filesystem does not support filenames longer than 14 characters
and Perl was unable to create a unique filename during inplace editing with the
-i switch. The file was ignored.

Can’t do %s("%s") on non-UTF-8 locale; resolved to "%s".
(W locale) You are 1) running under "use locale"; 2) the current locale is
not a UTF-8 one; 3) you tried to do the designated case-change operation on
the specified Unicode character; and 4) the result of this operation would mix

Unicode and locale rules, which likely conflict. Mixing of different rule types
is forbidden, so the operation was not done; instead the result is the indicated
value, which is the best available that uses entirely Unicode rules. That turns
out to almost always be the original character, unchanged.

It is generally a bad idea to mix non-UTF-8 locales and Unicode, and this issue
is one of the reasons why. This warning is raised when Unicode rules would
normally cause the result of this operation to contain a character that is in the
range specified by the locale, 0..255, and hence is subject to the locale’s rules,
not Unicode’s.

If you are using locale purely for its characteristics related to things like its nu-
meric and time formatting (and not LC_CTYPE), consider using a restricted form
of the locale pragma (see Section 38.5.1 [perllocale The "use locale" pragma],
page 703) like "use locale ’:not_characters’".

Note that failed case-changing operations done as a result of case-insensitive
/i regular expression matching will show up in this warning as having the fc

operation (as that is what the regular expression engine calls behind the scenes.)

Can’t do waitpid with flags
(F) This machine doesn’t have either waitpid() or wait4(), so only waitpid()
without flags is emulated.

Can’t emulate -%s on #! line
(F) The #! line specifies a switch that doesn’t make sense at this point. For
example, it’d be kind of silly to put a -x on the #! line.

Can’t %s %s-endian %ss on this platform
(F) Your platform’s byte-order is neither big-endian nor little-endian, or it has
a very strange pointer size. Packing and unpacking big- or little-endian floating
point values and pointers may not be possible. See 〈undefined〉 [perlfunc pack],
page 〈undefined〉.

Can’t exec "%s": %s
(W exec) A system(), exec(), or piped open call could not execute the named
program for the indicated reason. Typical reasons include: the permissions
were wrong on the file, the file wasn’t found in $ENV{PATH}, the executable in
question was compiled for another architecture, or the #! line in a script points
to an interpreter that can’t be run for similar reasons. (Or maybe your system
doesn’t support #! at all.)

Can’t exec %s
(F) Perl was trying to execute the indicated program for you because that’s
what the #! line said. If that’s not what you wanted, you may need to mention
"perl" on the #! line somewhere.

Can’t execute %s
(F) You used the -S switch, but the copies of the script to execute found in the
PATH did not have correct permissions.

Can’t find an opnumber for "%s"
(F) A string of a form CORE::word was given to prototype(), but there is no
builtin with the name word.

Can’t find %s character property "%s"
(F) You used \p{} or \P{} but the character property by that name could
not be found. Maybe you misspelled the name of the property? See Section
“Properties accessible through \p{} and \P{}” in perluniprops for a complete
list of available official properties.

Can’t find label %s
(F) You said to goto a label that isn’t mentioned anywhere that it’s possible
for us to go to. See 〈undefined〉 [perlfunc goto], page 〈undefined〉.

Can’t find %s on PATH
(F) You used the -S switch, but the script to execute could not be found in the
PATH.

Can’t find %s on PATH, ’.’ not in PATH
(F) You used the -S switch, but the script to execute could not be found in the
PATH, or at least not with the correct permissions. The script exists in the
current directory, but PATH prohibits running it.

Can’t find string terminator %s anywhere before EOF
(F) Perl strings can stretch over multiple lines. This message means that the
closing delimiter was omitted. Because bracketed quotes count nesting levels,
the following is missing its final parenthesis:

print q(The character ’(’ starts a side comment.);

If you’re getting this error from a here-document, you may have included unseen
whitespace before or after your closing tag or there may not be a linebreak after
it. A good programmer’s editor will have a way to help you find these characters
(or lack of characters). See Section 48.1 [perlop NAME], page 798 for the full
details on here-documents.

Can’t find Unicode property definition "%s"
(F) You may have tried to use \p which means a Unicode property (for ex-
ample \p{Lu} matches all uppercase letters). If you did mean to use a Uni-
code property, see Section “Properties accessible through \p{} and \P{}” in
perluniprops for a complete list of available properties. If you didn’t mean to
use a Unicode property, escape the \p, either by \\p (just the \p) or by \Q\p

(the rest of the string, or until \E).

Can’t fork: %s
(F) A fatal error occurred while trying to fork while opening a pipeline.

Can’t fork, trying again in 5 seconds
(W pipe) A fork in a piped open failed with EAGAIN and will be retried after
five seconds.

Can’t get filespec - stale stat buffer?
(S) A warning peculiar to VMS. This arises because of the difference between
access checks under VMS and under the Unix model Perl assumes. Under VMS,
access checks are done by filename, rather than by bits in the stat buffer, so
that ACLs and other protections can be taken into account. Unfortunately,
Perl assumes that the stat buffer contains all the necessary information, and

passes it, instead of the filespec, to the access-checking routine. It will try to
retrieve the filespec using the device name and FID present in the stat buffer,
but this works only if you haven’t made a subsequent call to the CRTL stat()
routine, because the device name is overwritten with each call. If this warning
appears, the name lookup failed, and the access-checking routine gave up and
returned FALSE, just to be conservative. (Note: The access-checking routine
knows about the Perl stat operator and file tests, so you shouldn’t ever see
this warning in response to a Perl command; it arises only if some internal code
takes stat buffers lightly.)

Can’t get pipe mailbox device name
(P) An error peculiar to VMS. After creating a mailbox to act as a pipe, Perl
can’t retrieve its name for later use.

Can’t get SYSGEN parameter value for MAXBUF
(P) An error peculiar to VMS. Perl asked $GETSYI how big you want your
mailbox buffers to be, and didn’t get an answer.

Can’t "goto" into the middle of a foreach loop
(F) A "goto" statement was executed to jump into the middle of a foreach loop.
You can’t get there from here. See 〈undefined〉 [perlfunc goto], page 〈undefined〉.

Can’t "goto" out of a pseudo block
(F) A "goto" statement was executed to jump out of what might look like a
block, except that it isn’t a proper block. This usually occurs if you tried to
jump out of a sort() block or subroutine, which is a no-no. See 〈undefined〉
[perlfunc goto], page 〈undefined〉.

Can’t goto subroutine from an eval-%s
(F) The "goto subroutine" call can’t be used to jump out of an eval "string"
or block.

Can’t goto subroutine from a sort sub (or similar callback)
(F) The "goto subroutine" call can’t be used to jump out of the comparison
sub for a sort(), or from a similar callback (such as the reduce() function in
List::Util).

Can’t goto subroutine outside a subroutine
(F) The deeply magical "goto subroutine" call can only replace one subroutine
call for another. It can’t manufacture one out of whole cloth. In general you
should be calling it out of only an AUTOLOAD routine anyway. See 〈unde-
fined〉 [perlfunc goto], page 〈undefined〉.

Can’t ignore signal CHLD, forcing to default
(W signal) Perl has detected that it is being run with the SIGCHLD signal
(sometimes known as SIGCLD) disabled. Since disabling this signal will inter-
fere with proper determination of exit status of child processes, Perl has reset
the signal to its default value. This situation typically indicates that the parent
program under which Perl may be running (e.g. cron) is being very careless.

Can’t kill a non-numeric process ID
(F) Process identifiers must be (signed) integers. It is a fatal error to attempt
to kill() an undefined, empty-string or otherwise non-numeric process identifier.

Can’t "last" outside a loop block
(F) A "last" statement was executed to break out of the current block, except
that there’s this itty bitty problem called there isn’t a current block. Note that
an "if" or "else" block doesn’t count as a "loopish" block, as doesn’t a block
given to sort(), map() or grep(). You can usually double the curlies to get the
same effect though, because the inner curlies will be considered a block that
loops once. See [perlfunc last], page 399.

Can’t linearize anonymous symbol table
(F) Perl tried to calculate the method resolution order (MRO) of a package,
but failed because the package stash has no name.

Can’t load ’%s’ for module %s
(F) The module you tried to load failed to load a dynamic extension. This may
either mean that you upgraded your version of perl to one that is incompatible
with your old dynamic extensions (which is known to happen between major
versions of perl), or (more likely) that your dynamic extension was built against
an older version of the library that is installed on your system. You may need
to rebuild your old dynamic extensions.

Can’t localize lexical variable %s
(F) You used local on a variable name that was previously declared as a lexical
variable using "my" or "state". This is not allowed. If you want to localize a
package variable of the same name, qualify it with the package name.

Can’t localize through a reference
(F) You said something like local $$ref, which Perl can’t currently handle,
because when it goes to restore the old value of whatever $ref pointed to after
the scope of the local() is finished, it can’t be sure that $ref will still be a
reference.

Can’t locate %s
(F) You said to do (or require, or use) a file that couldn’t be found. Perl
looks for the file in all the locations mentioned in @INC, unless the file name
included the full path to the file. Perhaps you need to set the PERL5LIB or
PERL5OPT environment variable to say where the extra library is, or maybe
the script needs to add the library name to @INC. Or maybe you just misspelled
the name of the file. See [perlfunc require], page 437 and lib.

Can’t locate auto/%s.al in @INC
(F) A function (or method) was called in a package which allows autoload, but
there is no function to autoload. Most probable causes are a misprint in a
function/method name or a failure to AutoSplit the file, say, by doing make

install.

Can’t locate loadable object for module %s in @INC
(F) The module you loaded is trying to load an external library, like for example,
foo.so or bar.dll, but the DynaLoader module was unable to locate this
library. See DynaLoader.

Can’t locate object method "%s" via package "%s"
(F) You called a method correctly, and it correctly indicated a package func-
tioning as a class, but that package doesn’t define that particular method, nor
does any of its base classes. See Section 46.1 [perlobj NAME], page 769.

Can’t locate object method "%s" via package "%s" (perhaps you forgot to load "%s"?)
(F) You called a method on a class that did not exist, and the method could not
be found in UNIVERSAL. This often means that a method requires a package
that has not been loaded.

Can’t locate package %s for @%s::ISA
(W syntax) The @ISA array contained the name of another package that doesn’t
seem to exist.

Can’t locate PerlIO%s
(F) You tried to use in open() a PerlIO layer that does not exist, e.g. open(FH,
">:nosuchlayer", "somefile").

Can’t make list assignment to %ENV on this system
(F) List assignment to %ENV is not supported on some systems, notably VMS.

Can’t make loaded symbols global on this platform while loading %s
(S) A module passed the flag 0x01 to DynaLoader::dl load file() to request that
symbols from the stated file are made available globally within the process, but
that functionality is not available on this platform. Whilst the module likely
will still work, this may prevent the perl interpreter from loading other XS-
based extensions which need to link directly to functions defined in the C or
XS code in the stated file.

Can’t modify %s in %s
(F) You aren’t allowed to assign to the item indicated, or otherwise try to
change it, such as with an auto-increment.

Can’t modify nonexistent substring
(P) The internal routine that does assignment to a substr() was handed a NULL.

Can’t modify non-lvalue subroutine call
(F) Subroutines meant to be used in lvalue context should be declared as such.
See Section 73.3.5 [perlsub Lvalue subroutines], page 1231.

Can’t modify reference to %s in %s assignment
(F) Only a limited number of constructs can be used as the argument to a
reference constructor on the left-hand side of an assignment, and what you
used was not one of them. See Section 62.6 [perlref Assigning to References],
page 1089.

Can’t modify reference to localized parenthesized array in list assignment
(F) Assigning to \local(@array) or \(local @array) is not supported, as
it is not clear exactly what it should do. If you meant to make @array refer
to some other array, use \@array = \@other_array. If you want to make the
elements of @array aliases of the scalars referenced on the right-hand side, use
\(@array) = @scalar_refs.

Can’t modify reference to parenthesized hash in list assignment
(F) Assigning to \(%hash) is not supported. If you meant to make %hash refer
to some other hash, use \%hash = \%other_hash. If you want to make the
elements of %hash into aliases of the scalars referenced on the right-hand side,
use a hash slice: \@hash{@keys} = @those_scalar_refs.

Can’t msgrcv to read-only var
(F) The target of a msgrcv must be modifiable to be used as a receive buffer.

Can’t "next" outside a loop block
(F) A "next" statement was executed to reiterate the current block, but there
isn’t a current block. Note that an "if" or "else" block doesn’t count as a
"loopish" block, as doesn’t a block given to sort(), map() or grep(). You can
usually double the curlies to get the same effect though, because the inner curlies
will be considered a block that loops once. See [perlfunc next], page 406.

Can’t open %s: %s
(S inplace) The implicit opening of a file through use of the <> filehandle, either
implicitly under the -n or -p command-line switches, or explicitly, failed for the
indicated reason. Usually this is because you don’t have read permission for a
file which you named on the command line.

(F) You tried to call perl with the -e switch, but /dev/null (or your operating
system’s equivalent) could not be opened.

Can’t open a reference
(W io) You tried to open a scalar reference for reading or writing, using the
3-arg open() syntax:

open FH, ’>’, $ref;

but your version of perl is compiled without perlio, and this form of open is not
supported.

Can’t open bidirectional pipe
(W pipe) You tried to say open(CMD, "|cmd|"), which is not supported. You
can try any of several modules in the Perl library to do this, such as IPC::Open2.
Alternately, direct the pipe’s output to a file using ">", and then read it in under
a different file handle.

Can’t open error file %s as stderr
(F) An error peculiar to VMS. Perl does its own command line redirection,
and couldn’t open the file specified after ’2>’ or ’2>>’ on the command line for
writing.

Can’t open input file %s as stdin
(F) An error peculiar to VMS. Perl does its own command line redirection, and
couldn’t open the file specified after ’<’ on the command line for reading.

Can’t open output file %s as stdout
(F) An error peculiar to VMS. Perl does its own command line redirection, and
couldn’t open the file specified after ’>’ or ’>>’ on the command line for writing.

Can’t open output pipe (name: %s)
(P) An error peculiar to VMS. Perl does its own command line redirection, and
couldn’t open the pipe into which to send data destined for stdout.

Can’t open perl script "%s": %s
(F) The script you specified can’t be opened for the indicated reason.

If you’re debugging a script that uses #!, and normally relies on the shell’s
$PATH search, the -S option causes perl to do that search, so you don’t have
to type the path or ‘which $scriptname‘.

Can’t read CRTL environ
(S) A warning peculiar to VMS. Perl tried to read an element of %ENV from
the CRTL’s internal environment array and discovered the array was missing.
You need to figure out where your CRTL misplaced its environ or define PERL_
ENV_TABLES (see Section 87.1 [perlvms NAME], page 1409) so that environ is
not searched.

Can’t "redo" outside a loop block
(F) A "redo" statement was executed to restart the current block, but there isn’t
a current block. Note that an "if" or "else" block doesn’t count as a "loopish"
block, as doesn’t a block given to sort(), map() or grep(). You can usually
double the curlies to get the same effect though, because the inner curlies will
be considered a block that loops once. See [perlfunc redo], page 435.

Can’t remove %s: %s, skipping file
(S inplace) You requested an inplace edit without creating a backup file. Perl
was unable to remove the original file to replace it with the modified file. The
file was left unmodified.

Can’t rename %s to %s: %s, skipping file
(S inplace) The rename done by the -i switch failed for some reason, probably
because you don’t have write permission to the directory.

Can’t reopen input pipe (name: %s) in binary mode
(P) An error peculiar to VMS. Perl thought stdin was a pipe, and tried to
reopen it to accept binary data. Alas, it failed.

Can’t represent character for Ox%X on this platform
(F) There is a hard limit to how big a character code point can be due to the
fundamental properties of UTF-8, especially on EBCDIC platforms. The given
code point exceeds that. The only work-around is to not use such a large code
point.

Can’t reset %ENV on this system
(F) You called reset(’E’) or similar, which tried to reset all variables in the
current package beginning with "E". In the main package, that includes %ENV.
Resetting %ENV is not supported on some systems, notably VMS.

Can’t resolve method "%s" overloading "%s" in package "%s"
(F)(P) Error resolving overloading specified by a method name (as opposed to a
subroutine reference): no such method callable via the package. If the method
name is ???, this is an internal error.

Can’t return %s from lvalue subroutine
(F) Perl detected an attempt to return illegal lvalues (such as temporary or
readonly values) from a subroutine used as an lvalue. This is not allowed.

Can’t return outside a subroutine
(F) The return statement was executed in mainline code, that is, where there
was no subroutine call to return out of. See Section 73.1 [perlsub NAME],
page 1216.

Can’t return %s to lvalue scalar context
(F) You tried to return a complete array or hash from an lvalue subroutine, but
you called the subroutine in a way that made Perl think you meant to return
only one value. You probably meant to write parentheses around the call to
the subroutine, which tell Perl that the call should be in list context.

Can’t stat script "%s"
(P) For some reason you can’t fstat() the script even though you have it open
already. Bizarre.

Can’t take log of %g
(F) For ordinary real numbers, you can’t take the logarithm of a negative
number or zero. There’s a Math::Complex package that comes standard with
Perl, though, if you really want to do that for the negative numbers.

Can’t take sqrt of %g
(F) For ordinary real numbers, you can’t take the square root of a negative
number. There’s a Math::Complex package that comes standard with Perl,
though, if you really want to do that.

Can’t undef active subroutine
(F) You can’t undefine a routine that’s currently running. You can, however,
redefine it while it’s running, and you can even undef the redefined subroutine
while the old routine is running. Go figure.

Can’t upgrade %s (%d) to %d
(P) The internal sv upgrade routine adds "members" to an SV, making it into
a more specialized kind of SV. The top several SV types are so specialized,
however, that they cannot be interconverted. This message indicates that such
a conversion was attempted.

Can’t use ’%c’ after -mname
(F) You tried to call perl with the -m switch, but you put something other than
"=" after the module name.

Can’t use a hash as a reference
(F) You tried to use a hash as a reference, as in %foo->{"bar"} or
%$ref->{"hello"}. Versions of perl <= 5.22.0 used to allow this syntax, but
shouldn’t have. This was deprecated in perl 5.6.1.

Can’t use an array as a reference
(F) You tried to use an array as a reference, as in @foo->[23] or @$ref->[99].
Versions of perl <= 5.22.0 used to allow this syntax, but shouldn’t have. This
was deprecated in perl 5.6.1.

Can’t use anonymous symbol table for method lookup
(F) The internal routine that does method lookup was handed a symbol table
that doesn’t have a name. Symbol tables can become anonymous for example
by undefining stashes: undef %Some::Package::.

Can’t use an undefined value as %s reference
(F) A value used as either a hard reference or a symbolic reference must be a
defined value. This helps to delurk some insidious errors.

Can’t use bareword ("%s") as %s ref while "strict refs" in use
(F) Only hard references are allowed by "strict refs". Symbolic references are
disallowed. See Section 62.1 [perlref NAME], page 1077.

Can’t use %! because Errno.pm is not available
(F) The first time the %! hash is used, perl automatically loads the Errno.pm
module. The Errno module is expected to tie the %! hash to provide symbolic
names for $! errno values.

Can’t use both ’<’ and ’>’ after type ’%c’ in %s
(F) A type cannot be forced to have both big-endian and little-endian byte-
order at the same time, so this combination of modifiers is not allowed. See
〈undefined〉 [perlfunc pack], page 〈undefined〉.

Can’t use ’defined(@array)’ (Maybe you should just omit the defined()?)
(F) defined() is not useful on arrays because it checks for an undefined scalar
value. If you want to see if the array is empty, just use if (@array) { # not

empty } for example.

Can’t use ’defined(%hash)’ (Maybe you should just omit the defined()?)
(F) defined() is not usually right on hashes.

Although defined %hash is false on a plain not-yet-used hash, it becomes true
in several non-obvious circumstances, including iterators, weak references, stash
names, even remaining true after undef %hash. These things make defined

%hash fairly useless in practice, so it now generates a fatal error.

If a check for non-empty is what you wanted then just put it in boolean context
(see Section 11.2.4 [perldata Scalar values], page 74):

if (%hash) {

not empty

}

If you had defined %Foo::Bar::QUUX to check whether such a package variable
exists then that’s never really been reliable, and isn’t a good way to enquire
about the features of a package, or whether it’s loaded, etc.

Can’t use %s for loop variable
(P) The parser got confused when trying to parse a foreach loop.

Can’t use global %s in "%s"
(F) You tried to declare a magical variable as a lexical variable. This is not
allowed, because the magic can be tied to only one location (namely the global
variable) and it would be incredibly confusing to have variables in your program
that looked like magical variables but weren’t.

Can’t use ’%c’ in a group with different byte-order in %s
(F) You attempted to force a different byte-order on a type that is already
inside a group with a byte-order modifier. For example you cannot force little-
endianness on a type that is inside a big-endian group.

Can’t use "my %s" in sort comparison
(F) The global variables $a and $b are reserved for sort comparisons. You
mentioned $a or $b in the same line as the <=> or cmp operator, and the
variable had earlier been declared as a lexical variable. Either qualify the sort
variable with the package name, or rename the lexical variable.

Can’t use %s ref as %s ref
(F) You’ve mixed up your reference types. You have to dereference a reference
of the type needed. You can use the ref() function to test the type of the
reference, if need be.

Can’t use string ("%s") as %s ref while "strict refs" in use
Can’t use string ("%s"...) as %s ref while "strict refs" in use

(F) You’ve told Perl to dereference a string, something which use strict blocks
to prevent it happening accidentally. See Section 62.3.4 [perlref Symbolic refer-
ences], page 1084. This can be triggered by an @ or $ in a double-quoted string
immediately before interpolating a variable, for example in "user @$twitter_

id", which says to treat the contents of $twitter_id as an array reference; use
a \ to have a literal @ symbol followed by the contents of $twitter_id: "user
\@$twitter_id".

Can’t use subscript on %s
(F) The compiler tried to interpret a bracketed expression as a subscript. But
to the left of the brackets was an expression that didn’t look like a hash or array
reference, or anything else subscriptable.

Can’t use \%c to mean $%c in expression
(W syntax) In an ordinary expression, backslash is a unary operator that creates
a reference to its argument. The use of backslash to indicate a backreference
to a matched substring is valid only as part of a regular expression pattern.
Trying to do this in ordinary Perl code produces a value that prints out looking
like SCALAR(0xdecaf). Use the $1 form instead.

Can’t weaken a nonreference
(F) You attempted to weaken something that was not a reference. Only refer-
ences can be weakened.

Can’t "when" outside a topicalizer
(F) You have used a when() block that is neither inside a foreach loop nor a
given block. (Note that this error is issued on exit from the when block, so you
won’t get the error if the match fails, or if you use an explicit continue.)

Can’t x= to read-only value
(F) You tried to repeat a constant value (often the undefined value) with an
assignment operator, which implies modifying the value itself. Perhaps you
need to copy the value to a temporary, and repeat that.

Character following "\c" must be printable ASCII
(F) In \cX, X must be a printable (non-control) ASCII character.

Note that ASCII characters that don’t map to control characters are discour-
aged, and will generate the warning (when enabled) ["\c%c" is more clearly
written simply as "%s"], page 160.

Character in ’C’ format wrapped in pack
(W pack) You said

pack("C", $x)

where $x is either less than 0 or more than 255; the "C" format is only for
encoding native operating system characters (ASCII, EBCDIC, and so on) and
not for Unicode characters, so Perl behaved as if you meant

pack("C", $x & 255)

If you actually want to pack Unicode codepoints, use the "U" format instead.

Character in ’c’ format wrapped in pack
(W pack) You said

pack("c", $x)

where $x is either less than -128 or more than 127; the "c" format is only for
encoding native operating system characters (ASCII, EBCDIC, and so on) and
not for Unicode characters, so Perl behaved as if you meant

pack("c", $x & 255);

If you actually want to pack Unicode codepoints, use the "U" format instead.

Character in ’%c’ format wrapped in unpack
(W unpack) You tried something like

unpack("H", "\x{2a1}")

where the format expects to process a byte (a character with a value below
256), but a higher value was provided instead. Perl uses the value modulus 256
instead, as if you had provided:

unpack("H", "\x{a1}")

Character in ’W’ format wrapped in pack
(W pack) You said

pack("U0W", $x)

where $x is either less than 0 or more than 255. However, U0-mode expects all
values to fall in the interval [0, 255], so Perl behaved as if you meant:

pack("U0W", $x & 255)

Character(s) in ’%c’ format wrapped in pack
(W pack) You tried something like

pack("u", "\x{1f3}b")

where the format expects to process a sequence of bytes (character with a
value below 256), but some of the characters had a higher value. Perl uses the
character values modulus 256 instead, as if you had provided:

pack("u", "\x{f3}b")

Character(s) in ’%c’ format wrapped in unpack
(W unpack) You tried something like

unpack("s", "\x{1f3}b")

where the format expects to process a sequence of bytes (character with a
value below 256), but some of the characters had a higher value. Perl uses the
character values modulus 256 instead, as if you had provided:

unpack("s", "\x{f3}b")

charnames alias definitions may not contain a sequence of multiple spaces
(F) You defined a character name which had multiple space characters in a
row. Change them to single spaces. Usually these names are defined in the
:alias import argument to use charnames, but they could be defined by a
translator installed into $^H{charnames}. See Section “CUSTOM ALIASES”
in charnames.

charnames alias definitions may not contain trailing white-space
(F) You defined a character name which ended in a space character. Remove
the trailing space(s). Usually these names are defined in the :alias import
argument to use charnames, but they could be defined by a translator installed
into $^H{charnames}. See Section “CUSTOM ALIASES” in charnames.

\C is deprecated in regex; marked by <– HERE in m/%s/
(D deprecated, regexp) The \C character class is deprecated, and will become
a compile-time error in a future release of perl (tentatively v5.24). This con-
struct allows you to match a single byte of what makes up a multi-byte single
UTF8 character, and breaks encapsulation. It is currently also very buggy. If
you really need to process the individual bytes, you probably want to convert
your string to one where each underlying byte is stored as a character, with
utf8::encode().

"\c%c" is more clearly written simply as "%s"
(W syntax) The \cX construct is intended to be a way to specify non-printable
characters. You used it for a printable one, which is better written as simply
itself, perhaps preceded by a backslash for non-word characters. Doing it the
way you did is not portable between ASCII and EBCDIC platforms.

Cloning substitution context is unimplemented
(F) Creating a new thread inside the s/// operator is not supported.

closedir() attempted on invalid dirhandle %s
(W io) The dirhandle you tried to close is either closed or not really a dirhandle.
Check your control flow.

close() on unopened filehandle %s
(W unopened) You tried to close a filehandle that was never opened.

Closure prototype called
(F) If a closure has attributes, the subroutine passed to an attribute handler
is the prototype that is cloned when a new closure is created. This subroutine
cannot be called.

Code missing after ’/’
(F) You had a (sub-)template that ends with a ’/’. There must be another
template code following the slash. See 〈undefined〉 [perlfunc pack], page 〈unde-
fined〉.

Code point 0x%X is not Unicode, may not be portable
(S non unicode) You had a code point above the Unicode maximum of
U+10FFFF.

Perl allows strings to contain a superset of Unicode code points, up to the limit
of what is storable in an unsigned integer on your system, but these may not
be accepted by other languages/systems. At one time, it was legal in some
standards to have code points up to 0x7FFF FFFF, but not higher. Code
points above 0xFFFF FFFF require larger than a 32 bit word.

%s: Command not found
(A) You’ve accidentally run your script through csh or another shell instead of
Perl. Check the #! line, or manually feed your script into Perl yourself. The
#! line at the top of your file could look like

#!/usr/bin/perl -w

Compilation failed in require
(F) Perl could not compile a file specified in a require statement. Perl uses
this generic message when none of the errors that it encountered were severe
enough to halt compilation immediately.

Complex regular subexpression recursion limit (%d) exceeded
(W regexp) The regular expression engine uses recursion in complex situations
where back-tracking is required. Recursion depth is limited to 32766, or perhaps
less in architectures where the stack cannot grow arbitrarily. ("Simple" and
"medium" situations are handled without recursion and are not subject to
a limit.) Try shortening the string under examination; looping in Perl code
(e.g. with while) rather than in the regular expression engine; or rewriting the
regular expression so that it is simpler or backtracks less. (See perlfaq2 for
information on Mastering Regular Expressions.)

connect() on closed socket %s
(W closed) You tried to do a connect on a closed socket. Did you forget to
check the return value of your socket() call? See 〈undefined〉 [perlfunc connect],
page 〈undefined〉.

Constant(%s): Call to &{$^H{%s}} did not return a defined value
(F) The subroutine registered to handle constant overloading (see overload)
or a custom charnames handler (see Section “CUSTOM TRANSLATORS” in
charnames) returned an undefined value.

Constant(%s): $^H{%s} is not defined
(F) The parser found inconsistencies while attempting to define an overloaded
constant. Perhaps you forgot to load the corresponding overload pragma?

Constant is not %s reference
(F) A constant value (perhaps declared using the use constant pragma) is
being dereferenced, but it amounts to the wrong type of reference. The message

indicates the type of reference that was expected. This usually indicates a
syntax error in dereferencing the constant value. See Section 73.3.11 [perlsub
Constant Functions], page 1241 and constant.

Constants from lexical variables potentially modified elsewhere are deprecated
(D deprecated) You wrote something like

my $var;

$sub = sub () { $var };

but $var is referenced elsewhere and could be modified after the sub expression
is evaluated. Either it is explicitly modified elsewhere ($var = 3) or it is passed
to a subroutine or to an operator like printf or map, which may or may not
modify the variable.

Traditionally, Perl has captured the value of the variable at that point and
turned the subroutine into a constant eligible for inlining. In those cases where
the variable can be modified elsewhere, this breaks the behavior of closures,
in which the subroutine captures the variable itself, rather than its value, so
future changes to the variable are reflected in the subroutine’s return value.

This usage is deprecated, because the behavior is likely to change in a future
version of Perl.

If you intended for the subroutine to be eligible for inlining, then make sure the
variable is not referenced elsewhere, possibly by copying it:

my $var2 = $var;

$sub = sub () { $var2 };

If you do want this subroutine to be a closure that reflects future changes to
the variable that it closes over, add an explicit return:

my $var;

$sub = sub () { return $var };

Constant subroutine %s redefined
(W redefine)(S) You redefined a subroutine which had previously been eligible
for inlining. See Section 73.3.11 [perlsub Constant Functions], page 1241 for
commentary and workarounds.

Constant subroutine %s undefined
(W misc) You undefined a subroutine which had previously been eligible for
inlining. See Section 73.3.11 [perlsub Constant Functions], page 1241 for com-
mentary and workarounds.

Constant(%s) unknown
(F) The parser found inconsistencies either while attempting to define an
overloaded constant, or when trying to find the character name specified in
the \N{...} escape. Perhaps you forgot to load the corresponding overload

pragma?

:const is experimental
(S experimental::const attr) The "const" attribute is experimental. If
you want to use the feature, disable the warning with no warnings

’experimental::const_attr’, but know that in doing so you are taking the
risk that your code may break in a future Perl version.

:const is not permitted on named subroutines
(F) The "const" attribute causes an anonymous subroutine to be run and its
value captured at the time that it is cloned. Named subroutines are not cloned
like this, so the attribute does not make sense on them.

Copy method did not return a reference
(F) The method which overloads "=" is buggy. See Section “Copy Constructor”
in overload.

&CORE::%s cannot be called directly
(F) You tried to call a subroutine in the CORE:: namespace with &foo syntax
or through a reference. Some subroutines in this package cannot yet be called
that way, but must be called as barewords. Something like this will work:

BEGIN { *shove = \&CORE::push; }

shove @array, 1,2,3; # pushes on to @array

CORE::%s is not a keyword
(F) The CORE:: namespace is reserved for Perl keywords.

Corrupted regexp opcode %d > %d
(P) This is either an error in Perl, or, if you’re using one, your Section 59.1
[custom regular expression engine], page 1032. If not the latter, report the
problem through the perlbug utility.

corrupted regexp pointers
(P) The regular expression engine got confused by what the regular expression
compiler gave it.

corrupted regexp program
(P) The regular expression engine got passed a regexp program without a valid
magic number.

Corrupt malloc ptr 0x%x at 0x%x
(P) The malloc package that comes with Perl had an internal failure.

Count after length/code in unpack
(F) You had an unpack template indicating a counted-length string, but you
have also specified an explicit size for the string. See 〈undefined〉 [perlfunc
pack], page 〈undefined〉.

Deep recursion on anonymous subroutine
Deep recursion on subroutine "%s"

(W recursion) This subroutine has called itself (directly or indirectly) 100 times
more than it has returned. This probably indicates an infinite recursion, unless
you’re writing strange benchmark programs, in which case it indicates some-
thing else.

This threshold can be changed from 100, by recompiling the perl binary, setting
the C pre-processor macro PERL_SUB_DEPTH_WARN to the desired value.

(?(DEFINE)....) does not allow branches in regex; marked by <– HERE in m/%s/
(F) You used something like (?(DEFINE)...|..) which is illegal. The most
likely cause of this error is that you left out a parenthesis inside of the

part.

The <– HERE shows whereabouts in the regular expression the problem was
discovered.

%s defines neither package nor VERSION–version check failed
(F) You said something like "use Module 42" but in the Module file there are
neither package declarations nor a $VERSION.

delete argument is index/value array slice, use array slice
(F) You used index/value array slice syntax (%array[...]) as the argument to
delete. You probably meant @array[...] with an @ symbol instead.

delete argument is key/value hash slice, use hash slice
(F) You used key/value hash slice syntax (%hash{...}) as the argument to
delete. You probably meant @hash{...} with an @ symbol instead.

delete argument is not a HASH or ARRAY element or slice
(F) The argument to delete must be either a hash or array element, such as:

$foo{$bar}

$ref->{"susie"}[12]

or a hash or array slice, such as:

@foo[$bar, $baz, $xyzzy]

@{$ref->[12]}{"susie", "queue"}

Delimiter for here document is too long
(F) In a here document construct like <<FOO, the label FOO is too long for Perl
to handle. You have to be seriously twisted to write code that triggers this
error.

Deprecated use of my() in false conditional
(D deprecated) You used a declaration similar to my $x if 0. There has been
a long-standing bug in Perl that causes a lexical variable not to be cleared at
scope exit when its declaration includes a false conditional. Some people have
exploited this bug to achieve a kind of static variable. Since we intend to fix
this bug, we don’t want people relying on this behavior. You can achieve a
similar static effect by declaring the variable in a separate block outside the
function, eg

sub f { my $x if 0; return $x++ }

becomes

{ my $x; sub f { return $x++ } }

Beginning with perl 5.10.0, you can also use state variables to have lexicals
that are initialized only once (see feature):

sub f { state $x; return $x++ }

DESTROY created new reference to dead object ’%s’
(F) A DESTROY() method created a new reference to the object which is just
being DESTROYed. Perl is confused, and prefers to abort rather than to create
a dangling reference.

Did not produce a valid header
See Server error.

%s did not return a true value
(F) A required (or used) file must return a true value to indicate that it compiled
correctly and ran its initialization code correctly. It’s traditional to end such
a file with a "1;", though any true value would do. See [perlfunc require],
page 437.

(Did you mean &%s instead?)
(W misc) You probably referred to an imported subroutine &FOO as $FOO or
some such.

(Did you mean "local" instead of "our"?)
(W misc) Remember that "our" does not localize the declared global variable.
You have declared it again in the same lexical scope, which seems superfluous.

(Did you mean $ or @ instead of %?)
(W) You probably said %hash{$key} when you meant $hash{$key} or
@hash{@keys}. On the other hand, maybe you just meant %hash and got
carried away.

Died

(F) You passed die() an empty string (the equivalent of die "") or you called
it with no args and $@ was empty.

Document contains no data
See Server error.

%s does not define %s::VERSION–version check failed
(F) You said something like "use Module 42" but the Module did not define a
$VERSION.

’/’ does not take a repeat count
(F) You cannot put a repeat count of any kind right after the ’/’ code. See
〈undefined〉 [perlfunc pack], page 〈undefined〉.

Don’t know how to get file name
(P) PerlIO_getname, a perl internal I/O function specific to VMS, was some-
how called on another platform. This should not happen.

Don’t know how to handle magic of type \%o
(P) The internal handling of magical variables has been cursed.

do study: out of memory
(P) This should have been caught by safemalloc() instead.

(Do you need to predeclare %s?)
(S syntax) This is an educated guess made in conjunction with the message
"%s found where operator expected". It often means a subroutine or module
name is being referenced that hasn’t been declared yet. This may be because
of ordering problems in your file, or because of a missing "sub", "package",
"require", or "use" statement. If you’re referencing something that isn’t defined
yet, you don’t actually have to define the subroutine or package before the
current location. You can use an empty "sub foo;" or "package FOO;" to enter
a "forward" declaration.

dump() better written as CORE::dump()
(W misc) You used the obsolescent dump() built-in function, without fully qual-
ifying it as CORE::dump(). Maybe it’s a typo. See [perlfunc dump], page 374.

dump is not supported
(F) Your machine doesn’t support dump/undump.

Duplicate free() ignored
(S malloc) An internal routine called free() on something that had already been
freed.

Duplicate modifier ’%c’ after ’%c’ in %s
(W unpack) You have applied the same modifier more than once after a type
in a pack template. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

each on reference is experimental
(S experimental::autoderef) each with a scalar argument is experimental and
may change or be removed in a future Perl version. If you want to take the risk
of using this feature, simply disable this warning:

no warnings "experimental::autoderef";

elseif should be elsif
(S syntax) There is no keyword "elseif" in Perl because Larry thinks it’s ugly.
Your code will be interpreted as an attempt to call a method named "elseif"
for the class returned by the following block. This is unlikely to be what you
want.

Empty \%c{} in regex; marked by <– HERE in m/%s/
(F) \p and \P are used to introduce a named Unicode property, as described in
Section 81.1 [perlunicode NAME], page 1317 and Section 58.1 [perlre NAME],
page 989. You used \p or \P in a regular expression without specifying the
property name.

entering effective %s failed
(F) While under the use filetest pragma, switching the real and effective
uids or gids failed.

%ENV is aliased to %s
(F) You’re running under taint mode, and the %ENV variable has been aliased
to another hash, so it doesn’t reflect anymore the state of the program’s envi-
ronment. This is potentially insecure.

Error converting file specification %s
(F) An error peculiar to VMS. Because Perl may have to deal with file specifi-
cations in either VMS or Unix syntax, it converts them to a single form when it
must operate on them directly. Either you’ve passed an invalid file specification
to Perl, or you’ve found a case the conversion routines don’t handle. Drat.

Eval-group in insecure regular expression
(F) Perl detected tainted data when trying to compile a regular expression that
contains the (?{ ... }) zero-width assertion, which is unsafe. See [perlre (?{
code })], page 1009, and Section 70.1 [perlsec NAME], page 1198.

Eval-group not allowed at runtime, use re ’eval’ in regex m/%s/
(F) Perl tried to compile a regular expression containing the (?{ ... }) zero-
width assertion at run time, as it would when the pattern contains interpolated
values. Since that is a security risk, it is not allowed. If you insist, you may still
do this by using the re ’eval’ pragma or by explicitly building the pattern
from an interpolated string at run time and using that in an eval(). See [perlre
(?{ code })], page 1009.

Eval-group not allowed, use re ’eval’ in regex m/%s/
(F) A regular expression contained the (?{ ... }) zero-width assertion, but
that construct is only allowed when the use re ’eval’ pragma is in effect. See
[perlre (?{ code })], page 1009.

EVAL without pos change exceeded limit in regex; marked by <– HERE in m/%s/
(F) You used a pattern that nested too many EVAL calls without consuming
any text. Restructure the pattern so that text is consumed.

The <– HERE shows whereabouts in the regular expression the problem was
discovered.

Excessively long <> operator
(F) The contents of a <> operator may not exceed the maximum size of a Perl
identifier. If you’re just trying to glob a long list of filenames, try using the
glob() operator, or put the filenames into a variable and glob that.

exec? I’m not *that* kind of operating system
(F) The exec function is not implemented on some systems, e.g., Symbian OS.
See Section 56.1 [perlport NAME], page 951.

Execution of %s aborted due to compilation errors.
(F) The final summary message when a Perl compilation fails.

exists argument is not a HASH or ARRAY element or a subroutine
(F) The argument to exists must be a hash or array element or a subroutine
with an ampersand, such as:

$foo{$bar}

$ref->{"susie"}[12]

&do_something

exists argument is not a subroutine name
(F) The argument to exists for exists &sub must be a subroutine name, and
not a subroutine call. exists &sub() will generate this error.

Exiting eval via %s
(W exiting) You are exiting an eval by unconventional means, such as a goto,
or a loop control statement.

Exiting format via %s
(W exiting) You are exiting a format by unconventional means, such as a goto,
or a loop control statement.

Exiting pseudo-block via %s
(W exiting) You are exiting a rather special block construct (like a sort block
or subroutine) by unconventional means, such as a goto, or a loop control
statement. See 〈undefined〉 [perlfunc sort], page 〈undefined〉.

Exiting subroutine via %s
(W exiting) You are exiting a subroutine by unconventional means, such as a
goto, or a loop control statement.

Exiting substitution via %s
(W exiting) You are exiting a substitution by unconventional means, such as a
return, a goto, or a loop control statement.

Expecting close bracket in regex; marked by <– HERE in m/%s/
(F) You wrote something like

(?13

to denote a capturing group of the form [(?PARNO)], page 1012, but omitted
the ")".

Expecting ’(?flags:(?[...’ in regex; marked by <– HERE in m/%s/
(F) The (?[...]) extended character class regular expression construct only
allows character classes (including character class escapes like \d), operators,
and parentheses. The one exception is (?flags:...) containing at least one
flag and exactly one (?[...]) construct. This allows a regular expression
containing just (?[...]) to be interpolated. If you see this error message, then
you probably have some other (?...) construct inside your character class.
See Section 61.2.3.9 [perlrecharclass Extended Bracketed Character Classes],
page 1073.

Experimental aliasing via reference not enabled
(F) To do aliasing via references, you must first enable the feature:

no warnings "experimental::refaliasing";

use feature "refaliasing";

\$x = \$y;

Experimental subroutine signatures not enabled
(F) To use subroutine signatures, you must first enable them:

no warnings "experimental::signatures";

use feature "signatures";

sub foo ($left, $right) { ... }

Experimental "%s" subs not enabled
(F) To use lexical subs, you must first enable them:

no warnings ’experimental::lexical_subs’;

use feature ’lexical_subs’;

my sub foo { ... }

Explicit blessing to ” (assuming package main)
(W misc) You are blessing a reference to a zero length string. This has the
effect of blessing the reference into the package main. This is usually not what

you want. Consider providing a default target package, e.g. bless($ref, $p ||

’MyPackage’);

%s: Expression syntax
(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself.

%s failed–call queue aborted
(F) An untrapped exception was raised while executing a UNITCHECK,
CHECK, INIT, or END subroutine. Processing of the remainder of the queue
of such routines has been prematurely ended.

False [] range "%s" in regex; marked by <– HERE in m/%s/
(W regexp)(F) A character class range must start and end at a literal character,
not another character class like \d or [:alpha:]. The "-" in your false range is
interpreted as a literal "-". In a (?[...]) construct, this is an error, rather than
a warning. Consider quoting the "-", "\-". The <– HERE shows whereabouts
in the regular expression the problem was discovered. See Section 58.1 [perlre
NAME], page 989.

Fatal VMS error (status=%d) at %s, line %d
(P) An error peculiar to VMS. Something untoward happened in a VMS system
service or RTL routine; Perl’s exit status should provide more details. The
filename in "at %s" and the line number in "line %d" tell you which section of
the Perl source code is distressed.

fcntl is not implemented
(F) Your machine apparently doesn’t implement fcntl(). What is this, a PDP-11
or something?

FETCHSIZE returned a negative value
(F) A tied array claimed to have a negative number of elements, which is not
possible.

Field too wide in ’u’ format in pack
(W pack) Each line in an uuencoded string starts with a length indicator which
can’t encode values above 63. So there is no point in asking for a line length
bigger than that. Perl will behave as if you specified u63 as the format.

Filehandle %s opened only for input
(W io) You tried to write on a read-only filehandle. If you intended it to be a
read-write filehandle, you needed to open it with "+<" or "+>" or "+>>" instead
of with "<" or nothing. If you intended only to write the file, use ">" or ">>".
See 〈undefined〉 [perlfunc open], page 〈undefined〉.

Filehandle %s opened only for output
(W io) You tried to read from a filehandle opened only for writing, If you
intended it to be a read/write filehandle, you needed to open it with "+<" or
"+>" or "+>>" instead of with ">". If you intended only to read from the file,
use "<". See 〈undefined〉 [perlfunc open], page 〈undefined〉. Another possibility
is that you attempted to open filedescriptor 0 (also known as STDIN) for output
(maybe you closed STDIN earlier?).

Filehandle %s reopened as %s only for input
(W io) You opened for reading a filehandle that got the same filehandle id
as STDOUT or STDERR. This occurred because you closed STDOUT or
STDERR previously.

Filehandle STDIN reopened as %s only for output
(W io) You opened for writing a filehandle that got the same filehandle id as
STDIN. This occurred because you closed STDIN previously.

Final $ should be \$ or $name
(F) You must now decide whether the final $ in a string was meant to be a
literal dollar sign, or was meant to introduce a variable name that happens to
be missing. So you have to put either the backslash or the name.

flock() on closed filehandle %s
(W closed) The filehandle you’re attempting to flock() got itself closed some
time before now. Check your control flow. flock() operates on filehandles. Are
you attempting to call flock() on a dirhandle by the same name?

Format not terminated
(F) A format must be terminated by a line with a solitary dot. Perl got to the
end of your file without finding such a line.

Format %s redefined
(W redefine) You redefined a format. To suppress this warning, say

{

no warnings ’redefine’;

eval "format NAME =...";

}

Found = in conditional, should be ==
(W syntax) You said

if ($foo = 123)

when you meant

if ($foo == 123)

(or something like that).

%s found where operator expected
(S syntax) The Perl lexer knows whether to expect a term or an operator. If
it sees what it knows to be a term when it was expecting to see an operator, it
gives you this warning. Usually it indicates that an operator or delimiter was
omitted, such as a semicolon.

gdbm store returned %d, errno %d, key "%s"
(S) A warning from the GDBM File extension that a store failed.

gethostent not implemented
(F) Your C library apparently doesn’t implement gethostent(), probably be-
cause if it did, it’d feel morally obligated to return every hostname on the
Internet.

get%sname() on closed socket %s
(W closed) You tried to get a socket or peer socket name on a closed socket.
Did you forget to check the return value of your socket() call?

getpwnam returned invalid UIC %#o for user "%s"
(S) A warning peculiar to VMS. The call to sys$getuai underlying the
getpwnam operator returned an invalid UIC.

getsockopt() on closed socket %s
(W closed) You tried to get a socket option on a closed socket. Did you for-
get to check the return value of your socket() call? See 〈undefined〉 [perlfunc
getsockopt], page 〈undefined〉.

given is experimental
(S experimental::smartmatch) given depends on smartmatch, which is experi-
mental, so its behavior may change or even be removed in any future release of
perl. See the explanation under Section 74.2.16 [perlsyn Experimental Details
on given and when], page 1263.

Global symbol "%s" requires explicit package name (did you forget to declare "my %s"?)
(F) You’ve said "use strict" or "use strict vars", which indicates that all vari-
ables must either be lexically scoped (using "my" or "state"), declared before-
hand using "our", or explicitly qualified to say which package the global variable
is in (using "::").

glob failed (%s)
(S glob) Something went wrong with the external program(s) used for glob

and <*.c>. Usually, this means that you supplied a glob pattern that caused
the external program to fail and exit with a nonzero status. If the message
indicates that the abnormal exit resulted in a coredump, this may also mean
that your csh (C shell) is broken. If so, you should change all of the csh-related
variables in config.sh: If you have tcsh, make the variables refer to it as if it
were csh (e.g. full_csh=’/usr/bin/tcsh’); otherwise, make them all empty
(except that d_csh should be ’undef’) so that Perl will think csh is missing.
In either case, after editing config.sh, run ./Configure -S and rebuild Perl.

Glob not terminated
(F) The lexer saw a left angle bracket in a place where it was expecting a term,
so it’s looking for the corresponding right angle bracket, and not finding it.
Chances are you left some needed parentheses out earlier in the line, and you
really meant a "less than".

gmtime(%f) failed
(W overflow) You called gmtime with a number that it could not handle: too
large, too small, or NaN. The returned value is undef.

gmtime(%f) too large
(W overflow) You called gmtime with a number that was larger than it can
reliably handle and gmtime probably returned the wrong date. This warning is
also triggered with NaN (the special not-a-number value).

gmtime(%f) too small
(W overflow) You called gmtime with a number that was smaller than it can
reliably handle and gmtime probably returned the wrong date.

Got an error from DosAllocMem
(P) An error peculiar to OS/2. Most probably you’re using an obsolete version
of Perl, and this should not happen anyway.

goto must have label
(F) Unlike with "next" or "last", you’re not allowed to goto an unspecified
destination. See 〈undefined〉 [perlfunc goto], page 〈undefined〉.

Goto undefined subroutine%s
(F) You tried to call a subroutine with goto &sub syntax, but the indicated
subroutine hasn’t been defined, or if it was, it has since been undefined.

Group name must start with a non-digit word character in regex; marked by <– HERE in
m/%s/

(F) Group names must follow the rules for perl identifiers, meaning they must
start with a non-digit word character. A common cause of this error is using
(?&0) instead of (?0). See Section 58.1 [perlre NAME], page 989.

()-group starts with a count
(F) A ()-group started with a count. A count is supposed to follow something:
a template character or a ()-group. See 〈undefined〉 [perlfunc pack], page 〈un-
defined〉.

%s had compilation errors.
(F) The final summary message when a perl -c fails.

Had to create %s unexpectedly
(S internal) A routine asked for a symbol from a symbol table that ought to
have existed already, but for some reason it didn’t, and had to be created on
an emergency basis to prevent a core dump.

%s has too many errors
(F) The parser has given up trying to parse the program after 10 errors. Further
error messages would likely be uninformative.

Having more than one /%c regexp modifier is deprecated
(D deprecated, regexp) You used the indicated regular expression pattern mod-
ifier at least twice in a string of modifiers. It is deprecated to do this with this
particular modifier, to allow future extensions to the Perl language.

Hexadecimal float: exponent overflow
(W overflow) The hexadecimal floating point has a larger exponent than the
floating point supports.

Hexadecimal float: exponent underflow
(W overflow) The hexadecimal floating point has a smaller exponent than the
floating point supports.

Hexadecimal float: internal error
(F) Something went horribly bad in hexadecimal float handling.

Hexadecimal float: mantissa overflow
(W overflow) The hexadecimal floating point literal had more bits in the man-
tissa (the part between the 0x and the exponent, also known as the fraction or
the significand) than the floating point supports.

Hexadecimal float: precision loss
(W overflow) The hexadecimal floating point had internally more digits than
could be output. This can be caused by unsupported long double formats, or
by 64-bit integers not being available (needed to retrieve the digits under some
configurations).

Hexadecimal float: unsupported long double format
(F) You have configured Perl to use long doubles but the internals of the long
double format are unknown; therefore the hexadecimal float output is impossi-
ble.

Hexadecimal number > 0xffffffff non-portable
(W portable) The hexadecimal number you specified is larger than 2**32-1
(4294967295) and therefore non-portable between systems. See Section 56.1
[perlport NAME], page 951 for more on portability concerns.

Identifier too long
(F) Perl limits identifiers (names for variables, functions, etc.) to about 250
characters for simple names, and somewhat more for compound names (like
$A::B). You’ve exceeded Perl’s limits. Future versions of Perl are likely to
eliminate these arbitrary limitations.

Ignoring zero length \N{} in character class in regex; marked by <– HERE in m/%s/
(W regexp) Named Unicode character escapes (\N{...}) may return a zero-
length sequence. When such an escape is used in a character class its behavior
is not well defined. Check that the correct escape has been used, and the correct
charname handler is in scope.

Illegal binary digit %s
(F) You used a digit other than 0 or 1 in a binary number.

Illegal binary digit %s ignored
(W digit) You may have tried to use a digit other than 0 or 1 in a binary number.
Interpretation of the binary number stopped before the offending digit.

Illegal character after ’ ’ in prototype for %s : %s
(W illegalproto) An illegal character was found in a prototype declaration. The
’ ’ in a prototype must be followed by a ’;’, indicating the rest of the parameters
are optional, or one of ’@’ or ’%’, since those two will accept 0 or more final
parameters.

Illegal character \%o (carriage return)
(F) Perl normally treats carriage returns in the program text as it would any
other whitespace, which means you should never see this error when Perl was
built using standard options. For some reason, your version of Perl appears to
have been built without this support. Talk to your Perl administrator.

Illegal character in prototype for %s : %s
(W illegalproto) An illegal character was found in a prototype declaration.
Legal characters in prototypes are $, @, %, *, ;, [,], &, \, and +. Perhaps you
were trying to write a subroutine signature but didn’t enable that feature first
(use feature ’signatures’), so your signature was instead interpreted as a
bad prototype.

Illegal declaration of anonymous subroutine
(F) When using the sub keyword to construct an anonymous subroutine,
you must always specify a block of code. See Section 73.1 [perlsub NAME],
page 1216.

Illegal declaration of subroutine %s
(F) A subroutine was not declared correctly. See Section 73.1 [perlsub NAME],
page 1216.

Illegal division by zero
(F) You tried to divide a number by 0. Either something was wrong in your
logic, or you need to put a conditional in to guard against meaningless input.

Illegal hexadecimal digit %s ignored
(W digit) You may have tried to use a character other than 0 - 9 or A - F, a -
f in a hexadecimal number. Interpretation of the hexadecimal number stopped
before the illegal character.

Illegal modulus zero
(F) You tried to divide a number by 0 to get the remainder. Most numbers
don’t take to this kindly.

Illegal number of bits in vec
(F) The number of bits in vec() (the third argument) must be a power of two
from 1 to 32 (or 64, if your platform supports that).

Illegal octal digit %s
(F) You used an 8 or 9 in an octal number.

Illegal octal digit %s ignored
(W digit) You may have tried to use an 8 or 9 in an octal number. Interpretation
of the octal number stopped before the 8 or 9.

Illegal pattern in regex; marked by <– HERE in m/%s/
(F) You wrote something like

(?+foo)

The "+" is valid only when followed by digits, indicating a capturing group.
See [(?PARNO)], page 1012.

Illegal suidscript
(F) The script run under suidperl was somehow illegal.

Illegal switch in PERL5OPT: -%c
(X) The PERL5OPT environment variable may only be used to set the following
switches: -[CDIMUdmtw].

Ill-formed CRTL environ value "%s"
(W internal) A warning peculiar to VMS. Perl tried to read the CRTL’s internal
environ array, and encountered an element without the = delimiter used to
separate keys from values. The element is ignored.

Ill-formed message in prime env iter: |%s|
(W internal) A warning peculiar to VMS. Perl tried to read a logical name or
CLI symbol definition when preparing to iterate over %ENV, and didn’t see
the expected delimiter between key and value, so the line was ignored.

(in cleanup) %s
(W misc) This prefix usually indicates that a DESTROY() method raised the
indicated exception. Since destructors are usually called by the system at arbi-
trary points during execution, and often a vast number of times, the warning is
issued only once for any number of failures that would otherwise result in the
same message being repeated.

Failure of user callbacks dispatched using the G_KEEPERR flag could also result
in this warning. See Section 7.4.7 [perlcall G KEEPERR], page 32.

Incomplete expression within ’(?[])’ in regex; marked by <– HERE in m/%s/
(F) There was a syntax error within the (?[]). This can happen if the expres-
sion inside the construct was completely empty, or if there are too many or few
operands for the number of operators. Perl is not smart enough to give you a
more precise indication as to what is wrong.

Inconsistent hierarchy during C3 merge of class ’%s’: merging failed on parent ’%s’
(F) The method resolution order (MRO) of the given class is not C3-consistent,
and you have enabled the C3 MRO for this class. See the C3 documentation
in mro for more information.

In EBCDIC the v-string components cannot exceed 2147483647
(F) An error peculiar to EBCDIC. Internally, v-strings are stored as Unicode
code points, and encoded in EBCDIC as UTF-EBCDIC. The UTF-EBCDIC
encoding is limited to code points no larger than 2147483647 (0x7FFFFFFF).

Infinite recursion in regex
(F) You used a pattern that references itself without consuming any input text.
You should check the pattern to ensure that recursive patterns either consume
text or fail.

Initialization of state variables in list context currently forbidden
(F) Currently the implementation of "state" only permits the initialization of
scalar variables in scalar context. Re-write state ($a) = 42 as state $a =

42 to change from list to scalar context. Constructions such as state (@a) =

foo() will be supported in a future perl release.

%%s[%s] in scalar context better written as $%s[%s]
(W syntax) In scalar context, you’ve used an array index/value slice (indicated
by %) to select a single element of an array. Generally it’s better to ask for a
scalar value (indicated by $). The difference is that $foo[&bar] always behaves
like a scalar, both in the value it returns and when evaluating its argument,

while %foo[&bar] provides a list context to its subscript, which can do weird
things if you’re expecting only one subscript. When called in list context, it
also returns the index (what &bar returns) in addition to the value.

%%s{%s} in scalar context better written as $%s{%s}
(W syntax) In scalar context, you’ve used a hash key/value slice (indicated by
%) to select a single element of a hash. Generally it’s better to ask for a scalar
value (indicated by $). The difference is that $foo{&bar} always behaves like
a scalar, both in the value it returns and when evaluating its argument, while
@foo{&bar} and provides a list context to its subscript, which can do weird
things if you’re expecting only one subscript. When called in list context, it
also returns the key in addition to the value.

Insecure dependency in %s
(F) You tried to do something that the tainting mechanism didn’t like. The
tainting mechanism is turned on when you’re running setuid or setgid, or when
you specify -T to turn it on explicitly. The tainting mechanism labels all data
that’s derived directly or indirectly from the user, who is considered to be
unworthy of your trust. If any such data is used in a "dangerous" operation, you
get this error. See Section 70.1 [perlsec NAME], page 1198 for more information.

Insecure directory in %s
(F) You can’t use system(), exec(), or a piped open in a setuid or setgid script if
$ENV{PATH} contains a directory that is writable by the world. Also, the PATH
must not contain any relative directory. See Section 70.1 [perlsec NAME],
page 1198.

Insecure $ENV{%s} while running %s
(F) You can’t use system(), exec(), or a piped open in a setuid or setgid script
if any of $ENV{PATH}, $ENV{IFS}, $ENV{CDPATH}, $ENV{ENV}, $ENV{BASH_ENV}
or $ENV{TERM} are derived from data supplied (or potentially supplied) by the
user. The script must set the path to a known value, using trustworthy data.
See Section 70.1 [perlsec NAME], page 1198.

Insecure user-defined property %s
(F) Perl detected tainted data when trying to compile a regular expression that
contains a call to a user-defined character property function, i.e. \p{IsFoo} or
\p{InFoo}. See Section 81.2.6 [perlunicode User-Defined Character Properties],
page 1329 and Section 70.1 [perlsec NAME], page 1198.

Integer overflow in format string for %s
(F) The indexes and widths specified in the format string of printf() or
sprintf() are too large. The numbers must not overflow the size of integers
for your architecture.

Integer overflow in %s number
(S overflow) The hexadecimal, octal or binary number you have specified either
as a literal or as an argument to hex() or oct() is too big for your architecture,
and has been converted to a floating point number. On a 32-bit architecture
the largest hexadecimal, octal or binary number representable without overflow

is 0xFFFFFFFF, 037777777777, or 0b11111111111111111111111111111111 re-
spectively. Note that Perl transparently promotes all numbers to a floating
point representation internally–subject to loss of precision errors in subsequent
operations.

Integer overflow in srand
(S overflow) The number you have passed to srand is too big to fit in your
architecture’s integer representation. The number has been replaced with the
largest integer supported (0xFFFFFFFF on 32-bit architectures). This means
you may be getting less randomness than you expect, because different random
seeds above the maximum will return the same sequence of random numbers.

Integer overflow in version
Integer overflow in version %d

(W overflow) Some portion of a version initialization is too large for the size of
integers for your architecture. This is not a warning because there is no rational
reason for a version to try and use an element larger than typically 2**32. This
is usually caused by trying to use some odd mathematical operation as a version,
like 100/9.

Internal disaster in regex; marked by <– HERE in m/%s/
(P) Something went badly wrong in the regular expression parser. The
<– HERE shows whereabouts in the regular expression the problem was
discovered.

Internal inconsistency in tracking vforks
(S) A warning peculiar to VMS. Perl keeps track of the number of times you’ve
called fork and exec, to determine whether the current call to exec should
affect the current script or a subprocess (see [perlvms exec LIST], page 1419).
Somehow, this count has become scrambled, so Perl is making a guess and
treating this exec as a request to terminate the Perl script and execute the
specified command.

internal %<num>p might conflict with future printf extensions
(S internal) Perl’s internal routine that handles printf and sprintf formatting
follows a slightly different set of rules when called from C or XS code. Specif-
ically, formats consisting of digits followed by "p" (e.g., "%7p") are reserved
for future use. If you see this message, then an XS module tried to call that
routine with one such reserved format.

Internal urp in regex; marked by <– HERE in m/%s/
(P) Something went badly awry in the regular expression parser. The <– HERE
shows whereabouts in the regular expression the problem was discovered.

%s (...) interpreted as function
(W syntax) You’ve run afoul of the rule that says that any list operator followed
by parentheses turns into a function, with all the list operators arguments found
inside the parentheses. See Section 48.2.2 [perlop Terms and List Operators
(Leftward)], page 799.

In ’(?...)’, the ’(’ and ’?’ must be adjacent in regex; marked by <– HERE in m/%s/
(F) The two-character sequence "(?" in this context in a regular expression
pattern should be an indivisible token, with nothing intervening between the
"(" and the "?", but you separated them with whitespace.

Invalid %s attribute: %s
(F) The indicated attribute for a subroutine or variable was not recognized by
Perl or by a user-supplied handler. See attributes.

Invalid %s attributes: %s
(F) The indicated attributes for a subroutine or variable were not recognized
by Perl or by a user-supplied handler. See attributes.

Invalid character in charnames alias definition; marked by <– HERE in ’%s
(F) You tried to create a custom alias for a character name, with the :alias

option to use charnames and the specified character in the indicated name isn’t
valid. See Section “CUSTOM ALIASES” in charnames.

Invalid \0 character in %s for %s: %s\0%s
(W syscalls) Embedded \0 characters in pathnames or other system call ar-
guments produce a warning as of 5.20. The parts after the \0 were formerly
ignored by system calls.

Invalid character in \N{...}; marked by <– HERE in \N{%s}
(F) Only certain characters are valid for character names. The indicated one
isn’t. See Section “CUSTOM ALIASES” in charnames.

Invalid conversion in %s: "%s"
(W printf) Perl does not understand the given format conversion. See 〈unde-
fined〉 [perlfunc sprintf], page 〈undefined〉.

Invalid escape in the specified encoding in regex; marked by <– HERE in m/%s/
(W regexp)(F) The numeric escape (for example \xHH) of value < 256 didn’t
correspond to a single character through the conversion from the encoding spec-
ified by the encoding pragma. The escape was replaced with REPLACEMENT
CHARACTER (U+FFFD) instead, except within (?[]), where it is a fatal
error. The <– HERE shows whereabouts in the regular expression the escape
was discovered.

Invalid hexadecimal number in \N{U+...}
Invalid hexadecimal number in \N{U+...} in regex; marked by <– HERE in m/%s/

(F) The character constant represented by ... is not a valid hexadecimal num-
ber. Either it is empty, or you tried to use a character other than 0 - 9 or A -
F, a - f in a hexadecimal number.

Invalid module name %s with -%c option: contains single ’:’
(F) The module argument to perl’s -m and -M command-line options cannot
contain single colons in the module name, but only in the arguments after "=".
In other words, -MFoo::Bar=:baz is ok, but -MFoo:Bar=baz is not.

Invalid mro name: ’%s’
(F) You tried to mro::set_mro("classname", "foo") or use mro ’foo’,
where foo is not a valid method resolution order (MRO). Currently, the only

valid ones supported are dfs and c3, unless you have loaded a module that is
a MRO plugin. See mro and Section 43.1 [perlmroapi NAME], page 758.

Invalid negative number (%s) in chr
(W utf8) You passed a negative number to chr. Negative numbers are not valid
character numbers, so it returns the Unicode replacement character (U+FFFD).

invalid option -D%c, use -D” to see choices
(S debugging) Perl was called with invalid debugger flags. Call perl with the
-D option with no flags to see the list of acceptable values. See also [perlrun
-Dletters], page 1181.

Invalid quantifier in {,} in regex; marked by <– HERE in m/%s/
(F) The pattern looks like a {min,max} quantifier, but the min or max could not
be parsed as a valid number - either it has leading zeroes, or it represents too big
a number to cope with. The <– HERE shows where in the regular expression
the problem was discovered. See Section 58.1 [perlre NAME], page 989.

Invalid [] range "%s" in regex; marked by <– HERE in m/%s/
(F) The range specified in a character class had a minimum character greater
than the maximum character. One possibility is that you forgot the {} from
your ending \x{} - \x without the curly braces can go only up to ff. The
<– HERE shows whereabouts in the regular expression the problem was discov-
ered. See Section 58.1 [perlre NAME], page 989.

Invalid range "%s" in transliteration operator
(F) The range specified in the tr/// or y/// operator had a minimum char-
acter greater than the maximum character. See Section 48.1 [perlop NAME],
page 798.

Invalid separator character %s in attribute list
(F) Something other than a colon or whitespace was seen between the elements
of an attribute list. If the previous attribute had a parenthesised parameter
list, perhaps that list was terminated too soon. See attributes.

Invalid separator character %s in PerlIO layer specification %s
(W layer) When pushing layers onto the Perl I/O system, something other
than a colon or whitespace was seen between the elements of a layer list. If
the previous attribute had a parenthesised parameter list, perhaps that list was
terminated too soon.

Invalid strict version format (%s)
(F) A version number did not meet the "strict" criteria for versions. A "strict"
version number is a positive decimal number (integer or decimal-fraction) with-
out exponentiation or else a dotted-decimal v-string with a leading ’v’ character
and at least three components. The parenthesized text indicates which criteria
were not met. See the version module for more details on allowed version
formats.

Invalid type ’%s’ in %s
(F) The given character is not a valid pack or unpack type. See 〈undefined〉
[perlfunc pack], page 〈undefined〉.

(W) The given character is not a valid pack or unpack type but used to be
silently ignored.

Invalid version format (%s)
(F) A version number did not meet the "lax" criteria for versions. A "lax" ver-
sion number is a positive decimal number (integer or decimal-fraction) without
exponentiation or else a dotted-decimal v-string. If the v-string has fewer than
three components, it must have a leading ’v’ character. Otherwise, the leading
’v’ is optional. Both decimal and dotted-decimal versions may have a trail-
ing "alpha" component separated by an underscore character after a fractional
or dotted-decimal component. The parenthesized text indicates which criteria
were not met. See the version module for more details on allowed version
formats.

Invalid version object
(F) The internal structure of the version object was invalid. Perhaps the inter-
nals were modified directly in some way or an arbitrary reference was blessed
into the "version" class.

In ’(*VERB...)’, the ’(’ and ’*’ must be adjacent in regex; marked by <– HERE in m/%s/
(F) The two-character sequence "(*" in this context in a regular expression
pattern should be an indivisible token, with nothing intervening between the
"(" and the "*", but you separated them.

ioctl is not implemented
(F) Your machine apparently doesn’t implement ioctl(), which is pretty strange
for a machine that supports C.

ioctl() on unopened %s
(W unopened) You tried ioctl() on a filehandle that was never opened. Check
your control flow and number of arguments.

IO layers (like ’%s’) unavailable
(F) Your Perl has not been configured to have PerlIO, and therefore you cannot
use IO layers. To have PerlIO, Perl must be configured with ’useperlio’.

IO::Socket::atmark not implemented on this architecture
(F) Your machine doesn’t implement the sockatmark() functionality, neither as
a system call nor an ioctl call (SIOCATMARK).

’%s’ is an unknown bound type in regex; marked by <– HERE in m/%s/
(F) You used \b{...} or \B{...} and the ... is not known to Perl. The
current valid ones are given in [perlrebackslash \b{}, \b, \B{}, \B], page 1054.

"%s" is more clearly written simply as "%s" in regex; marked by <– HERE in m/%s/
(W regexp) (only under use re ’strict’ or within (?[...]))

You specified a character that has the given plainer way of writing it, and which
is also portable to platforms running with different character sets.

$* is no longer supported
(D deprecated, syntax) The special variable $*, deprecated in older perls, has
been removed as of 5.10.0 and is no longer supported. In previous versions of
perl the use of $* enabled or disabled multi-line matching within a string.

Instead of using $* you should use the /m (and maybe /s) regexp modifiers.
You can enable /m for a lexical scope (even a whole file) with use re ’/m’. (In
older versions: when $* was set to a true value then all regular expressions
behaved as if they were written using /m.)

$# is no longer supported
(D deprecated, syntax) The special variable $#, deprecated in older perls, has
been removed as of 5.10.0 and is no longer supported. You should use the
printf/sprintf functions instead.

’%s’ is not a code reference
(W overload) The second (fourth, sixth, ...) argument of overload::constant
needs to be a code reference. Either an anonymous subroutine, or a reference
to a subroutine.

’%s’ is not an overloadable type
(W overload) You tried to overload a constant type the overload package is
unaware of.

-i used with no filenames on the command line, reading from STDIN
(S inplace) The -i option was passed on the command line, indicating that the
script is intended to edit files in place, but no files were given. This is usually a
mistake, since editing STDIN in place doesn’t make sense, and can be confusing
because it can make perl look like it is hanging when it is really just trying to
read from STDIN. You should either pass a filename to edit, or remove -i

from the command line. See Section 69.1 [perlrun NAME], page 1176 for more
details.

Junk on end of regexp in regex m/%s/
(P) The regular expression parser is confused.

keys on reference is experimental
(S experimental::autoderef) keys with a scalar argument is experimental and
may change or be removed in a future Perl version. If you want to take the risk
of using this feature, simply disable this warning:

no warnings "experimental::autoderef";

Label not found for "last %s"
(F) You named a loop to break out of, but you’re not currently in a loop of that
name, not even if you count where you were called from. See [perlfunc last],
page 399.

Label not found for "next %s"
(F) You named a loop to continue, but you’re not currently in a loop of that
name, not even if you count where you were called from. See [perlfunc last],
page 399.

Label not found for "redo %s"
(F) You named a loop to restart, but you’re not currently in a loop of that
name, not even if you count where you were called from. See [perlfunc last],
page 399.

leaving effective %s failed
(F) While under the use filetest pragma, switching the real and effective
uids or gids failed.

length/code after end of string in unpack
(F) While unpacking, the string buffer was already used up when an unpack
length/code combination tried to obtain more data. This results in an undefined
value for the length. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

length() used on %s (did you mean "scalar(%s)"?)
(W syntax) You used length() on either an array or a hash when you probably
wanted a count of the items.

Array size can be obtained by doing:

scalar(@array);

The number of items in a hash can be obtained by doing:

scalar(keys %hash);

Lexing code attempted to stuff non-Latin-1 character into Latin-1 input
(F) An extension is attempting to insert text into the current parse (using
Section “lex stuff pvn” in perlapi or similar), but tried to insert a character
that couldn’t be part of the current input. This is an inherent pitfall of the
stuffing mechanism, and one of the reasons to avoid it. Where it is necessary
to stuff, stuffing only plain ASCII is recommended.

Lexing code internal error (%s)
(F) Lexing code supplied by an extension violated the lexer’s API in a detectable
way.

listen() on closed socket %s
(W closed) You tried to do a listen on a closed socket. Did you forget to
check the return value of your socket() call? See 〈undefined〉 [perlfunc listen],
page 〈undefined〉.

List form of piped open not implemented
(F) On some platforms, notably Windows, the three-or-more-arguments form
of open does not support pipes, such as open($pipe, ’|-’, @args). Use the
two-argument open($pipe, ’|prog arg1 arg2...’) form instead.

%s: loadable library and perl binaries are mismatched (got handshake key %p, needed %p)
(P) A dynamic loading library .so or .dll was being loaded into the process
that was built against a different build of perl than the said library was compiled
against. Reinstalling the XS module will likely fix this error.

Locale ’%s’ may not work well.%s
(W locale) You are using the named locale, which is a non-UTF-8 one, and
which perl has determined is not fully compatible with what it can handle.
The second %s gives a reason.

By far the most common reason is that the locale has characters in it that are
represented by more than one byte. The only such locales that Perl can handle
are the UTF-8 locales. Most likely the specified locale is a non-UTF-8 one for

an East Asian language such as Chinese or Japanese. If the locale is a superset
of ASCII, the ASCII portion of it may work in Perl.

Some essentially obsolete locales that aren’t supersets of ASCII, mainly those
in ISO 646 or other 7-bit locales, such as ASMO 449, can also have problems,
depending on what portions of the ASCII character set get changed by the locale
and are also used by the program. The warning message lists the determinable
conflicting characters.

Note that not all incompatibilities are found.

If this happens to you, there’s not much you can do except switch to use a
different locale or use Encode to translate from the locale into UTF-8; if that’s
impracticable, you have been warned that some things may break.

This message is output once each time a bad locale is switched into within
the scope of use locale, or on the first possibly-affected operation if the
use locale inherits a bad one. It is not raised for any operations from the
POSIX module.

localtime(%f) failed
(W overflow) You called localtime with a number that it could not handle:
too large, too small, or NaN. The returned value is undef.

localtime(%f) too large
(W overflow) You called localtime with a number that was larger than it can
reliably handle and localtime probably returned the wrong date. This warning
is also triggered with NaN (the special not-a-number value).

localtime(%f) too small
(W overflow) You called localtime with a number that was smaller than it
can reliably handle and localtime probably returned the wrong date.

Lookbehind longer than %d not implemented in regex m/%s/
(F) There is currently a limit on the length of string which lookbehind can
handle. This restriction may be eased in a future release.

Lost precision when %s %f by 1
(W imprecision) The value you attempted to increment or decrement by one
is too large for the underlying floating point representation to store accurately,
hence the target of ++ or -- is unchanged. Perl issues this warning because it
has already switched from integers to floating point when values are too large
for integers, and now even floating point is insufficient. You may wish to switch
to using Math-BigInt explicitly.

lstat() on filehandle%s
(W io) You tried to do an lstat on a filehandle. What did you mean by that?
lstat() makes sense only on filenames. (Perl did a fstat() instead on the filehan-
dle.)

lvalue attribute %s already-defined subroutine
(W misc) Although attributes allows this, turning the lvalue attribute on or
off on a Perl subroutine that is already defined does not always work properly.
It may or may not do what you want, depending on what code is inside the

subroutine, with exact details subject to change between Perl versions. Only
do this if you really know what you are doing.

lvalue attribute ignored after the subroutine has been defined
(W misc) Using the :lvalue declarative syntax to make a Perl subroutine
an lvalue subroutine after it has been defined is not permitted. To make the
subroutine an lvalue subroutine, add the lvalue attribute to the definition, or
put the sub foo :lvalue; declaration before the definition.

See also attributes.

Magical list constants are not supported
(F) You assigned a magical array to a stash element, and then tried to use the
subroutine from the same slot. You are asking Perl to do something it cannot
do, details subject to change between Perl versions.

Malformed integer in [] in pack
(F) Between the brackets enclosing a numeric repeat count only digits are per-
mitted. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

Malformed integer in [] in unpack
(F) Between the brackets enclosing a numeric repeat count only digits are per-
mitted. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

Malformed PERLLIB PREFIX
(F) An error peculiar to OS/2. PERLLIB PREFIX should be of the form

prefix1;prefix2

or prefix1 prefix2

with nonempty prefix1 and prefix2. If prefix1 is indeed a prefix of a builtin
library search path, prefix2 is substituted. The error may appear if components
are not found, or are too long. See "PERLLIB PREFIX" in perlos2.

Malformed prototype for %s: %s
(F) You tried to use a function with a malformed prototype. The syntax of
function prototypes is given a brief compile-time check for obvious errors like
invalid characters. A more rigorous check is run when the function is called.
Perhaps the function’s author was trying to write a subroutine signature but
didn’t enable that feature first (use feature ’signatures’), so the signature
was instead interpreted as a bad prototype.

Malformed UTF-8 character (%s)
(S utf8)(F) Perl detected a string that didn’t comply with UTF-8 encoding
rules, even though it had the UTF8 flag on.

One possible cause is that you set the UTF8 flag yourself for data that you
thought to be in UTF-8 but it wasn’t (it was for example legacy 8-bit data).
To guard against this, you can use Encode::decode utf8.

If you use the :encoding(UTF-8) PerlIO layer for input, invalid byte sequences
are handled gracefully, but if you use :utf8, the flag is set without validating
the data, possibly resulting in this error message.

See also Section “Handling Malformed Data” in Encode.

Malformed UTF-8 character immediately after ’%s’
(F) You said use utf8, but the program file doesn’t comply with UTF-8 encod-
ing rules. The message prints out the properly encoded characters just before
the first bad one. If utf8 warnings are enabled, a warning is generated that
gives more details about the type of malformation.

Malformed UTF-8 returned by \N{%s} immediately after ’%s’
(F) The charnames handler returned malformed UTF-8.

Malformed UTF-8 string in ’%c’ format in unpack
(F) You tried to unpack something that didn’t comply with UTF-8 encoding
rules and perl was unable to guess how to make more progress.

Malformed UTF-8 string in pack
(F) You tried to pack something that didn’t comply with UTF-8 encoding rules
and perl was unable to guess how to make more progress.

Malformed UTF-8 string in unpack
(F) You tried to unpack something that didn’t comply with UTF-8 encoding
rules and perl was unable to guess how to make more progress.

Malformed UTF-16 surrogate
(F) Perl thought it was reading UTF-16 encoded character data but while doing
it Perl met a malformed Unicode surrogate.

Mandatory parameter follows optional parameter
(F) In a subroutine signature, you wrote something like "$a = undef, $b",
making an earlier parameter optional and a later one mandatory. Parameters
are filled from left to right, so it’s impossible for the caller to omit an earlier
one and pass a later one. If you want to act as if the parameters are filled from
right to left, declare the rightmost optional and then shuffle the parameters
around in the subroutine’s body.

Matched non-Unicode code point 0x%X against Unicode property; may not be portable
(S non unicode) Perl allows strings to contain a superset of Unicode code points;
each code point may be as large as what is storable in an unsigned integer
on your system, but these may not be accepted by other languages/systems.
This message occurs when you matched a string containing such a code point
against a regular expression pattern, and the code point was matched against a
Unicode property, \p{...} or \P{...}. Unicode properties are only defined on
Unicode code points, so the result of this match is undefined by Unicode, but
Perl (starting in v5.20) treats non-Unicode code points as if they were typical
unassigned Unicode ones, and matched this one accordingly. Whether a given
property matches these code points or not is specified in Section “Properties
accessible through \p{} and \P{}” in perluniprops.

This message is suppressed (unless it has been made fatal) if it is immaterial to
the results of the match if the code point is Unicode or not. For example, the
property \p{ASCII_Hex_Digit} only can match the 22 characters [0-9A-Fa-
f], so obviously all other code points, Unicode or not, won’t match it. (And
\P{ASCII_Hex_Digit} will match every code point except these 22.)

Getting this message indicates that the outcome of the match arguably should
have been the opposite of what actually happened. If you think that is the case,
you may wish to make the non_unicode warnings category fatal; if you agree
with Perl’s decision, you may wish to turn off this category.

See Section 81.2.12 [perlunicode Beyond Unicode code points], page 1337 for
more information.

%s matches null string many times in regex; marked by <– HERE in m/%s/
(W regexp) The pattern you’ve specified would be an infinite loop if the regular
expression engine didn’t specifically check for that. The <– HERE shows where-
abouts in the regular expression the problem was discovered. See Section 58.1
[perlre NAME], page 989.

Maximal count of pending signals (%u) exceeded
(F) Perl aborted due to too high a number of signals pending. This usually
indicates that your operating system tried to deliver signals too fast (with a
very high priority), starving the perl process from resources it would need to
reach a point where it can process signals safely. (See Section 36.3.2 [perlipc
Deferred Signals (Safe Signals)], page 671.)

"%s" may clash with future reserved word
(W) This warning may be due to running a perl5 script through a perl4 inter-
preter, especially if the word that is being warned about is "use" or "my".

’%’ may not be used in pack
(F) You can’t pack a string by supplying a checksum, because the checksumming
process loses information, and you can’t go the other way. See 〈undefined〉
[perlfunc unpack], page 〈undefined〉.

Method for operation %s not found in package %s during blessing
(F) An attempt was made to specify an entry in an overloading table that
doesn’t resolve to a valid subroutine. See overload.

Method %s not permitted
See Server error.

Might be a runaway multi-line %s string starting on line %d
(S) An advisory indicating that the previous error may have been caused by a
missing delimiter on a string or pattern, because it eventually ended earlier on
the current line.

Misplaced in number
(W syntax) An underscore (underbar) in a numeric constant did not separate
two digits.

Missing argument in %s
(W missing) You called a function with fewer arguments than other arguments
you supplied indicated would be needed.

Currently only emitted when a printf-type format required more arguments
than were supplied, but might be used in the future for other cases where we
can statically determine that arguments to functions are missing, e.g. for the
〈undefined〉 [perlfunc pack], page 〈undefined〉 function.

Missing argument to -%c
(F) The argument to the indicated command line switch must follow immedi-
ately after the switch, without intervening spaces.

Missing braces on \N{}
Missing braces on \N{} in regex; marked by <– HERE in m/%s/

(F) Wrong syntax of character name literal \N{charname} within double-
quotish context. This can also happen when there is a space (or comment)
between the \N and the { in a regex with the /x modifier. This modifier does
not change the requirement that the brace immediately follow the \N.

Missing braces on \o{}
(F) A \o must be followed immediately by a { in double-quotish context.

Missing comma after first argument to %s function
(F) While certain functions allow you to specify a filehandle or an "indirect
object" before the argument list, this ain’t one of them.

Missing command in piped open
(W pipe) You used the open(FH, "| command") or open(FH, "command |")

construction, but the command was missing or blank.

Missing control char name in \c
(F) A double-quoted string ended with "\c", without the required control char-
acter name.

Missing ’]’ in prototype for %s : %s
(W illegalproto) A grouping was started with [but never closed with].

Missing name in "%s sub"
(F) The syntax for lexically scoped subroutines requires that they have a name
with which they can be found.

Missing $ on loop variable
(F) Apparently you’ve been programming in csh too much. Variables are always
mentioned with the $ in Perl, unlike in the shells, where it can vary from one
line to the next.

(Missing operator before %s?)
(S syntax) This is an educated guess made in conjunction with the message
"%s found where operator expected". Often the missing operator is a comma.

Missing or undefined argument to require
(F) You tried to call require with no argument or with an undefined value as
an argument. Require expects either a package name or a file-specification as
an argument. See [perlfunc require], page 437.

Missing right brace on \%c{} in regex; marked by <– HERE in m/%s/
(F) Missing right brace in \x{...}, \p{...}, \P{...}, or \N{...}.

Missing right brace on \N{}
Missing right brace on \N{} or unescaped left brace after \N

(F) \N has two meanings.

The traditional one has it followed by a name enclosed in braces, meaning the
character (or sequence of characters) given by that name. Thus \N{ASTERISK}
is another way of writing *, valid in both double-quoted strings and regular
expression patterns. In patterns, it doesn’t have the meaning an unescaped *

does.

Starting in Perl 5.12.0, \N also can have an additional meaning (only) in pat-
terns, namely to match a non-newline character. (This is short for [^\n], and
like . but is not affected by the /s regex modifier.)

This can lead to some ambiguities. When \N is not followed immediately by a
left brace, Perl assumes the [^\n] meaning. Also, if the braces form a valid
quantifier such as \N{3} or \N{5,}, Perl assumes that this means to match the
given quantity of non-newlines (in these examples, 3; and 5 or more, respec-
tively). In all other case, where there is a \N{ and a matching }, Perl assumes
that a character name is desired.

However, if there is no matching }, Perl doesn’t know if it was mistakenly
omitted, or if [^\n]{ was desired, and raises this error. If you meant the
former, add the right brace; if you meant the latter, escape the brace with a
backslash, like so: \N\{

Missing right curly or square bracket
(F) The lexer counted more opening curly or square brackets than closing ones.
As a general rule, you’ll find it’s missing near the place you were last editing.

(Missing semicolon on previous line?)
(S syntax) This is an educated guess made in conjunction with the message
"%s found where operator expected". Don’t automatically put a semicolon on
the previous line just because you saw this message.

Modification of a read-only value attempted
(F) You tried, directly or indirectly, to change the value of a constant. You
didn’t, of course, try "2 = 1", because the compiler catches that. But an easy
way to do the same thing is:

sub mod { $_[0] = 1 }

mod(2);

Another way is to assign to a substr() that’s off the end of the string.

Yet another way is to assign to a foreach loop VAR when VAR is aliased to a
constant in the look LIST :

$x = 1;

foreach my $n ($x, 2) {

$n *= 2; # modifies the $x, but fails on attempt to

} # modify the 2

Modification of non-creatable array value attempted, %s
(F) You tried to make an array value spring into existence, and the subscript
was probably negative, even counting from end of the array backwards.

Modification of non-creatable hash value attempted, %s
(P) You tried to make a hash value spring into existence, and it couldn’t be
created for some peculiar reason.

Module name must be constant
(F) Only a bare module name is allowed as the first argument to a "use".

Module name required with -%c option
(F) The -M or -m options say that Perl should load some module, but you omit-
ted the name of the module. Consult Section 69.1 [perlrun NAME], page 1176
for full details about -M and -m.

More than one argument to ’%s’ open
(F) The open function has been asked to open multiple files. This can happen
if you are trying to open a pipe to a command that takes a list of arguments,
but have forgotten to specify a piped open mode. See 〈undefined〉 [perlfunc
open], page 〈undefined〉 for details.

mprotect for COW string %p %u failed with %d
(S) You compiled perl with -DPERL DEBUG READONLY COW (see
Section 28.3.17 [perlguts Copy on Write], page 527), but a shared string buffer
could not be made read-only.

mprotect for %p %u failed with %d
(S) You compiled perl with -DPERL DEBUG READONLY OPS (see
Section 30.1 [perlhacktips NAME], page 578), but an op tree could not be
made read-only.

mprotect RW for COW string %p %u failed with %d
(S) You compiled perl with -DPERL DEBUG READONLY COW (see
Section 28.3.17 [perlguts Copy on Write], page 527), but a read-only shared
string buffer could not be made mutable.

mprotect RW for %p %u failed with %d
(S) You compiled perl with -DPERL DEBUG READONLY OPS (see
Section 30.1 [perlhacktips NAME], page 578), but a read-only op tree could
not be made mutable before freeing the ops.

msg%s not implemented
(F) You don’t have System V message IPC on your system.

Multidimensional syntax %s not supported
(W syntax) Multidimensional arrays aren’t written like $foo[1,2,3]. They’re
written like $foo[1][2][3], as in C.

’/’ must follow a numeric type in unpack
(F) You had an unpack template that contained a ’/’, but this did not follow
some unpack specification producing a numeric value. See 〈undefined〉 [perlfunc
pack], page 〈undefined〉.

"my sub" not yet implemented
(F) Lexically scoped subroutines are not yet implemented. Don’t try that yet.

"my" subroutine %s can’t be in a package
(F) Lexically scoped subroutines aren’t in a package, so it doesn’t make sense
to try to declare one with a package qualifier on the front.

"my %s" used in sort comparison
(W syntax) The package variables $a and $b are used for sort comparisons. You
used $a or $b in as an operand to the <=> or cmp operator inside a sort com-
parison block, and the variable had earlier been declared as a lexical variable.
Either qualify the sort variable with the package name, or rename the lexical
variable.

"my" variable %s can’t be in a package
(F) Lexically scoped variables aren’t in a package, so it doesn’t make sense to
try to declare one with a package qualifier on the front. Use local() if you want
to localize a package variable.

Name "%s::%s" used only once: possible typo
(W once) Typographical errors often show up as unique variable names. If
you had a good reason for having a unique name, then just mention it again
somehow to suppress the message. The our declaration is also provided for this
purpose.

NOTE: This warning detects package symbols that have been used only once.
This means lexical variables will never trigger this warning. It also means that
all of the package variables $c, @c, %c, as well as *c, &c, sub c{}, c(), and c (the
filehandle or format) are considered the same; if a program uses $c only once but
also uses any of the others it will not trigger this warning. Symbols beginning
with an underscore and symbols using special identifiers (q.v. Section 11.1
[perldata NAME], page 70) are exempt from this warning.

Need exactly 3 octal digits in regex; marked by <– HERE in m/%s/
(F) Within (?[]), all constants interpreted as octal need to be exactly 3 digits
long. This helps catch some ambiguities. If your constant is too short, add
leading zeros, like

(?[[\078]]) # Syntax error!

(?[[\0078]]) # Works

(?[[\007 8]]) # Clearer

The maximum number this construct can express is \777. If you need a larger
one, you need to use Section 60.2.3.7 [\o{}], page 1049 instead. If you meant
two separate things, you need to separate them:

(?[[\7776]]) # Syntax error!

(?[[\o{7776}]]) # One meaning

(?[[\777 6]]) # Another meaning

(?[[\777 \006]]) # Still another

Negative ’/’ count in unpack
(F) The length count obtained from a length/code unpack operation was neg-
ative. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

Negative length
(F) You tried to do a read/write/send/recv operation with a buffer length that
is less than 0. This is difficult to imagine.

Negative offset to vec in lvalue context
(F) When vec is called in an lvalue context, the second argument must be
greater than or equal to zero.

Negative repeat count does nothing
(W numeric) You tried to execute the Section 48.2.8 [x], page 802 repetition
operator fewer than 0 times, which doesn’t make sense.

Nested quantifiers in regex; marked by <– HERE in m/%s/
(F) You can’t quantify a quantifier without intervening parentheses. So things
like ** or +* or ?* are illegal. The <– HERE shows whereabouts in the regular
expression the problem was discovered.

Note that the minimal matching quantifiers, *?, +?, and ?? appear to be nested
quantifiers, but aren’t. See Section 58.1 [perlre NAME], page 989.

%s never introduced
(S internal) The symbol in question was declared but somehow went out of
scope before it could possibly have been used.

next::method/next::can/maybe::next::method cannot find enclosing method
(F) next::method needs to be called within the context of a real method in a
real package, and it could not find such a context. See mro.

\N in a character class must be a named character: \N{...} in regex; marked by <– HERE
in m/%s/

(F) The new (as of Perl 5.12) meaning of \N as [^\n] is not valid in a bracketed
character class, for the same reason that . in a character class loses its special-
ness: it matches almost everything, which is probably not what you want.

\N{} in inverted character class or as a range end-point is restricted to one character in
regex; marked by <– HERE in m/%s/

(F) Named Unicode character escapes (\N{...}) may return a multi-character
sequence. Even though a character class is supposed to match just one character
of input, perl will match the whole thing correctly, except when the class is
inverted ([^...]), or the escape is the beginning or final end point of a range.
The mathematically logical behavior for what matches when inverting is very
different from what people expect, so we have decided to forbid it. Similarly
unclear is what should be generated when the \N{...} is used as one of the
end points of the range, such as in

[\x{41}-\N{ARABIC SEQUENCE YEH WITH HAMZA ABOVE WITH AE}]

What is meant here is unclear, as the \N{...} escape is a sequence of code
points, so this is made an error.

\N{NAME} must be resolved by the lexer in regex; marked by <– HERE in m/%s/
(F)When compiling a regex pattern, an unresolved named character or sequence
was encountered. This can happen in any of several ways that bypass the lexer,
such as using single-quotish context, or an extra backslash in double-quotish:

$re = ’\N{SPACE}’; # Wrong!

$re = "\\N{SPACE}"; # Wrong!

/$re/;

Instead, use double-quotes with a single backslash:

$re = "\N{SPACE}"; # ok

/$re/;

The lexer can be bypassed as well by creating the pattern from smaller compo-
nents:

$re = ’\N’;

/${re}{SPACE}/; # Wrong!

It’s not a good idea to split a construct in the middle like this, and it doesn’t
work here. Instead use the solution above.

Finally, the message also can happen under the /x regex modifier when the \N
is separated by spaces from the {, in which case, remove the spaces.

/\N {SPACE}/x; # Wrong!

/\N{SPACE}/x; # ok

No %s allowed while running setuid
(F) Certain operations are deemed to be too insecure for a setuid or setgid script
to even be allowed to attempt. Generally speaking there will be another way
to do what you want that is, if not secure, at least securable. See Section 70.1
[perlsec NAME], page 1198.

NO-BREAK SPACE in a charnames alias definition is deprecated
(D deprecated) You defined a character name which contained a no-break space
character. Change it to a regular space. Usually these names are defined in
the :alias import argument to use charnames, but they could be defined by a
translator installed into $^H{charnames}. See Section “CUSTOM ALIASES”
in charnames.

No code specified for -%c
(F) Perl’s -e and -E command-line options require an argument. If you want to
run an empty program, pass the empty string as a separate argument or run a
program consisting of a single 0 or 1:

perl -e ""

perl -e0

perl -e1

No comma allowed after %s
(F) A list operator that has a filehandle or "indirect object" is not allowed to
have a comma between that and the following arguments. Otherwise it’d be
just another one of the arguments.

One possible cause for this is that you expected to have imported a constant to
your name space with use or import while no such importing took place, it may
for example be that your operating system does not support that particular
constant. Hopefully you did use an explicit import list for the constants you
expect to see; please see 〈undefined〉 [perlfunc use], page 〈undefined〉 and 〈unde-
fined〉 [perlfunc import], page 〈undefined〉. While an explicit import list would
probably have caught this error earlier it naturally does not remedy the fact
that your operating system still does not support that constant. Maybe you

have a typo in the constants of the symbol import list of use or import or in
the constant name at the line where this error was triggered?

No command into which to pipe on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection,
and found a ’|’ at the end of the command line, so it doesn’t know where you
want to pipe the output from this command.

No DB::DB routine defined
(F) The currently executing code was compiled with the -d switch, but for
some reason the current debugger (e.g. perl5db.pl or a Devel:: module)
didn’t define a routine to be called at the beginning of each statement.

No dbm on this machine
(P) This is counted as an internal error, because every machine should supply
dbm nowadays, because Perl comes with SDBM. See SDBM_File.

No DB::sub routine defined
(F) The currently executing code was compiled with the -d switch, but for
some reason the current debugger (e.g. perl5db.pl or a Devel:: module)
didn’t define a DB::sub routine to be called at the beginning of each ordinary
subroutine call.

No directory specified for -I
(F) The -I command-line switch requires a directory name as part of the same
argument. Use -Ilib, for instance. -I lib won’t work.

No error file after 2> or 2>> on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection,
and found a ’2>’ or a ’2>>’ on the command line, but can’t find the name of
the file to which to write data destined for stderr.

No group ending character ’%c’ found in template
(F) A pack or unpack template has an opening ’(’ or ’[’ without its matching
counterpart. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

No input file after < on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection,
and found a ’<’ on the command line, but can’t find the name of the file from
which to read data for stdin.

No next::method ’%s’ found for %s
(F) next::method found no further instances of this method name in the re-
maining packages of the MRO of this class. If you don’t want it throwing an
exception, use maybe::next::method or next::can. See mro.

Non-finite repeat count does nothing
(W numeric) You tried to execute the Section 48.2.8 [x], page 802 repetition
operator Inf (or -Inf) or NaN times, which doesn’t make sense.

Non-hex character in regex; marked by <– HERE in m/%s/
(F) In a regular expression, there was a non-hexadecimal character where a hex
one was expected, like

(?[[\xDG]])

(?[[\x{DEKA}]])

Non-octal character in regex; marked by <– HERE in m/%s/
(F) In a regular expression, there was a non-octal character where an octal one
was expected, like

(?[[\o{1278}]])

Non-octal character ’%c’. Resolved as "%s"
(W digit) In parsing an octal numeric constant, a character was unexpectedly
encountered that isn’t octal. The resulting value is as indicated.

"no" not allowed in expression
(F) The "no" keyword is recognized and executed at compile time, and returns
no useful value. See Section 40.1 [perlmod NAME], page 732.

Non-string passed as bitmask
(W misc) A number has been passed as a bitmask argument to select(). Use the
vec() function to construct the file descriptor bitmasks for select. See [perlfunc
select], page 443.

No output file after > on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection,
and found a lone ’>’ at the end of the command line, so it doesn’t know where
you wanted to redirect stdout.

No output file after > or >> on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection,
and found a ’>’ or a ’>>’ on the command line, but can’t find the name of the
file to which to write data destined for stdout.

No package name allowed for variable %s in "our"
(F) Fully qualified variable names are not allowed in "our" declarations, because
that doesn’t make much sense under existing rules. Such syntax is reserved for
future extensions.

No Perl script found in input
(F) You called perl -x, but no line was found in the file beginning with #! and
containing the word "perl".

No setregid available
(F) Configure didn’t find anything resembling the setregid() call for your sys-
tem.

No setreuid available
(F) Configure didn’t find anything resembling the setreuid() call for your sys-
tem.

No such class %s
(F) You provided a class qualifier in a "my", "our" or "state" declaration, but
this class doesn’t exist at this point in your program.

No such class field "%s" in variable %s of type %s
(F) You tried to access a key from a hash through the indicated typed variable
but that key is not allowed by the package of the same type. The indicated
package has restricted the set of allowed keys using the fields pragma.

No such hook: %s
(F) You specified a signal hook that was not recognized by Perl. Currently,
Perl accepts __DIE__ and __WARN__ as valid signal hooks.

No such pipe open
(P) An error peculiar to VMS. The internal routine my pclose() tried to close
a pipe which hadn’t been opened. This should have been caught earlier as an
attempt to close an unopened filehandle.

No such signal: SIG%s
(W signal) You specified a signal name as a subscript to %SIG that was not
recognized. Say kill -l in your shell to see the valid signal names on your
system.

Not a CODE reference
(F) Perl was trying to evaluate a reference to a code value (that is, a subroutine),
but found a reference to something else instead. You can use the ref() function
to find out what kind of ref it really was. See also Section 62.1 [perlref NAME],
page 1077.

Not a GLOB reference
(F) Perl was trying to evaluate a reference to a "typeglob" (that is, a symbol
table entry that looks like *foo), but found a reference to something else instead.
You can use the ref() function to find out what kind of ref it really was. See
Section 62.1 [perlref NAME], page 1077.

Not a HASH reference
(F) Perl was trying to evaluate a reference to a hash value, but found a reference
to something else instead. You can use the ref() function to find out what kind
of ref it really was. See Section 62.1 [perlref NAME], page 1077.

Not an ARRAY reference
(F) Perl was trying to evaluate a reference to an array value, but found a
reference to something else instead. You can use the ref() function to find out
what kind of ref it really was. See Section 62.1 [perlref NAME], page 1077.

Not an unblessed ARRAY reference
(F) You passed a reference to a blessed array to push, shift or another array
function. These only accept unblessed array references or arrays beginning
explicitly with @.

Not a SCALAR reference
(F) Perl was trying to evaluate a reference to a scalar value, but found a refer-
ence to something else instead. You can use the ref() function to find out what
kind of ref it really was. See Section 62.1 [perlref NAME], page 1077.

Not a subroutine reference
(F) Perl was trying to evaluate a reference to a code value (that is, a subroutine),
but found a reference to something else instead. You can use the ref() function
to find out what kind of ref it really was. See also Section 62.1 [perlref NAME],
page 1077.

Not a subroutine reference in overload table
(F) An attempt was made to specify an entry in an overloading table that
doesn’t somehow point to a valid subroutine. See overload.

Not enough arguments for %s
(F) The function requires more arguments than you specified.

Not enough format arguments
(W syntax) A format specified more picture fields than the next line supplied.
See Section 24.1 [perlform NAME], page 343.

%s: not found
(A) You’ve accidentally run your script through the Bourne shell instead of
Perl. Check the #! line, or manually feed your script into Perl yourself.

(?[...]) not valid in locale in regex; marked by <– HERE in m/%s/
(F) (?[...]) cannot be used within the scope of a use locale or with an
/l regular expression modifier, as that would require deferring to run-time the
calculation of what it should evaluate to, and it is regex compile-time only.

no UTC offset information; assuming local time is UTC
(S) A warning peculiar to VMS. Perl was unable to find the local timezone
offset, so it’s assuming that local system time is equivalent to UTC. If it’s
not, define the logical name SYS$TIMEZONE_DIFFERENTIAL to translate to the
number of seconds which need to be added to UTC to get local time.

NULL OP IN RUN
(S debugging) Some internal routine called run() with a null opcode pointer.

Null picture in formline
(F) The first argument to formline must be a valid format picture specification.
It was found to be empty, which probably means you supplied it an uninitialized
value. See Section 24.1 [perlform NAME], page 343.

Null realloc
(P) An attempt was made to realloc NULL.

NULL regexp argument
(P) The internal pattern matching routines blew it big time.

NULL regexp parameter
(P) The internal pattern matching routines are out of their gourd.

Number too long
(F) Perl limits the representation of decimal numbers in programs to about
250 characters. You’ve exceeded that length. Future versions of Perl are likely
to eliminate this arbitrary limitation. In the meantime, try using scientific
notation (e.g. "1e6" instead of "1 000 000").

Number with no digits
(F) Perl was looking for a number but found nothing that looked like a number.
This happens, for example with \o{}, with no number between the braces.

Octal number > 037777777777 non-portable
(W portable) The octal number you specified is larger than 2**32-1
(4294967295) and therefore non-portable between systems. See Section 56.1
[perlport NAME], page 951 for more on portability concerns.

Odd name/value argument for subroutine
(F) A subroutine using a slurpy hash parameter in its signature received an
odd number of arguments to populate the hash. It requires the arguments to
be paired, with the same number of keys as values. The caller of the subroutine
is presumably at fault. Inconveniently, this error will be reported at the location
of the subroutine, not that of the caller.

Odd number of arguments for overload::constant
(W overload) The call to overload::constant contained an odd number of argu-
ments. The arguments should come in pairs.

Odd number of elements in anonymous hash
(W misc) You specified an odd number of elements to initialize a hash, which
is odd, because hashes come in key/value pairs.

Odd number of elements in hash assignment
(W misc) You specified an odd number of elements to initialize a hash, which
is odd, because hashes come in key/value pairs.

Offset outside string
(F)(W layer) You tried to do a read/write/send/recv/seek operation with an
offset pointing outside the buffer. This is difficult to imagine. The sole ex-
ceptions to this are that zero padding will take place when going past the end
of the string when either sysread()ing a file, or when seeking past the end
of a scalar opened for I/O (in anticipation of future reads and to imitate the
behavior with real files).

%s() on unopened %s
(W unopened) An I/O operation was attempted on a filehandle that was never
initialized. You need to do an open(), a sysopen(), or a socket() call, or call a
constructor from the FileHandle package.

-%s on unopened filehandle %s
(W unopened) You tried to invoke a file test operator on a filehandle that isn’t
open. Check your control flow. See also [perlfunc -X], page 354.

oops: oopsAV
(S internal) An internal warning that the grammar is screwed up.

oops: oopsHV
(S internal) An internal warning that the grammar is screwed up.

Opening dirhandle %s also as a file
(D io, deprecated) You used open() to associate a filehandle to a symbol (glob
or scalar) that already holds a dirhandle. Although legal, this idiom might
render your code confusing and is deprecated.

Opening filehandle %s also as a directory
(D io, deprecated) You used opendir() to associate a dirhandle to a symbol
(glob or scalar) that already holds a filehandle. Although legal, this idiom
might render your code confusing and is deprecated.

Operand with no preceding operator in regex; marked by <– HERE in m/%s/
(F) You wrote something like

(?[\p{Digit} \p{Thai}])

There are two operands, but no operator giving how you want to combine them.

Operation "%s": no method found, %s
(F) An attempt was made to perform an overloaded operation for which no han-
dler was defined. While some handlers can be autogenerated in terms of other
handlers, there is no default handler for any operation, unless the fallback

overloading key is specified to be true. See overload.

Operation "%s" returns its argument for non-Unicode code point 0x%X
(S non unicode) You performed an operation requiring Unicode rules on a code
point that is not in Unicode, so what it should do is not defined. Perl has
chosen to have it do nothing, and warn you.

If the operation shown is "ToFold", it means that case-insensitive matching in
a regular expression was done on the code point.

If you know what you are doing you can turn off this warning by no warnings

’non_unicode’;.

Operation "%s" returns its argument for UTF-16 surrogate U+%X
(S surrogate) You performed an operation requiring Unicode rules on a Unicode
surrogate. Unicode frowns upon the use of surrogates for anything but storing
strings in UTF-16, but rules are (reluctantly) defined for the surrogates, and
they are to do nothing for this operation. Because the use of surrogates can be
dangerous, Perl warns.

If the operation shown is "ToFold", it means that case-insensitive matching in
a regular expression was done on the code point.

If you know what you are doing you can turn off this warning by no warnings

’surrogate’;.

Operator or semicolon missing before %s
(S ambiguous) You used a variable or subroutine call where the parser was
expecting an operator. The parser has assumed you really meant to use an
operator, but this is highly likely to be incorrect. For example, if you say "*foo
*foo" it will be interpreted as if you said "*foo * ’foo’".

Optional parameter lacks default expression
(F) In a subroutine signature, you wrote something like "$a =", making a
named optional parameter without a default value. A nameless optional pa-

rameter is permitted to have no default value, but a named one must have a
specific default. You probably want "$a = undef".

"our" variable %s redeclared
(W misc) You seem to have already declared the same global once before in the
current lexical scope.

Out of memory!
(X) The malloc() function returned 0, indicating there was insufficient remain-
ing memory (or virtual memory) to satisfy the request. Perl has no option but
to exit immediately.

At least in Unix you may be able to get past this by increasing your pro-
cess datasize limits: in csh/tcsh use limit and limit datasize n (where n is
the number of kilobytes) to check the current limits and change them, and in
ksh/bash/zsh use ulimit -a and ulimit -d n, respectively.

Out of memory during %s extend
(X) An attempt was made to extend an array, a list, or a string beyond the
largest possible memory allocation.

Out of memory during "large" request for %s
(F) The malloc() function returned 0, indicating there was insufficient remaining
memory (or virtual memory) to satisfy the request. However, the request was
judged large enough (compile-time default is 64K), so a possibility to shut down
by trapping this error is granted.

Out of memory during request for %s
(X)(F) The malloc() function returned 0, indicating there was insufficient re-
maining memory (or virtual memory) to satisfy the request.

The request was judged to be small, so the possibility to trap it depends on the
way perl was compiled. By default it is not trappable. However, if compiled for
this, Perl may use the contents of $^M as an emergency pool after die()ing with
this message. In this case the error is trappable once, and the error message
will include the line and file where the failed request happened.

Out of memory during ridiculously large request
(F) You can’t allocate more than 2^31+"small amount" bytes. This error is
most likely to be caused by a typo in the Perl program. e.g., $arr[time]

instead of $arr[$time].

Out of memory for yacc stack
(F) The yacc parser wanted to grow its stack so it could continue parsing, but
realloc() wouldn’t give it more memory, virtual or otherwise.

’.’ outside of string in pack
(F) The argument to a ’.’ in your template tried to move the working position
to before the start of the packed string being built.

’@’ outside of string in unpack
(F) You had a template that specified an absolute position outside the string
being unpacked. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

’@’ outside of string with malformed UTF-8 in unpack
(F) You had a template that specified an absolute position outside the string
being unpacked. The string being unpacked was also invalid UTF-8. See 〈un-
defined〉 [perlfunc pack], page 〈undefined〉.

overload arg ’%s’ is invalid
(W overload) The overload pragma was passed an argument it did not recog-
nize. Did you mistype an operator?

Overloaded dereference did not return a reference
(F) An object with an overloaded dereference operator was dereferenced, but
the overloaded operation did not return a reference. See overload.

Overloaded qr did not return a REGEXP
(F) An object with a qr overload was used as part of a match, but the overloaded
operation didn’t return a compiled regexp. See overload.

%s package attribute may clash with future reserved word: %s
(W reserved) A lowercase attribute name was used that had a package-specific
handler. That name might have a meaning to Perl itself some day, even though
it doesn’t yet. Perhaps you should use a mixed-case attribute name, instead.
See attributes.

pack/unpack repeat count overflow
(F) You can’t specify a repeat count so large that it overflows your signed
integers. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

page overflow
(W io) A single call to write() produced more lines than can fit on a page. See
Section 24.1 [perlform NAME], page 343.

panic: %s

(P) An internal error.

panic: attempt to call %s in %s
(P) One of the file test operators entered a code branch that calls an ACL
related-function, but that function is not available on this platform. Earlier
checks mean that it should not be possible to enter this branch on this platform.

panic: child pseudo-process was never scheduled
(P) A child pseudo-process in the ithreads implementation on Windows was not
scheduled within the time period allowed and therefore was not able to initialize
properly.

panic: ck grep, type=%u
(P) Failed an internal consistency check trying to compile a grep.

panic: ck split, type=%u
(P) Failed an internal consistency check trying to compile a split.

panic: corrupt saved stack index %ld
(P) The savestack was requested to restore more localized values than there are
in the savestack.

panic: del backref
(P) Failed an internal consistency check while trying to reset a weak reference.

panic: die %s
(P) We popped the context stack to an eval context, and then discovered it
wasn’t an eval context.

panic: do subst
(P) The internal pp subst() routine was called with invalid operational data.

panic: do trans %s
(P) The internal do trans routines were called with invalid operational data.

panic: fold constants JMPENV PUSH returned %d
(P) While attempting folding constants an exception other than an eval failure
was caught.

panic: frexp: %f
(P) The library function frexp() failed, making printf("%f") impossible.

panic: goto, type=%u, ix=%ld
(P) We popped the context stack to a context with the specified label, and then
discovered it wasn’t a context we know how to do a goto in.

panic: gp free failed to free glob pointer
(P) The internal routine used to clear a typeglob’s entries tried repeatedly, but
each time something re-created entries in the glob. Most likely the glob contains
an object with a reference back to the glob and a destructor that adds a new
object to the glob.

panic: INTERPCASEMOD, %s
(P) The lexer got into a bad state at a case modifier.

panic: INTERPCONCAT, %s
(P) The lexer got into a bad state parsing a string with brackets.

panic: kid popen errno read
(F) A forked child returned an incomprehensible message about its errno.

panic: last, type=%u
(P) We popped the context stack to a block context, and then discovered it
wasn’t a block context.

panic: leave scope clearsv
(P) A writable lexical variable became read-only somehow within the scope.

panic: leave scope inconsistency %u
(P) The savestack probably got out of sync. At least, there was an invalid enum
on the top of it.

panic: magic killbackrefs
(P) Failed an internal consistency check while trying to reset all weak references
to an object.

panic: malloc, %s
(P) Something requested a negative number of bytes of malloc.

panic: memory wrap
(P) Something tried to allocate either more memory than possible or a negative
amount.

panic: pad alloc, %p!=%p
(P) The compiler got confused about which scratch pad it was allocating and
freeing temporaries and lexicals from.

panic: pad free curpad, %p!=%p
(P) The compiler got confused about which scratch pad it was allocating and
freeing temporaries and lexicals from.

panic: pad free po
(P) A zero scratch pad offset was detected internally. An attempt was made to
free a target that had not been allocated to begin with.

panic: pad reset curpad, %p!=%p
(P) The compiler got confused about which scratch pad it was allocating and
freeing temporaries and lexicals from.

panic: pad sv po
(P) A zero scratch pad offset was detected internally. Most likely an operator
needed a target but that target had not been allocated for whatever reason.

panic: pad swipe curpad, %p!=%p
(P) The compiler got confused about which scratch pad it was allocating and
freeing temporaries and lexicals from.

panic: pad swipe po
(P) An invalid scratch pad offset was detected internally.

panic: pp iter, type=%u
(P) The foreach iterator got called in a non-loop context frame.

panic: pp match%s
(P) The internal pp match() routine was called with invalid operational data.

panic: pp split, pm=%p, s=%p
(P) Something terrible went wrong in setting up for the split.

panic: realloc, %s
(P) Something requested a negative number of bytes of realloc.

panic: reference miscount on nsv in sv replace() (%d != 1)
(P) The internal sv replace() function was handed a new SV with a reference
count other than 1.

panic: restartop in %s
(P) Some internal routine requested a goto (or something like it), and didn’t
supply the destination.

panic: return, type=%u
(P) We popped the context stack to a subroutine or eval context, and then
discovered it wasn’t a subroutine or eval context.

panic: scan num, %s
(P) scan num() got called on something that wasn’t a number.

panic: Sequence (?{...}): no code block found in regex m/%s/
(P) While compiling a pattern that has embedded (?{}) or (??{}) code blocks,
perl couldn’t locate the code block that should have already been seen and
compiled by perl before control passed to the regex compiler.

panic: strxfrm() gets absurd - a => %u, ab => %u
(P) The interpreter’s sanity check of the C function strxfrm() failed. In your
current locale the returned transformation of the string "ab" is shorter than
that of the string "a", which makes no sense.

panic: sv chop %s
(P) The sv chop() routine was passed a position that is not within the scalar’s
string buffer.

panic: sv insert, midend=%p, bigend=%p
(P) The sv insert() routine was told to remove more string than there was
string.

panic: top env
(P) The compiler attempted to do a goto, or something weird like that.

panic: unimplemented op %s (#%d) called
(P) The compiler is screwed up and attempted to use an op that isn’t permitted
at run time.

panic: utf16 to utf8: odd bytelen
(P) Something tried to call utf16 to utf8 with an odd (as opposed to even) byte
length.

panic: utf16 to utf8 reversed: odd bytelen
(P) Something tried to call utf16 to utf8 reversed with an odd (as opposed to
even) byte length.

panic: yylex, %s
(P) The lexer got into a bad state while processing a case modifier.

Parentheses missing around "%s" list
(W parenthesis) You said something like

my $foo, $bar = @_;

when you meant

my ($foo, $bar) = @_;

Remember that "my", "our", "local" and "state" bind tighter than comma.

Parsing code internal error (%s)
(F) Parsing code supplied by an extension violated the parser’s API in a de-
tectable way.

Passing malformed UTF-8 to "%s" is deprecated
(D deprecated, utf8) This message indicates a bug either in the Perl core or
in XS code. Such code was trying to find out if a character, allegedly stored

internally encoded as UTF-8, was of a given type, such as being punctuation or
a digit. But the character was not encoded in legal UTF-8. The %s is replaced
by a string that can be used by knowledgeable people to determine what the
type being checked against was. If utf8 warnings are enabled, a further message
is raised, giving details of the malformation.

Pattern subroutine nesting without pos change exceeded limit in regex
(F) You used a pattern that uses too many nested subpattern calls without
consuming any text. Restructure the pattern so text is consumed before the
nesting limit is exceeded.

-p destination: %s
(F) An error occurred during the implicit output invoked by the -p command-
line switch. (This output goes to STDOUT unless you’ve redirected it with
select().)

Perl API version %s of %s does not match %s
(F) The XS module in question was compiled against a different incompatible
version of Perl than the one that has loaded the XS module.

Perl folding rules are not up-to-date for 0x%X; please use the perlbug utility to report; in
regex; marked by <– HERE in m/%s/

(S regexp) You used a regular expression with case-insensitive matching, and
there is a bug in Perl in which the built-in regular expression folding rules are
not accurate. This may lead to incorrect results. Please report this as a bug
using the perlbug utility.

PerlIO layer ’:win32’ is experimental
(S experimental::win32 perlio) The :win32 PerlIO layer is experimental. If you
want to take the risk of using this layer, simply disable this warning:

no warnings "experimental::win32_perlio";

Perl my %s() not available
(F) Your platform has very uncommon byte-order and integer size, so it was
not possible to set up some or all fixed-width byte-order conversion functions.
This is only a problem when you’re using the ’<’ or ’>’ modifiers in (un)pack
templates. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

Perl %s required (did you mean %s?)–this is only %s, stopped
(F) The code you are trying to run has asked for a newer version of Perl than
you are running. Perhaps use 5.10 was written instead of use 5.010 or use

v5.10. Without the leading v, the number is interpreted as a decimal, with
every three digits after the decimal point representing a part of the version
number. So 5.10 is equivalent to v5.100.

Perl %s required–this is only %s, stopped
(F) The module in question uses features of a version of Perl more recent than
the currently running version. How long has it been since you upgraded, any-
way? See [perlfunc require], page 437.

PERL SH DIR too long
(F) An error peculiar to OS/2. PERL SH DIR is the directory to find the
sh-shell in. See "PERL SH DIR" in perlos2.

PERL SIGNALS illegal: "%s"
(X) See [perlrun PERL SIGNALS], page 1196 for legal values.

Perls since %s too modern–this is %s, stopped
(F) The code you are trying to run claims it will not run on the version of Perl
you are using because it is too new. Maybe the code needs to be updated, or
maybe it is simply wrong and the version check should just be removed.

perl: warning: Non hex character in ’$ENV{PERL HASH SEED}’, seed only partially set
(S) PERL HASH SEED should match /^\s*(?:0x)?[0-9a-fA-F]+\s*\z/ but it
contained a non hex character. This could mean you are not using the hash
seed you think you are.

perl: warning: Setting locale failed.
(S) The whole warning message will look something like:

perl: warning: Setting locale failed.

perl: warning: Please check that your locale settings:

LC_ALL = "En_US",

LANG = (unset)

are supported and installed on your system.

perl: warning: Falling back to the standard locale ("C").

Exactly what were the failed locale settings varies. In the above the settings
were that the LC ALL was "En US" and the LANG had no value. This er-
ror means that Perl detected that you and/or your operating system supplier
and/or system administrator have set up the so-called locale system but Perl
could not use those settings. This was not dead serious, fortunately: there is
a "default locale" called "C" that Perl can and will use, and the script will be
run. Before you really fix the problem, however, you will get the same error
message each time you run Perl. How to really fix the problem can be found in
Section 38.1 [perllocale NAME], page 701 section LOCALE PROBLEMS.

perl: warning: strange setting in ’$ENV{PERL PERTURB KEYS}’: ’%s’
(S) Perl was run with the environment variable PERL PERTURB KEYS de-
fined but containing an unexpected value. The legal values of this setting are
as follows.

Numeric | String | Result

--------+---------------+---

0 | NO | Disables key traversal randomization

1 | RANDOM | Enables full key traversal randomization

2 | DETERMINISTIC | Enables repeatable key traversal

| | randomization

Both numeric and string values are accepted, but note that string values are
case sensitive. The default for this setting is "RANDOM" or 1.

pid %x not a child
(W exec) A warning peculiar to VMS. Waitpid() was asked to wait for a process
which isn’t a subprocess of the current process. While this is fine from VMS’
perspective, it’s probably not what you intended.

’P’ must have an explicit size in unpack
(F) The unpack format P must have an explicit size, not "*".

pop on reference is experimental
(S experimental::autoderef) pop with a scalar argument is experimental and
may change or be removed in a future Perl version. If you want to take the risk
of using this feature, simply disable this warning:

no warnings "experimental::autoderef";

POSIX class [:%s:] unknown in regex; marked by <– HERE in m/%s/
(F) The class in the character class [: :] syntax is unknown. The <– HERE
shows whereabouts in the regular expression the problem was discovered. Note
that the POSIX character classes do not have the is prefix the corresponding C
interfaces have: in other words, it’s [[:print:]], not isprint. See Section 58.1
[perlre NAME], page 989.

POSIX getpgrp can’t take an argument
(F) Your system has POSIX getpgrp(), which takes no argument, unlike the
BSD version, which takes a pid.

POSIX syntax [%c %c] belongs inside character classes in regex; marked by <– HERE in
m/%s/

(W regexp) The character class constructs [: :], [= =], and [. .] go inside char-
acter classes, the [] are part of the construct, for example: /[012[:alpha:]345]/.
Note that [= =] and [. .] are not currently implemented; they are simply
placeholders for future extensions and will cause fatal errors. The <– HERE
shows whereabouts in the regular expression the problem was discovered. See
Section 58.1 [perlre NAME], page 989.

POSIX syntax [. .] is reserved for future extensions in regex; marked by <– HERE in
m/%s/

(F) Within regular expression character classes ([]) the syntax beginning with
"[." and ending with ".]" is reserved for future extensions. If you need to repre-
sent those character sequences inside a regular expression character class, just
quote the square brackets with the backslash: "\[." and ".\]". The <– HERE
shows whereabouts in the regular expression the problem was discovered. See
Section 58.1 [perlre NAME], page 989.

POSIX syntax [= =] is reserved for future extensions in regex; marked by <– HERE in
m/%s/

(F) Within regular expression character classes ([]) the syntax beginning with
"[=" and ending with "=]" is reserved for future extensions. If you need to rep-
resent those character sequences inside a regular expression character class, just
quote the square brackets with the backslash: "\[=" and "=\]". The <– HERE
shows whereabouts in the regular expression the problem was discovered. See
Section 58.1 [perlre NAME], page 989.

Possible attempt to put comments in qw() list
(W qw) qw() lists contain items separated by whitespace; as with literal strings,
comment characters are not ignored, but are instead treated as literal data.

(You may have used different delimiters than the parentheses shown here; braces
are also frequently used.)

You probably wrote something like this:

@list = qw(

a # a comment

b # another comment

);

when you should have written this:

@list = qw(

a

b

);

If you really want comments, build your list the old-fashioned way, with quotes
and commas:

@list = (

’a’, # a comment

’b’, # another comment

);

Possible attempt to separate words with commas
(W qw) qw() lists contain items separated by whitespace; therefore commas
aren’t needed to separate the items. (You may have used different delimiters
than the parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

qw! a, b, c !;

which puts literal commas into some of the list items. Write it without commas
if you don’t want them to appear in your data:

qw! a b c !;

Possible memory corruption: %s overflowed 3rd argument
(F) An ioctl() or fcntl() returned more than Perl was bargaining for. Perl
guesses a reasonable buffer size, but puts a sentinel byte at the end of the
buffer just in case. This sentinel byte got clobbered, and Perl assumes that
memory is now corrupted. See 〈undefined〉 [perlfunc ioctl], page 〈undefined〉.

Possible precedence issue with control flow operator
(W syntax) There is a possible problem with the mixing of a control flow oper-
ator (e.g. return) and a low-precedence operator like or. Consider:

sub { return $a or $b; }

This is parsed as:

sub { (return $a) or $b; }

Which is effectively just:

sub { return $a; }

Either use parentheses or the high-precedence variant of the operator.

Note this may be also triggered for constructs like:

sub { 1 if die; }

Possible precedence problem on bitwise %s operator
(W precedence) Your program uses a bitwise logical operator in conjunction
with a numeric comparison operator, like this :

if ($x & $y == 0) { ... }

This expression is actually equivalent to $x & ($y == 0), due to the higher
precedence of ==. This is probably not what you want. (If you really meant to
write this, disable the warning, or, better, put the parentheses explicitly and
write $x & ($y == 0)).

Possible unintended interpolation of $\ in regex
(W ambiguous) You said something like m/$\/ in a regex. The regex
m/foo$\s+bar/m translates to: match the word ’foo’, the output record
separator (see [perlvar $\], page 1396) and the letter ’s’ (one time or more)
followed by the word ’bar’.

If this is what you intended then you can silence the warning by using m/${\}/

(for example: m/foo${\}s+bar/).

If instead you intended to match the word ’foo’ at the end of the line followed
by whitespace and the word ’bar’ on the next line then you can use m/$(?)\/

(for example: m/foo$(?)\s+bar/).

Possible unintended interpolation of %s in string
(W ambiguous) You said something like ’@foo’ in a double-quoted string but
there was no array @foo in scope at the time. If you wanted a literal @foo,
then write it as \@foo; otherwise find out what happened to the array you
apparently lost track of.

Postfix dereference is experimental
(S experimental::postderef) This warning is emitted if you use the experimental
postfix dereference syntax. Simply suppress the warning if you want to use
the feature, but know that in doing so you are taking the risk of using an
experimental feature which may change or be removed in a future Perl version:

no warnings "experimental::postderef";

use feature "postderef", "postderef_qq";

$ref->$*;

$aref->@*;

$aref->@[@indices];

... etc ...

Precedence problem: open %s should be open(%s)
(S precedence) The old irregular construct

open FOO || die;

is now misinterpreted as

open(FOO || die);

because of the strict regularization of Perl 5’s grammar into unary and list
operators. (The old open was a little of both.) You must put parentheses
around the filehandle, or use the new "or" operator instead of "||".

Premature end of script headers
See Server error.

printf() on closed filehandle %s
(W closed) The filehandle you’re writing to got itself closed sometime before
now. Check your control flow.

print() on closed filehandle %s
(W closed) The filehandle you’re printing on got itself closed sometime before
now. Check your control flow.

Process terminated by SIG%s
(W) This is a standard message issued by OS/2 applications, while *nix ap-
plications die in silence. It is considered a feature of the OS/2 port. One can
easily disable this by appropriate sighandlers, see Section 36.3 [perlipc Signals],
page 667. See also "Process terminated by SIGTERM/SIGINT" in perlos2.

Property ’%s’ is unknown in regex; marked by <– HERE in m/%s/
(F) The named property which you specified via \p or \P is not one known
to Perl. Perhaps you misspelled the name? See Section “Properties accessible
through \p{} and \P{}” in perluniprops for a complete list of available official
properties. If it is a Section 81.2.6 [user-defined property], page 1329 it must
have been defined by the time the regular expression is compiled.

Prototype after ’%c’ for %s : %s
(W illegalproto) A character follows % or @ in a prototype. This is useless,
since % and @ gobble the rest of the subroutine arguments.

Prototype mismatch: %s vs %s
(S prototype) The subroutine being declared or defined had previously been
declared or defined with a different function prototype.

Prototype not terminated
(F) You’ve omitted the closing parenthesis in a function prototype definition.

Prototype ’%s’ overridden by attribute ’prototype(%s)’ in %s
(W prototype) A prototype was declared in both the parentheses after the sub
name and via the prototype attribute. The prototype in parentheses is useless,
since it will be replaced by the prototype from the attribute before it’s ever
used.

push on reference is experimental
(S experimental::autoderef) push with a scalar argument is experimental and
may change or be removed in a future Perl version. If you want to take the risk
of using this feature, simply disable this warning:

no warnings "experimental::autoderef";

Quantifier follows nothing in regex; marked by <– HERE in m/%s/
(F) You started a regular expression with a quantifier. Backslash it if you
meant it literally. The <– HERE shows whereabouts in the regular expression
the problem was discovered. See Section 58.1 [perlre NAME], page 989.

Quantifier in {,} bigger than %d in regex; marked by <– HERE in m/%s/
(F) There is currently a limit to the size of the min and max values of the
{min,max} construct. The <– HERE shows whereabouts in the regular expres-
sion the problem was discovered. See Section 58.1 [perlre NAME], page 989.

Quantifier {n,m} with n > m can’t match in regex
Quantifier {n,m} with n > m can’t match in regex; marked by <– HERE in m/%s/

(W regexp) Minima should be less than or equal to maxima. If you really want
your regexp to match something 0 times, just put {0}.

Quantifier unexpected on zero-length expression in regex m/%s/
(W regexp) You applied a regular expression quantifier in a place where it
makes no sense, such as on a zero-width assertion. Try putting the quantifier
inside the assertion instead. For example, the way to match "abc" provided
that it is followed by three repetitions of "xyz" is /abc(?=(?:xyz){3})/, not
/abc(?=xyz){3}/.

Range iterator outside integer range
(F) One (or both) of the numeric arguments to the range operator ".." are
outside the range which can be represented by integers internally. One possible
workaround is to force Perl to use magical string increment by prepending "0"
to your numbers.

Ranges of ASCII printables should be some subset of "0-9", "A-Z", or "a-z" in regex;
marked by <– HERE in m/%s/

(W regexp) (only under use re ’strict’ or within (?[...]))

Stricter rules help to find typos and other errors. Perhaps you didn’t even
intend a range here, if the "-" was meant to be some other character, or should
have been escaped (like "\-"). If you did intend a range, the one that was used
is not portable between ASCII and EBCDIC platforms, and doesn’t have an
obvious meaning to a casual reader.

[3-7] # OK; Obvious and portable

[d-g] # OK; Obvious and portable

[A-Y] # OK; Obvious and portable

[A-z] # WRONG; Not portable; not clear what is meant

[a-Z] # WRONG; Not portable; not clear what is meant

[%-.] # WRONG; Not portable; not clear what is meant

[\x41-Z] # WRONG; Not portable; not obvious to non-geek

(You can force portability by specifying a Unicode range, which means that the
endpoints are specified by Section 61.2.3.2 [\N{...}], page 1067, but the mean-
ing may still not be obvious.) The stricter rules require that ranges that start
or stop with an ASCII character that is not a control have all their endpoints
be the literal character, and not some escape sequence (like "\x41"), and the
ranges must be all digits, or all uppercase letters, or all lowercase letters.

Ranges of digits should be from the same group in regex; marked by <– HERE in m/%s/
(W regexp) (only under use re ’strict’ or within (?[...]))

Stricter rules help to find typos and other errors. You included a range, and at
least one of the end points is a decimal digit. Under the stricter rules, when this

happens, both end points should be digits in the same group of 10 consecutive
digits.

readdir() attempted on invalid dirhandle %s
(W io) The dirhandle you’re reading from is either closed or not really a dirhan-
dle. Check your control flow.

readline() on closed filehandle %s
(W closed) The filehandle you’re reading from got itself closed sometime before
now. Check your control flow.

read() on closed filehandle %s
(W closed) You tried to read from a closed filehandle.

read() on unopened filehandle %s
(W unopened) You tried to read from a filehandle that was never opened.

Reallocation too large: %x
(F) You can’t allocate more than 64K on an MS-DOS machine.

realloc() of freed memory ignored
(S malloc) An internal routine called realloc() on something that had already
been freed.

Recompile perl with -DDEBUGGING to use -D switch
(S debugging) You can’t use the -D option unless the code to produce the
desired output is compiled into Perl, which entails some overhead, which is why
it’s currently left out of your copy.

Recursive call to Perl load module in PerlIO find layer
(P) It is currently not permitted to load modules when creating a filehandle
inside an %INC hook. This can happen with open my $fh, ’<’, \$scalar,
which implicitly loads PerlIO::scalar. Try loading PerlIO::scalar explicitly first.

Recursive inheritance detected in package ’%s’
(F) While calculating the method resolution order (MRO) of a package, Perl
believes it found an infinite loop in the @ISA hierarchy. This is a crude check
that bails out after 100 levels of @ISA depth.

Redundant argument in %s
(W redundant) You called a function with more arguments than other argu-
ments you supplied indicated would be needed. Currently only emitted when a
printf-type format required fewer arguments than were supplied, but might be
used in the future for e.g. 〈undefined〉 [perlfunc pack], page 〈undefined〉.

refcnt dec: fd %d%s
refcnt: fd %d%s
refcnt inc: fd %d%s

(P) Perl’s I/O implementation failed an internal consistency check. If you see
this message, something is very wrong.

Reference found where even-sized list expected
(W misc) You gave a single reference where Perl was expecting a list with an
even number of elements (for assignment to a hash). This usually means that

you used the anon hash constructor when you meant to use parens. In any case,
a hash requires key/value pairs.

%hash = { one => 1, two => 2, }; # WRONG

%hash = [qw/ an anon array /]; # WRONG

%hash = (one => 1, two => 2,); # right

%hash = qw(one 1 two 2); # also fine

Reference is already weak
(Wmisc) You have attempted to weaken a reference that is already weak. Doing
so has no effect.

Reference to invalid group 0 in regex; marked by <– HERE in m/%s/
(F) You used \g0 or similar in a regular expression. You may refer to capturing
parentheses only with strictly positive integers (normal backreferences) or with
strictly negative integers (relative backreferences). Using 0 does not make sense.

Reference to nonexistent group in regex; marked by <– HERE in m/%s/
(F) You used something like \7 in your regular expression, but there are not
at least seven sets of capturing parentheses in the expression. If you wanted to
have the character with ordinal 7 inserted into the regular expression, prepend
zeroes to make it three digits long: \007

The <– HERE shows whereabouts in the regular expression the problem was
discovered.

Reference to nonexistent named group in regex; marked by <– HERE in m/%s/
(F) You used something like \k’NAME’ or \k<NAME> in your regular
expression, but there is no corresponding named capturing parentheses such as
(?’NAME’...) or (?<NAME>...). Check if the name has been spelled correctly
both in the backreference and the declaration.

The <– HERE shows whereabouts in the regular expression the problem was
discovered.

Reference to nonexistent or unclosed group in regex; marked by <– HERE in m/%s/
(F) You used something like \g{-7} in your regular expression, but there are
not at least seven sets of closed capturing parentheses in the expression before
where the \g{-7} was located.

The <– HERE shows whereabouts in the regular expression the problem was
discovered.

regexp memory corruption
(P) The regular expression engine got confused by what the regular expression
compiler gave it.

Regexp modifier "/%c" may appear a maximum of twice
Regexp modifier "%c" may appear a maximum of twice in regex; marked by <– HERE in
m/%s/

(F) The regular expression pattern had too many occurrences of the specified
modifier. Remove the extraneous ones.

Regexp modifier "%c" may not appear after the "-" in regex; marked by <– HERE in
m/%s/

(F) Turning off the given modifier has the side effect of turning on another
one. Perl currently doesn’t allow this. Reword the regular expression to use
the modifier you want to turn on (and place it before the minus), instead of the
one you want to turn off.

Regexp modifier "/%c" may not appear twice
Regexp modifier "%c" may not appear twice in regex; marked by <– HERE in m/%s/

(F) The regular expression pattern had too many occurrences of the specified
modifier. Remove the extraneous ones.

Regexp modifiers "/%c" and "/%c" are mutually exclusive
Regexp modifiers "%c" and "%c" are mutually exclusive in regex; marked by <– HERE in
m/%s/

(F) The regular expression pattern had more than one of these mutually exclu-
sive modifiers. Retain only the modifier that is supposed to be there.

Regexp out of space in regex m/%s/
(P) A "can’t happen" error, because safemalloc() should have caught it earlier.

Repeated format line will never terminate (~~ and @#)
(F) Your format contains the ~~ repeat-until-blank sequence and a numeric field
that will never go blank so that the repetition never terminates. You might use
^# instead. See Section 24.1 [perlform NAME], page 343.

Replacement list is longer than search list
(W misc) You have used a replacement list that is longer than the search list.
So the additional elements in the replacement list are meaningless.

’%s’ resolved to ’\o{%s}%d’
(W misc, regexp) You wrote something like \08, or \179 in a double-quotish
string. All but the last digit is treated as a single character, specified in octal.
The last digit is the next character in the string. To tell Perl that this is indeed
what you want, you can use the \o{ } syntax, or use exactly three digits to
specify the octal for the character.

Reversed %s= operator
(W syntax) You wrote your assignment operator backwards. The = must always
come last, to avoid ambiguity with subsequent unary operators.

rewinddir() attempted on invalid dirhandle %s
(W io) The dirhandle you tried to do a rewinddir() on is either closed or not
really a dirhandle. Check your control flow.

Scalars leaked: %d
(S internal) Something went wrong in Perl’s internal bookkeeping of scalars:
not all scalar variables were deallocated by the time Perl exited. What this
usually indicates is a memory leak, which is of course bad, especially if the Perl
program is intended to be long-running.

Scalar value @%s[%s] better written as $%s[%s]
(W syntax) You’ve used an array slice (indicated by @) to select a single element
of an array. Generally it’s better to ask for a scalar value (indicated by $). The
difference is that $foo[&bar] always behaves like a scalar, both when assigning
to it and when evaluating its argument, while @foo[&bar] behaves like a list
when you assign to it, and provides a list context to its subscript, which can do
weird things if you’re expecting only one subscript.

On the other hand, if you were actually hoping to treat the array element as a
list, you need to look into how references work, because Perl will not magically
convert between scalars and lists for you. See Section 62.1 [perlref NAME],
page 1077.

Scalar value @%s{%s} better written as $%s{%s}
(W syntax) You’ve used a hash slice (indicated by @) to select a single element
of a hash. Generally it’s better to ask for a scalar value (indicated by $). The
difference is that $foo{&bar} always behaves like a scalar, both when assigning
to it and when evaluating its argument, while @foo{&bar} behaves like a list
when you assign to it, and provides a list context to its subscript, which can do
weird things if you’re expecting only one subscript.

On the other hand, if you were actually hoping to treat the hash element as a
list, you need to look into how references work, because Perl will not magically
convert between scalars and lists for you. See Section 62.1 [perlref NAME],
page 1077.

Search pattern not terminated
(F) The lexer couldn’t find the final delimiter of a // or m{} construct. Re-
member that bracketing delimiters count nesting level. Missing the leading $

from a variable $m may cause this error.

Note that since Perl 5.10.0 a // can also be the defined-or construct, not just
the empty search pattern. Therefore code written in Perl 5.10.0 or later that
uses the // as the defined-or can be misparsed by pre-5.10.0 Perls as a non-
terminated search pattern.

seekdir() attempted on invalid dirhandle %s
(W io) The dirhandle you are doing a seekdir() on is either closed or not really
a dirhandle. Check your control flow.

%sseek() on unopened filehandle
(W unopened) You tried to use the seek() or sysseek() function on a filehandle
that was either never opened or has since been closed.

select not implemented
(F) This machine doesn’t implement the select() system call.

Self-ties of arrays and hashes are not supported
(F) Self-ties are of arrays and hashes are not supported in the current imple-
mentation.

Semicolon seems to be missing
(W semicolon) A nearby syntax error was probably caused by a missing semi-
colon, or possibly some other missing operator, such as a comma.

semi-panic: attempt to dup freed string
(S internal) The internal newSVsv() routine was called to duplicate a scalar
that had previously been marked as free.

sem%s not implemented
(F) You don’t have System V semaphore IPC on your system.

send() on closed socket %s
(W closed) The socket you’re sending to got itself closed sometime before now.
Check your control flow.

Sequence "\c{" invalid
(F) These three characters may not appear in sequence in a double-quotish
context. This message is raised only on non-ASCII platforms (a different error
message is output on ASCII ones). If you were intending to specify a control
character with this sequence, you’ll have to use a different way to specify it.

Sequence (? incomplete in regex; marked by <– HERE in m/%s/
(F) A regular expression ended with an incomplete extension (?. The <– HERE
shows whereabouts in the regular expression the problem was discovered. See
Section 58.1 [perlre NAME], page 989.

Sequence (?%c...) not implemented in regex; marked by <– HERE in m/%s/
(F) A proposed regular expression extension has the character reserved but has
not yet been written. The <– HERE shows whereabouts in the regular expres-
sion the problem was discovered. See Section 58.1 [perlre NAME], page 989.

Sequence (?%s...) not recognized in regex; marked by <– HERE in m/%s/
(F) You used a regular expression extension that doesn’t make sense. The
<– HERE shows whereabouts in the regular expression the problem was discov-
ered. This may happen when using the (?^...) construct to tell Perl to use
the default regular expression modifiers, and you redundantly specify a default
modifier. For other causes, see Section 58.1 [perlre NAME], page 989.

Sequence (?#... not terminated in regex m/%s/
(F) A regular expression comment must be terminated by a closing parenthe-
sis. Embedded parentheses aren’t allowed. See Section 58.1 [perlre NAME],
page 989.

Sequence (?&... not terminated in regex; marked by <– HERE in m/%s/
(F) A named reference of the form (?&...) was missing the final closing paren-
thesis after the name. The <– HERE shows whereabouts in the regular expres-
sion the problem was discovered.

Sequence (?%c... not terminated in regex; marked by <– HERE in m/%s/
(F) A named group of the form (?’...’) or (?<...>) was missing the final
closing quote or angle bracket. The <– HERE shows whereabouts in the regular
expression the problem was discovered.

Sequence (?(%c... not terminated in regex; marked by <– HERE in m/%s/
(F) A named reference of the form (?(’...’)...) or (?(<...>)...) was miss-
ing the final closing quote or angle bracket after the name. The <– HERE shows
whereabouts in the regular expression the problem was discovered.

Sequence \%s... not terminated in regex; marked by <– HERE in m/%s/
(F) The regular expression expects a mandatory argument following the escape
sequence and this has been omitted or incorrectly written.

Sequence (?{...}) not terminated with ’)’
(F) The end of the perl code contained within the {...} must be followed im-
mediately by a ’)’.

Sequence ?P=... not terminated in regex; marked by <– HERE in m/%s/
(F) A named reference of the form (?P=...) was missing the final closing
parenthesis after the name. The <– HERE shows whereabouts in the regular
expression the problem was discovered.

Sequence (?R) not terminated in regex m/%s/
(F) An (?R) or (?0) sequence in a regular expression was missing the final
parenthesis.

Server error (a.k.a. "500 Server error")
(A) This is the error message generally seen in a browser window when trying to
run a CGI program (including SSI) over the web. The actual error text varies
widely from server to server. The most frequently-seen variants are "500 Server
error", "Method (something) not permitted", "Document contains no data",
"Premature end of script headers", and "Did not produce a valid header".

This is a CGI error, not a Perl error.

You need to make sure your script is executable, is accessible by the user CGI is
running the script under (which is probably not the user account you tested it
under), does not rely on any environment variables (like PATH) from the user
it isn’t running under, and isn’t in a location where the CGI server can’t find
it, basically, more or less. Please see the following for more information:

http://www.perl.org/CGI_MetaFAQ.html

http://www.htmlhelp.org/faq/cgifaq.html

http://www.w3.org/Security/Faq/

You should also look at perlfaq9.

setegid() not implemented
(F) You tried to assign to $), and your operating system doesn’t support the
setegid() system call (or equivalent), or at least Configure didn’t think so.

seteuid() not implemented
(F) You tried to assign to $>, and your operating system doesn’t support the
seteuid() system call (or equivalent), or at least Configure didn’t think so.

setpgrp can’t take arguments
(F) Your system has the setpgrp() from BSD 4.2, which takes no arguments,
unlike POSIX setpgid(), which takes a process ID and process group ID.

setrgid() not implemented
(F) You tried to assign to $(, and your operating system doesn’t support the
setrgid() system call (or equivalent), or at least Configure didn’t think so.

setruid() not implemented
(F) You tried to assign to $<, and your operating system doesn’t support the
setruid() system call (or equivalent), or at least Configure didn’t think so.

setsockopt() on closed socket %s
(W closed) You tried to set a socket option on a closed socket. Did you for-
get to check the return value of your socket() call? See 〈undefined〉 [perlfunc
setsockopt], page 〈undefined〉.

Setting ${^ENCODING} is deprecated
(D deprecated) You assigned a non-undef value to ${^ENCODING}. This is
deprecated; see [perlvar ${^ENCODING}], page 1402 for details.

Setting $/ to a reference to %s as a form of slurp is deprecated, treating as undef
(D deprecated) You assigned a reference to a scalar to $/ where the referenced
item is not a positive integer. In older perls this appeared to work the same as
setting it to undef but was in fact internally different, less efficient and with
very bad luck could have resulted in your file being split by a stringified form
of the reference.

In Perl 5.20.0 this was changed so that it would be exactly the same as setting
$/ to undef, with the exception that this warning would be thrown.

You are recommended to change your code to set $/ to undef explicitly if you
wish to slurp the file. In future versions of Perl assigning a reference to will
throw a fatal error.

Setting $/ to %s reference is forbidden
(F) You tried to assign a reference to a non integer to $/. In older Perls this
would have behaved similarly to setting it to a reference to a positive integer,
where the integer was the address of the reference. As of Perl 5.20.0 this is
a fatal error, to allow future versions of Perl to use non-integer refs for more
interesting purposes.

shift on reference is experimental
(S experimental::autoderef) shift with a scalar argument is experimental and
may change or be removed in a future Perl version. If you want to take the risk
of using this feature, simply disable this warning:

no warnings "experimental::autoderef";

shm%s not implemented
(F) You don’t have System V shared memory IPC on your system.

!=~ should be !~
(W syntax) The non-matching operator is !~, not !=~. !=~ will be interpreted
as the != (numeric not equal) and ~ (1’s complement) operators: probably not
what you intended.

/%s/ should probably be written as "%s"
(W syntax) You have used a pattern where Perl expected to find a string, as in
the first argument to join. Perl will treat the true or false result of matching
the pattern against $ as the string, which is probably not what you had in
mind.

shutdown() on closed socket %s
(W closed) You tried to do a shutdown on a closed socket. Seems a bit super-
fluous.

SIG%s handler "%s" not defined
(W signal) The signal handler named in %SIG doesn’t, in fact, exist. Perhaps
you put it into the wrong package?

Slab leaked from cv %p
(S) If you see this message, then something is seriously wrong with the internal
bookkeeping of op trees. An op tree needed to be freed after a compilation
error, but could not be found, so it was leaked instead.

sleep(%u) too large
(W overflow) You called sleep with a number that was larger than it can
reliably handle and sleep probably slept for less time than requested.

Slurpy parameter not last
(F) In a subroutine signature, you put something after a slurpy (array or hash)
parameter. The slurpy parameter takes all the available arguments, so there
can’t be any left to fill later parameters.

Smart matching a non-overloaded object breaks encapsulation
(F) You should not use the ~~ operator on an object that does not overload it:
Perl refuses to use the object’s underlying structure for the smart match.

Smartmatch is experimental
(S experimental::smartmatch) This warning is emitted if you use the smart-
match (~~) operator. This is currently an experimental feature, and its details
are subject to change in future releases of Perl. Particularly, its current behav-
ior is noticed for being unnecessarily complex and unintuitive, and is very likely
to be overhauled.

sort is now a reserved word
(F) An ancient error message that almost nobody ever runs into anymore. But
before sort was a keyword, people sometimes used it as a filehandle.

Sort subroutine didn’t return single value
(F) A sort comparison subroutine written in XS must return exactly one item.
See 〈undefined〉 [perlfunc sort], page 〈undefined〉.

Source filters apply only to byte streams
(F) You tried to activate a source filter (usually by loading a source filter mod-
ule) within a string passed to eval. This is not permitted under the unicode_
eval feature. Consider using evalbytes instead. See feature.

splice() offset past end of array
(W misc) You attempted to specify an offset that was past the end of the array
passed to splice(). Splicing will instead commence at the end of the array,
rather than past it. If this isn’t what you want, try explicitly pre-extending
the array by assigning $#array = $offset. See 〈undefined〉 [perlfunc splice],
page 〈undefined〉.

splice on reference is experimental
(S experimental::autoderef) splice with a scalar argument is experimental and
may change or be removed in a future Perl version. If you want to take the risk
of using this feature, simply disable this warning:

no warnings "experimental::autoderef";

Split loop

(P) The split was looping infinitely. (Obviously, a split shouldn’t iterate more
times than there are characters of input, which is what happened.) See [perlfunc
split], page 453.

Statement unlikely to be reached
(W exec) You did an exec() with some statement after it other than a die().
This is almost always an error, because exec() never returns unless there was
a failure. You probably wanted to use system() instead, which does return. To
suppress this warning, put the exec() in a block by itself.

"state" subroutine %s can’t be in a package
(F) Lexically scoped subroutines aren’t in a package, so it doesn’t make sense
to try to declare one with a package qualifier on the front.

"state %s" used in sort comparison
(W syntax) The package variables $a and $b are used for sort comparisons. You
used $a or $b in as an operand to the <=> or cmp operator inside a sort com-
parison block, and the variable had earlier been declared as a lexical variable.
Either qualify the sort variable with the package name, or rename the lexical
variable.

"state" variable %s can’t be in a package
(F) Lexically scoped variables aren’t in a package, so it doesn’t make sense to
try to declare one with a package qualifier on the front. Use local() if you want
to localize a package variable.

stat() on unopened filehandle %s
(W unopened) You tried to use the stat() function on a filehandle that was
either never opened or has since been closed.

Strings with code points over 0xFF may not be mapped into in-memory file handles
(W utf8) You tried to open a reference to a scalar for read or append where
the scalar contained code points over 0xFF. In-memory files model on-disk files
and can only contain bytes.

Stub found while resolving method "%s" overloading "%s" in package "%s"
(P) Overloading resolution over @ISA tree may be broken by importation stubs.
Stubs should never be implicitly created, but explicit calls to can may break
this.

Subroutine "&%s" is not available
(W closure) During compilation, an inner named subroutine or eval is attempt-
ing to capture an outer lexical subroutine that is not currently available. This
can happen for one of two reasons. First, the lexical subroutine may be declared

in an outer anonymous subroutine that has not yet been created. (Remember
that named subs are created at compile time, while anonymous subs are created
at run-time.) For example,

sub { my sub a {...} sub f { \&a } }

At the time that f is created, it can’t capture the current "a" sub, since the
anonymous subroutine hasn’t been created yet. Conversely, the following won’t
give a warning since the anonymous subroutine has by now been created and
is live:

sub { my sub a {...} eval ’sub f { \&a }’ }->();

The second situation is caused by an eval accessing a lexical subroutine that
has gone out of scope, for example,

sub f {

my sub a {...}

sub { eval ’\&a’ }

}

f()->();

Here, when the ’\&a’ in the eval is being compiled, f() is not currently being
executed, so its &a is not available for capture.

"%s" subroutine &%s masks earlier declaration in same %s
(W misc) A "my" or "state" subroutine has been redeclared in the current
scope or statement, effectively eliminating all access to the previous instance.
This is almost always a typographical error. Note that the earlier subroutine
will still exist until the end of the scope or until all closure references to it are
destroyed.

Subroutine %s redefined
(W redefine) You redefined a subroutine. To suppress this warning, say

{

no warnings ’redefine’;

eval "sub name { ... }";

}

Subroutine "%s" will not stay shared
(W closure) An inner (nested) named subroutine is referencing a "my" subrou-
tine defined in an outer named subroutine.

When the inner subroutine is called, it will see the value of the outer subrou-
tine’s lexical subroutine as it was before and during the *first* call to the outer
subroutine; in this case, after the first call to the outer subroutine is complete,
the inner and outer subroutines will no longer share a common value for the
lexical subroutine. In other words, it will no longer be shared. This will es-
pecially make a difference if the lexical subroutines accesses lexical variables
declared in its surrounding scope.

This problem can usually be solved by making the inner subroutine anonymous,
using the sub {} syntax. When inner anonymous subs that reference lexical
subroutines in outer subroutines are created, they are automatically rebound
to the current values of such lexical subs.

Substitution loop
(P) The substitution was looping infinitely. (Obviously, a substitution shouldn’t
iterate more times than there are characters of input, which is what happened.)
See the discussion of substitution in Section 48.2.30 [perlop Regexp Quote-Like
Operators], page 823.

Substitution pattern not terminated
(F) The lexer couldn’t find the interior delimiter of an s/// or s{}{} construct.
Remember that bracketing delimiters count nesting level. Missing the leading
$ from variable $s may cause this error.

Substitution replacement not terminated
(F) The lexer couldn’t find the final delimiter of an s/// or s{}{} construct.
Remember that bracketing delimiters count nesting level. Missing the leading
$ from variable $s may cause this error.

substr outside of string
(W substr)(F) You tried to reference a substr() that pointed outside of a string.
That is, the absolute value of the offset was larger than the length of the string.
See 〈undefined〉 [perlfunc substr], page 〈undefined〉. This warning is fatal if
substr is used in an lvalue context (as the left hand side of an assignment or as
a subroutine argument for example).

sv upgrade from type %d down to type %d
(P) Perl tried to force the upgrade of an SV to a type which was actually inferior
to its current type.

SWASHNEW didn’t return an HV ref
(P) Something went wrong internally when Perl was trying to look up Unicode
characters.

Switch (?(condition)... contains too many branches in regex; marked by <– HERE in
m/%s/

(F) A (?(condition)if-clause|else-clause) construct can have at most two
branches (the if-clause and the else-clause). If you want one or both to
contain alternation, such as using this|that|other, enclose it in clustering
parentheses:

(?(condition)(?:this|that|other)|else-clause)

The <– HERE shows whereabouts in the regular expression the problem was
discovered. See Section 58.1 [perlre NAME], page 989.

Switch condition not recognized in regex; marked by <– HERE in m/%s/
(F) The condition part of a (?(condition)if-clause|else-clause) construct is not
known. The condition must be one of the following:

(1) (2) ... true if 1st, 2nd, etc., capture matched

(<NAME>) (’NAME’) true if named capture matched

(?=...) (?<=...) true if subpattern matches

(?!...) (?<!...) true if subpattern fails to match

(?{ CODE }) true if code returns a true value

(R) true if evaluating inside recursion

(R1) (R2) ... true if directly inside capture group 1, 2, etc.

(R&NAME) true if directly inside named capture

(DEFINE) always false; for defining named subpatterns

The <– HERE shows whereabouts in the regular expression the problem was
discovered. See Section 58.1 [perlre NAME], page 989.

Switch (?(condition)... not terminated in regex; marked by <– HERE in m/%s/
(F) You omitted to close a (?(condition)...) block somewhere in the pattern.
Add a closing parenthesis in the appropriate position. See Section 58.1 [perlre
NAME], page 989.

switching effective %s is not implemented
(F) While under the use filetest pragma, we cannot switch the real and
effective uids or gids.

syntax error
(F) Probably means you had a syntax error. Common reasons include:

A keyword is misspelled.

A semicolon is missing.

A comma is missing.

An opening or closing parenthesis is missing.

An opening or closing brace is missing.

A closing quote is missing.

Often there will be another error message associated with the syntax error giving
more information. (Sometimes it helps to turn on -w.) The error message itself
often tells you where it was in the line when it decided to give up. Sometimes the
actual error is several tokens before this, because Perl is good at understanding
random input. Occasionally the line number may be misleading, and once in a
blue moon the only way to figure out what’s triggering the error is to call perl
-c repeatedly, chopping away half the program each time to see if the error
went away. Sort of the cybernetic version of 20 questions.

syntax error at line %d: ’%s’ unexpected
(A) You’ve accidentally run your script through the Bourne shell instead of
Perl. Check the #! line, or manually feed your script into Perl yourself.

syntax error in file %s at line %d, next 2 tokens "%s"
(F) This error is likely to occur if you run a perl5 script through a perl4 in-
terpreter, especially if the next 2 tokens are "use strict" or "my $var" or "our
$var".

Syntax error in (?[...]) in regex m/%s/
(F) Perl could not figure out what you meant inside this construct; this notifies
you that it is giving up trying.

%s syntax OK
(F) The final summary message when a perl -c succeeds.

sysread() on closed filehandle %s
(W closed) You tried to read from a closed filehandle.

sysread() on unopened filehandle %s
(W unopened) You tried to read from a filehandle that was never opened.

System V %s is not implemented on this machine
(F) You tried to do something with a function beginning with "sem", "shm",
or "msg" but that System V IPC is not implemented in your machine. In some
machines the functionality can exist but be unconfigured. Consult your system
support.

syswrite() on closed filehandle %s
(W closed) The filehandle you’re writing to got itself closed sometime before
now. Check your control flow.

-T and -B not implemented on filehandles
(F) Perl can’t peek at the stdio buffer of filehandles when it doesn’t know about
your kind of stdio. You’ll have to use a filename instead.

Target of goto is too deeply nested
(F) You tried to use goto to reach a label that was too deeply nested for Perl
to reach. Perl is doing you a favor by refusing.

telldir() attempted on invalid dirhandle %s
(W io) The dirhandle you tried to telldir() is either closed or not really a
dirhandle. Check your control flow.

tell() on unopened filehandle
(W unopened) You tried to use the tell() function on a filehandle that was
either never opened or has since been closed.

That use of $[is unsupported
(F) Assignment to $[is now strictly circumscribed, and interpreted as a com-
piler directive. You may say only one of

$[= 0;

$[= 1;

...

local $[= 0;

local $[= 1;

...

This is to prevent the problem of one module changing the array base out from
under another module inadvertently. See [perlvar $[], page 1408 and arybase.

The bitwise feature is experimental
(S experimental::bitwise) This warning is emitted if you use bitwise operators
(& | ^ ~ &. |. ^. ~.) with the "bitwise" feature enabled. Simply suppress the
warning if you want to use the feature, but know that in doing so you are taking
the risk of using an experimental feature which may change or be removed in a
future Perl version:

no warnings "experimental::bitwise";

use feature "bitwise";

$x |.= $y;

The crypt() function is unimplemented due to excessive paranoia.
(F) Configure couldn’t find the crypt() function on your machine, probably
because your vendor didn’t supply it, probably because they think the U.S.
Government thinks it’s a secret, or at least that they will continue to pretend
that it is. And if you quote me on that, I will deny it.

The %s function is unimplemented
(F) The function indicated isn’t implemented on this architecture, according to
the probings of Configure.

The lexical subs feature is experimental
(S experimental::lexical subs) This warning is emitted if you declare a sub with
my or state. Simply suppress the warning if you want to use the feature, but
know that in doing so you are taking the risk of using an experimental feature
which may change or be removed in a future Perl version:

no warnings "experimental::lexical_subs";

use feature "lexical_subs";

my sub foo { ... }

The regex sets feature is experimental
(S experimental::regex sets) This warning is emitted if you use the syntax
(?[]) in a regular expression. The details of this feature are subject to change.
if you want to use it, but know that in doing so you are taking the risk of using
an experimental feature which may change in a future Perl version, you can do
this to silence the warning:

no warnings "experimental::regex_sets";

The signatures feature is experimental
(S experimental::signatures) This warning is emitted if you unwrap a subrou-
tine’s arguments using a signature. Simply suppress the warning if you want to
use the feature, but know that in doing so you are taking the risk of using an
experimental feature which may change or be removed in a future Perl version:

no warnings "experimental::signatures";

use feature "signatures";

sub foo ($left, $right) { ... }

The stat preceding %s wasn’t an lstat
(F) It makes no sense to test the current stat buffer for symbolic linkhood if
the last stat that wrote to the stat buffer already went past the symlink to get
to the real file. Use an actual filename instead.

The ’unique’ attribute may only be applied to ’our’ variables
(F) This attribute was never supported on my or sub declarations.

This Perl can’t reset CRTL environ elements (%s)
This Perl can’t set CRTL environ elements (%s=%s)

(W internal) Warnings peculiar to VMS. You tried to change or delete an ele-
ment of the CRTL’s internal environ array, but your copy of Perl wasn’t built
with a CRTL that contained the setenv() function. You’ll need to rebuild Perl

with a CRTL that does, or redefine PERL_ENV_TABLES (see Section 87.1 [per-
lvms NAME], page 1409) so that the environ array isn’t the target of the change
to %ENV which produced the warning.

This Perl has not been built with support for randomized hash key traversal but
something called Perl hv rand set().

(F) Something has attempted to use an internal API call which depends on Perl
being compiled with the default support for randomized hash key traversal, but
this Perl has been compiled without it. You should report this warning to the
relevant upstream party, or recompile perl with default options.

times not implemented
(F) Your version of the C library apparently doesn’t do times(). I suspect you’re
not running on Unix.

"-T" is on the #! line, it must also be used on the command line
(X) The #! line (or local equivalent) in a Perl script contains the -T option
(or the -t option), but Perl was not invoked with -T in its command line. This
is an error because, by the time Perl discovers a -T in a script, it’s too late to
properly taint everything from the environment. So Perl gives up.

If the Perl script is being executed as a command using the #! mechanism (or
its local equivalent), this error can usually be fixed by editing the #! line so
that the -%c option is a part of Perl’s first argument: e.g. change perl -n -%c

to perl -%c -n.

If the Perl script is being executed as perl scriptname, then the -%c option
must appear on the command line: perl -%c scriptname.

To%s: illegal mapping ’%s’
(F) You tried to define a customized To-mapping for lc(), lcfirst, uc(), or uc-
first() (or their string-inlined versions), but you specified an illegal mapping.
See Section 81.2.6 [perlunicode User-Defined Character Properties], page 1329.

Too deeply nested ()-groups
(F) Your template contains ()-groups with a ridiculously deep nesting level.

Too few args to syscall
(F) There has to be at least one argument to syscall() to specify the system
call to call, silly dilly.

Too few arguments for subroutine
(F) A subroutine using a signature received fewer arguments than required by
the signature. The caller of the subroutine is presumably at fault. Inconve-
niently, this error will be reported at the location of the subroutine, not that
of the caller.

Too late for "-%s" option
(X) The #! line (or local equivalent) in a Perl script contains the -M, -m or -C
option.

In the case of -M and -m, this is an error because those options are not intended
for use inside scripts. Use the use pragma instead.

The -C option only works if it is specified on the command line as well (with the
same sequence of letters or numbers following). Either specify this option on
the command line, or, if your system supports it, make your script executable
and run it directly instead of passing it to perl.

Too late to run %s block
(W void) A CHECK or INIT block is being defined during run time proper,
when the opportunity to run them has already passed. Perhaps you are loading
a file with require or do when you should be using use instead. Or perhaps
you should put the require or do inside a BEGIN block.

Too many args to syscall
(F) Perl supports a maximum of only 14 args to syscall().

Too many arguments for %s
(F) The function requires fewer arguments than you specified.

Too many arguments for subroutine
(F) A subroutine using a signature received more arguments than required by
the signature. The caller of the subroutine is presumably at fault. Inconve-
niently, this error will be reported at the location of the subroutine, not that
of the caller.

Too many)’s
(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself.

Too many (’s
(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself.

Trailing \ in regex m/%s/
(F) The regular expression ends with an unbackslashed backslash. Backslash
it. See Section 58.1 [perlre NAME], page 989.

Transliteration pattern not terminated
(F) The lexer couldn’t find the interior delimiter of a tr/// or tr[][] or y/// or
y[][] construct. Missing the leading $ from variables $tr or $y may cause this
error.

Transliteration replacement not terminated
(F) The lexer couldn’t find the final delimiter of a tr///, tr[][], y/// or y[][]
construct.

’%s’ trapped by operation mask
(F) You tried to use an operator from a Safe compartment in which it’s disal-
lowed. See Safe.

truncate not implemented
(F) Your machine doesn’t implement a file truncation mechanism that Configure
knows about.

Type of arg %d to &CORE::%s must be %s
(F) The subroutine in question in the CORE package requires its argument
to be a hard reference to data of the specified type. Overloading is ignored,

so a reference to an object that is not the specified type, but nonetheless has
overloading to handle it, will still not be accepted.

Type of arg %d to %s must be %s (not %s)
(F) This function requires the argument in that position to be of a certain
type. Arrays must be @NAME or @{EXPR}. Hashes must be %NAME or
%{EXPR}. No implicit dereferencing is allowed–use the {EXPR} forms as an
explicit dereference. See Section 62.1 [perlref NAME], page 1077.

Type of argument to %s must be unblessed hashref or arrayref
(F) You called keys, values or each with a scalar argument that was not a
reference to an unblessed hash or array.

umask not implemented
(F) Your machine doesn’t implement the umask function and you tried to use
it to restrict permissions for yourself (EXPR & 0700).

Unbalanced context: %d more PUSHes than POPs
(S internal) The exit code detected an internal inconsistency in how many
execution contexts were entered and left.

Unbalanced saves: %d more saves than restores
(S internal) The exit code detected an internal inconsistency in how many values
were temporarily localized.

Unbalanced scopes: %d more ENTERs than LEAVEs
(S internal) The exit code detected an internal inconsistency in how many blocks
were entered and left.

Unbalanced string table refcount: (%d) for "%s"
(S internal) On exit, Perl found some strings remaining in the shared string
table used for copy on write and for hash keys. The entries should have been
freed, so this indicates a bug somewhere.

Unbalanced tmps: %d more allocs than frees
(S internal) The exit code detected an internal inconsistency in how many
mortal scalars were allocated and freed.

Undefined format "%s" called
(F) The format indicated doesn’t seem to exist. Perhaps it’s really in another
package? See Section 24.1 [perlform NAME], page 343.

Undefined sort subroutine "%s" called
(F) The sort comparison routine specified doesn’t seem to exist. Perhaps it’s
in a different package? See 〈undefined〉 [perlfunc sort], page 〈undefined〉.

Undefined subroutine &%s called
(F) The subroutine indicated hasn’t been defined, or if it was, it has since been
undefined.

Undefined subroutine called
(F) The anonymous subroutine you’re trying to call hasn’t been defined, or if
it was, it has since been undefined.

Undefined subroutine in sort
(F) The sort comparison routine specified is declared but doesn’t seem to have
been defined yet. See 〈undefined〉 [perlfunc sort], page 〈undefined〉.

Undefined top format "%s" called
(F) The format indicated doesn’t seem to exist. Perhaps it’s really in another
package? See Section 24.1 [perlform NAME], page 343.

Undefined value assigned to typeglob
(W misc) An undefined value was assigned to a typeglob, a la *foo = undef.
This does nothing. It’s possible that you really mean undef *foo.

%s: Undefined variable
(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself.

Unescaped left brace in regex is deprecated, passed through in regex; marked by <– HERE
in m/%s/

(D deprecated, regexp) You used a literal "{" character in a regular expression
pattern. You should change to use "\{" instead, because a future version of
Perl (tentatively v5.26) will consider this to be a syntax error. If the pattern
delimiters are also braces, any matching right brace ("}") should also be escaped
to avoid confusing the parser, for example,

qr{abc\{def\}ghi}

unexec of %s into %s failed!
(F) The unexec() routine failed for some reason. See your local FSF represen-
tative, who probably put it there in the first place.

Unexpected binary operator ’%c’ with no preceding operand in regex; marked by
<– HERE in m/%s/

(F) You had something like this:

(?[| \p{Digit}])

where the "|" is a binary operator with an operand on the right, but no operand
on the left.

Unexpected character in regex; marked by <– HERE in m/%s/
(F) You had something like this:

(?[z])

Within (?[]), no literal characters are allowed unless they are within an inner
pair of square brackets, like

(?[[z]])

Another possibility is that you forgot a backslash. Perl isn’t smart enough to
figure out what you really meant.

Unexpected constant lvalue entersub entry via type/targ %d:%d
(P) When compiling a subroutine call in lvalue context, Perl failed an internal
consistency check. It encountered a malformed op tree.

Unexpected exit %u
(S) exit() was called or the script otherwise finished gracefully when PERL_

EXIT_WARN was set in PL_exit_flags.

Unexpected exit failure %d
(S) An uncaught die() was called when PERL_EXIT_WARN was set in PL_exit_

flags.

Unexpected ’)’ in regex; marked by <– HERE in m/%s/
(F) You had something like this:

(?[(\p{Digit} +)])

The ")" is out-of-place. Something apparently was supposed to be combined
with the digits, or the "+" shouldn’t be there, or something like that. Perl can’t
figure out what was intended.

Unexpected ’(’ with no preceding operator in regex; marked by <– HERE in m/%s/
(F) You had something like this:

(?[\p{Digit} (\p{Lao} + \p{Thai})])

There should be an operator before the "(", as there’s no indication as to how
the digits are to be combined with the characters in the Lao and Thai scripts.

Unicode non-character U+%X is illegal for open interchange
(S nonchar) Certain codepoints, such as U+FFFE and U+FFFF, are defined by
the Unicode standard to be non-characters. Those are legal codepoints, but
are reserved for internal use; so, applications shouldn’t attempt to exchange
them. An application may not be expecting any of these characters at all, and
receiving them may lead to bugs. If you know what you are doing you can turn
off this warning by no warnings ’nonchar’;.

This is not really a "severe" error, but it is supposed to be raised by default
even if warnings are not enabled, and currently the only way to do that in Perl
is to mark it as serious.

Unicode surrogate U+%X is illegal in UTF-8
(S surrogate) You had a UTF-16 surrogate in a context where they are not
considered acceptable. These code points, between U+D800 and U+DFFF (in-
clusive), are used by Unicode only for UTF-16. However, Perl internally allows
all unsigned integer code points (up to the size limit available on your platform),
including surrogates. But these can cause problems when being input or output,
which is likely where this message came from. If you really really know what
you are doing you can turn off this warning by no warnings ’surrogate’;.

Unknown charname ’%s’
(F) The name you used inside \N{} is unknown to Perl. Check the spelling.
You can say use charnames ":loose" to not have to be so precise about spaces,
hyphens, and capitalization on standard Unicode names. (Any custom aliases
that have been created must be specified exactly, regardless of whether :loose
is used or not.) This error may also happen if the \N{} is not in the scope of
the corresponding use charnames.

Unknown error
(P) Perl was about to print an error message in $@, but the $@ variable did not
exist, even after an attempt to create it.

Unknown open() mode ’%s’
(F) The second argument of 3-argument open() is not among the list of valid
modes: <, >, >>, +<, +>, +>>, -|, |-, <&, >&.

Unknown PerlIO layer "%s"
(W layer) An attempt was made to push an unknown layer onto the Perl I/O
system. (Layers take care of transforming data between external and internal
representations.) Note that some layers, such as mmap, are not supported in all
environments. If your program didn’t explicitly request the failing operation,
it may be the result of the value of the environment variable PERLIO.

Unknown process %x sent message to prime env iter: %s
(P) An error peculiar to VMS. Perl was reading values for %ENV before it-
erating over it, and someone else stuck a message in the stream of data Perl
expected. Someone’s very confused, or perhaps trying to subvert Perl’s popu-
lation of %ENV for nefarious purposes.

Unknown regex modifier "%s"
(F) Alphanumerics immediately following the closing delimiter of a regular ex-
pression pattern are interpreted by Perl as modifier flags for the regex. One
of the ones you specified is invalid. One way this can happen is if you didn’t
put in white space between the end of the regex and a following alphanumeric
operator:

if ($a =~ /foo/and $bar == 3) { ... }

The "a" is a valid modifier flag, but the "n" is not, and raises this error. Likely
what was meant instead was:

if ($a =~ /foo/ and $bar == 3) { ... }

Unknown "re" subpragma ’%s’ (known ones are: %s)
(W) You tried to use an unknown subpragma of the "re" pragma.

Unknown switch condition (?(...)) in regex; marked by <– HERE in m/%s/
(F) The condition part of a (?(condition)if-clause|else-clause) construct is not
known. The condition must be one of the following:

(1) (2) ... true if 1st, 2nd, etc., capture matched

(<NAME>) (’NAME’) true if named capture matched

(?=...) (?<=...) true if subpattern matches

(?!...) (?<!...) true if subpattern fails to match

(?{ CODE }) true if code returns a true value

(R) true if evaluating inside recursion

(R1) (R2) ... true if directly inside capture group 1, 2, etc.

(R&NAME) true if directly inside named capture

(DEFINE) always false; for defining named subpatterns

The <– HERE shows whereabouts in the regular expression the problem was
discovered. See Section 58.1 [perlre NAME], page 989.

Unknown Unicode option letter ’%c’
(F) You specified an unknown Unicode option. See Section 69.1 [perlrun
NAME], page 1176 documentation of the -C switch for the list of known
options.

Unknown Unicode option value %d
(F) You specified an unknown Unicode option. See Section 69.1 [perlrun
NAME], page 1176 documentation of the -C switch for the list of known
options.

Unknown verb pattern ’%s’ in regex; marked by <– HERE in m/%s/
(F) You either made a typo or have incorrectly put a * quantifier after an
open brace in your pattern. Check the pattern and review Section 58.1 [perlre
NAME], page 989 for details on legal verb patterns.

Unknown warnings category ’%s’
(F) An error issued by the warnings pragma. You specified a warnings category
that is unknown to perl at this point.

Note that if you want to enable a warnings category registered by a module
(e.g. use warnings ’File::Find’), you must have loaded this module first.

Unmatched ’[’ in POSIX class in regex; marked by <– HERE in m/%s/
(F) You had something like this:

(?[[:digit:])

That should be written:

(?[[:digit:]])

Unmatched ’%c’ in POSIX class in regex; marked by <– HERE in m/%s/
(F) You had something like this:

(?[[:alnum]])

There should be a second ":", like this:

(?[[:alnum:]])

Unmatched [in regex; marked by <– HERE in m/%s/
(F) The brackets around a character class must match. If you wish to include
a closing bracket in a character class, backslash it or put it first. The <– HERE
shows whereabouts in the regular expression the problem was discovered. See
Section 58.1 [perlre NAME], page 989.

Unmatched (in regex; marked by <– HERE in m/%s/
Unmatched) in regex; marked by <– HERE in m/%s/

(F) Unbackslashed parentheses must always be balanced in regular expressions.
If you’re a vi user, the % key is valuable for finding the matching parenthesis.
The <– HERE shows whereabouts in the regular expression the problem was
discovered. See Section 58.1 [perlre NAME], page 989.

Unmatched right %s bracket
(F) The lexer counted more closing curly or square brackets than opening ones,
so you’re probably missing a matching opening bracket. As a general rule, you’ll
find the missing one (so to speak) near the place you were last editing.

Unquoted string "%s" may clash with future reserved word
(W reserved) You used a bareword that might someday be claimed as a reserved
word. It’s best to put such a word in quotes, or capitalize it somehow, or insert
an underbar into it. You might also declare it as a subroutine.

Unrecognized character %s; marked by <– HERE after %s near column %d
(F) The Perl parser has no idea what to do with the specified character in your
Perl script (or eval) near the specified column. Perhaps you tried to run a
compressed script, a binary program, or a directory as a Perl program.

Unrecognized escape \%c in character class in regex; marked by <– HERE in m/%s/
(F) You used a backslash-character combination which is not recognized by Perl
inside character classes. This is a fatal error when the character class is used
within (?[]).

Unrecognized escape \%c in character class passed through in regex; marked by <– HERE
in m/%s/

(W regexp) You used a backslash-character combination which is not recognized
by Perl inside character classes. The character was understood literally, but this
may change in a future version of Perl. The <– HERE shows whereabouts in
the regular expression the escape was discovered.

Unrecognized escape \%c passed through
(W misc) You used a backslash-character combination which is not recognized
by Perl. The character was understood literally, but this may change in a future
version of Perl.

Unrecognized escape \%s passed through in regex; marked by <– HERE in m/%s/
(W regexp) You used a backslash-character combination which is not recog-
nized by Perl. The character(s) were understood literally, but this may change
in a future version of Perl. The <– HERE shows whereabouts in the regular
expression the escape was discovered.

Unrecognized signal name "%s"
(F) You specified a signal name to the kill() function that was not recognized.
Say kill -l in your shell to see the valid signal names on your system.

Unrecognized switch: -%s (-h will show valid options)
(F) You specified an illegal option to Perl. Don’t do that. (If you think you
didn’t do that, check the #! line to see if it’s supplying the bad switch on your
behalf.)

unshift on reference is experimental
(S experimental::autoderef) unshift with a scalar argument is experimental
and may change or be removed in a future Perl version. If you want to take the
risk of using this feature, simply disable this warning:

no warnings "experimental::autoderef";

Unsuccessful %s on filename containing newline
(W newline) A file operation was attempted on a filename, and that operation
failed, PROBABLY because the filename contained a newline, PROBABLY
because you forgot to chomp() it off. See [perlfunc chomp], page 363.

Unsupported directory function "%s" called
(F) Your machine doesn’t support opendir() and readdir().

Unsupported function %s
(F) This machine doesn’t implement the indicated function, apparently. At
least, Configure doesn’t think so.

Unsupported function fork
(F) Your version of executable does not support forking.

Note that under some systems, like OS/2, there may be different flavors of Perl
executables, some of which may support fork, some not. Try changing the name
you call Perl by to perl_, perl__, and so on.

Unsupported script encoding %s
(F) Your program file begins with a Unicode Byte Order Mark (BOM) which
declares it to be in a Unicode encoding that Perl cannot read.

Unsupported socket function "%s" called
(F) Your machine doesn’t support the Berkeley socket mechanism, or at least
that’s what Configure thought.

Unterminated attribute list
(F) The lexer found something other than a simple identifier at the start of an
attribute, and it wasn’t a semicolon or the start of a block. Perhaps you termi-
nated the parameter list of the previous attribute too soon. See attributes.

Unterminated attribute parameter in attribute list
(F) The lexer saw an opening (left) parenthesis character while parsing an
attribute list, but the matching closing (right) parenthesis character was not
found. You may need to add (or remove) a backslash character to get your
parentheses to balance. See attributes.

Unterminated compressed integer
(F) An argument to unpack("w",...) was incompatible with the BER com-
pressed integer format and could not be converted to an integer. See 〈undefined〉
[perlfunc pack], page 〈undefined〉.

Unterminated delimiter for here document
(F) This message occurs when a here document label has an initial quotation
mark but the final quotation mark is missing. Perhaps you wrote:

<<"foo

instead of:

<<"foo"

Unterminated \g... pattern in regex; marked by <– HERE in m/%s/
Unterminated \g{...} pattern in regex; marked by <– HERE in m/%s/

(F) In a regular expression, you had a \g that wasn’t followed by a proper
group reference. In the case of \g{, the closing brace is missing; otherwise the
\g must be followed by an integer. Fix the pattern and retry.

Unterminated <> operator
(F) The lexer saw a left angle bracket in a place where it was expecting a term,
so it’s looking for the corresponding right angle bracket, and not finding it.
Chances are you left some needed parentheses out earlier in the line, and you
really meant a "less than".

Unterminated verb pattern argument in regex; marked by <– HERE in m/%s/
(F) You used a pattern of the form (*VERB:ARG) but did not terminate the
pattern with a). Fix the pattern and retry.

Unterminated verb pattern in regex; marked by <– HERE in m/%s/
(F) You used a pattern of the form (*VERB) but did not terminate the pattern
with a). Fix the pattern and retry.

untie attempted while %d inner references still exist
(W untie) A copy of the object returned from tie (or tied) was still valid when
untie was called.

Usage: POSIX::%s(%s)
(F) You called a POSIX function with incorrect arguments. See Section
“FUNCTIONS” in POSIX for more information.

Usage: Win32::%s(%s)
(F) You called a Win32 function with incorrect arguments. See Win32 for more
information.

$[used in %s (did you mean $] ?)
(W syntax) You used $[in a comparison, such as:

if ($[> 5.006) {

...

}

You probably meant to use $] instead. $[is the base for indexing arrays. $]

is the Perl version number in decimal.

Use "%s" instead of "%s"
(F) The second listed construct is no longer legal. Use the first one instead.

Useless assignment to a temporary
(W misc) You assigned to an lvalue subroutine, but what the subroutine re-
turned was a temporary scalar about to be discarded, so the assignment had
no effect.

Useless (?-%s) - don’t use /%s modifier in regex; marked by <– HERE in m/%s/
(W regexp) You have used an internal modifier such as (?-o) that has no mean-
ing unless removed from the entire regexp:

if ($string =~ /(?-o)$pattern/o) { ... }

must be written as

if ($string =~ /$pattern/) { ... }

The <– HERE shows whereabouts in the regular expression the problem was
discovered. See Section 58.1 [perlre NAME], page 989.

Useless localization of %s
(W syntax) The localization of lvalues such as local($x=10) is legal, but in
fact the local() currently has no effect. This may change at some point in the
future, but in the meantime such code is discouraged.

Useless (?%s) - use /%s modifier in regex; marked by <– HERE in m/%s/
(W regexp) You have used an internal modifier such as (?o) that has no meaning
unless applied to the entire regexp:

if ($string =~ /(?o)$pattern/) { ... }

must be written as

if ($string =~ /$pattern/o) { ... }

The <– HERE shows whereabouts in the regular expression the problem was
discovered. See Section 58.1 [perlre NAME], page 989.

Useless use of attribute "const"
(W misc) The "const" attribute has no effect except on anonymous closure
prototypes. You applied it to a subroutine via attributes. This is only useful
inside an attribute handler for an anonymous subroutine.

Useless use of /d modifier in transliteration operator
(W misc) You have used the /d modifier where the searchlist has the same
length as the replacelist. See Section 48.1 [perlop NAME], page 798 for more
information about the /d modifier.

Useless use of \E
(W misc) You have a \E in a double-quotish string without a \U, \L or \Q

preceding it.

Useless use of greediness modifier ’%c’ in regex; marked by <– HERE in m/%s/
(W regexp) You specified something like these:

qr/a{3}?/

qr/b{1,1}+/

The "?" and "+" don’t have any effect, as they modify whether to match more
or fewer when there is a choice, and by specifying to match exactly a given
numer, there is no room left for a choice.

Useless use of %s in void context
(W void) You did something without a side effect in a context that does nothing
with the return value, such as a statement that doesn’t return a value from a
block, or the left side of a scalar comma operator. Very often this points not
to stupidity on your part, but a failure of Perl to parse your program the way
you thought it would. For example, you’d get this if you mixed up your C
precedence with Python precedence and said

$one, $two = 1, 2;

when you meant to say

($one, $two) = (1, 2);

Another common error is to use ordinary parentheses to construct a list ref-
erence when you should be using square or curly brackets, for example, if you
say

$array = (1,2);

when you should have said

$array = [1,2];

The square brackets explicitly turn a list value into a scalar value, while paren-
theses do not. So when a parenthesized list is evaluated in a scalar context, the
comma is treated like C’s comma operator, which throws away the left argu-
ment, which is not what you want. See Section 62.1 [perlref NAME], page 1077
for more on this.

This warning will not be issued for numerical constants equal to 0 or 1 since
they are often used in statements like

1 while sub_with_side_effects();

String constants that would normally evaluate to 0 or 1 are warned about.

Useless use of (?-p) in regex; marked by <– HERE in m/%s/
(W regexp) The p modifier cannot be turned off once set. Trying to do so is
futile.

Useless use of "re" pragma
(W) You did use re; without any arguments. That isn’t very useful.

Useless use of sort in scalar context
(W void) You used sort in scalar context, as in :

my $x = sort @y;

This is not very useful, and perl currently optimizes this away.

Useless use of %s with no values
(W syntax) You used the push() or unshift() function with no arguments apart
from the array, like push(@x) or unshift(@foo). That won’t usually have
any effect on the array, so is completely useless. It’s possible in principle that
push(@tied array) could have some effect if the array is tied to a class which
implements a PUSH method. If so, you can write it as push(@tied_array,())
to avoid this warning.

"use" not allowed in expression
(F) The "use" keyword is recognized and executed at compile time, and returns
no useful value. See Section 40.1 [perlmod NAME], page 732.

Use of assignment to $[is deprecated
(D deprecated) The $[variable (index of the first element in an array) is dep-
recated. See [perlvar $[], page 1408.

Use of bare << to mean <<"" is deprecated
(D deprecated) You are now encouraged to use the explicitly quoted form if
you wish to use an empty line as the terminator of the here-document.

Use of \b{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale
(W locale) You are matching a regular expression using locale rules, and a
Unicode boundary is being matched, but the locale is not a Unicode one. This
doesn’t make sense. Perl will continue, assuming a Unicode (UTF-8) locale, but
the results could well be wrong except if the locale happens to be ISO-8859-1
(Latin1) where this message is spurious and can be ignored.

Use of chdir(”) or chdir(undef) as chdir() deprecated
(D deprecated) chdir() with no arguments is documented to change to
$ENV{HOME} or $ENV{LOGDIR}. chdir(undef) and chdir(”) share this
behavior, but that has been deprecated. In future versions they will simply
fail.

Be careful to check that what you pass to chdir() is defined and not blank, else
you might find yourself in your home directory.

Use of /c modifier is meaningless in s///
(W regexp) You used the /c modifier in a substitution. The /c modifier is not
presently meaningful in substitutions.

Use of /c modifier is meaningless without /g
(W regexp) You used the /c modifier with a regex operand, but didn’t use
the /g modifier. Currently, /c is meaningful only when /g is used. (This may
change in the future.)

Use of comma-less variable list is deprecated
(D deprecated) The values you give to a format should be separated by commas,
not just aligned on a line.

Use of each() on hash after insertion without resetting hash iterator results in undefined
behavior

(S internal) The behavior of each() after insertion is undefined; it may skip
items, or visit items more than once. Consider using keys() instead of each().

Use of := for an empty attribute list is not allowed
(F) The construction my $x := 42 used to parse as equivalent to my $x : = 42

(applying an empty attribute list to $x). This construct was deprecated in
5.12.0, and has now been made a syntax error, so := can be reclaimed as a new
operator in the future.

If you need an empty attribute list, for example in a code generator, add a
space before the =.

Use of freed value in iteration
(F) Perhaps you modified the iterated array within the loop? This error is
typically caused by code like the following:

@a = (3,4);

@a = () for (1,2,@a);

You are not supposed to modify arrays while they are being iterated over. For
speed and efficiency reasons, Perl internally does not do full reference-counting
of iterated items, hence deleting such an item in the middle of an iteration
causes Perl to see a freed value.

Use of *glob{FILEHANDLE} is deprecated
(D deprecated) You are now encouraged to use the shorter *glob{IO} form to
access the filehandle slot within a typeglob.

Use of /g modifier is meaningless in split
(W regexp) You used the /g modifier on the pattern for a split operator. Since
split always tries to match the pattern repeatedly, the /g has no effect.

Use of "goto" to jump into a construct is deprecated
(D deprecated) Using goto to jump from an outer scope into an inner scope is
deprecated and should be avoided.

Use of inherited AUTOLOAD for non-method %s() is deprecated
(D deprecated) As an (ahem) accidental feature, AUTOLOAD subroutines are
looked up as methods (using the @ISA hierarchy) even when the subroutines to
be autoloaded were called as plain functions (e.g. Foo::bar()), not as methods
(e.g. Foo->bar() or $obj->bar()).

This bug will be rectified in future by using method lookup only for methods’
AUTOLOADs. However, there is a significant base of existing code that may be
using the old behavior. So, as an interim step, Perl currently issues an optional
warning when non-methods use inherited AUTOLOADs.

The simple rule is: Inheritance will not work when autoloading non-methods.
The simple fix for old code is: In any module that used to depend on inher-
iting AUTOLOAD for non-methods from a base class named BaseClass, execute
*AUTOLOAD = \&BaseClass::AUTOLOAD during startup.

In code that currently says use AutoLoader; @ISA = qw(AutoLoader); you
should remove AutoLoader from @ISA and change use AutoLoader; to use

AutoLoader ’AUTOLOAD’;.

Use of %s in printf format not supported
(F) You attempted to use a feature of printf that is accessible from only C. This
usually means there’s a better way to do it in Perl.

Use of %s is deprecated
(D deprecated) The construct indicated is no longer recommended for use,
generally because there’s a better way to do it, and also because the old way
has bad side effects.

Use of literal control characters in variable names is deprecated
Use of literal non-graphic characters in variable names is deprecated

(D deprecated) Using literal non-graphic (including control) characters in the
source to refer to the ^FOO variables, like $^X and ${^GLOBAL_PHASE} is now
deprecated. (We use ^X and ^G here for legibility. They actually represent
the non-printable control characters, code points 0x18 and 0x07, respectively;
^A would mean the control character whose code point is 0x01.) This only
affects code like $\cT, where \cT is a control in the source code; ${"\cT"}

and $^T remain valid. Things that are non-controls and also not graphic are
NO-BREAK SPACE and SOFT HYPHEN, which were previously only allowed
for historical reasons.

Use of -l on filehandle%s
(W io) A filehandle represents an opened file, and when you opened the file
it already went past any symlink you are presumably trying to look for. The
operation returned undef. Use a filename instead.

Use of my $ is experimental
(S experimental::lexical topic) Lexical $ is an experimental feature and its
behavior may change or even be removed in any future release of perl. See the
explanation under [perlvar $], page 1376.

Use of %s on a handle without * is deprecated
(D deprecated) You used tie, tied or untie on a scalar but that scalar happens
to hold a typeglob, which means its filehandle will be tied. If you mean to tie
a handle, use an explicit * as in tie *$handle.

This was a long-standing bug that was removed in Perl 5.16, as there was no
way to tie the scalar itself when it held a typeglob, and no way to untie a scalar
that had had a typeglob assigned to it. If you see this message, you must be
using an older version.

Use of reference "%s" as array index
(W misc) You tried to use a reference as an array index; this probably isn’t what
you mean, because references in numerical context tend to be huge numbers,
and so usually indicates programmer error.

If you really do mean it, explicitly numify your reference, like so:
$array[0+$ref]. This warning is not given for overloaded objects, however,
because you can overload the numification and stringification operators and
then you presumably know what you are doing.

Use of state $ is experimental
(S experimental::lexical topic) Lexical $ is an experimental feature and its
behavior may change or even be removed in any future release of perl. See the
explanation under [perlvar $], page 1376.

Use of tainted arguments in %s is deprecated
(W taint, deprecated) You have supplied system() or exec() with multiple
arguments and at least one of them is tainted. This used to be allowed but will
become a fatal error in a future version of perl. Untaint your arguments. See
Section 70.1 [perlsec NAME], page 1198.

Use of uninitialized value%s
(W uninitialized) An undefined value was used as if it were already defined. It
was interpreted as a "" or a 0, but maybe it was a mistake. To suppress this
warning assign a defined value to your variables.

To help you figure out what was undefined, perl will try to tell you the name
of the variable (if any) that was undefined. In some cases it cannot do this,
so it also tells you what operation you used the undefined value in. Note,
however, that perl optimizes your program and the operation displayed in the
warning may not necessarily appear literally in your program. For example,
"that $foo" is usually optimized into "that " . $foo, and the warning will
refer to the concatenation (.) operator, even though there is no . in your
program.

"use re ’strict’" is experimental
(S experimental::re strict) The things that are different when a regular expres-
sion pattern is compiled under ’strict’ are subject to change in future Perl

releases in incompatible ways. This means that a pattern that compiles today
may not in a future Perl release. This warning is to alert you to that risk.

Use \x{...} for more than two hex characters in regex; marked by <– HERE in m/%s/
(F) In a regular expression, you said something like

(?[[\xBEEF]])

Perl isn’t sure if you meant this

(?[[\x{BEEF}]])

or if you meant this

(?[[\x{BE} E F]])

You need to add either braces or blanks to disambiguate.

Using just the first character returned by \N{} in character class in regex; marked by
<– HERE in m/%s/

(W regexp) Named Unicode character escapes (\N{...}) may return a multi-
character sequence. Even though a character class is supposed to match just one
character of input, perl will match the whole thing correctly, except when the
class is inverted ([^...]), or the escape is the beginning or final end point of a
range. For these, what should happen isn’t clear at all. In these circumstances,
Perl discards all but the first character of the returned sequence, which is not
likely what you want.

Using /u for ’%s’ instead of /%s in regex; marked by <– HERE in m/%s/
(W regexp) You used a Unicode boundary (\b{...} or \B{...}) in a portion
of a regular expression where the character set modifiers /a or /aa are in effect.
These two modifiers indicate an ASCII interpretation, and this doesn’t make
sense for a Unicode defintion. The generated regular expression will compile
so that the boundary uses all of Unicode. No other portion of the regular
expression is affected.

Using !~ with %s doesn’t make sense
(F) Using the !~ operator with s///r, tr///r or y///r is currently reserved
for future use, as the exact behavior has not been decided. (Simply returning
the boolean opposite of the modified string is usually not particularly useful.)

UTF-16 surrogate U+%X
(S surrogate) You had a UTF-16 surrogate in a context where they are not
considered acceptable. These code points, between U+D800 and U+DFFF (in-
clusive), are used by Unicode only for UTF-16. However, Perl internally allows
all unsigned integer code points (up to the size limit available on your platform),
including surrogates. But these can cause problems when being input or output,
which is likely where this message came from. If you really really know what
you are doing you can turn off this warning by no warnings ’surrogate’;.

Value of %s can be "0"; test with defined()
(Wmisc) In a conditional expression, you used <HANDLE>, <*> (glob), each(),
or readdir() as a boolean value. Each of these constructs can return a value
of "0"; that would make the conditional expression false, which is probably not
what you intended. When using these constructs in conditional expressions,
test their values with the defined operator.

Value of CLI symbol "%s" too long
(W misc) A warning peculiar to VMS. Perl tried to read the value of an %ENV
element from a CLI symbol table, and found a resultant string longer than 1024
characters. The return value has been truncated to 1024 characters.

values on reference is experimental
(S experimental::autoderef) values with a scalar argument is experimental and
may change or be removed in a future Perl version. If you want to take the risk
of using this feature, simply disable this warning:

no warnings "experimental::autoderef";

Variable "%s" is not available
(W closure) During compilation, an inner named subroutine or eval is attempt-
ing to capture an outer lexical that is not currently available. This can happen
for one of two reasons. First, the outer lexical may be declared in an outer
anonymous subroutine that has not yet been created. (Remember that named
subs are created at compile time, while anonymous subs are created at run-
time.) For example,

sub { my $a; sub f { $a } }

At the time that f is created, it can’t capture the current value of $a, since the
anonymous subroutine hasn’t been created yet. Conversely, the following won’t
give a warning since the anonymous subroutine has by now been created and
is live:

sub { my $a; eval ’sub f { $a }’ }->();

The second situation is caused by an eval accessing a variable that has gone
out of scope, for example,

sub f {

my $a;

sub { eval ’$a’ }

}

f()->();

Here, when the ’$a’ in the eval is being compiled, f() is not currently being
executed, so its $a is not available for capture.

Variable "%s" is not imported%s
(S misc) With "use strict" in effect, you referred to a global variable that you
apparently thought was imported from another module, because something else
of the same name (usually a subroutine) is exported by that module. It usually
means you put the wrong funny character on the front of your variable.

Variable length lookbehind not implemented in regex m/%s/
(F) Lookbehind is allowed only for subexpressions whose length is fixed and
known at compile time. For positive lookbehind, you can use the \K regex
construct as a way to get the equivalent functionality. See [perlre (?<=pattern)
\K], page 1008.

There are non-obvious Unicode rules under /i that can match variably, but
which you might not think could. For example, the substring "ss" can match

the single character LATIN SMALL LETTER SHARP S. There are other se-
quences of ASCII characters that can match single ligature characters, such as
LATIN SMALL LIGATURE FFI matching qr/ffi/i. Starting in Perl v5.16, if
you only care about ASCII matches, adding the /aa modifier to the regex will
exclude all these non-obvious matches, thus getting rid of this message. You
can also say use re qw(/aa) to apply /aa to all regular expressions compiled
within its scope. See re.

"%s" variable %s masks earlier declaration in same %s
(W misc) A "my", "our" or "state" variable has been redeclared in the current
scope or statement, effectively eliminating all access to the previous instance.
This is almost always a typographical error. Note that the earlier variable will
still exist until the end of the scope or until all closure references to it are
destroyed.

Variable syntax
(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself.

Variable "%s" will not stay shared
(W closure) An inner (nested) named subroutine is referencing a lexical variable
defined in an outer named subroutine.

When the inner subroutine is called, it will see the value of the outer subroutine’s
variable as it was before and during the *first* call to the outer subroutine; in
this case, after the first call to the outer subroutine is complete, the inner and
outer subroutines will no longer share a common value for the variable. In other
words, the variable will no longer be shared.

This problem can usually be solved by making the inner subroutine anonymous,
using the sub {} syntax. When inner anonymous subs that reference variables
in outer subroutines are created, they are automatically rebound to the current
values of such variables.

vector argument not supported with alpha versions
(S printf) The %vd (s)printf format does not support version objects with alpha
parts.

Verb pattern ’%s’ has a mandatory argument in regex; marked by <– HERE in m/%s/
(F) You used a verb pattern that requires an argument. Supply an argument
or check that you are using the right verb.

Verb pattern ’%s’ may not have an argument in regex; marked by <– HERE in m/%s/
(F) You used a verb pattern that is not allowed an argument. Remove the
argument or check that you are using the right verb.

Version number must be a constant number
(P) The attempt to translate a use Module n.n LIST statement into its equiv-
alent BEGIN block found an internal inconsistency with the version number.

Version string ’%s’ contains invalid data; ignoring: ’%s’
(W misc) The version string contains invalid characters at the end, which are
being ignored.

Warning: something’s wrong
(W) You passed warn() an empty string (the equivalent of warn "") or you
called it with no args and $@ was empty.

Warning: unable to close filehandle %s properly
(S) The implicit close() done by an open() got an error indication on the close().
This usually indicates your file system ran out of disk space.

Warning: unable to close filehandle properly: %s
Warning: unable to close filehandle %s properly: %s

(S io) An error occurred when Perl implicitly closed a filehandle. This usually
indicates your file system ran out of disk space.

Warning: Use of "%s" without parentheses is ambiguous
(S ambiguous) You wrote a unary operator followed by something that looks
like a binary operator that could also have been interpreted as a term or unary
operator. For instance, if you know that the rand function has a default argu-
ment of 1.0, and you write

rand + 5;

you may THINK you wrote the same thing as

rand() + 5;

but in actual fact, you got

rand(+5);

So put in parentheses to say what you really mean.

when is experimental
(S experimental::smartmatch) when depends on smartmatch, which is experi-
mental. Additionally, it has several special cases that may not be immediately
obvious, and their behavior may change or even be removed in any future re-
lease of perl. See the explanation under Section 74.2.16 [perlsyn Experimental
Details on given and when], page 1263.

Wide character in %s
(S utf8) Perl met a wide character (>255) when it wasn’t expecting one. This
warning is by default on for I/O (like print). The easiest way to quiet this
warning is simply to add the :utf8 layer to the output, e.g. binmode STDOUT,

’:utf8’. Another way to turn off the warning is to add no warnings ’utf8’;

but that is often closer to cheating. In general, you are supposed to explic-
itly mark the filehandle with an encoding, see open and 〈undefined〉 [perlfunc
binmode], page 〈undefined〉.

Wide character (U+%X) in %s
(W locale) While in a single-byte locale (i.e., a non-UTF-8 one), a multi-byte
character was encountered. Perl considers this character to be the specified
Unicode code point. Combining non-UTF-8 locales and Unicode is dangerous.
Almost certainly some characters will have two different representations. For
example, in the ISO 8859-7 (Greek) locale, the code point 0xC3 represents a
Capital Gamma. But so also does 0x393. This will make string comparisons
unreliable.

You likely need to figure out how this multi-byte character got mixed up with
your single-byte locale (or perhaps you thought you had a UTF-8 locale, but
Perl disagrees).

Within []-length ’%c’ not allowed
(F) The count in the (un)pack template may be replaced by [TEMPLATE] only
if TEMPLATE always matches the same amount of packed bytes that can be
determined from the template alone. This is not possible if it contains any of
the codes @, /, U, u, w or a *-length. Redesign the template.

write() on closed filehandle %s
(W closed) The filehandle you’re writing to got itself closed sometime before
now. Check your control flow.

%s "\x%X" does not map to Unicode
(S utf8) When reading in different encodings, Perl tries to map everything into
Unicode characters. The bytes you read in are not legal in this encoding. For
example

utf8 "\xE4" does not map to Unicode

if you try to read in the a-diaereses Latin-1 as UTF-8.

’X’ outside of string
(F) You had a (un)pack template that specified a relative position before the
beginning of the string being (un)packed. See 〈undefined〉 [perlfunc pack],
page 〈undefined〉.

’x’ outside of string in unpack
(F) You had a pack template that specified a relative position after the end of
the string being unpacked. See 〈undefined〉 [perlfunc pack], page 〈undefined〉.

YOU HAVEN’T DISABLED SET-ID SCRIPTS IN THE KERNEL YET!
(F) And you probably never will, because you probably don’t have the sources
to your kernel, and your vendor probably doesn’t give a rip about what you
want. Your best bet is to put a setuid C wrapper around your script.

You need to quote "%s"
(W syntax) You assigned a bareword as a signal handler name. Unfortunately,
you already have a subroutine of that name declared, which means that Perl
5 will try to call the subroutine when the assignment is executed, which is
probably not what you want. (If it IS what you want, put an & in front.)

Your random numbers are not that random
(F) When trying to initialize the random seed for hashes, Perl could not get any
randomness out of your system. This usually indicates Something Very Wrong.

Zero length \N{} in regex; marked by <– HERE in m/%s/
(F) Named Unicode character escapes (\N{...}) may return a zero-length se-
quence. Such an escape was used in an extended character class, i.e. (?[...]),
which is not permitted. Check that the correct escape has been used, and the
correct charnames handler is in scope. The <– HERE shows whereabouts in
the regular expression the problem was discovered.

16.3 SEE ALSO

warnings, diagnostics.

17 perldsc

17.1 NAME

perldsc - Perl Data Structures Cookbook

17.2 DESCRIPTION

Perl lets us have complex data structures. You can write something like this and all of a
sudden, you’d have an array with three dimensions!

for my $x (1 .. 10) {

for my $y (1 .. 10) {

for my $z (1 .. 10) {

$AoA[$x][$y][$z] =

$x ** $y + $z;

}

}

}

Alas, however simple this may appear, underneath it’s a much more elaborate construct
than meets the eye!

How do you print it out? Why can’t you say just print @AoA? How do you sort it? How
can you pass it to a function or get one of these back from a function? Is it an object? Can
you save it to disk to read back later? How do you access whole rows or columns of that
matrix? Do all the values have to be numeric?

As you see, it’s quite easy to become confused. While some small portion of the blame
for this can be attributed to the reference-based implementation, it’s really more due to a
lack of existing documentation with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many
different sorts of data structures you might want to develop. It should also serve as a
cookbook of examples. That way, when you need to create one of these complex data
structures, you can just pinch, pilfer, or purloin a drop-in example from here.

Let’s look at each of these possible constructs in detail. There are separate sections on
each of the following:

• arrays of arrays

• hashes of arrays

• arrays of hashes

• hashes of hashes

• more elaborate constructs

But for now, let’s look at general issues common to all these types of data structures.

17.3 REFERENCES

The most important thing to understand about all data structures in Perl–including mul-
tidimensional arrays–is that even though they might appear otherwise, Perl @ARRAYs and
%HASHes are all internally one-dimensional. They can hold only scalar values (meaning a
string, number, or a reference). They cannot directly contain other arrays or hashes, but
instead contain references to other arrays or hashes.

You can’t use a reference to an array or hash in quite the same way that you would a
real array or hash. For C or C++ programmers unused to distinguishing between arrays and
pointers to the same, this can be confusing. If so, just think of it as the difference between
a structure and a pointer to a structure.

You can (and should) read more about references in Section 62.1 [perlref NAME],
page 1077. Briefly, references are rather like pointers that know what they point to. (Ob-
jects are also a kind of reference, but we won’t be needing them right away–if ever.) This
means that when you have something which looks to you like an access to a two-or-more-
dimensional array and/or hash, what’s really going on is that the base type is merely a
one-dimensional entity that contains references to the next level. It’s just that you can
use it as though it were a two-dimensional one. This is actually the way almost all C
multidimensional arrays work as well.

$array[7][12] # array of arrays

$array[7]{string} # array of hashes

$hash{string}[7] # hash of arrays

$hash{string}{’another string’} # hash of hashes

Now, because the top level contains only references, if you try to print out your array in
with a simple print() function, you’ll get something that doesn’t look very nice, like this:

my @AoA = ([2, 3], [4, 5, 7], [0]);

print $AoA[1][2];

7

print @AoA;

ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)

That’s because Perl doesn’t (ever) implicitly dereference your variables. If you want to
get at the thing a reference is referring to, then you have to do this yourself using either
prefix typing indicators, like ${$blah}, @{$blah}, @{$blah[$i]}, or else postfix pointer
arrows, like $a->[3], $h->{fred}, or even $ob->method()->[3].

17.4 COMMON MISTAKES

The two most common mistakes made in constructing something like an array of arrays is
either accidentally counting the number of elements or else taking a reference to the same
memory location repeatedly. Here’s the case where you just get the count instead of a
nested array:

for my $i (1..10) {

my @array = somefunc($i);

$AoA[$i] = @array; # WRONG!

}

That’s just the simple case of assigning an array to a scalar and getting its element
count. If that’s what you really and truly want, then you might do well to consider being
a tad more explicit about it, like this:

for my $i (1..10) {

my @array = somefunc($i);

$counts[$i] = scalar @array;

}

Here’s the case of taking a reference to the same memory location again and again:

Either without strict or having an outer-scope my @array;

declaration.

for my $i (1..10) {

@array = somefunc($i);

$AoA[$i] = \@array; # WRONG!

}

So, what’s the big problem with that? It looks right, doesn’t it? After all, I just told
you that you need an array of references, so by golly, you’ve made me one!

Unfortunately, while this is true, it’s still broken. All the references in @AoA refer to the
very same place, and they will therefore all hold whatever was last in @array! It’s similar
to the problem demonstrated in the following C program:

#include <pwd.h>

main() {

struct passwd *getpwnam(), *rp, *dp;

rp = getpwnam("root");

dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",

dp->pw_name, rp->pw_name);

}

Which will print

daemon name is daemon

root name is daemon

The problem is that both rp and dp are pointers to the same location in memory! In C,
you’d have to remember to malloc() yourself some new memory. In Perl, you’ll want to use
the array constructor [] or the hash constructor {} instead. Here’s the right way to do the
preceding broken code fragments:

Either without strict or having an outer-scope my @array;

declaration.

for my $i (1..10) {

@array = somefunc($i);

$AoA[$i] = [@array];

}

The square brackets make a reference to a new array with a copy of what’s in @array at
the time of the assignment. This is what you want.

Note that this will produce something similar, but it’s much harder to read:

Either without strict or having an outer-scope my @array;

declaration.

for my $i (1..10) {

@array = 0 .. $i;

@{$AoA[$i]} = @array;

}

Is it the same? Well, maybe so–and maybe not. The subtle difference is that when you
assign something in square brackets, you know for sure it’s always a brand new reference
with a new copy of the data. Something else could be going on in this new case with the
@{$AoA[$i]} dereference on the left-hand-side of the assignment. It all depends on whether
$AoA[$i] had been undefined to start with, or whether it already contained a reference. If
you had already populated @AoA with references, as in

$AoA[3] = \@another_array;

Then the assignment with the indirection on the left-hand-side would use the existing
reference that was already there:

@{$AoA[3]} = @array;

Of course, this would have the "interesting" effect of clobbering @another array. (Have
you ever noticed how when a programmer says something is "interesting", that rather
than meaning "intriguing", they’re disturbingly more apt to mean that it’s "annoying",
"difficult", or both? :-)

So just remember always to use the array or hash constructors with [] or {}, and you’ll
be fine, although it’s not always optimally efficient.

Surprisingly, the following dangerous-looking construct will actually work out fine:

for my $i (1..10) {

my @array = somefunc($i);

$AoA[$i] = \@array;

}

That’s because my() is more of a run-time statement than it is a compile-time declaration
per se. This means that the my() variable is remade afresh each time through the loop.
So even though it looks as though you stored the same variable reference each time, you
actually did not! This is a subtle distinction that can produce more efficient code at the
risk of misleading all but the most experienced of programmers. So I usually advise against
teaching it to beginners. In fact, except for passing arguments to functions, I seldom like to
see the gimme-a-reference operator (backslash) used much at all in code. Instead, I advise
beginners that they (and most of the rest of us) should try to use the much more easily
understood constructors [] and {} instead of relying upon lexical (or dynamic) scoping and
hidden reference-counting to do the right thing behind the scenes.

In summary:

$AoA[$i] = [@array]; # usually best

$AoA[$i] = \@array; # perilous; just how my() was that array?

@{ $AoA[$i] } = @array; # way too tricky for most programmers

17.5 CAVEAT ON PRECEDENCE

Speaking of things like @{$AoA[$i]}, the following are actually the same thing: >>

$aref->[2][2] # clear

$$aref[2][2] # confusing

That’s because Perl’s precedence rules on its five prefix dereferencers (which look like
someone swearing: $ @ * % &) make them bind more tightly than the postfix subscripting
brackets or braces! This will no doubt come as a great shock to the C or C++ programmer,
who is quite accustomed to using *a[i] to mean what’s pointed to by the i’th element of a.
That is, they first take the subscript, and only then dereference the thing at that subscript.
That’s fine in C, but this isn’t C.

The seemingly equivalent construct in Perl, $$aref[$i] first does the deref of $aref,
making it take $aref as a reference to an array, and then dereference that, and finally tell
you the i’th value of the array pointed to by $AoA. If you wanted the C notion, you’d
have to write ${$AoA[$i]} to force the $AoA[$i] to get evaluated first before the leading
$ dereferencer.

17.6 WHY YOU SHOULD ALWAYS use strict

If this is starting to sound scarier than it’s worth, relax. Perl has some features to help you
avoid its most common pitfalls. The best way to avoid getting confused is to start every
program like this:

#!/usr/bin/perl -w

use strict;

This way, you’ll be forced to declare all your variables with my() and also disallow
accidental "symbolic dereferencing". Therefore if you’d done this:

my $aref = [

["fred", "barney", "pebbles", "bambam", "dino",],

["homer", "bart", "marge", "maggie",],

["george", "jane", "elroy", "judy",],

];

print $aref[2][2];

The compiler would immediately flag that as an error at compile time, because you were
accidentally accessing @aref, an undeclared variable, and it would thereby remind you to
write instead:

print $aref->[2][2]

17.7 DEBUGGING

You can use the debugger’s x command to dump out complex data structures. For example,
given the assignment to $AoA above, here’s the debugger output:

DB<1> x $AoA

$AoA = ARRAY(0x13b5a0)

0 ARRAY(0x1f0a24)

0 ’fred’

1 ’barney’

2 ’pebbles’

3 ’bambam’

4 ’dino’

1 ARRAY(0x13b558)

0 ’homer’

1 ’bart’

2 ’marge’

3 ’maggie’

2 ARRAY(0x13b540)

0 ’george’

1 ’jane’

2 ’elroy’

3 ’judy’

17.8 CODE EXAMPLES

Presented with little comment (these will get their own manpages someday) here are short
code examples illustrating access of various types of data structures.

17.9 ARRAYS OF ARRAYS

17.9.1 Declaration of an ARRAY OF ARRAYS

@AoA = (

["fred", "barney"],

["george", "jane", "elroy"],

["homer", "marge", "bart"],

);

17.9.2 Generation of an ARRAY OF ARRAYS

reading from file

while (<>) {

push @AoA, [split];

}

calling a function

for $i (1 .. 10) {

$AoA[$i] = [somefunc($i)];

}

using temp vars

for $i (1 .. 10) {

@tmp = somefunc($i);

$AoA[$i] = [@tmp];

}

add to an existing row

push @{ $AoA[0] }, "wilma", "betty";

17.9.3 Access and Printing of an ARRAY OF ARRAYS

one element

$AoA[0][0] = "Fred";

another element

$AoA[1][1] =~ s/(\w)/\u$1/;

print the whole thing with refs

for $aref (@AoA) {

print "\t [@$aref],\n";

}

print the whole thing with indices

for $i (0 .. $#AoA) {

print "\t [@{$AoA[$i]}],\n";

}

print the whole thing one at a time

for $i (0 .. $#AoA) {

for $j (0 .. $#{ $AoA[$i] }) {

print "elt $i $j is $AoA[$i][$j]\n";

}

}

17.10 HASHES OF ARRAYS

17.10.1 Declaration of a HASH OF ARRAYS

%HoA = (

flintstones => ["fred", "barney"],

jetsons => ["george", "jane", "elroy"],

simpsons => ["homer", "marge", "bart"],

);

17.10.2 Generation of a HASH OF ARRAYS

reading from file

flintstones: fred barney wilma dino

while (<>) {

next unless s/^(.*?):\s*//;

$HoA{$1} = [split];

}

reading from file; more temps

flintstones: fred barney wilma dino

while ($line = <>) {

($who, $rest) = split /:\s*/, $line, 2;

@fields = split ’ ’, $rest;

$HoA{$who} = [@fields];

}

calling a function that returns a list

for $group ("simpsons", "jetsons", "flintstones") {

$HoA{$group} = [get_family($group)];

}

likewise, but using temps

for $group ("simpsons", "jetsons", "flintstones") {

@members = get_family($group);

$HoA{$group} = [@members];

}

append new members to an existing family

push @{ $HoA{"flintstones"} }, "wilma", "betty";

17.10.3 Access and Printing of a HASH OF ARRAYS

one element

$HoA{flintstones}[0] = "Fred";

another element

$HoA{simpsons}[1] =~ s/(\w)/\u$1/;

print the whole thing

foreach $family (keys %HoA) {

print "$family: @{ $HoA{$family} }\n"

}

print the whole thing with indices

foreach $family (keys %HoA) {

print "family: ";

foreach $i (0 .. $#{ $HoA{$family} }) {

print " $i = $HoA{$family}[$i]";

}

print "\n";

}

print the whole thing sorted by number of members

foreach $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {

print "$family: @{ $HoA{$family} }\n"

}

print the whole thing sorted by number of members and name

foreach $family (sort {

@{$HoA{$b}} <=> @{$HoA{$a}}

||

$a cmp $b

} keys %HoA)

{

print "$family: ", join(", ", sort @{ $HoA{$family} }), "\n";

}

17.11 ARRAYS OF HASHES

17.11.1 Declaration of an ARRAY OF HASHES

@AoH = (

{

Lead => "fred",

Friend => "barney",

},

{

Lead => "george",

Wife => "jane",

Son => "elroy",

},

{

Lead => "homer",

Wife => "marge",

Son => "bart",

}

);

17.11.2 Generation of an ARRAY OF HASHES

reading from file

format: LEAD=fred FRIEND=barney

while (<>) {

$rec = {};

for $field (split) {

($key, $value) = split /=/, $field;

$rec->{$key} = $value;

}

push @AoH, $rec;

}

reading from file

format: LEAD=fred FRIEND=barney

no temp

while (<>) {

push @AoH, { split /[\s+=]/ };

}

calling a function that returns a key/value pair list, like

"lead","fred","daughter","pebbles"

while (%fields = getnextpairset()) {

push @AoH, { %fields };

}

likewise, but using no temp vars

while (<>) {

push @AoH, { parsepairs($_) };

}

add key/value to an element

$AoH[0]{pet} = "dino";

$AoH[2]{pet} = "santa’s little helper";

17.11.3 Access and Printing of an ARRAY OF HASHES

one element

$AoH[0]{lead} = "fred";

another element

$AoH[1]{lead} =~ s/(\w)/\u$1/;

print the whole thing with refs

for $href (@AoH) {

print "{ ";

for $role (keys %$href) {

print "$role=$href->{$role} ";

}

print "}\n";

}

print the whole thing with indices

for $i (0 .. $#AoH) {

print "$i is { ";

for $role (keys %{ $AoH[$i] }) {

print "$role=$AoH[$i]{$role} ";

}

print "}\n";

}

print the whole thing one at a time

for $i (0 .. $#AoH) {

for $role (keys %{ $AoH[$i] }) {

print "elt $i $role is $AoH[$i]{$role}\n";

}

}

17.12 HASHES OF HASHES

17.12.1 Declaration of a HASH OF HASHES

%HoH = (

flintstones => {

lead => "fred",

pal => "barney",

},

jetsons => {

lead => "george",

wife => "jane",

"his boy" => "elroy",

},

simpsons => {

lead => "homer",

wife => "marge",

kid => "bart",

},

);

17.12.2 Generation of a HASH OF HASHES

reading from file

flintstones: lead=fred pal=barney wife=wilma pet=dino

while (<>) {

next unless s/^(.*?):\s*//;

$who = $1;

for $field (split) {

($key, $value) = split /=/, $field;

$HoH{$who}{$key} = $value;

}

reading from file; more temps

while (<>) {

next unless s/^(.*?):\s*//;

$who = $1;

$rec = {};

$HoH{$who} = $rec;

for $field (split) {

($key, $value) = split /=/, $field;

$rec->{$key} = $value;

}

}

calling a function that returns a key,value hash

for $group ("simpsons", "jetsons", "flintstones") {

$HoH{$group} = { get_family($group) };

}

likewise, but using temps

for $group ("simpsons", "jetsons", "flintstones") {

%members = get_family($group);

$HoH{$group} = { %members };

}

append new members to an existing family

%new_folks = (

wife => "wilma",

pet => "dino",

);

for $what (keys %new_folks) {

$HoH{flintstones}{$what} = $new_folks{$what};

}

17.12.3 Access and Printing of a HASH OF HASHES

one element

$HoH{flintstones}{wife} = "wilma";

another element

$HoH{simpsons}{lead} =~ s/(\w)/\u$1/;

print the whole thing

foreach $family (keys %HoH) {

print "$family: { ";

for $role (keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";

}

print "}\n";

}

print the whole thing somewhat sorted

foreach $family (sort keys %HoH) {

print "$family: { ";

for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";

}

print "}\n";

}

print the whole thing sorted by number of members

foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} }

keys %HoH)

{

print "$family: { ";

for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";

}

print "}\n";

}

establish a sort order (rank) for each role

$i = 0;

for (qw(lead wife son daughter pal pet)) { $rank{$_} = ++$i }

now print the whole thing sorted by number of members

foreach $family (sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } }

keys %HoH)

{

print "$family: { ";

and print these according to rank order

for $role (sort { $rank{$a} <=> $rank{$b} }

keys %{ $HoH{$family} })

{

print "$role=$HoH{$family}{$role} ";

}

print "}\n";

}

17.13 MORE ELABORATE RECORDS

17.13.1 Declaration of MORE ELABORATE RECORDS

Here’s a sample showing how to create and use a record whose fields are of many different
sorts:

$rec = {

TEXT => $string,

SEQUENCE => [@old_values],

LOOKUP => { %some_table },

THATCODE => \&some_function,

THISCODE => sub { $_[0] ** $_[1] },

HANDLE => *STDOUT,

};

print $rec->{TEXT};

print $rec->{SEQUENCE}[0];

$last = pop @ { $rec->{SEQUENCE} };

print $rec->{LOOKUP}{"key"};

($first_k, $first_v) = each %{ $rec->{LOOKUP} };

$answer = $rec->{THATCODE}->($arg);

$answer = $rec->{THISCODE}->($arg1, $arg2);

careful of extra block braces on fh ref

print { $rec->{HANDLE} } "a string\n";

use FileHandle;

$rec->{HANDLE}->autoflush(1);

$rec->{HANDLE}->print(" a string\n");

17.13.2 Declaration of a HASH OF COMPLEX RECORDS

%TV = (

flintstones => {

series => "flintstones",

nights => [qw(monday thursday friday)],

members => [

{ name => "fred", role => "lead", age => 36, },

{ name => "wilma", role => "wife", age => 31, },

{ name => "pebbles", role => "kid", age => 4, },

],

},

jetsons => {

series => "jetsons",

nights => [qw(wednesday saturday)],

members => [

{ name => "george", role => "lead", age => 41, },

{ name => "jane", role => "wife", age => 39, },

{ name => "elroy", role => "kid", age => 9, },

],

},

simpsons => {

series => "simpsons",

nights => [qw(monday)],

members => [

{ name => "homer", role => "lead", age => 34, },

{ name => "marge", role => "wife", age => 37, },

{ name => "bart", role => "kid", age => 11, },

],

},

);

17.13.3 Generation of a HASH OF COMPLEX RECORDS

reading from file

this is most easily done by having the file itself be

in the raw data format as shown above. perl is happy

to parse complex data structures if declared as data, so

sometimes it’s easiest to do that

here’s a piece by piece build up

$rec = {};

$rec->{series} = "flintstones";

$rec->{nights} = [find_days()];

@members = ();

assume this file in field=value syntax

while (<>) {

%fields = split /[\s=]+/;

push @members, { %fields };

}

$rec->{members} = [@members];

now remember the whole thing

$TV{ $rec->{series} } = $rec;

###

now, you might want to make interesting extra fields that

include pointers back into the same data structure so if

change one piece, it changes everywhere, like for example

if you wanted a {kids} field that was a reference

to an array of the kids’ records without having duplicate

records and thus update problems.

###

foreach $family (keys %TV) {

$rec = $TV{$family}; # temp pointer

@kids = ();

for $person (@{ $rec->{members} }) {

if ($person->{role} =~ /kid|son|daughter/) {

push @kids, $person;

}

}

REMEMBER: $rec and $TV{$family} point to same data!!

$rec->{kids} = [@kids];

}

you copied the array, but the array itself contains pointers

to uncopied objects. this means that if you make bart get

older via

$TV{simpsons}{kids}[0]{age}++;

then this would also change in

print $TV{simpsons}{members}[2]{age};

because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2]

both point to the same underlying anonymous hash table

print the whole thing

foreach $family (keys %TV) {

print "the $family";

print " is on during @{ $TV{$family}{nights} }\n";

print "its members are:\n";

for $who (@{ $TV{$family}{members} }) {

print " $who->{name} ($who->{role}), age $who->{age}\n";

}

print "it turns out that $TV{$family}{lead} has ";

print scalar (@{ $TV{$family}{kids} }), " kids named ";

print join (", ", map { $_->{name} } @{ $TV{$family}{kids} });

print "\n";

}

17.14 Database Ties

You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm
file. The first problem is that all but GDBM and Berkeley DB have size limitations, but
beyond that, you also have problems with how references are to be represented on disk.
One experimental module that does partially attempt to address this need is the MLDBM
module. Check your nearest CPAN site as described in perlmodlib for source code to
MLDBM.

17.15 SEE ALSO

Section 62.1 [perlref NAME], page 1077, Section 39.1 [perllol NAME], page 725, Section 11.1
[perldata NAME], page 70, Section 46.1 [perlobj NAME], page 769

17.16 AUTHOR

Tom Christiansen <tchrist@perl.com>

18 perldtrace

18.1 NAME

perldtrace - Perl’s support for DTrace

18.2 SYNOPSIS

dtrace -Zn ’perl::sub-entry, perl::sub-return { trace(copyinstr(arg0)) }’

dtrace: description ’perl::sub-entry, perl::sub-return ’ matched 10 probes

perl -E ’sub outer { inner(@_) } sub inner { say shift } outer("hello")’

hello

(dtrace output)

CPU ID FUNCTION:NAME

0 75915 Perl_pp_entersub:sub-entry BEGIN

0 75915 Perl_pp_entersub:sub-entry import

0 75922 Perl_pp_leavesub:sub-return import

0 75922 Perl_pp_leavesub:sub-return BEGIN

0 75915 Perl_pp_entersub:sub-entry outer

0 75915 Perl_pp_entersub:sub-entry inner

0 75922 Perl_pp_leavesub:sub-return inner

0 75922 Perl_pp_leavesub:sub-return outer

18.3 DESCRIPTION

DTrace is a framework for comprehensive system- and application-level tracing. Perl is
a DTrace provider, meaning it exposes several probes for instrumentation. You can use
these in conjunction with kernel-level probes, as well as probes from other providers such as
MySQL, in order to diagnose software defects, or even just your application’s bottlenecks.

Perl must be compiled with the -Dusedtrace option in order to make use of the provided
probes. While DTrace aims to have no overhead when its instrumentation is not active,
Perl’s support itself cannot uphold that guarantee, so it is built without DTrace probes
under most systems. One notable exception is that Mac OS X ships a /usr/bin/perl with
DTrace support enabled.

18.4 HISTORY

5.10.1

Perl’s initial DTrace support was added, providing sub-entry and sub-return

probes.

5.14.0

The sub-entry and sub-return probes gain a fourth argument: the package
name of the function.

5.16.0

The phase-change probe was added.

5.18.0

The op-entry, loading-file, and loaded-file probes were added.

18.5 PROBES

sub-entry(SUBNAME, FILE, LINE, PACKAGE)
Traces the entry of any subroutine. Note that all of the variables refer to the
subroutine that is being invoked; there is currently no way to get ahold of any
information about the subroutine’s caller from a DTrace action.

:*perl*::sub-entry {

printf("%s::%s entered at %s line %d\n",

copyinstr(arg3), copyinstr(arg0), copyinstr(arg1), arg2);

}

sub-return(SUBNAME, FILE, LINE, PACKAGE)
Traces the exit of any subroutine. Note that all of the variables refer to the
subroutine that is returning; there is currently no way to get ahold of any
information about the subroutine’s caller from a DTrace action.

:*perl*::sub-return {

printf("%s::%s returned at %s line %d\n",

copyinstr(arg3), copyinstr(arg0), copyinstr(arg1), arg2);

}

phase-change(NEWPHASE, OLDPHASE)
Traces changes to Perl’s interpreter state. You can internalize this as tracing
changes to Perl’s ${^GLOBAL_PHASE} variable, especially since the values for
NEWPHASE and OLDPHASE are the strings that ${^GLOBAL_PHASE} reports.

:*perl*::phase-change {

printf("Phase changed from %s to %s\n",

copyinstr(arg1), copyinstr(arg0));

}

op-entry(OPNAME)
Traces the execution of each opcode in the Perl runloop. This probe is fired
before the opcode is executed. When the Perl debugger is enabled, the DTrace
probe is fired after the debugger hooks (but still before the opcode itself is
executed).

:*perl*::op-entry {

printf("About to execute opcode %s\n", copyinstr(arg0));

}

loading-file(FILENAME)
Fires when Perl is about to load an individual file, whether from use, require,
or do. This probe fires before the file is read from disk. The filename argument
is converted to local filesystem paths instead of providing Module::Name-style
names.

:*perl*:loading-file {

printf("About to load %s\n", copyinstr(arg0));

}

loaded-file(FILENAME)
Fires when Perl has successfully loaded an individual file, whether from use,
require, or do. This probe fires after the file is read from disk and its contents
evaluated. The filename argument is converted to local filesystem paths instead
of providing Module::Name-style names.

:*perl*:loaded-file {

printf("Successfully loaded %s\n", copyinstr(arg0));

}

18.6 EXAMPLES

Most frequently called functions
dtrace -qZn ’sub-entry { @[strjoin(strjoin(copyinstr(arg3),"::"),copyinstr(arg0))] = count() } END {trunc(@, 10)}’

Class::MOP::Attribute::slots 400

Try::Tiny::catch 411

Try::Tiny::try 411

Class::MOP::Instance::inline_slot_access 451

Class::MOP::Class::Immutable::Trait:::around 472

Class::MOP::Mixin::AttributeCore::has_initializer 496

Class::MOP::Method::Wrapped::__ANON__ 544

Class::MOP::Package::_package_stash 737

Class::MOP::Class::initialize 1128

Class::MOP::get_metaclass_by_name 1204

Trace function calls
dtrace -qFZn ’sub-entry, sub-return { trace(copyinstr(arg0)) }’

0 -> Perl_pp_entersub BEGIN

0 <- Perl_pp_leavesub BEGIN

0 -> Perl_pp_entersub BEGIN

0 -> Perl_pp_entersub import

0 <- Perl_pp_leavesub import

0 <- Perl_pp_leavesub BEGIN

0 -> Perl_pp_entersub BEGIN

0 -> Perl_pp_entersub dress

0 <- Perl_pp_leavesub dress

0 -> Perl_pp_entersub dirty

0 <- Perl_pp_leavesub dirty

0 -> Perl_pp_entersub whiten

0 <- Perl_pp_leavesub whiten

0 <- Perl_dounwind BEGIN

Function calls during interpreter cleanup
dtrace -Zn ’phase-change /copyinstr(arg0) == "END"/ { self->ending = 1 } sub-entry /self->ending/ { trace(copyinstr(arg0)) }’

CPU ID FUNCTION:NAME

1 77214 Perl_pp_entersub:sub-entry END

1 77214 Perl_pp_entersub:sub-entry END

1 77214 Perl_pp_entersub:sub-entry cleanup

1 77214 Perl_pp_entersub:sub-entry _force_writable

1 77214 Perl_pp_entersub:sub-entry _force_writable

System calls at compile time
dtrace -qZn ’phase-change /copyinstr(arg0) == "START"/ { self->interesting = 1 } phase-change /copyinstr(arg0) == "RUN"/ { self->interesting = 0 } syscall::: /self->interesting/ { @[probefunc] = count() } END { trunc(@, 3) }’

lseek 310

read 374

stat64 1056

Perl functions that execute the most opcodes
dtrace -qZn ’sub-entry { self->fqn = strjoin(copyinstr(arg3), strjoin("::", copyinstr(arg0))) } op-entry /self->fqn != ""/ { @[self->fqn] = count() } END { trunc(@, 3) }’

warnings::unimport 4589

Exporter::Heavy::_rebuild_cache 5039

Exporter::import 14578

18.7 REFERENCES

DTrace Dynamic Tracing Guide
http://dtrace.org/guide/preface.html

DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD
http://www.amazon.com/DTrace-Dynamic-Tracing-Solaris-FreeBSD/dp/

0132091518/

18.8 SEE ALSO

Devel-DTrace-Provider

This CPAN module lets you create application-level DTrace probes written in
Perl.

18.9 AUTHORS

Shawn M Moore sartak@gmail.com

http://dtrace.org/guide/preface.html
http://www.amazon.com/DTrace-Dynamic-Tracing-Solaris-FreeBSD/dp/0132091518/
http://www.amazon.com/DTrace-Dynamic-Tracing-Solaris-FreeBSD/dp/0132091518/

19 perlebcdic

19.1 NAME

perlebcdic - Considerations for running Perl on EBCDIC platforms

19.2 DESCRIPTION

An exploration of some of the issues facing Perl programmers on EBCDIC based computers.

Portions of this document that are still incomplete are marked with XXX.

Early Perl versions worked on some EBCDIC machines, but the last known version
that ran on EBCDIC was v5.8.7, until v5.22, when the Perl core again works on z/OS.
Theoretically, it could work on OS/400 or Siemens’ BS2000 (or their successors), but this
is untested. In v5.22, not all the modules found on CPAN but shipped with core Perl work
on z/OS.

If you want to use Perl on a non-z/OS EBCDIC machine, please let us know by sending
mail to perlbug@perl.org

Writing Perl on an EBCDIC platform is really no different than writing on an
Section 19.3.1 [ASCII], page 267 one, but with different underlying numbers, as we’ll see
shortly. You’ll have to know something about those Section 19.3.1 [ASCII], page 267
platforms because the documentation is biased and will frequently use example numbers
that don’t apply to EBCDIC. There are also very few CPAN modules that are written for
EBCDIC and which don’t work on ASCII; instead the vast majority of CPAN modules are
written for ASCII, and some may happen to work on EBCDIC, while a few have been
designed to portably work on both.

If your code just uses the 52 letters A-Z and a-z, plus SPACE, the digits 0-9, and
the punctuation characters that Perl uses, plus a few controls that are denoted by escape
sequences like \n and \t, then there’s nothing special about using Perl, and your code may
very well work on an ASCII machine without change.

But if you write code that uses \005 to mean a TAB or \xC1 to mean an "A", or \xDF
to mean a "ÿ" (small "y" with a diaeresis), then your code may well work on your EBCDIC
platform, but not on an ASCII one. That’s fine to do if no one will ever want to run your
code on an ASCII platform; but the bias in this document will be in writing code portable
between EBCDIC and ASCII systems. Again, if every character you care about is easily
enterable from your keyboard, you don’t have to know anything about ASCII, but many
keyboards don’t easily allow you to directly enter, say, the character \xDF, so you have
to specify it indirectly, such as by using the "\xDF" escape sequence. In those cases it’s
easiest to know something about the ASCII/Unicode character sets. If you know that the
small "ÿ" is U+00FF, then you can instead specify it as "\N{U+FF}", and have the computer
automatically translate it to \xDF on your platform, and leave it as \xFF on ASCII ones.
Or you could specify it by name, \N{LATIN SMALL LETTER Y WITH DIAERESIS and not have
to know the numbers. Either way works, but require familiarity with Unicode.

19.3 COMMON CHARACTER CODE SETS

19.3.1 ASCII

The American Standard Code for Information Interchange (ASCII or US-ASCII) is a set
of integers running from 0 to 127 (decimal) that have standardized interpretations by the
computers which use ASCII. For example, 65 means the letter "A". The range 0..127 can
be covered by setting the bits in a 7-bit binary digit, hence the set is sometimes referred
to as "7-bit ASCII". ASCII was described by the American National Standards Institute
document ANSI X3.4-1986. It was also described by ISO 646:1991 (with localization for
currency symbols). The full ASCII set is given in the table [below], page 272 as the first 128
elements. Languages that can be written adequately with the characters in ASCII include
English, Hawaiian, Indonesian, Swahili and some Native American languages.

Most non-EBCDIC character sets are supersets of ASCII. That is the integers 0-127
mean what ASCII says they mean. But integers 128 and above are specific to the character
set.

Many of these fit entirely into 8 bits, using ASCII as 0-127, while specifying what 128-
255 mean, and not using anything above 255. Thus, these are single-byte (or octet if you
prefer) character sets. One important one (since Unicode is a superset of it) is the ISO
8859-1 character set.

19.3.2 ISO 8859

The ISO 8859-$n are a collection of character code sets from the International Organization
for Standardization (ISO), each of which adds characters to the ASCII set that are typically
found in various languages, many of which are based on the Roman, or Latin, alphabet.
Most are for European languages, but there are also ones for Arabic, Greek, Hebrew, and
Thai. There are good references on the web about all these.

19.3.3 Latin 1 (ISO 8859-1)

A particular 8-bit extension to ASCII that includes grave and acute accented Latin charac-
ters. Languages that can employ ISO 8859-1 include all the languages covered by ASCII as
well as Afrikaans, Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian, Por-
tuguese, Spanish, and Swedish. Dutch is covered albeit without the ij ligature. French
is covered too but without the oe ligature. German can use ISO 8859-1 but must do so
without German-style quotation marks. This set is based on Western European extensions
to ASCII and is commonly encountered in world wide web work. In IBM character code
set identification terminology, ISO 8859-1 is also known as CCSID 819 (or sometimes 0819
or even 00819).

19.3.4 EBCDIC

The Extended Binary Coded Decimal Interchange Code refers to a large collection of single-
and multi-byte coded character sets that are quite different from ASCII and ISO 8859-1,
and are all slightly different from each other; they typically run on host computers. The
EBCDIC encodings derive from 8-bit byte extensions of Hollerith punched card encodings,
which long predate ASCII. The layout on the cards was such that high bits were set for the
upper and lower case alphabetic characters [a-z] and [A-Z], but there were gaps within
each Latin alphabet range, visible in the table [below], page 272. These gaps can cause
complications.

Some IBM EBCDIC character sets may be known by character code set identification
numbers (CCSID numbers) or code page numbers.

Perl can be compiled on platforms that run any of three commonly used EBCDIC char-
acter sets, listed below.

19.3.4.1 The 13 variant characters

Among IBM EBCDIC character code sets there are 13 characters that are often mapped
to different integer values. Those characters are known as the 13 "variant" characters and
are:

\ [] { } ^ ~ ! # | $ @ ‘

When Perl is compiled for a platform, it looks at all of these characters to guess which
EBCDIC character set the platform uses, and adapts itself accordingly to that platform. If
the platform uses a character set that is not one of the three Perl knows about, Perl will
either fail to compile, or mistakenly and silently choose one of the three.

19.3.4.2 EBCDIC code sets recognized by Perl

0037

Character code set ID 0037 is a mapping of the ASCII plus Latin-1 characters
(i.e. ISO 8859-1) to an EBCDIC set. 0037 is used in North American English
locales on the OS/400 operating system that runs on AS/400 computers. CC-
SID 0037 differs from ISO 8859-1 in 236 places; in other words they agree on
only 20 code point values.

1047

Character code set ID 1047 is also a mapping of the ASCII plus Latin-1 char-
acters (i.e. ISO 8859-1) to an EBCDIC set. 1047 is used under Unix System
Services for OS/390 or z/OS, and OpenEdition for VM/ESA. CCSID 1047 dif-
fers from CCSID 0037 in eight places, and from ISO 8859-1 in 236.

POSIX-BC
The EBCDIC code page in use on Siemens’ BS2000 system is distinct from 1047
and 0037. It is identified below as the POSIX-BC set. Like 0037 and 1047, it
is the same as ISO 8859-1 in 20 code point values.

19.3.5 Unicode code points versus EBCDIC code points

In Unicode terminology a code point is the number assigned to a character: for example, in
EBCDIC the character "A" is usually assigned the number 193. In Unicode, the character
"A" is assigned the number 65. All the code points in ASCII and Latin-1 (ISO 8859-1)
have the same meaning in Unicode. All three of the recognized EBCDIC code sets have 256
code points, and in each code set, all 256 code points are mapped to equivalent Latin1 code
points. Obviously, "A" will map to "A", "B" => "B", "%" => "%", etc., for all printable
characters in Latin1 and these code pages.

It also turns out that EBCDIC has nearly precise equivalents for the ASCII/Latin1
C0 controls and the DELETE control. (The C0 controls are those whose ASCII code
points are 0..0x1F; things like TAB, ACK, BEL, etc.) A mapping is set up between these
ASCII/EBCDIC controls. There isn’t such a precise mapping between the C1 controls on

ASCII platforms and the remaining EBCDIC controls. What has been done is to map these
controls, mostly arbitrarily, to some otherwise unmatched character in the other character
set. Most of these are very very rarely used nowadays in EBCDIC anyway, and their names
have been dropped, without much complaint. For example the EO (Eight Ones) EBCDIC
control (consisting of eight one bits = 0xFF) is mapped to the C1 APC control (0x9F), and
you can’t use the name "EO".

The EBCDIC controls provide three possible line terminator characters, CR (0x0D), LF
(0x25), and NL (0x15). On ASCII platforms, the symbols "NL" and "LF" refer to the same
character, but in strict EBCDIC terminology they are different ones. The EBCDIC NL is
mapped to the C1 control called "NEL" ("Next Line"; here’s a case where the mapping
makes quite a bit of sense, and hence isn’t just arbitrary). On some EBCDIC platforms,
this NL or NEL is the typical line terminator. This is true of z/OS and BS2000. In these
platforms, the C compilers will swap the LF and NEL code points, so that "\n" is 0x15,
and refers to NL. Perl does that too; you can see it in the code chart [below], page 272.
This makes things generally "just work" without you even having to be aware that there is
a swap.

19.3.6 Unicode and UTF

UTF stands for "Unicode Transformation Format". UTF-8 is an encoding of Unicode into
a sequence of 8-bit byte chunks, based on ASCII and Latin-1. The length of a sequence
required to represent a Unicode code point depends on the ordinal number of that code
point, with larger numbers requiring more bytes. UTF-EBCDIC is like UTF-8, but based
on EBCDIC. They are enough alike that often, casual usage will conflate the two terms, and
use "UTF-8" to mean both the UTF-8 found on ASCII platforms, and the UTF-EBCDIC
found on EBCDIC ones.

You may see the term "invariant" character or code point. This simply means that the
character has the same numeric value and representation when encoded in UTF-8 (or UTF-
EBCDIC) as when not. (Note that this is a very different concept from Section 19.3.4.1
[The 13 variant characters], page 268 mentioned above. Careful prose will use the term
"UTF-8 invariant" instead of just "invariant", but most often you’ll see just "invariant".)
For example, the ordinal value of "A" is 193 in most EBCDIC code pages, and also is 193
when encoded in UTF-EBCDIC. All UTF-8 (or UTF-EBCDIC) variant code points occupy
at least two bytes when encoded in UTF-8 (or UTF-EBCDIC); by definition, the UTF-8 (or
UTF-EBCDIC) invariant code points are exactly one byte whether encoded in UTF-8 (or
UTF-EBCDIC), or not. (By now you see why people typically just say "UTF-8" when they
also mean "UTF-EBCDIC". For the rest of this document, we’ll mostly be casual about it
too.) In ASCII UTF-8, the code points corresponding to the lowest 128 ordinal numbers
(0 - 127: the ASCII characters) are invariant. In UTF-EBCDIC, there are 160 invariant
characters. (If you care, the EBCDIC invariants are those characters which have ASCII
equivalents, plus those that correspond to the C1 controls (128 - 159 on ASCII platforms).)

A string encoded in UTF-EBCDIC may be longer (but never shorter) than one encoded in
UTF-8. Perl extends UTF-8 so that it can encode code points above the Unicode maximum
of U+10FFFF. It extends UTF-EBCDIC as well, but due to the inherent limitations in
UTF-EBCDIC, the maximum code point expressible is U+7FFF FFFF, even if the word
size is more than 32 bits.

UTF-EBCDIC is defined by Unicode Technical Report #16 (http://www.unicode.
org/reports/tr16). It is defined based on CCSID 1047, not allowing for the differences
for other code pages. This allows for easy interchange of text between computers running
different code pages, but makes it unusable, without adaptation, for Perl on those other
code pages.

The reason for this unusability is that a fundamental assumption of Perl is that the
characters it cares about for parsing and lexical analysis are the same whether or not the text
is in UTF-8. For example, Perl expects the character "[" to have the same representation,
no matter if the string containing it (or program text) is UTF-8 encoded or not. To ensure
this, Perl adapts UTF-EBCDIC to the particular code page so that all characters it expects
to be UTF-8 invariant are in fact UTF-8 invariant. This means that text generated on a
computer running one version of Perl’s UTF-EBCDIC has to be translated to be intelligible
to a computer running another.

19.3.7 Using Encode

Starting from Perl 5.8 you can use the standard module Encode to translate from EBCDIC
to Latin-1 code points. Encode knows about more EBCDIC character sets than Perl can
currently be compiled to run on.

use Encode ’from_to’;

my %ebcdic = (176 => ’cp37’, 95 => ’cp1047’, 106 => ’posix-bc’);

$a is in EBCDIC code points

from_to($a, $ebcdic{ord ’^’}, ’latin1’);

$a is ISO 8859-1 code points

and from Latin-1 code points to EBCDIC code points

use Encode ’from_to’;

my %ebcdic = (176 => ’cp37’, 95 => ’cp1047’, 106 => ’posix-bc’);

$a is ISO 8859-1 code points

from_to($a, ’latin1’, $ebcdic{ord ’^’});

$a is in EBCDIC code points

For doing I/O it is suggested that you use the autotranslating features of PerlIO, see
Section 83.1 [perluniintro NAME], page 1352.

Since version 5.8 Perl uses the PerlIO I/O library. This enables you to use different
encodings per IO channel. For example you may use

use Encode;

open($f, ">:encoding(ascii)", "test.ascii");

print $f "Hello World!\n";

open($f, ">:encoding(cp37)", "test.ebcdic");

print $f "Hello World!\n";

open($f, ">:encoding(latin1)", "test.latin1");

print $f "Hello World!\n";

open($f, ">:encoding(utf8)", "test.utf8");

http://www.unicode.org/reports/tr16
http://www.unicode.org/reports/tr16

print $f "Hello World!\n";

to get four files containing "Hello World!\n" in ASCII, CP 0037 EBCDIC, ISO 8859-1
(Latin-1) (in this example identical to ASCII since only ASCII characters were printed),
and UTF-EBCDIC (in this example identical to normal EBCDIC since only characters that
don’t differ between EBCDIC and UTF-EBCDIC were printed). See the documentation of
Encode-PerlIO for details.

As the PerlIO layer uses raw IO (bytes) internally, all this totally ignores things like the
type of your filesystem (ASCII or EBCDIC).

19.4 SINGLE OCTET TABLES

The following tables list the ASCII and Latin 1 ordered sets including the subsets: C0
controls (0..31), ASCII graphics (32..7e), delete (7f), C1 controls (80..9f), and Latin-1
(a.k.a. ISO 8859-1) (a0..ff). In the table names of the Latin 1 extensions to ASCII
have been labelled with character names roughly corresponding to The Unicode Standard,
Version 6.1 albeit with substitutions such as s/LATIN// and s/VULGAR// in all cases;
s/CAPITAL LETTER// in some cases; and s/SMALL LETTER ([A-Z])/\l$1/ in some other
cases. Controls are listed using their Unicode 6.2 abbreviations. The differences between
the 0037 and 1047 sets are flagged with **. The differences between the 1047 and POSIX-
BC sets are flagged with ##. All ord() numbers listed are decimal. If you would rather
see this table listing octal values, then run the table (that is, the pod source text of this
document, since this recipe may not work with a pod2 other format translation) through:

recipe 0

perl -ne ’if(/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)’ \

-e ’{printf("%s%-5.03o%-5.03o%-5.03o%.03o\n",$1,$2,$3,$4,$5)}’ \

perlebcdic.pod

If you want to retain the UTF-x code points then in script form you might want to write:

recipe 1

open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";

while (<FH>) {

if (/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)

\s+(\d+)\.?(\d*)/x)

{

if ($7 ne ’’ && $9 ne ’’) {

printf(

"%s%-5.03o%-5.03o%-5.03o%-5.03o%-3o.%-5o%-3o.%.03o\n",

$1,$2,$3,$4,$5,$6,$7,$8,$9);

}

elsif ($7 ne ’’) {

printf("%s%-5.03o%-5.03o%-5.03o%-5.03o%-3o.%-5o%.03o\n",

$1,$2,$3,$4,$5,$6,$7,$8);

}

else {

printf("%s%-5.03o%-5.03o%-5.03o%-5.03o%-5.03o%.03o\n",

$1,$2,$3,$4,$5,$6,$8);

}

}

}

If you would rather see this table listing hexadecimal values then run the table through:

recipe 2

perl -ne ’if(/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)’ \

-e ’{printf("%s%-5.02X%-5.02X%-5.02X%.02X\n",$1,$2,$3,$4,$5)}’ \

perlebcdic.pod

Or, in order to retain the UTF-x code points in hexadecimal:

recipe 3

open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";

while (<FH>) {

if (/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)

\s+(\d+)\.?(\d*)/x)

{

if ($7 ne ’’ && $9 ne ’’) {

printf(

"%s%-5.02X%-5.02X%-5.02X%-5.02X%-2X.%-6.02X%02X.%02X\n",

$1,$2,$3,$4,$5,$6,$7,$8,$9);

}

elsif ($7 ne ’’) {

printf("%s%-5.02X%-5.02X%-5.02X%-5.02X%-2X.%-6.02X%02X\n",

$1,$2,$3,$4,$5,$6,$7,$8);

}

else {

printf("%s%-5.02X%-5.02X%-5.02X%-5.02X%-5.02X%02X\n",

$1,$2,$3,$4,$5,$6,$8);

}

}

}

ISO

8859-1 POS- CCSID

CCSID CCSID CCSID IX- 1047

chr 0819 0037 1047 BC UTF-8 UTF-EBCDIC

<NUL> 0 0 0 0 0 0

<SOH> 1 1 1 1 1 1

<STX> 2 2 2 2 2 2

<ETX> 3 3 3 3 3 3

<EOT> 4 55 55 55 4 55

<ENQ> 5 45 45 45 5 45

<ACK> 6 46 46 46 6 46

<BEL> 7 47 47 47 7 47

<BS> 8 22 22 22 8 22

<HT> 9 5 5 5 9 5

<LF> 10 37 21 21 10 21 **

<VT> 11 11 11 11 11 11

<FF> 12 12 12 12 12 12

<CR> 13 13 13 13 13 13

<SO> 14 14 14 14 14 14

<SI> 15 15 15 15 15 15

<DLE> 16 16 16 16 16 16

<DC1> 17 17 17 17 17 17

<DC2> 18 18 18 18 18 18

<DC3> 19 19 19 19 19 19

<DC4> 20 60 60 60 20 60

<NAK> 21 61 61 61 21 61

<SYN> 22 50 50 50 22 50

<ETB> 23 38 38 38 23 38

<CAN> 24 24 24 24 24 24

<EOM> 25 25 25 25 25 25

<SUB> 26 63 63 63 26 63

<ESC> 27 39 39 39 27 39

<FS> 28 28 28 28 28 28

<GS> 29 29 29 29 29 29

<RS> 30 30 30 30 30 30

<US> 31 31 31 31 31 31

<SPACE> 32 64 64 64 32 64

! 33 90 90 90 33 90

" 34 127 127 127 34 127

35 123 123 123 35 123

$ 36 91 91 91 36 91

% 37 108 108 108 37 108

& 38 80 80 80 38 80

’ 39 125 125 125 39 125

(40 77 77 77 40 77

) 41 93 93 93 41 93

* 42 92 92 92 42 92

+ 43 78 78 78 43 78

, 44 107 107 107 44 107

- 45 96 96 96 45 96

. 46 75 75 75 46 75

/ 47 97 97 97 47 97

0 48 240 240 240 48 240

1 49 241 241 241 49 241

2 50 242 242 242 50 242

3 51 243 243 243 51 243

4 52 244 244 244 52 244

5 53 245 245 245 53 245

6 54 246 246 246 54 246

7 55 247 247 247 55 247

8 56 248 248 248 56 248

9 57 249 249 249 57 249

: 58 122 122 122 58 122

; 59 94 94 94 59 94

< 60 76 76 76 60 76

= 61 126 126 126 61 126

> 62 110 110 110 62 110

? 63 111 111 111 63 111

@ 64 124 124 124 64 124

A 65 193 193 193 65 193

B 66 194 194 194 66 194

C 67 195 195 195 67 195

D 68 196 196 196 68 196

E 69 197 197 197 69 197

F 70 198 198 198 70 198

G 71 199 199 199 71 199

H 72 200 200 200 72 200

I 73 201 201 201 73 201

J 74 209 209 209 74 209

K 75 210 210 210 75 210

L 76 211 211 211 76 211

M 77 212 212 212 77 212

N 78 213 213 213 78 213

O 79 214 214 214 79 214

P 80 215 215 215 80 215

Q 81 216 216 216 81 216

R 82 217 217 217 82 217

S 83 226 226 226 83 226

T 84 227 227 227 84 227

U 85 228 228 228 85 228

V 86 229 229 229 86 229

W 87 230 230 230 87 230

X 88 231 231 231 88 231

Y 89 232 232 232 89 232

Z 90 233 233 233 90 233

[91 186 173 187 91 173 ** ##

\ 92 224 224 188 92 224 ##

] 93 187 189 189 93 189 **

^ 94 176 95 106 94 95 ** ##

_ 95 109 109 109 95 109

‘ 96 121 121 74 96 121 ##

a 97 129 129 129 97 129

b 98 130 130 130 98 130

c 99 131 131 131 99 131

d 100 132 132 132 100 132

e 101 133 133 133 101 133

f 102 134 134 134 102 134

g 103 135 135 135 103 135

h 104 136 136 136 104 136

i 105 137 137 137 105 137

j 106 145 145 145 106 145

k 107 146 146 146 107 146

l 108 147 147 147 108 147

m 109 148 148 148 109 148

n 110 149 149 149 110 149

o 111 150 150 150 111 150

p 112 151 151 151 112 151

q 113 152 152 152 113 152

r 114 153 153 153 114 153

s 115 162 162 162 115 162

t 116 163 163 163 116 163

u 117 164 164 164 117 164

v 118 165 165 165 118 165

w 119 166 166 166 119 166

x 120 167 167 167 120 167

y 121 168 168 168 121 168

z 122 169 169 169 122 169

{ 123 192 192 251 123 192 ##

| 124 79 79 79 124 79

} 125 208 208 253 125 208 ##

~ 126 161 161 255 126 161 ##

 127 7 7 7 127 7

<PAD> 128 32 32 32 194.128 32

<HOP> 129 33 33 33 194.129 33

<BPH> 130 34 34 34 194.130 34

<NBH> 131 35 35 35 194.131 35

<IND> 132 36 36 36 194.132 36

<NEL> 133 21 37 37 194.133 37 **

<SSA> 134 6 6 6 194.134 6

<ESA> 135 23 23 23 194.135 23

<HTS> 136 40 40 40 194.136 40

<HTJ> 137 41 41 41 194.137 41

<VTS> 138 42 42 42 194.138 42

<PLD> 139 43 43 43 194.139 43

<PLU> 140 44 44 44 194.140 44

<RI> 141 9 9 9 194.141 9

<SS2> 142 10 10 10 194.142 10

<SS3> 143 27 27 27 194.143 27

<DCS> 144 48 48 48 194.144 48

<PU1> 145 49 49 49 194.145 49

<PU2> 146 26 26 26 194.146 26

<STS> 147 51 51 51 194.147 51

<CCH> 148 52 52 52 194.148 52

<MW> 149 53 53 53 194.149 53

<SPA> 150 54 54 54 194.150 54

<EPA> 151 8 8 8 194.151 8

<SOS> 152 56 56 56 194.152 56

<SGC> 153 57 57 57 194.153 57

<SCI> 154 58 58 58 194.154 58

<CSI> 155 59 59 59 194.155 59

<ST> 156 4 4 4 194.156 4

<OSC> 157 20 20 20 194.157 20

<PM> 158 62 62 62 194.158 62

<APC> 159 255 255 95 194.159 255 ##

<NON-BREAKING SPACE> 160 65 65 65 194.160 128.65

<INVERTED "!" > 161 170 170 170 194.161 128.66

<CENT SIGN> 162 74 74 176 194.162 128.67 ##

<POUND SIGN> 163 177 177 177 194.163 128.68

<CURRENCY SIGN> 164 159 159 159 194.164 128.69

<YEN SIGN> 165 178 178 178 194.165 128.70

<BROKEN BAR> 166 106 106 208 194.166 128.71 ##

<SECTION SIGN> 167 181 181 181 194.167 128.72

<DIAERESIS> 168 189 187 121 194.168 128.73 ** ##

<COPYRIGHT SIGN> 169 180 180 180 194.169 128.74

<FEMININE ORDINAL> 170 154 154 154 194.170 128.81

<LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82

<NOT SIGN> 172 95 176 186 194.172 128.83 ** ##

<SOFT HYPHEN> 173 202 202 202 194.173 128.84

<REGISTERED TRADE MARK> 174 175 175 175 194.174 128.85

<MACRON> 175 188 188 161 194.175 128.86 ##

<DEGREE SIGN> 176 144 144 144 194.176 128.87

<PLUS-OR-MINUS SIGN> 177 143 143 143 194.177 128.88

<SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89

<SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98

<ACUTE ACCENT> 180 190 190 190 194.180 128.99

<MICRO SIGN> 181 160 160 160 194.181 128.100

<PARAGRAPH SIGN> 182 182 182 182 194.182 128.101

<MIDDLE DOT> 183 179 179 179 194.183 128.102

<CEDILLA> 184 157 157 157 194.184 128.103

<SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104

<MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105

<RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106

<FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112

<FRACTION ONE HALF> 189 184 184 184 194.189 128.113

<FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114

<INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115

<A WITH GRAVE> 192 100 100 100 195.128 138.65

<A WITH ACUTE> 193 101 101 101 195.129 138.66

<A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67

<A WITH TILDE> 195 102 102 102 195.131 138.68

<A WITH DIAERESIS> 196 99 99 99 195.132 138.69

<A WITH RING ABOVE> 197 103 103 103 195.133 138.70

<CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71

<C WITH CEDILLA> 199 104 104 104 195.135 138.72

<E WITH GRAVE> 200 116 116 116 195.136 138.73

<E WITH ACUTE> 201 113 113 113 195.137 138.74

<E WITH CIRCUMFLEX> 202 114 114 114 195.138 138.81

<E WITH DIAERESIS> 203 115 115 115 195.139 138.82

<I WITH GRAVE> 204 120 120 120 195.140 138.83

<I WITH ACUTE> 205 117 117 117 195.141 138.84

<I WITH CIRCUMFLEX> 206 118 118 118 195.142 138.85

<I WITH DIAERESIS> 207 119 119 119 195.143 138.86

<CAPITAL LETTER ETH> 208 172 172 172 195.144 138.87

<N WITH TILDE> 209 105 105 105 195.145 138.88

<O WITH GRAVE> 210 237 237 237 195.146 138.89

<O WITH ACUTE> 211 238 238 238 195.147 138.98

<O WITH CIRCUMFLEX> 212 235 235 235 195.148 138.99

<O WITH TILDE> 213 239 239 239 195.149 138.100

<O WITH DIAERESIS> 214 236 236 236 195.150 138.101

<MULTIPLICATION SIGN> 215 191 191 191 195.151 138.102

<O WITH STROKE> 216 128 128 128 195.152 138.103

<U WITH GRAVE> 217 253 253 224 195.153 138.104 ##

<U WITH ACUTE> 218 254 254 254 195.154 138.105

<U WITH CIRCUMFLEX> 219 251 251 221 195.155 138.106 ##

<U WITH DIAERESIS> 220 252 252 252 195.156 138.112

<Y WITH ACUTE> 221 173 186 173 195.157 138.113 ** ##

<CAPITAL LETTER THORN> 222 174 174 174 195.158 138.114

<SMALL LETTER SHARP S> 223 89 89 89 195.159 138.115

<a WITH GRAVE> 224 68 68 68 195.160 139.65

<a WITH ACUTE> 225 69 69 69 195.161 139.66

<a WITH CIRCUMFLEX> 226 66 66 66 195.162 139.67

<a WITH TILDE> 227 70 70 70 195.163 139.68

<a WITH DIAERESIS> 228 67 67 67 195.164 139.69

<a WITH RING ABOVE> 229 71 71 71 195.165 139.70

<SMALL LIGATURE ae> 230 156 156 156 195.166 139.71

<c WITH CEDILLA> 231 72 72 72 195.167 139.72

<e WITH GRAVE> 232 84 84 84 195.168 139.73

<e WITH ACUTE> 233 81 81 81 195.169 139.74

<e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81

<e WITH DIAERESIS> 235 83 83 83 195.171 139.82

<i WITH GRAVE> 236 88 88 88 195.172 139.83

<i WITH ACUTE> 237 85 85 85 195.173 139.84

<i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85

<i WITH DIAERESIS> 239 87 87 87 195.175 139.86

<SMALL LETTER eth> 240 140 140 140 195.176 139.87

<n WITH TILDE> 241 73 73 73 195.177 139.88

<o WITH GRAVE> 242 205 205 205 195.178 139.89

<o WITH ACUTE> 243 206 206 206 195.179 139.98

<o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99

<o WITH TILDE> 245 207 207 207 195.181 139.100

<o WITH DIAERESIS> 246 204 204 204 195.182 139.101

<DIVISION SIGN> 247 225 225 225 195.183 139.102

<o WITH STROKE> 248 112 112 112 195.184 139.103

<u WITH GRAVE> 249 221 221 192 195.185 139.104 ##

<u WITH ACUTE> 250 222 222 222 195.186 139.105

<u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106

<u WITH DIAERESIS> 252 220 220 220 195.188 139.112

<y WITH ACUTE> 253 141 141 141 195.189 139.113

<SMALL LETTER thorn> 254 142 142 142 195.190 139.114

<y WITH DIAERESIS> 255 223 223 223 195.191 139.115

If you would rather see the above table in CCSID 0037 order rather than ASCII + Latin-1
order then run the table through:

recipe 4

perl \

-ne ’if(/.{29}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}/)’\

-e ’{push(@l,$_)}’ \

-e ’END{print map{$_->[0]}’ \

-e ’ sort{$a->[1] <=> $b->[1]}’ \

-e ’ map{[$_,substr($_,34,3)]}@l;}’ perlebcdic.pod

If you would rather see it in CCSID 1047 order then change the number 34 in the last
line to 39, like this:

recipe 5

perl \

-ne ’if(/.{29}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}/)’\

-e ’{push(@l,$_)}’ \

-e ’END{print map{$_->[0]}’ \

-e ’ sort{$a->[1] <=> $b->[1]}’ \

-e ’ map{[$_,substr($_,39,3)]}@l;}’ perlebcdic.pod

If you would rather see it in POSIX-BC order then change the number 34 in the last
line to 44, like this:

recipe 6

perl \

-ne ’if(/.{29}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}/)’\

-e ’{push(@l,$_)}’ \

-e ’END{print map{$_->[0]}’ \

-e ’ sort{$a->[1] <=> $b->[1]}’ \

-e ’ map{[$_,substr($_,44,3)]}@l;}’ perlebcdic.pod

19.4.1 Table in hex, sorted in 1047 order

Since this document was first written, the convention has become more and more to use
hexadecimal notation for code points. To do this with the recipes and to also sort is a

multi-step process, so here, for convenience, is the table from above, re-sorted to be in Code
Page 1047 order, and using hex notation.

ISO

8859-1 POS- CCSID

CCSID CCSID CCSID IX- 1047

chr 0819 0037 1047 BC UTF-8 UTF-EBCDIC

<NUL> 00 00 00 00 00 00

<SOH> 01 01 01 01 01 01

<STX> 02 02 02 02 02 02

<ETX> 03 03 03 03 03 03

<ST> 9C 04 04 04 C2.9C 04

<HT> 09 05 05 05 09 05

<SSA> 86 06 06 06 C2.86 06

 7F 07 07 07 7F 07

<EPA> 97 08 08 08 C2.97 08

<RI> 8D 09 09 09 C2.8D 09

<SS2> 8E 0A 0A 0A C2.8E 0A

<VT> 0B 0B 0B 0B 0B 0B

<FF> 0C 0C 0C 0C 0C 0C

<CR> 0D 0D 0D 0D 0D 0D

<SO> 0E 0E 0E 0E 0E 0E

<SI> 0F 0F 0F 0F 0F 0F

<DLE> 10 10 10 10 10 10

<DC1> 11 11 11 11 11 11

<DC2> 12 12 12 12 12 12

<DC3> 13 13 13 13 13 13

<OSC> 9D 14 14 14 C2.9D 14

<LF> 0A 25 15 15 0A 15 **

<BS> 08 16 16 16 08 16

<ESA> 87 17 17 17 C2.87 17

<CAN> 18 18 18 18 18 18

<EOM> 19 19 19 19 19 19

<PU2> 92 1A 1A 1A C2.92 1A

<SS3> 8F 1B 1B 1B C2.8F 1B

<FS> 1C 1C 1C 1C 1C 1C

<GS> 1D 1D 1D 1D 1D 1D

<RS> 1E 1E 1E 1E 1E 1E

<US> 1F 1F 1F 1F 1F 1F

<PAD> 80 20 20 20 C2.80 20

<HOP> 81 21 21 21 C2.81 21

<BPH> 82 22 22 22 C2.82 22

<NBH> 83 23 23 23 C2.83 23

<IND> 84 24 24 24 C2.84 24

<NEL> 85 15 25 25 C2.85 25 **

<ETB> 17 26 26 26 17 26

<ESC> 1B 27 27 27 1B 27

<HTS> 88 28 28 28 C2.88 28

<HTJ> 89 29 29 29 C2.89 29

<VTS> 8A 2A 2A 2A C2.8A 2A

<PLD> 8B 2B 2B 2B C2.8B 2B

<PLU> 8C 2C 2C 2C C2.8C 2C

<ENQ> 05 2D 2D 2D 05 2D

<ACK> 06 2E 2E 2E 06 2E

<BEL> 07 2F 2F 2F 07 2F

<DCS> 90 30 30 30 C2.90 30

<PU1> 91 31 31 31 C2.91 31

<SYN> 16 32 32 32 16 32

<STS> 93 33 33 33 C2.93 33

<CCH> 94 34 34 34 C2.94 34

<MW> 95 35 35 35 C2.95 35

<SPA> 96 36 36 36 C2.96 36

<EOT> 04 37 37 37 04 37

<SOS> 98 38 38 38 C2.98 38

<SGC> 99 39 39 39 C2.99 39

<SCI> 9A 3A 3A 3A C2.9A 3A

<CSI> 9B 3B 3B 3B C2.9B 3B

<DC4> 14 3C 3C 3C 14 3C

<NAK> 15 3D 3D 3D 15 3D

<PM> 9E 3E 3E 3E C2.9E 3E

<SUB> 1A 3F 3F 3F 1A 3F

<SPACE> 20 40 40 40 20 40

<NON-BREAKING SPACE> A0 41 41 41 C2.A0 80.41

<a WITH CIRCUMFLEX> E2 42 42 42 C3.A2 8B.43

<a WITH DIAERESIS> E4 43 43 43 C3.A4 8B.45

<a WITH GRAVE> E0 44 44 44 C3.A0 8B.41

<a WITH ACUTE> E1 45 45 45 C3.A1 8B.42

<a WITH TILDE> E3 46 46 46 C3.A3 8B.44

<a WITH RING ABOVE> E5 47 47 47 C3.A5 8B.46

<c WITH CEDILLA> E7 48 48 48 C3.A7 8B.48

<n WITH TILDE> F1 49 49 49 C3.B1 8B.58

<CENT SIGN> A2 4A 4A B0 C2.A2 80.43 ##

. 2E 4B 4B 4B 2E 4B

< 3C 4C 4C 4C 3C 4C

(28 4D 4D 4D 28 4D

+ 2B 4E 4E 4E 2B 4E

| 7C 4F 4F 4F 7C 4F

& 26 50 50 50 26 50

<e WITH ACUTE> E9 51 51 51 C3.A9 8B.4A

<e WITH CIRCUMFLEX> EA 52 52 52 C3.AA 8B.51

<e WITH DIAERESIS> EB 53 53 53 C3.AB 8B.52

<e WITH GRAVE> E8 54 54 54 C3.A8 8B.49

<i WITH ACUTE> ED 55 55 55 C3.AD 8B.54

<i WITH CIRCUMFLEX> EE 56 56 56 C3.AE 8B.55

<i WITH DIAERESIS> EF 57 57 57 C3.AF 8B.56

<i WITH GRAVE> EC 58 58 58 C3.AC 8B.53

<SMALL LETTER SHARP S> DF 59 59 59 C3.9F 8A.73

! 21 5A 5A 5A 21 5A

$ 24 5B 5B 5B 24 5B

* 2A 5C 5C 5C 2A 5C

) 29 5D 5D 5D 29 5D

; 3B 5E 5E 5E 3B 5E

^ 5E B0 5F 6A 5E 5F ** ##

- 2D 60 60 60 2D 60

/ 2F 61 61 61 2F 61

<A WITH CIRCUMFLEX> C2 62 62 62 C3.82 8A.43

<A WITH DIAERESIS> C4 63 63 63 C3.84 8A.45

<A WITH GRAVE> C0 64 64 64 C3.80 8A.41

<A WITH ACUTE> C1 65 65 65 C3.81 8A.42

<A WITH TILDE> C3 66 66 66 C3.83 8A.44

<A WITH RING ABOVE> C5 67 67 67 C3.85 8A.46

<C WITH CEDILLA> C7 68 68 68 C3.87 8A.48

<N WITH TILDE> D1 69 69 69 C3.91 8A.58

<BROKEN BAR> A6 6A 6A D0 C2.A6 80.47 ##

, 2C 6B 6B 6B 2C 6B

% 25 6C 6C 6C 25 6C

_ 5F 6D 6D 6D 5F 6D

> 3E 6E 6E 6E 3E 6E

? 3F 6F 6F 6F 3F 6F

<o WITH STROKE> F8 70 70 70 C3.B8 8B.67

<E WITH ACUTE> C9 71 71 71 C3.89 8A.4A

<E WITH CIRCUMFLEX> CA 72 72 72 C3.8A 8A.51

<E WITH DIAERESIS> CB 73 73 73 C3.8B 8A.52

<E WITH GRAVE> C8 74 74 74 C3.88 8A.49

<I WITH ACUTE> CD 75 75 75 C3.8D 8A.54

<I WITH CIRCUMFLEX> CE 76 76 76 C3.8E 8A.55

<I WITH DIAERESIS> CF 77 77 77 C3.8F 8A.56

<I WITH GRAVE> CC 78 78 78 C3.8C 8A.53

‘ 60 79 79 4A 60 79 ##

: 3A 7A 7A 7A 3A 7A

23 7B 7B 7B 23 7B

@ 40 7C 7C 7C 40 7C

’ 27 7D 7D 7D 27 7D

= 3D 7E 7E 7E 3D 7E

" 22 7F 7F 7F 22 7F

<O WITH STROKE> D8 80 80 80 C3.98 8A.67

a 61 81 81 81 61 81

b 62 82 82 82 62 82

c 63 83 83 83 63 83

d 64 84 84 84 64 84

e 65 85 85 85 65 85

f 66 86 86 86 66 86

g 67 87 87 87 67 87

h 68 88 88 88 68 88

i 69 89 89 89 69 89

<LEFT POINTING GUILLEMET> AB 8A 8A 8A C2.AB 80.52

<RIGHT POINTING GUILLEMET> BB 8B 8B 8B C2.BB 80.6A

<SMALL LETTER eth> F0 8C 8C 8C C3.B0 8B.57

<y WITH ACUTE> FD 8D 8D 8D C3.BD 8B.71

<SMALL LETTER thorn> FE 8E 8E 8E C3.BE 8B.72

<PLUS-OR-MINUS SIGN> B1 8F 8F 8F C2.B1 80.58

<DEGREE SIGN> B0 90 90 90 C2.B0 80.57

j 6A 91 91 91 6A 91

k 6B 92 92 92 6B 92

l 6C 93 93 93 6C 93

m 6D 94 94 94 6D 94

n 6E 95 95 95 6E 95

o 6F 96 96 96 6F 96

p 70 97 97 97 70 97

q 71 98 98 98 71 98

r 72 99 99 99 72 99

<FEMININE ORDINAL> AA 9A 9A 9A C2.AA 80.51

<MASC. ORDINAL INDICATOR> BA 9B 9B 9B C2.BA 80.69

<SMALL LIGATURE ae> E6 9C 9C 9C C3.A6 8B.47

<CEDILLA> B8 9D 9D 9D C2.B8 80.67

<CAPITAL LIGATURE AE> C6 9E 9E 9E C3.86 8A.47

<CURRENCY SIGN> A4 9F 9F 9F C2.A4 80.45

<MICRO SIGN> B5 A0 A0 A0 C2.B5 80.64

~ 7E A1 A1 FF 7E A1 ##

s 73 A2 A2 A2 73 A2

t 74 A3 A3 A3 74 A3

u 75 A4 A4 A4 75 A4

v 76 A5 A5 A5 76 A5

w 77 A6 A6 A6 77 A6

x 78 A7 A7 A7 78 A7

y 79 A8 A8 A8 79 A8

z 7A A9 A9 A9 7A A9

<INVERTED "!" > A1 AA AA AA C2.A1 80.42

<INVERTED QUESTION MARK> BF AB AB AB C2.BF 80.73

<CAPITAL LETTER ETH> D0 AC AC AC C3.90 8A.57

[5B BA AD BB 5B AD ** ##

<CAPITAL LETTER THORN> DE AE AE AE C3.9E 8A.72

<REGISTERED TRADE MARK> AE AF AF AF C2.AE 80.55

<NOT SIGN> AC 5F B0 BA C2.AC 80.53 ** ##

<POUND SIGN> A3 B1 B1 B1 C2.A3 80.44

<YEN SIGN> A5 B2 B2 B2 C2.A5 80.46

<MIDDLE DOT> B7 B3 B3 B3 C2.B7 80.66

<COPYRIGHT SIGN> A9 B4 B4 B4 C2.A9 80.4A

<SECTION SIGN> A7 B5 B5 B5 C2.A7 80.48

<PARAGRAPH SIGN> B6 B6 B6 B6 C2.B6 80.65

<FRACTION ONE QUARTER> BC B7 B7 B7 C2.BC 80.70

<FRACTION ONE HALF> BD B8 B8 B8 C2.BD 80.71

<FRACTION THREE QUARTERS> BE B9 B9 B9 C2.BE 80.72

<Y WITH ACUTE> DD AD BA AD C3.9D 8A.71 ** ##

<DIAERESIS> A8 BD BB 79 C2.A8 80.49 ** ##

<MACRON> AF BC BC A1 C2.AF 80.56 ##

] 5D BB BD BD 5D BD **

<ACUTE ACCENT> B4 BE BE BE C2.B4 80.63

<MULTIPLICATION SIGN> D7 BF BF BF C3.97 8A.66

{ 7B C0 C0 FB 7B C0 ##

A 41 C1 C1 C1 41 C1

B 42 C2 C2 C2 42 C2

C 43 C3 C3 C3 43 C3

D 44 C4 C4 C4 44 C4

E 45 C5 C5 C5 45 C5

F 46 C6 C6 C6 46 C6

G 47 C7 C7 C7 47 C7

H 48 C8 C8 C8 48 C8

I 49 C9 C9 C9 49 C9

<SOFT HYPHEN> AD CA CA CA C2.AD 80.54

<o WITH CIRCUMFLEX> F4 CB CB CB C3.B4 8B.63

<o WITH DIAERESIS> F6 CC CC CC C3.B6 8B.65

<o WITH GRAVE> F2 CD CD CD C3.B2 8B.59

<o WITH ACUTE> F3 CE CE CE C3.B3 8B.62

<o WITH TILDE> F5 CF CF CF C3.B5 8B.64

} 7D D0 D0 FD 7D D0 ##

J 4A D1 D1 D1 4A D1

K 4B D2 D2 D2 4B D2

L 4C D3 D3 D3 4C D3

M 4D D4 D4 D4 4D D4

N 4E D5 D5 D5 4E D5

O 4F D6 D6 D6 4F D6

P 50 D7 D7 D7 50 D7

Q 51 D8 D8 D8 51 D8

R 52 D9 D9 D9 52 D9

<SUPERSCRIPT ONE> B9 DA DA DA C2.B9 80.68

<u WITH CIRCUMFLEX> FB DB DB DB C3.BB 8B.6A

<u WITH DIAERESIS> FC DC DC DC C3.BC 8B.70

<u WITH GRAVE> F9 DD DD C0 C3.B9 8B.68 ##

<u WITH ACUTE> FA DE DE DE C3.BA 8B.69

<y WITH DIAERESIS> FF DF DF DF C3.BF 8B.73

\ 5C E0 E0 BC 5C E0 ##

<DIVISION SIGN> F7 E1 E1 E1 C3.B7 8B.66

S 53 E2 E2 E2 53 E2

T 54 E3 E3 E3 54 E3

U 55 E4 E4 E4 55 E4

V 56 E5 E5 E5 56 E5

W 57 E6 E6 E6 57 E6

X 58 E7 E7 E7 58 E7

Y 59 E8 E8 E8 59 E8

Z 5A E9 E9 E9 5A E9

<SUPERSCRIPT TWO> B2 EA EA EA C2.B2 80.59

<O WITH CIRCUMFLEX> D4 EB EB EB C3.94 8A.63

<O WITH DIAERESIS> D6 EC EC EC C3.96 8A.65

<O WITH GRAVE> D2 ED ED ED C3.92 8A.59

<O WITH ACUTE> D3 EE EE EE C3.93 8A.62

<O WITH TILDE> D5 EF EF EF C3.95 8A.64

0 30 F0 F0 F0 30 F0

1 31 F1 F1 F1 31 F1

2 32 F2 F2 F2 32 F2

3 33 F3 F3 F3 33 F3

4 34 F4 F4 F4 34 F4

5 35 F5 F5 F5 35 F5

6 36 F6 F6 F6 36 F6

7 37 F7 F7 F7 37 F7

8 38 F8 F8 F8 38 F8

9 39 F9 F9 F9 39 F9

<SUPERSCRIPT THREE> B3 FA FA FA C2.B3 80.62

<U WITH CIRCUMFLEX> DB FB FB DD C3.9B 8A.6A ##

<U WITH DIAERESIS> DC FC FC FC C3.9C 8A.70

<U WITH GRAVE> D9 FD FD E0 C3.99 8A.68 ##

<U WITH ACUTE> DA FE FE FE C3.9A 8A.69

<APC> 9F FF FF 5F C2.9F FF ##

19.5 IDENTIFYING CHARACTER CODE SETS

It is possible to determine which character set you are operating under. But first you need
to be really really sure you need to do this. Your code will be simpler and probably just
as portable if you don’t have to test the character set and do different things, depending.
There are actually only very few circumstances where it’s not easy to write straight-line
code portable to all character sets. See Section 83.2.4 [perluniintro Unicode and EBCDIC],
page 1355 for how to portably specify characters.

But there are some cases where you may want to know which character set you are
running under. One possible example is doing Section 19.11 [sorting], page 293 in inner
loops where performance is critical.

To determine if you are running under ASCII or EBCDIC, you can use the return value
of ord() or chr() to test one or more character values. For example:

$is_ascii = "A" eq chr(65);

$is_ebcdic = "A" eq chr(193);

$is_ascii = ord("A") == 65;

$is_ebcdic = ord("A") == 193;

There’s even less need to distinguish between EBCDIC code pages, but to do so try
looking at one or more of the characters that differ between them.

$is_ascii = ord(’[’) == 91;

$is_ebcdic_37 = ord(’[’) == 186;

$is_ebcdic_1047 = ord(’[’) == 173;

$is_ebcdic_POSIX_BC = ord(’[’) == 187;

However, it would be unwise to write tests such as:

$is_ascii = "\r" ne chr(13); # WRONG

$is_ascii = "\n" ne chr(10); # ILL ADVISED

Obviously the first of these will fail to distinguish most ASCII platforms from either
a CCSID 0037, a 1047, or a POSIX-BC EBCDIC platform since "\r" eq chr(13) under
all of those coded character sets. But note too that because "\n" is chr(13) and "\r" is
chr(10) on old Macintosh (which is an ASCII platform) the second $is_ascii test will
lead to trouble there.

To determine whether or not perl was built under an EBCDIC code page you can use
the Config module like so:

use Config;

$is_ebcdic = $Config{’ebcdic’} eq ’define’;

19.6 CONVERSIONS

19.6.1 utf8::unicode_to_native() and utf8::native_to_unicode()

These functions take an input numeric code point in one encoding and return what its
equivalent value is in the other.

See utf8.

19.6.2 tr///

In order to convert a string of characters from one character set to another a simple list
of numbers, such as in the right columns in the above table, along with Perl’s tr/// op-
erator is all that is needed. The data in the table are in ASCII/Latin1 order, hence the
EBCDIC columns provide easy-to-use ASCII/Latin1 to EBCDIC operations that are also
easily reversed.

For example, to convert ASCII/Latin1 to code page 037 take the output of the second
numbers column from the output of recipe 2 (modified to add "\" characters), and use it
in tr/// like so:

$cp_037 =

’\x00\x01\x02\x03\x37\x2D\x2E\x2F\x16\x05\x25\x0B\x0C\x0D\x0E\x0F’ .

’\x10\x11\x12\x13\x3C\x3D\x32\x26\x18\x19\x3F\x27\x1C\x1D\x1E\x1F’ .

’\x40\x5A\x7F\x7B\x5B\x6C\x50\x7D\x4D\x5D\x5C\x4E\x6B\x60\x4B\x61’ .

’\xF0\xF1\xF2\xF3\xF4\xF5\xF6\xF7\xF8\xF9\x7A\x5E\x4C\x7E\x6E\x6F’ .

’\x7C\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xD1\xD2\xD3\xD4\xD5\xD6’ .

’\xD7\xD8\xD9\xE2\xE3\xE4\xE5\xE6\xE7\xE8\xE9\xBA\xE0\xBB\xB0\x6D’ .

’\x79\x81\x82\x83\x84\x85\x86\x87\x88\x89\x91\x92\x93\x94\x95\x96’ .

’\x97\x98\x99\xA2\xA3\xA4\xA5\xA6\xA7\xA8\xA9\xC0\x4F\xD0\xA1\x07’ .

’\x20\x21\x22\x23\x24\x15\x06\x17\x28\x29\x2A\x2B\x2C\x09\x0A\x1B’ .

’\x30\x31\x1A\x33\x34\x35\x36\x08\x38\x39\x3A\x3B\x04\x14\x3E\xFF’ .

’\x41\xAA\x4A\xB1\x9F\xB2\x6A\xB5\xBD\xB4\x9A\x8A\x5F\xCA\xAF\xBC’ .

’\x90\x8F\xEA\xFA\xBE\xA0\xB6\xB3\x9D\xDA\x9B\x8B\xB7\xB8\xB9\xAB’ .

’\x64\x65\x62\x66\x63\x67\x9E\x68\x74\x71\x72\x73\x78\x75\x76\x77’ .

’\xAC\x69\xED\xEE\xEB\xEF\xEC\xBF\x80\xFD\xFE\xFB\xFC\xAD\xAE\x59’ .

’\x44\x45\x42\x46\x43\x47\x9C\x48\x54\x51\x52\x53\x58\x55\x56\x57’ .

’\x8C\x49\xCD\xCE\xCB\xCF\xCC\xE1\x70\xDD\xDE\xDB\xDC\x8D\x8E\xDF’;

my $ebcdic_string = $ascii_string;

eval ’$ebcdic_string =~ tr/\000-\377/’ . $cp_037 . ’/’;

To convert from EBCDIC 037 to ASCII just reverse the order of the tr/// arguments
like so:

my $ascii_string = $ebcdic_string;

eval ’$ascii_string =~ tr/’ . $cp_037 . ’/\000-\377/’;

Similarly one could take the output of the third numbers column from recipe 2 to obtain
a $cp_1047 table. The fourth numbers column of the output from recipe 2 could provide a
$cp_posix_bc table suitable for transcoding as well.

If you wanted to see the inverse tables, you would first have to sort on the desired
numbers column as in recipes 4, 5 or 6, then take the output of the first numbers column.

19.6.3 iconv

XPG operability often implies the presence of an iconv utility available from the shell or
from the C library. Consult your system’s documentation for information on iconv.

On OS/390 or z/OS see the iconv(1) manpage. One way to invoke the iconv shell utility
from within perl would be to:

OS/390 or z/OS example

$ascii_data = ‘echo ’$ebcdic_data’| iconv -f IBM-1047 -t ISO8859-1‘

or the inverse map:

OS/390 or z/OS example

$ebcdic_data = ‘echo ’$ascii_data’| iconv -f ISO8859-1 -t IBM-1047‘

For other Perl-based conversion options see the Convert::* modules on CPAN.

19.6.4 C RTL

The OS/390 and z/OS C run-time libraries provide _atoe() and _etoa() functions.

19.7 OPERATOR DIFFERENCES

The .. range operator treats certain character ranges with care on EBCDIC platforms. For
example the following array will have twenty six elements on either an EBCDIC platform
or an ASCII platform:

@alphabet = (’A’..’Z’); # $#alphabet == 25

The bitwise operators such as & ^ | may return different results when operating on
string or character data in a Perl program running on an EBCDIC platform than when run

http://man.he.net/man1/iconv

on an ASCII platform. Here is an example adapted from the one in Section 48.1 [perlop
NAME], page 798:

EBCDIC-based examples

print "j p \n" ^ " a h"; # prints "JAPH\n"

print "JA" | " ph\n"; # prints "japh\n"

print "JAPH\nJunk" & "\277\277\277\277\277"; # prints "japh\n";

print ’p N$’ ^ " E<H\n"; # prints "Perl\n";

An interesting property of the 32 C0 control characters in the ASCII table is that they
can "literally" be constructed as control characters in Perl, e.g. (chr(0) eq \c@)> (chr(1)

eq \cA)>, and so on. Perl on EBCDIC platforms has been ported to take \c@ to chr(0) and
\cA to chr(1), etc. as well, but the characters that result depend on which code page you
are using. The table below uses the standard acronyms for the controls. The POSIX-BC
and 1047 sets are identical throughout this range and differ from the 0037 set at only one
spot (21 decimal). Note that the line terminator character may be generated by \cJ on
ASCII platforms but by \cU on 1047 or POSIX-BC platforms and cannot be generated as a
"\c.letter." control character on 0037 platforms. Note also that \c\ cannot be the final
element in a string or regex, as it will absorb the terminator. But \c\X is a FILE SEPARATOR

concatenated with X for all X. The outlier \c? on ASCII, which yields a non-C0 control
DEL, yields the outlier control APC on EBCDIC, the one that isn’t in the block of contiguous
controls. Note that a subtlety of this is that \c? on ASCII platforms is an ASCII character,
while it isn’t equivalent to any ASCII character in EBCDIC platforms.

chr ord 8859-1 0037 1047 && POSIX-BC

\c@ 0 <NUL> <NUL> <NUL>

\cA 1 <SOH> <SOH> <SOH>

\cB 2 <STX> <STX> <STX>

\cC 3 <ETX> <ETX> <ETX>

\cD 4 <EOT> <ST> <ST>

\cE 5 <ENQ> <HT> <HT>

\cF 6 <ACK> <SSA> <SSA>

\cG 7 <BEL>

\cH 8 <BS> <EPA> <EPA>

\cI 9 <HT> <RI> <RI>

\cJ 10 <LF> <SS2> <SS2>

\cK 11 <VT> <VT> <VT>

\cL 12 <FF> <FF> <FF>

\cM 13 <CR> <CR> <CR>

\cN 14 <SO> <SO> <SO>

\cO 15 <SI> <SI> <SI>

\cP 16 <DLE> <DLE> <DLE>

\cQ 17 <DC1> <DC1> <DC1>

\cR 18 <DC2> <DC2> <DC2>

\cS 19 <DC3> <DC3> <DC3>

\cT 20 <DC4> <OSC> <OSC>

\cU 21 <NAK> <NEL> <LF> **

\cV 22 <SYN> <BS> <BS>

\cW 23 <ETB> <ESA> <ESA>

\cX 24 <CAN> <CAN> <CAN>

\cY 25 <EOM> <EOM> <EOM>

\cZ 26 <SUB> <PU2> <PU2>

\c[27 <ESC> <SS3> <SS3>

\c\X 28 <FS>X <FS>X <FS>X

\c] 29 <GS> <GS> <GS>

\c^ 30 <RS> <RS> <RS>

\c_ 31 <US> <US> <US>

\c? * <APC> <APC>

* Note: \c? maps to ordinal 127 (DEL) on ASCII platforms, but since ordinal 127 is a
not a control character on EBCDIC machines, \c? instead maps on them to APC, which is
255 in 0037 and 1047, and 95 in POSIX-BC.

19.8 FUNCTION DIFFERENCES

chr()

chr() must be given an EBCDIC code number argument to yield a desired
character return value on an EBCDIC platform. For example:

$CAPITAL_LETTER_A = chr(193);

The largest code point that is representable in UTF-EBCDIC is
U+7FFF FFFF. If you do chr() on a larger value, a runtime error (similar to
division by 0) will happen.

ord()

ord() will return EBCDIC code number values on an EBCDIC platform. For
example:

$the_number_193 = ord("A");

pack()

The "c" and "C" templates for pack() are dependent upon character set en-
coding. Examples of usage on EBCDIC include:

$foo = pack("CCCC",193,194,195,196);

$foo eq "ABCD"

$foo = pack("C4",193,194,195,196);

same thing

$foo = pack("ccxxcc",193,194,195,196);

$foo eq "AB\0\0CD"

The "U" template has been ported to mean "Unicode" on all platforms so that

pack("U", 65) eq ’A’

is true on all platforms. If you want native code points for the low 256, use the
"W" template. This means that the equivalences

pack("W", ord($character)) eq $character

unpack("W", $character) == ord $character

will hold.

The largest code point that is representable in UTF-EBCDIC is
U+7FFF FFFF. If you try to pack a larger value into a character, a runtime
error (similar to division by 0) will happen.

print()

One must be careful with scalars and strings that are passed to print that
contain ASCII encodings. One common place for this to occur is in the output
of the MIME type header for CGI script writing. For example, many Perl
programming guides recommend something similar to:

print "Content-type:\ttext/html\015\012\015\012";

this may be wrong on EBCDIC

You can instead write

print "Content-type:\ttext/html\r\n\r\n"; # OK for DGW et al

and have it work portably.

That is because the translation from EBCDIC to ASCII is done by the web
server in this case. Consult your web server’s documentation for further details.

printf()

The formats that can convert characters to numbers and vice versa will be dif-
ferent from their ASCII counterparts when executed on an EBCDIC platform.
Examples include:

printf("%c%c%c",193,194,195); # prints ABC

sort()

EBCDIC sort results may differ from ASCII sort results especially for mixed
case strings. This is discussed in more detail Section 19.11 [below], page 293.

sprintf()

See the discussion of [printf()], page 289 above. An example of the use of
sprintf would be:

$CAPITAL_LETTER_A = sprintf("%c",193);

unpack()

See the discussion of [pack()], page 288 above.

Note that it is possible to write portable code for these by specifying things in Unicode
numbers, and using a conversion function:

printf("%c",utf8::unicode_to_native(65)); # prints A on all

platforms

print utf8::native_to_unicode(ord("A")); # Likewise, prints 65

See Section 83.2.4 [perluniintro Unicode and EBCDIC], page 1355 and Section 19.6
[CONVERSIONS], page 285 for other options.

19.9 REGULAR EXPRESSION DIFFERENCES

You can write your regular expressions just like someone on an ASCII platform would do.
But keep in mind that using octal or hex notation to specify a particular code point will
give you the character that the EBCDIC code page natively maps to it. (This is also true of
all double-quoted strings.) If you want to write portably, just use the \N{U+...} notation
everywhere where you would have used \x{...}, and don’t use octal notation at all.

Starting in Perl v5.22, this applies to ranges in bracketed character classes. If you say,
for example, qr/[\N{U+20}-\N{U+7F}]/, it means the characters \N{U+20}, \N{U+21}, ...,
\N{U+7F}. This range is all the printable characters that the ASCII character set contains.

Prior to v5.22, you couldn’t specify any ranges portably, except (starting in Perl v5.5.3)
all subsets of the [A-Z] and [a-z] ranges are specially coded to not pick up gap characters.
For example, characters such as "ô" (o WITH CIRCUMFLEX) that lie between "I" and "J"
would not be matched by the regular expression range /[H-K]/. But if either of the range
end points is explicitly numeric (and neither is specified by \N{U+...}), the gap characters
are matched:

/[\x89-\x91]/

will match \x8e, even though \x89 is "i" and \x91 is "j", and \x8e is a gap character,
from the alphabetic viewpoint.

Another construct to be wary of is the inappropriate use of hex (unless you use
\N{U+...}) or octal constants in regular expressions. Consider the following set of subs:

sub is_c0 {

my $char = substr(shift,0,1);

$char =~ /[\000-\037]/;

}

sub is_print_ascii {

my $char = substr(shift,0,1);

$char =~ /[\040-\176]/;

}

sub is_delete {

my $char = substr(shift,0,1);

$char eq "\177";

}

sub is_c1 {

my $char = substr(shift,0,1);

$char =~ /[\200-\237]/;

}

sub is_latin_1 { # But not ASCII; not C1

my $char = substr(shift,0,1);

$char =~ /[\240-\377]/;

}

These are valid only on ASCII platforms. Starting in Perl v5.22, simply changing the
octal constants to equivalent \N{U+...} values makes them portable:

sub is_c0 {

my $char = substr(shift,0,1);

$char =~ /[\N{U+00}-\N{U+1F}]/;

}

sub is_print_ascii {

my $char = substr(shift,0,1);

$char =~ /[\N{U+20}-\N{U+7E}]/;

}

sub is_delete {

my $char = substr(shift,0,1);

$char eq "\N{U+7F}";

}

sub is_c1 {

my $char = substr(shift,0,1);

$char =~ /[\N{U+80}-\N{U+9F}]/;

}

sub is_latin_1 { # But not ASCII; not C1

my $char = substr(shift,0,1);

$char =~ /[\N{U+A0}-\N{U+FF}]/;

}

And here are some alternative portable ways to write them:

sub Is_c0 {

my $char = substr(shift,0,1);

return $char =~ /[[:cntrl:]]/a && ! Is_delete($char);

Alternatively:

return $char =~ /[[:cntrl:]]/

&& $char =~ /[[:ascii:]]/

&& ! Is_delete($char);

}

sub Is_print_ascii {

my $char = substr(shift,0,1);

return $char =~ /[[:print:]]/a;

Alternatively:

return $char =~ /[[:print:]]/ && $char =~ /[[:ascii:]]/;

Or

return $char

=~ /[!"\#\$%&’()*+,\-.\/0-9:;<=>?\@A-Z[\\\]^_‘a-z{|}~]/;

}

sub Is_delete {

my $char = substr(shift,0,1);

return utf8::native_to_unicode(ord $char) == 0x7F;

}

sub Is_c1 {

use feature ’unicode_strings’;

my $char = substr(shift,0,1);

return $char =~ /[[:cntrl:]]/ && $char !~ /[[:ascii:]]/;

}

sub Is_latin_1 { # But not ASCII; not C1

use feature ’unicode_strings’;

my $char = substr(shift,0,1);

return ord($char) < 256

&& $char !~ /[[:ascii:]]/

&& $char !~ /[[:cntrl:]]/;

}

Another way to write Is_latin_1() would be to use the characters in the range explic-
itly:

sub Is_latin_1 {

my $char = substr(shift,0,1);

$char =~ /[¡¢£¤¥¦§¨ c©a«¬ R©¯˚±23´µ¶·¸1o» 1
4
1
2
3
4
¿ÀÁÂ~AÄÅÆÇÈÉÊËÌÍÎÏ]

[Ð~NÒÓÔ~OÖ×ØÙÚÛÜÝÞßàáâ~aäåæçèéêëı̀ı́ı̂ı̈ð~nòóô~oö÷øùúûüýþÿ]/x;
}

Although that form may run into trouble in network transit (due to the presence of 8
bit characters) or on non ISO-Latin character sets. But it does allow Is_c1 to be rewritten
so it works on Perls that don’t have ’unicode_strings’ (earlier than v5.14):

sub Is_latin_1 { # But not ASCII; not C1

my $char = substr(shift,0,1);

return ord($char) < 256

&& $char !~ /[[:ascii:]]/

&& ! Is_latin1($char);

}

19.10 SOCKETS

Most socket programming assumes ASCII character encodings in network byte order. Ex-
ceptions can include CGI script writing under a host web server where the server may take
care of translation for you. Most host web servers convert EBCDIC data to ISO-8859-1 or
Unicode on output.

19.11 SORTING

One big difference between ASCII-based character sets and EBCDIC ones are the relative
positions of the characters when sorted in native order. Of most concern are the upper- and
lowercase letters, the digits, and the underscore ("_"). On ASCII platforms the native sort
order has the digits come before the uppercase letters which come before the underscore
which comes before the lowercase letters. On EBCDIC, the underscore comes first, then
the lowercase letters, then the uppercase ones, and the digits last. If sorted on an ASCII-
based platform, the two-letter abbreviation for a physician comes before the two letter
abbreviation for drive; that is:

@sorted = sort(qw(Dr. dr.)); # @sorted holds (’Dr.’,’dr.’) on ASCII,

but (’dr.’,’Dr.’) on EBCDIC

The property of lowercase before uppercase letters in EBCDIC is even carried to the
Latin 1 EBCDIC pages such as 0037 and 1047. An example would be that "Ë" (E WITH

DIAERESIS, 203) comes before "ë" (e WITH DIAERESIS, 235) on an ASCII platform, but the
latter (83) comes before the former (115) on an EBCDIC platform. (Astute readers will
note that the uppercase version of "ß" SMALL LETTER SHARP S is simply "SS" and that the
upper case versions of "ÿ" (small y WITH DIAERESIS) and "µ" (MICRO SIGN) are not in the
0..255 range but are in Unicode, in a Unicode enabled Perl).

The sort order will cause differences between results obtained on ASCII platforms ver-
sus EBCDIC platforms. What follows are some suggestions on how to deal with these
differences.

19.11.1 Ignore ASCII vs. EBCDIC sort differences.

This is the least computationally expensive strategy. It may require some user education.

19.11.2 Use a sort helper function

This is completely general, but the most computationally expensive strategy. Choose one or
the other character set and transform to that for every sort comparision. Here’s a complete
example that transforms to ASCII sort order:

sub native_to_uni($) {

my $string = shift;

Saves time on an ASCII platform

return $string if ord ’A’ == 65;

my $output = "";

for my $i (0 .. length($string) - 1) {

$output

.= chr(utf8::native_to_unicode(ord(substr($string, $i, 1))));

}

Preserve utf8ness of input onto the output, even if it didn’t need

to be utf8

utf8::upgrade($output) if utf8::is_utf8($string);

return $output;

}

sub ascii_order { # Sort helper

return native_to_uni($a) cmp native_to_uni($b);

}

sort ascii_order @list;

19.11.3 MONO CASE then sort data (for non-digits, non-
underscore)

If you don’t care about where digits and underscore sort to, you can do something like this

sub case_insensitive_order { # Sort helper

return lc($a) cmp lc($b)

}

sort case_insensitive_order @list;

If performance is an issue, and you don’t care if the output is in the same case as the
input, Use tr/// to transform to the case most employed within the data. If the data are
primarily UPPERCASE non-Latin1, then apply tr/[a-z]/[A-Z]/, and then sort(). If
the data are primarily lowercase non Latin1 then apply tr/[A-Z]/[a-z]/ before sorting.
If the data are primarily UPPERCASE and include Latin-1 characters then apply:

tr/[a-z]/[A-Z]/;

tr/[àáâ~aäåæçèéêëı̀ı́ı̂ı̈ð~nòóô~oöøùúûüýþ]/[ÀÁÂ~AÄÅÆÇÈÉÊËÌÍÎÏÐ~NÒÓÔ~OÖØÙÚÛÜÝÞ/;
s/ß/SS/g;

then sort(). If you have a choice, it’s better to lowercase things to avoid the prob-
lems of the two Latin-1 characters whose uppercase is outside Latin-1: "ÿ" (small y WITH

DIAERESIS) and "µ" (MICRO SIGN). If you do need to upppercase, you can; with a Unicode-
enabled Perl, do:

tr/ÿ/\x{178}/;

tr/µ/\x{39C}/;

19.11.4 Perform sorting on one type of platform only.

This strategy can employ a network connection. As such it would be computationally
expensive.

19.12 TRANSFORMATION FORMATS

There are a variety of ways of transforming data with an intra character set mapping that
serve a variety of purposes. Sorting was discussed in the previous section and a few of the
other more popular mapping techniques are discussed next.

19.12.1 URL decoding and encoding

Note that some URLs have hexadecimal ASCII code points in them in an attempt to
overcome character or protocol limitation issues. For example the tilde character is not on
every keyboard hence a URL of the form:

http://www.pvhp.com/~pvhp/

may also be expressed as either of:

http://www.pvhp.com/%7Epvhp/

http://www.pvhp.com/%7epvhp/

where 7E is the hexadecimal ASCII code point for "~". Here is an example of decoding
such a URL in any EBCDIC code page:

$url = ’http://www.pvhp.com/%7Epvhp/’;

$url =~ s/%([0-9a-fA-F]{2})/

pack("c",utf8::unicode_to_native(hex($1)))/xge;

Conversely, here is a partial solution for the task of encoding such a URL in any EBCDIC
code page:

$url = ’http://www.pvhp.com/~pvhp/’;

The following regular expression does not address the

mappings for: (’.’ => ’%2E’, ’/’ => ’%2F’, ’:’ => ’%3A’)

$url =~ s/([\t "#%&\(\),;<=>\?\@\[\\\]^‘{|}~])/

sprintf("%%%02X",utf8::native_to_unicode(ord($1)))/xge;

where a more complete solution would split the URL into components and apply a full
s/// substitution only to the appropriate parts.

19.12.2 uu encoding and decoding

The u template to pack() or unpack() will render EBCDIC data in EBCDIC characters
equivalent to their ASCII counterparts. For example, the following will print "Yes indeed\n"
on either an ASCII or EBCDIC computer:

$all_byte_chrs = ’’;

for (0..255) { $all_byte_chrs .= chr($_); }

$uuencode_byte_chrs = pack(’u’, $all_byte_chrs);

($uu = <<’ENDOFHEREDOC’) =~ s/^\s*//gm;

M‘‘$"‘P0%!@<("0H+#‘T.#Q‘1$A,4%187&!D:&QP=’A\@(2(C)"4F)R@I*BLL

M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149’2$E*2TQ-3D]045)35%565UA9

M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>’EZ>WQ]?G^‘@8*#A(6&

MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S

MM+6VM[BYNKN\O;Z_P,’"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@

?X>+CY.7FY^CIZNOL[>[O\/’R_3U]O?X^?K[_/W^_P‘‘

ENDOFHEREDOC

if ($uuencode_byte_chrs eq $uu) {

print "Yes ";

}

$uudecode_byte_chrs = unpack(’u’, $uuencode_byte_chrs);

if ($uudecode_byte_chrs eq $all_byte_chrs) {

print "indeed\n";

}

Here is a very spartan uudecoder that will work on EBCDIC:

#!/usr/local/bin/perl

$_ = <> until ($mode,$file) = /^begin\s*(\d*)\s*(\S*)/;

open(OUT, "> $file") if $file ne "";

while(<>) {

last if /^end/;

next if /[a-z]/;

next unless int((((utf8::native_to_unicode(ord()) - 32) & 077)

+ 2) / 3)

== int(length() / 4);

print OUT unpack("u", $_);

}

close(OUT);

chmod oct($mode), $file;

19.12.3 Quoted-Printable encoding and decoding

On ASCII-encoded platforms it is possible to strip characters outside of the printable set
using:

This QP encoder works on ASCII only

$qp_string =~ s/([=\x00-\x1F\x80-\xFF])/

sprintf("=%02X",ord($1))/xge;

Starting in Perl v5.22, this is trivially changeable to work portably on both ASCII and
EBCDIC platforms.

This QP encoder works on both ASCII and EBCDIC

$qp_string =~ s/([=\N{U+00}-\N{U+1F}\N{U+80}-\N{U+FF}])/

sprintf("=%02X",ord($1))/xge;

For earlier Perls, a QP encoder that works on both ASCII and EBCDIC platforms would
look somewhat like the following:

$delete = utf8::unicode_to_native(ord("\x7F"));

$qp_string =~

s/([^[:print:]$delete])/

sprintf("=%02X",utf8::native_to_unicode(ord($1)))/xage;

(although in production code the substitutions might be done in the EBCDIC branch
with the function call and separately in the ASCII branch without the expense of the
identity map; in Perl v5.22, the identity map is optimized out so there is no expense, but
the alternative above is simpler and is also available in v5.22).

Such QP strings can be decoded with:

This QP decoder is limited to ASCII only

$string =~ s/=([[:xdigit:][[:xdigit:])/chr hex $1/ge;

$string =~ s/=[\n\r]+$//;

Whereas a QP decoder that works on both ASCII and EBCDIC platforms would look
somewhat like the following:

$string =~ s/=([[:xdigit:][:xdigit:]])/

chr utf8::native_to_unicode(hex $1)/xge;

$string =~ s/=[\n\r]+$//;

19.12.4 Caesarean ciphers

The practice of shifting an alphabet one or more characters for encipherment dates back
thousands of years and was explicitly detailed by Gaius Julius Caesar in hisGallic Wars text.
A single alphabet shift is sometimes referred to as a rotation and the shift amount is given as
a number $n after the string ’rot’ or "rot$n". Rot0 and rot26 would designate identity maps
on the 26-letter English version of the Latin alphabet. Rot13 has the interesting property
that alternate subsequent invocations are identity maps (thus rot13 is its own non-trivial
inverse in the group of 26 alphabet rotations). Hence the following is a rot13 encoder and
decoder that will work on ASCII and EBCDIC platforms:

#!/usr/local/bin/perl

while(<>){

tr/n-za-mN-ZA-M/a-zA-Z/;

print;

}

In one-liner form:

perl -ne ’tr/n-za-mN-ZA-M/a-zA-Z/;print’

19.13 Hashing order and checksums

Perl deliberately randomizes hash order for security purposes on both ASCII and EBCDIC
platforms.

EBCDIC checksums will differ for the same file translated into ASCII and vice versa.

19.14 I18N AND L10N

Internationalization (I18N) and localization (L10N) are supported at least in principle
even on EBCDIC platforms. The details are system-dependent and discussed under the
Section 19.16 [OS ISSUES], page 297 section below.

19.15 MULTI-OCTET CHARACTER SETS

Perl works with UTF-EBCDIC, a multi-byte encoding. In Perls earlier than v5.22, there
may be various bugs in this regard.

Legacy multi byte EBCDIC code pages XXX.

19.16 OS ISSUES

There may be a few system-dependent issues of concern to EBCDIC Perl programmers.

19.16.1 OS/400

PASE

The PASE environment is a runtime environment for OS/400 that can run
executables built for PowerPC AIX in OS/400; see perlos400. PASE is ASCII-
based, not EBCDIC-based as the ILE.

IFS access

XXX.

19.16.2 OS/390, z/OS

Perl runs under Unix Systems Services or USS.

sigaction

SA_SIGINFO can have segmentation faults.

chcp

chcp is supported as a shell utility for displaying and changing one’s code page.
See also chcp(1).

dataset access
For sequential data set access try:

my @ds_records = ‘cat //DSNAME‘;

or:

my @ds_records = ‘cat //’HLQ.DSNAME’‘;

See also the OS390::Stdio module on CPAN.

iconv

iconv is supported as both a shell utility and a C RTL routine. See also the
iconv(1) and iconv(3) manual pages.

locales

Locales are supported. There may be glitches when a locale is another EBCDIC
code page which has some of the Section 19.3.4.1 [code-page variant characters],
page 268 in other positions.

There aren’t currently any real UTF-8 locales, even though some locale names
contain the string "UTF-8".

See Section 38.1 [perllocale NAME], page 701 for information on locales. The
L10N files are in /usr/nls/locale. $Config{d_setlocale} is ’define’ on
OS/390 or z/OS.

19.16.3 POSIX-BC?

XXX.

19.17 BUGS

• The cmp (and hence sort) operators do not necessarily give the correct results when
both operands are UTF-EBCDIC encoded strings and there is a mixture of ASCII
and/or control characters, along with other characters.

• Ranges containing \N{...} in the tr/// (and y///) transliteration operators are
treated differently than the equivalent ranges in regular expression pattersn. They
should, but don’t, cause the values in the ranges to all be treated as Unicode code
points, and not native ones. (Section 58.2.7 [perlre Version 8 Regular Expressions],
page 1024 gives details as to how it should work.)

• Not all shells will allow multiple -e string arguments to perl to be concatenated together
properly as recipes in this document 0, 2, 4, 5, and 6 might seem to imply.

• There are some bugs in the pack/unpack "U0" template

http://man.he.net/man1/chcp
http://man.he.net/man1/iconv
http://man.he.net/man3/iconv

• There are a significant number of test failures in the CPAN modules shipped with Perl
v5.22. These are only in modules not primarily maintained by Perl 5 porters. Some of
these are failures in the tests only: they don’t realize that it is proper to get different
results on EBCDIC platforms. And some of the failures are real bugs. If you compile
and do a make test on Perl, all tests on the /cpan directory are skipped.

In particular, the extensions Unicode-Collate and Unicode-Normalize are not sup-
ported under EBCDIC; likewise for the (now deprecated) encoding pragma.

Encode partially works.

• In earlier versions, when byte and character data were concatenated, the new string
was sometimes created by decoding the byte strings as ISO 8859-1 (Latin-1), even if
the old Unicode string used EBCDIC.

19.18 SEE ALSO

Section 38.1 [perllocale NAME], page 701, Section 25.1 [perlfunc NAME], page 351,
Section 81.1 [perlunicode NAME], page 1317, utf8.

19.19 REFERENCES

http://anubis.dkuug.dk/i18n/charmaps

http://www.unicode.org/

http://www.unicode.org/unicode/reports/tr16/

http://www.wps.com/projects/codes/ ASCII: American Standard Code for Infor-
mation Infiltration Tom Jennings, September 1999.

The Unicode Standard, Version 3.0 The Unicode Consortium, Lisa Moore ed., ISBN
0-201-61633-5, Addison Wesley Developers Press, February 2000.

CDRA: IBM - Character Data Representation Architecture - Reference and Registry,
IBM SC09-2190-00, December 1996.

"Demystifying Character Sets", Andrea Vine, Multilingual Computing & Technology,
#26 Vol. 10 Issue 4, August/September 1999; ISSN 1523-0309; Multilingual Computing
Inc. Sandpoint ID, USA.

Codes, Ciphers, and Other Cryptic and Clandestine Communication Fred B. Wrixon,
ISBN 1-57912-040-7, Black Dog & Leventhal Publishers, 1998.

http://www.bobbemer.com/P-BIT.HTM IBM - EBCDIC and the P-bit; The biggest
Computer Goof Ever Robert Bemer.

19.20 HISTORY

15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp.

19.21 AUTHOR

Peter Prymmer pvhp@best.com wrote this in 1999 and 2000 with CCSID 0819 and 0037 help
from Chris Leach and André Pirard A.Pirard@ulg.ac.be as well as POSIX-BC help from
Thomas Dorner Thomas.Dorner@start.de. Thanks also to Vickie Cooper, Philip Newton,

http://anubis.dkuug.dk/i18n/charmaps
http://www.unicode.org/
http://www.unicode.org/unicode/reports/tr16/
http://www.wps.com/projects/codes/
http://www.bobbemer.com/P-BIT.HTM

William Raffloer, and Joe Smith. Trademarks, registered trademarks, service marks and
registered service marks used in this document are the property of their respective owners.

Now maintained by Perl5 Porters.

20 perlembed

20.1 NAME

perlembed - how to embed perl in your C program

20.2 DESCRIPTION

20.2.1 PREAMBLE

Do you want to:

Use C from Perl?
Read perlxstut, perlxs, h2xs, Section 28.1 [perlguts NAME], page 512, and
perlapi.

Use a Unix program from Perl?
Read about back-quotes and about system and exec in Section 25.1 [perlfunc
NAME], page 351.

Use Perl from Perl?
Read about 〈undefined〉 [perlfunc do], page 〈undefined〉 and [perlfunc eval],
page 377 and [perlfunc require], page 437 and 〈undefined〉 [perlfunc use],
page 〈undefined〉.

Use C from C?
Rethink your design.

Use Perl from C?
Read on...

20.2.2 ROADMAP

• Compiling your C program

• Adding a Perl interpreter to your C program

• Calling a Perl subroutine from your C program

• Evaluating a Perl statement from your C program

• Performing Perl pattern matches and substitutions from your C program

• Fiddling with the Perl stack from your C program

• Maintaining a persistent interpreter

• Maintaining multiple interpreter instances

• Using Perl modules, which themselves use C libraries, from your C program

• Embedding Perl under Win32

20.2.3 Compiling your C program

If you have trouble compiling the scripts in this documentation, you’re not alone. The
cardinal rule: COMPILE THE PROGRAMS IN EXACTLY THE SAME WAY THAT
YOUR PERL WAS COMPILED. (Sorry for yelling.)

Also, every C program that uses Perl must link in the perl library. What’s that, you
ask? Perl is itself written in C; the perl library is the collection of compiled C programs
that were used to create your perl executable (/usr/bin/perl or equivalent). (Corollary:
you can’t use Perl from your C program unless Perl has been compiled on your machine, or
installed properly–that’s why you shouldn’t blithely copy Perl executables from machine to
machine without also copying the lib directory.)

When you use Perl from C, your C program will–usually–allocate, "run", and deallocate
a PerlInterpreter object, which is defined by the perl library.

If your copy of Perl is recent enough to contain this documentation (version 5.002 or
later), then the perl library (and EXTERN.h and perl.h, which you’ll also need) will reside
in a directory that looks like this:

/usr/local/lib/perl5/your_architecture_here/CORE

or perhaps just

/usr/local/lib/perl5/CORE

or maybe something like

/usr/opt/perl5/CORE

Execute this statement for a hint about where to find CORE:

perl -MConfig -e ’print $Config{archlib}’

Here’s how you’d compile the example in the next section, Section 20.2.4 [Adding a Perl
interpreter to your C program], page 303, on my Linux box:

% gcc -O2 -Dbool=char -DHAS_BOOL -I/usr/local/include

-I/usr/local/lib/perl5/i586-linux/5.003/CORE

-L/usr/local/lib/perl5/i586-linux/5.003/CORE

-o interp interp.c -lperl -lm

(That’s all one line.) On my DEC Alpha running old 5.003 05, the incantation is a bit
different:

% cc -O2 -Olimit 2900 -DSTANDARD_C -I/usr/local/include

-I/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE

-L/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE -L/usr/local/lib

-D__LANGUAGE_C__ -D_NO_PROTO -o interp interp.c -lperl -lm

How can you figure out what to add? Assuming your Perl is post-5.001, execute a perl

-V command and pay special attention to the "cc" and "ccflags" information.

You’ll have to choose the appropriate compiler (cc, gcc, et al.) for your machine: perl
-MConfig -e ’print $Config{cc}’ will tell you what to use.

You’ll also have to choose the appropriate library directory (/usr/local/lib/...) for your
machine. If your compiler complains that certain functions are undefined, or that it can’t
locate -lperl, then you need to change the path following the -L. If it complains that it
can’t find EXTERN.h and perl.h, you need to change the path following the -I.

You may have to add extra libraries as well. Which ones? Perhaps those printed by

perl -MConfig -e ’print $Config{libs}’

Provided your perl binary was properly configured and installed the ExtUtils::Embed
module will determine all of this information for you:

% cc -o interp interp.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

If the ExtUtils::Embed module isn’t part of your Perl distribution, you can retrieve it
from http://www.perl.com/perl/CPAN/modules/by-module/ExtUtils/ (If this documenta-
tion came from your Perl distribution, then you’re running 5.004 or better and you already
have it.)

The ExtUtils::Embed kit on CPAN also contains all source code for the examples in this
document, tests, additional examples and other information you may find useful.

20.2.4 Adding a Perl interpreter to your C program

In a sense, perl (the C program) is a good example of embedding Perl (the language), so I’ll
demonstrate embedding with miniperlmain.c, included in the source distribution. Here’s a
bastardized, non-portable version of miniperlmain.c containing the essentials of embedding:

#include <EXTERN.h> /* from the Perl distribution */

#include <perl.h> /* from the Perl distribution */

static PerlInterpreter *my_perl; /*** The Perl interpreter ***/

int main(int argc, char **argv, char **env)

{

PERL_SYS_INIT3(&argc,&argv,&env);

my_perl = perl_alloc();

perl_construct(my_perl);

PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

perl_parse(my_perl, NULL, argc, argv, (char **)NULL);

perl_run(my_perl);

perl_destruct(my_perl);

perl_free(my_perl);

PERL_SYS_TERM();

}

Notice that we don’t use the env pointer. Normally handed to perl_parse as its final
argument, env here is replaced by NULL, which means that the current environment will be
used.

The macros PERL SYS INIT3() and PERL SYS TERM() provide system-specific
tune up of the C runtime environment necessary to run Perl interpreters; they should
only be called once regardless of how many interpreters you create or destroy. Call
PERL SYS INIT3() before you create your first interpreter, and PERL SYS TERM()
after you free your last interpreter.

Since PERL SYS INIT3() may change env, it may be more appropriate to provide env
as an argument to perl parse().

Also notice that no matter what arguments you pass to perl parse(),
PERL SYS INIT3() must be invoked on the C main() argc, argv and env and
only once.

Now compile this program (I’ll call it interp.c) into an executable:

% cc -o interp interp.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

After a successful compilation, you’ll be able to use interp just like perl itself:

% interp

print "Pretty Good Perl \n";

print "10890 - 9801 is ", 10890 - 9801;

<CTRL-D>

Pretty Good Perl

10890 - 9801 is 1089

or

% interp -e ’printf("%x", 3735928559)’

deadbeef

You can also read and execute Perl statements from a file while in the midst of your C
program, by placing the filename in argv[1] before calling perl run.

20.2.5 Calling a Perl subroutine from your C program

To call individual Perl subroutines, you can use any of the call * functions documented in
Section 7.1 [perlcall NAME], page 28. In this example we’ll use call_argv.

That’s shown below, in a program I’ll call showtime.c.

#include <EXTERN.h>

#include <perl.h>

static PerlInterpreter *my_perl;

int main(int argc, char **argv, char **env)

{

char *args[] = { NULL };

PERL_SYS_INIT3(&argc,&argv,&env);

my_perl = perl_alloc();

perl_construct(my_perl);

perl_parse(my_perl, NULL, argc, argv, NULL);

PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

/*** skipping perl_run() ***/

call_argv("showtime", G_DISCARD | G_NOARGS, args);

perl_destruct(my_perl);

perl_free(my_perl);

PERL_SYS_TERM();

}

where showtime is a Perl subroutine that takes no arguments (that’s the G NOARGS)
and for which I’ll ignore the return value (that’s the G DISCARD). Those flags, and others,
are discussed in Section 7.1 [perlcall NAME], page 28.

I’ll define the showtime subroutine in a file called showtime.pl :

print "I shan’t be printed.";

sub showtime {

print time;

}

Simple enough. Now compile and run:

% cc -o showtime showtime.c \

‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

% showtime showtime.pl

818284590

yielding the number of seconds that elapsed between January 1, 1970 (the beginning of
the Unix epoch), and the moment I began writing this sentence.

In this particular case we don’t have to call perl run, as we set the PL exit flag
PERL EXIT DESTRUCT END which executes END blocks in perl destruct.

If you want to pass arguments to the Perl subroutine, you can add strings to the NULL-
terminated args list passed to call argv. For other data types, or to examine return values,
you’ll need to manipulate the Perl stack. That’s demonstrated in Section 20.2.8 [Fiddling
with the Perl stack from your C program], page 311.

20.2.6 Evaluating a Perl statement from your C program

Perl provides two API functions to evaluate pieces of Perl code. These are Section “eval sv”
in perlapi and Section “eval pv” in perlapi.

Arguably, these are the only routines you’ll ever need to execute snippets of Perl code
from within your C program. Your code can be as long as you wish; it can contain multiple
statements; it can employ 〈undefined〉 [perlfunc use], page 〈undefined〉, [perlfunc require],
page 437, and 〈undefined〉 [perlfunc do], page 〈undefined〉 to include external Perl files.

eval pv lets us evaluate individual Perl strings, and then extract variables for coercion
into C types. The following program, string.c, executes three Perl strings, extracting an
int from the first, a float from the second, and a char * from the third.

#include <EXTERN.h>

#include <perl.h>

static PerlInterpreter *my_perl;

main (int argc, char **argv, char **env)

{

char *embedding[] = { "", "-e", "0" };

PERL_SYS_INIT3(&argc,&argv,&env);

my_perl = perl_alloc();

perl_construct(my_perl);

perl_parse(my_perl, NULL, 3, embedding, NULL);

PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

perl_run(my_perl);

/** Treat $a as an integer **/

eval_pv("$a = 3; $a **= 2", TRUE);

printf("a = %d\n", SvIV(get_sv("a", 0)));

/** Treat $a as a float **/

eval_pv("$a = 3.14; $a **= 2", TRUE);

printf("a = %f\n", SvNV(get_sv("a", 0)));

/** Treat $a as a string **/

eval_pv(

"$a = ’rekcaH lreP rehtonA tsuJ’; $a = reverse($a);", TRUE);

printf("a = %s\n", SvPV_nolen(get_sv("a", 0)));

perl_destruct(my_perl);

perl_free(my_perl);

PERL_SYS_TERM();

}

All of those strange functions with sv in their names help convert Perl scalars to C types.
They’re described in Section 28.1 [perlguts NAME], page 512 and perlapi.

If you compile and run string.c, you’ll see the results of using SvIV() to create an int,
SvNV() to create a float, and SvPV() to create a string:

a = 9

a = 9.859600

a = Just Another Perl Hacker

In the example above, we’ve created a global variable to temporarily store the computed
value of our eval’ed expression. It is also possible and in most cases a better strategy to
fetch the return value from eval pv() instead. Example:

...

SV *val = eval_pv("reverse ’rekcaH lreP rehtonA tsuJ’", TRUE);

printf("%s\n", SvPV_nolen(val));

...

This way, we avoid namespace pollution by not creating global variables and we’ve
simplified our code as well.

20.2.7 Performing Perl pattern matches and substitutions from
your C program

The eval sv() function lets us evaluate strings of Perl code, so we can define some func-
tions that use it to "specialize" in matches and substitutions: match(), substitute(), and
matches().

I32 match(SV *string, char *pattern);

Given a string and a pattern (e.g., m/clasp/ or /\b\w*\b/, which in your C program
might appear as "/\\b\\w*\\b/"), match() returns 1 if the string matches the pattern and
0 otherwise.

int substitute(SV **string, char *pattern);

Given a pointer to an SV and an =~ operation (e.g., s/bob/robert/g or tr[A-Z][a-z]),
substitute() modifies the string within the SV as according to the operation, returning the
number of substitutions made.

SSize_t matches(SV *string, char *pattern, AV **matches);

Given an SV, a pattern, and a pointer to an empty AV, matches() evaluates $string

=~ $pattern in a list context, and fills in matches with the array elements, returning the
number of matches found.

Here’s a sample program, match.c, that uses all three (long lines have been wrapped
here):

#include <EXTERN.h>

#include <perl.h>

static PerlInterpreter *my_perl;

/** my_eval_sv(code, error_check)

** kinda like eval_sv(),

** but we pop the return value off the stack

**/

SV* my_eval_sv(SV *sv, I32 croak_on_error)

{

dSP;

SV* retval;

PUSHMARK(SP);

eval_sv(sv, G_SCALAR);

SPAGAIN;

retval = POPs;

PUTBACK;

if (croak_on_error && SvTRUE(ERRSV))

croak(SvPVx_nolen(ERRSV));

return retval;

}

/** match(string, pattern)

**

** Used for matches in a scalar context.

**

** Returns 1 if the match was successful; 0 otherwise.

**/

I32 match(SV *string, char *pattern)

{

SV *command = newSV(0), *retval;

sv_setpvf(command, "my $string = ’%s’; $string =~ %s",

SvPV_nolen(string), pattern);

retval = my_eval_sv(command, TRUE);

SvREFCNT_dec(command);

return SvIV(retval);

}

/** substitute(string, pattern)

**

** Used for =~ operations that

** modify their left-hand side (s/// and tr///)

**

** Returns the number of successful matches, and

** modifies the input string if there were any.

**/

I32 substitute(SV **string, char *pattern)

{

SV *command = newSV(0), *retval;

sv_setpvf(command, "$string = ’%s’; ($string =~ %s)",

SvPV_nolen(*string), pattern);

retval = my_eval_sv(command, TRUE);

SvREFCNT_dec(command);

*string = get_sv("string", 0);

return SvIV(retval);

}

/** matches(string, pattern, matches)

**

** Used for matches in a list context.

**

** Returns the number of matches,

** and fills in **matches with the matching substrings

**/

SSize_t matches(SV *string, char *pattern, AV **match_list)

{

SV *command = newSV(0);

SSize_t num_matches;

sv_setpvf(command, "my $string = ’%s’; @array = ($string =~ %s)",

SvPV_nolen(string), pattern);

my_eval_sv(command, TRUE);

SvREFCNT_dec(command);

*match_list = get_av("array", 0);

num_matches = av_top_index(*match_list) + 1;

return num_matches;

}

main (int argc, char **argv, char **env)

{

char *embedding[] = { "", "-e", "0" };

AV *match_list;

I32 num_matches, i;

SV *text;

PERL_SYS_INIT3(&argc,&argv,&env);

my_perl = perl_alloc();

perl_construct(my_perl);

perl_parse(my_perl, NULL, 3, embedding, NULL);

PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

text = newSV(0);

sv_setpv(text, "When he is at a convenience store and the "

"bill comes to some amount like 76 cents, Maynard is "

"aware that there is something he *should* do, something "

"that will enable him to get back a quarter, but he has "

"no idea *what*. He fumbles through his red squeezey "

"changepurse and gives the boy three extra pennies with "

"his dollar, hoping that he might luck into the correct "

"amount. The boy gives him back two of his own pennies "

"and then the big shiny quarter that is his prize. "

"-RICHH");

if (match(text, "m/quarter/")) /** Does text contain ’quarter’? **/

printf("match: Text contains the word ’quarter’.\n\n");

else

printf("match: Text doesn’t contain the word ’quarter’.\n\n");

if (match(text, "m/eighth/")) /** Does text contain ’eighth’? **/

printf("match: Text contains the word ’eighth’.\n\n");

else

printf("match: Text doesn’t contain the word ’eighth’.\n\n");

/** Match all occurrences of /wi../ **/

num_matches = matches(text, "m/(wi..)/g", &match_list);

printf("matches: m/(wi..)/g found %d matches...\n", num_matches);

for (i = 0; i < num_matches; i++)

printf("match: %s\n",

SvPV_nolen(*av_fetch(match_list, i, FALSE)));

printf("\n");

/** Remove all vowels from text **/

num_matches = substitute(&text, "s/[aeiou]//gi");

if (num_matches) {

printf("substitute: s/[aeiou]//gi...%lu substitutions made.\n",

(unsigned long)num_matches);

printf("Now text is: %s\n\n", SvPV_nolen(text));

}

/** Attempt a substitution **/

if (!substitute(&text, "s/Perl/C/")) {

printf("substitute: s/Perl/C...No substitution made.\n\n");

}

SvREFCNT_dec(text);

PL_perl_destruct_level = 1;

perl_destruct(my_perl);

perl_free(my_perl);

PERL_SYS_TERM();

}

which produces the output (again, long lines have been wrapped here)

match: Text contains the word ’quarter’.

match: Text doesn’t contain the word ’eighth’.

matches: m/(wi..)/g found 2 matches...

match: will

match: with

substitute: s/[aeiou]//gi...139 substitutions made.

Now text is: Whn h s t cnvnnc str nd th bll cms t sm mnt lk 76 cnts,

Mynrd s wr tht thr s smthng h *shld* d, smthng tht wll nbl hm t gt

bck qrtr, bt h hs n d *wht*. H fmbls thrgh hs rd sqzy chngprs nd

gvs th by thr xtr pnns wth hs dllr, hpng tht h mght lck nt th crrct

mnt. Th by gvs hm bck tw f hs wn pnns nd thn th bg shny qrtr tht s

hs prz. -RCHH

substitute: s/Perl/C...No substitution made.

20.2.8 Fiddling with the Perl stack from your C program

When trying to explain stacks, most computer science textbooks mumble something about
spring-loaded columns of cafeteria plates: the last thing you pushed on the stack is the first
thing you pop off. That’ll do for our purposes: your C program will push some arguments
onto "the Perl stack", shut its eyes while some magic happens, and then pop the results–the
return value of your Perl subroutine–off the stack.

First you’ll need to know how to convert between C types and Perl types, with newSViv()
and sv setnv() and newAV() and all their friends. They’re described in Section 28.1 [perlguts
NAME], page 512 and perlapi.

Then you’ll need to know how to manipulate the Perl stack. That’s described in
Section 7.1 [perlcall NAME], page 28.

Once you’ve understood those, embedding Perl in C is easy.

Because C has no builtin function for integer exponentiation, let’s make Perl’s ** operator
available to it (this is less useful than it sounds, because Perl implements ** with C’s pow()
function). First I’ll create a stub exponentiation function in power.pl :

sub expo {

my ($a, $b) = @_;

return $a ** $b;

}

Now I’ll create a C program, power.c, with a function PerlPower() that contains all the
perlguts necessary to push the two arguments into expo() and to pop the return value out.
Take a deep breath...

#include <EXTERN.h>

#include <perl.h>

static PerlInterpreter *my_perl;

static void

PerlPower(int a, int b)

{

dSP; /* initialize stack pointer */

ENTER; /* everything created after here */

SAVETMPS; /* ...is a temporary variable. */

PUSHMARK(SP); /* remember the stack pointer */

XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */

XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */

PUTBACK; /* make local stack pointer global */

call_pv("expo", G_SCALAR); /* call the function */

SPAGAIN; /* refresh stack pointer */

/* pop the return value from stack */

printf ("%d to the %dth power is %d.\n", a, b, POPi);

PUTBACK;

FREETMPS; /* free that return value */

LEAVE; /* ...and the XPUSHed "mortal" args.*/

}

int main (int argc, char **argv, char **env)

{

char *my_argv[] = { "", "power.pl" };

PERL_SYS_INIT3(&argc,&argv,&env);

my_perl = perl_alloc();

perl_construct(my_perl);

perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);

PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

perl_run(my_perl);

PerlPower(3, 4); /*** Compute 3 ** 4 ***/

perl_destruct(my_perl);

perl_free(my_perl);

PERL_SYS_TERM();

}

Compile and run:

% cc -o power power.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

% power

3 to the 4th power is 81.

20.2.9 Maintaining a persistent interpreter

When developing interactive and/or potentially long-running applications, it’s a good idea
to maintain a persistent interpreter rather than allocating and constructing a new inter-
preter multiple times. The major reason is speed: since Perl will only be loaded into memory
once.

However, you have to be more cautious with namespace and variable scoping when
using a persistent interpreter. In previous examples we’ve been using global variables in the
default package main. We knew exactly what code would be run, and assumed we could
avoid variable collisions and outrageous symbol table growth.

Let’s say your application is a server that will occasionally run Perl code from some
arbitrary file. Your server has no way of knowing what code it’s going to run. Very
dangerous.

If the file is pulled in by perl_parse(), compiled into a newly constructed interpreter,
and subsequently cleaned out with perl_destruct() afterwards, you’re shielded from most
namespace troubles.

One way to avoid namespace collisions in this scenario is to translate the filename into
a guaranteed-unique package name, and then compile the code into that package using
[perlfunc eval], page 377. In the example below, each file will only be compiled once.
Or, the application might choose to clean out the symbol table associated with the file
after it’s no longer needed. Using Section “call argv” in perlapi, We’ll call the subrou-

tine Embed::Persistent::eval_file which lives in the file persistent.pl and pass the
filename and boolean cleanup/cache flag as arguments.

Note that the process will continue to grow for each file that it uses. In addition, there
might be AUTOLOADed subroutines and other conditions that cause Perl’s symbol table to
grow. You might want to add some logic that keeps track of the process size, or restarts
itself after a certain number of requests, to ensure that memory consumption is minimized.
You’ll also want to scope your variables with 〈undefined〉 [perlfunc my], page 〈undefined〉
whenever possible.

package Embed::Persistent;

#persistent.pl

use strict;

our %Cache;

use Symbol qw(delete_package);

sub valid_package_name {

my($string) = @_;

$string =~ s/([^A-Za-z0-9\/])/sprintf("_%2x",unpack("C",$1))/eg;

second pass only for words starting with a digit

$string =~ s|/(\d)|sprintf("/_%2x",unpack("C",$1))|eg;

Dress it up as a real package name

$string =~ s|/|::|g;

return "Embed" . $string;

}

sub eval_file {

my($filename, $delete) = @_;

my $package = valid_package_name($filename);

my $mtime = -M $filename;

if(defined $Cache{$package}{mtime}

&&

$Cache{$package}{mtime} <= $mtime)

{

we have compiled this subroutine already,

it has not been updated on disk, nothing left to do

print STDERR "already compiled $package->handler\n";

}

else {

local *FH;

open FH, $filename or die "open ’$filename’ $!";

local($/) = undef;

my $sub = <FH>;

close FH;

#wrap the code into a subroutine inside our unique package

my $eval = qq{package $package; sub handler { $sub; }};

{

hide our variables within this block

my($filename,$mtime,$package,$sub);

eval $eval;

}

die $@ if $@;

#cache it unless we’re cleaning out each time

$Cache{$package}{mtime} = $mtime unless $delete;

}

eval {$package->handler;};

die $@ if $@;

delete_package($package) if $delete;

#take a look if you want

#print Devel::Symdump->rnew($package)->as_string, $/;

}

1;

__END__

/* persistent.c */

#include <EXTERN.h>

#include <perl.h>

/* 1 = clean out filename’s symbol table after each request,

0 = don’t

*/

#ifndef DO_CLEAN

#define DO_CLEAN 0

#endif

#define BUFFER_SIZE 1024

static PerlInterpreter *my_perl = NULL;

int

main(int argc, char **argv, char **env)

{

char *embedding[] = { "", "persistent.pl" };

char *args[] = { "", DO_CLEAN, NULL };

char filename[BUFFER_SIZE];

int exitstatus = 0;

PERL_SYS_INIT3(&argc,&argv,&env);

if((my_perl = perl_alloc()) == NULL) {

fprintf(stderr, "no memory!");

exit(1);

}

perl_construct(my_perl);

PL_origalen = 1; /* don’t let $0 assignment update the

proctitle or embedding[0] */

exitstatus = perl_parse(my_perl, NULL, 2, embedding, NULL);

PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

if(!exitstatus) {

exitstatus = perl_run(my_perl);

while(printf("Enter file name: ") &&

fgets(filename, BUFFER_SIZE, stdin)) {

filename[strlen(filename)-1] = ’\0’; /* strip \n */

/* call the subroutine,

passing it the filename as an argument */

args[0] = filename;

call_argv("Embed::Persistent::eval_file",

G_DISCARD | G_EVAL, args);

/* check $@ */

if(SvTRUE(ERRSV))

fprintf(stderr, "eval error: %s\n", SvPV_nolen(ERRSV));

}

}

PL_perl_destruct_level = 0;

perl_destruct(my_perl);

perl_free(my_perl);

PERL_SYS_TERM();

exit(exitstatus);

}

Now compile:

% cc -o persistent persistent.c \

‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

Here’s an example script file:

#test.pl

my $string = "hello";

foo($string);

sub foo {

print "foo says: @_\n";

}

Now run:

% persistent

Enter file name: test.pl

foo says: hello

Enter file name: test.pl

already compiled Embed::test_2epl->handler

foo says: hello

Enter file name: ^C

20.2.10 Execution of END blocks

Traditionally END blocks have been executed at the end of the perl run. This causes
problems for applications that never call perl run. Since perl 5.7.2 you can specify PL_

exit_flags |= PERL_EXIT_DESTRUCT_END to get the new behaviour. This also enables the
running of END blocks if the perl parse fails and perl_destruct will return the exit value.

20.2.11 $0 assignments

When a perl script assigns a value to $0 then the perl runtime will try to make this value
show up as the program name reported by "ps" by updating the memory pointed to by the
argv passed to perl parse() and also calling API functions like setproctitle() where available.
This behaviour might not be appropriate when embedding perl and can be disabled by
assigning the value 1 to the variable PL_origalen before perl parse() is called.

The persistent.c example above is for instance likely to segfault when $0 is assigned
to if the PL_origalen = 1; assignment is removed. This because perl will try to write to
the read only memory of the embedding[] strings.

20.2.12 Maintaining multiple interpreter instances

Some rare applications will need to create more than one interpreter during a session.
Such an application might sporadically decide to release any resources associated with the
interpreter.

The program must take care to ensure that this takes place before the next interpreter is
constructed. By default, when perl is not built with any special options, the global variable
PL_perl_destruct_level is set to 0, since extra cleaning isn’t usually needed when a
program only ever creates a single interpreter in its entire lifetime.

Setting PL_perl_destruct_level to 1 makes everything squeaky clean:

while(1) {

...

/* reset global variables here with PL_perl_destruct_level = 1 */

PL_perl_destruct_level = 1;

perl_construct(my_perl);

...

/* clean and reset _everything_ during perl_destruct */

PL_perl_destruct_level = 1;

perl_destruct(my_perl);

perl_free(my_perl);

...

/* let’s go do it again! */

}

When perl destruct() is called, the interpreter’s syntax parse tree and symbol tables are
cleaned up, and global variables are reset. The second assignment to PL_perl_destruct_

level is needed because perl construct resets it to 0.

Now suppose we have more than one interpreter instance running at the same time.
This is feasible, but only if you used the Configure option -Dusemultiplicity or the op-
tions -Dusethreads -Duseithreads when building perl. By default, enabling one of these
Configure options sets the per-interpreter global variable PL_perl_destruct_level to 1,
so that thorough cleaning is automatic and interpreter variables are initialized correctly.
Even if you don’t intend to run two or more interpreters at the same time, but to run
them sequentially, like in the above example, it is recommended to build perl with the
-Dusemultiplicity option otherwise some interpreter variables may not be initialized cor-
rectly between consecutive runs and your application may crash.

See also Section “Thread-aware system interfaces” in perlxs.

Using -Dusethreads -Duseithreads rather than -Dusemultiplicity is more appro-
priate if you intend to run multiple interpreters concurrently in different threads, because
it enables support for linking in the thread libraries of your system with the interpreter.

Let’s give it a try:

#include <EXTERN.h>

#include <perl.h>

/* we’re going to embed two interpreters */

#define SAY_HELLO "-e", "print qq(Hi, I’m $^X\n)"

int main(int argc, char **argv, char **env)

{

PerlInterpreter *one_perl, *two_perl;

char *one_args[] = { "one_perl", SAY_HELLO };

char *two_args[] = { "two_perl", SAY_HELLO };

PERL_SYS_INIT3(&argc,&argv,&env);

one_perl = perl_alloc();

two_perl = perl_alloc();

PERL_SET_CONTEXT(one_perl);

perl_construct(one_perl);

PERL_SET_CONTEXT(two_perl);

perl_construct(two_perl);

PERL_SET_CONTEXT(one_perl);

perl_parse(one_perl, NULL, 3, one_args, (char **)NULL);

PERL_SET_CONTEXT(two_perl);

perl_parse(two_perl, NULL, 3, two_args, (char **)NULL);

PERL_SET_CONTEXT(one_perl);

perl_run(one_perl);

PERL_SET_CONTEXT(two_perl);

perl_run(two_perl);

PERL_SET_CONTEXT(one_perl);

perl_destruct(one_perl);

PERL_SET_CONTEXT(two_perl);

perl_destruct(two_perl);

PERL_SET_CONTEXT(one_perl);

perl_free(one_perl);

PERL_SET_CONTEXT(two_perl);

perl_free(two_perl);

PERL_SYS_TERM();

}

Note the calls to PERL SET CONTEXT(). These are necessary to initialize the global
state that tracks which interpreter is the "current" one on the particular process or thread
that may be running it. It should always be used if you have more than one interpreter and
are making perl API calls on both interpreters in an interleaved fashion.

PERL SET CONTEXT(interp) should also be called whenever interp is used by a
thread that did not create it (using either perl alloc(), or the more esoteric perl clone()).

Compile as usual:

% cc -o multiplicity multiplicity.c \

‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

Run it, Run it:

% multiplicity

Hi, I’m one_perl

Hi, I’m two_perl

20.2.13 Using Perl modules, which themselves use C libraries,
from your C program

If you’ve played with the examples above and tried to embed a script that use()s a Perl
module (such as Socket) which itself uses a C or C++ library, this probably happened:

Can’t load module Socket, dynamic loading not available in this perl.

(You may need to build a new perl executable which either supports

dynamic loading or has the Socket module statically linked into it.)

What’s wrong?

Your interpreter doesn’t know how to communicate with these extensions on its own. A
little glue will help. Up until now you’ve been calling perl parse(), handing it NULL for
the second argument:

perl_parse(my_perl, NULL, argc, my_argv, NULL);

That’s where the glue code can be inserted to create the initial contact between Perl and
linked C/C++ routines. Let’s take a look some pieces of perlmain.c to see how Perl does
this:

static void xs_init (pTHX);

EXTERN_C void boot_DynaLoader (pTHX_ CV* cv);

EXTERN_C void boot_Socket (pTHX_ CV* cv);

EXTERN_C void

xs_init(pTHX)

{

char *file = __FILE__;

/* DynaLoader is a special case */

newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);

newXS("Socket::bootstrap", boot_Socket, file);

}

Simply put: for each extension linked with your Perl executable (determined during its
initial configuration on your computer or when adding a new extension), a Perl subroutine
is created to incorporate the extension’s routines. Normally, that subroutine is named
Module::bootstrap() and is invoked when you say use Module. In turn, this hooks into an
XSUB, boot Module, which creates a Perl counterpart for each of the extension’s XSUBs.
Don’t worry about this part; leave that to the xsubpp and extension authors. If your
extension is dynamically loaded, DynaLoader creates Module::bootstrap() for you on the fly.
In fact, if you have a working DynaLoader then there is rarely any need to link in any other
extensions statically.

Once you have this code, slap it into the second argument of perl parse():

perl_parse(my_perl, xs_init, argc, my_argv, NULL);

Then compile:

% cc -o interp interp.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

% interp

use Socket;

use SomeDynamicallyLoadedModule;

print "Now I can use extensions!\n"’

ExtUtils::Embed can also automate writing the xs init glue code.

% perl -MExtUtils::Embed -e xsinit -- -o perlxsi.c

% cc -c perlxsi.c ‘perl -MExtUtils::Embed -e ccopts‘

% cc -c interp.c ‘perl -MExtUtils::Embed -e ccopts‘

% cc -o interp perlxsi.o interp.o ‘perl -MExtUtils::Embed -e ldopts‘

Consult perlxs, Section 28.1 [perlguts NAME], page 512, and perlapi for more details.

20.2.14 Using embedded Perl with POSIX locales

(See Section 38.1 [perllocale NAME], page 701 for information about these.) When a Perl
interpreter normally starts up, it tells the system it wants to use the system’s default locale.
This is often, but not necessarily, the "C" or "POSIX" locale. Absent a "use locale"

within the perl code, this mostly has no effect (but see [perllocale Not within the scope
of "use locale"], page 703). Also, there is not a problem if the locale you want to use in
your embedded Perl is the same as the system default. However, this doesn’t work if you
have set up and want to use a locale that isn’t the system default one. Starting in Perl
v5.20, you can tell the embedded Perl interpreter that the locale is already properly set
up, and to skip doing its own normal initialization. It skips if the environment variable
PERL_SKIP_LOCALE_INIT is set (even if set to 0 or ""). A Perl that has this capability will
define the C pre-processor symbol HAS_SKIP_LOCALE_INIT. This allows code that has to
work with multiple Perl versions to do some sort of work-around when confronted with an
earlier Perl.

20.3 Hiding Perl

If you completely hide the short forms of the Perl public API, add -
DPERL NO SHORT NAMES to the compilation flags. This means that for
example instead of writing

warn("%d bottles of beer on the wall", bottlecount);

you will have to write the explicit full form

Perl_warn(aTHX_ "%d bottles of beer on the wall", bottlecount);

(See Section 28.9.1 [perlguts Background and PERL IMPLICIT CONTEXT], page 547
for the explanation of the aTHX_.) Hiding the short forms is very useful for avoiding all sorts
of nasty (C preprocessor or otherwise) conflicts with other software packages (Perl defines
about 2400 APIs with these short names, take or leave few hundred, so there certainly is
room for conflict.)

20.4 MORAL

You can sometimes write faster code in C, but you can always write code faster in Perl.
Because you can use each from the other, combine them as you wish.

20.5 AUTHOR

Jon Orwant <orwant@media.mit.edu> and Doug MacEachern <dougm@covalent.net>,
with small contributions from Tim Bunce, Tom Christiansen, Guy Decoux, Hallvard Fu-
ruseth, Dov Grobgeld, and Ilya Zakharevich.

Doug MacEachern has an article on embedding in Volume 1, Issue 4 of The Perl Journal (
http://www.tpj.com/). Doug is also the developer of the most widely-used Perl embedding:
the mod perl system (perl.apache.org), which embeds Perl in the Apache web server. Oracle,
Binary Evolution, ActiveState, and Ben Sugars’s nsapi perl have used this model for Oracle,
Netscape and Internet Information Server Perl plugins.

20.6 COPYRIGHT

Copyright (C) 1995, 1996, 1997, 1998 Doug MacEachern and Jon Orwant. All Rights
Reserved.

This document may be distributed under the same terms as Perl itself.

21 perlexperiment

21.1 NAME

perlexperiment - A listing of experimental features in Perl

21.2 DESCRIPTION

This document lists the current and past experimental features in the perl core. Although
all of these are documented with their appropriate topics, this succinct listing gives you an
overview and basic facts about their status.

So far we’ve merely tried to find and list the experimental features and infer their incep-
tion, versions, etc. There’s a lot of speculation here.

21.2.1 Current experiments

our can now have an experimental optional attribute unique
Introduced in Perl 5.8.0

Deprecated in Perl 5.10.0

The ticket for this feature is [perl #119313] (https://rt.perl.org/rt3/
Ticket/Display.html?id=119313).

Smart match (~~)
Introduced in Perl 5.10.0

Modified in Perl 5.10.1, 5.12.0

Using this feature triggers warnings in the category experimental::smartmatch.

The ticket for this feature is [perl #119317] (https://rt.perl.org/rt3/
Ticket/Display.html?id=119317).

Lexical $_

Introduced in Perl 5.10.0

Using this feature triggers warnings in the category experimental::lexical_

topic.

The ticket for this feature is [perl #119315] (https://rt.perl.org/rt3/
Ticket/Display.html?id=119315).

Pluggable keywords
The ticket for this feature is [perl #119455] (https://rt.perl.org/rt3/
Ticket/Display.html?id=119455).

See Section “PL keyword plugin” in perlapi for the mechanism.

Introduced in: Perl 5.11.2

Array and hash container functions accept references
Introduced in Perl 5.14.0

The ticket for this feature is [perl #119437] (https://rt.perl.org/rt3/
Ticket/Display.html?id=119437).

https://rt.perl.org/rt3/Ticket/Display.html?id=119313
https://rt.perl.org/rt3/Ticket/Display.html?id=119313
https://rt.perl.org/rt3/Ticket/Display.html?id=119317
https://rt.perl.org/rt3/Ticket/Display.html?id=119317
https://rt.perl.org/rt3/Ticket/Display.html?id=119315
https://rt.perl.org/rt3/Ticket/Display.html?id=119315
https://rt.perl.org/rt3/Ticket/Display.html?id=119455
https://rt.perl.org/rt3/Ticket/Display.html?id=119455
https://rt.perl.org/rt3/Ticket/Display.html?id=119437
https://rt.perl.org/rt3/Ticket/Display.html?id=119437

Lexical subroutines
Introduced in: Perl 5.18

See also: Section 73.3.6 [perlsub Lexical Subroutines], page 1232

Using this feature triggers warnings in the category experimental::lexical_

subs.

The ticket for this feature is [perl #120085] (https://rt.perl.org/rt3/
Ticket/Display.html?id=120085).

Regular Expression Set Operations
Introduced in: Perl 5.18

The ticket for this feature is [perl #119451] (https://rt.perl.org/rt3/
Ticket/Display.html?id=119451).

See also: Section 61.2.3.9 [perlrecharclass Extended Bracketed Character
Classes], page 1073

Using this feature triggers warnings in the category experimental::regex_

sets.

Subroutine signatures
Introduced in Perl 5.20.0

Using this feature triggers warnings in the category experimental::signatures.

The ticket for this feature is [perl #121481] (https://rt.perl.org/Ticket/
Display.html?id=121481).

Postfix dereference syntax
Introduced in Perl 5.20.0

Using this feature triggers warnings in the category experimental::postderef.

The ticket for this feature is [perl #120162] (https://rt.perl.org:443/rt3/
Ticket/Display.html?id=120162).

Aliasing via reference
Introduced in Perl 5.22.0

Using this feature triggers warnings in the category experimental::refaliasing.

The ticket for this feature is [perl #122947] (https://rt.perl.org/rt3/
Ticket/Display.html?id=122947).

See also: Section 62.6 [perlref Assigning to References], page 1089

The "const" attribute
Introduced in Perl 5.22.0

Using this feature triggers warnings in the category experimental::const_

attr.

The ticket for this feature is [perl #123630] (https://rt.perl.org/rt3/
Ticket/Display.html?id=123630).

See also: Section 73.3.11 [perlsub Constant Functions], page 1241

use re ’strict’;
Introduced in Perl 5.22.0

https://rt.perl.org/rt3/Ticket/Display.html?id=120085
https://rt.perl.org/rt3/Ticket/Display.html?id=120085
https://rt.perl.org/rt3/Ticket/Display.html?id=119451
https://rt.perl.org/rt3/Ticket/Display.html?id=119451
https://rt.perl.org/Ticket/Display.html?id=121481
https://rt.perl.org/Ticket/Display.html?id=121481
https://rt.perl.org:443/rt3/Ticket/Display.html?id=120162
https://rt.perl.org:443/rt3/Ticket/Display.html?id=120162
https://rt.perl.org/rt3/Ticket/Display.html?id=122947
https://rt.perl.org/rt3/Ticket/Display.html?id=122947
https://rt.perl.org/rt3/Ticket/Display.html?id=123630
https://rt.perl.org/rt3/Ticket/Display.html?id=123630

Using this feature triggers warnings in the category experimental::re_

strict.

See Section “’strict’ mode” in re

String- and number-specific bitwise operators
Introduced in: Perl 5.22.0

See also: Section 48.2.36 [perlop Bitwise String Operators], page 848

Using this feature triggers warnings in the category experimental::bitwise.

The ticket for this feature is [perl #123707] (https://rt.perl.org/rt3/
Ticket/Display.html?id=123707).

The <:win32> IO pseudolayer
The ticket for this feature is [perl #119453] (https://rt.perl.org/rt3/
Ticket/Display.html?id=119453).

See also Section 69.1 [perlrun NAME], page 1176

There is an installhtml target in the Makefile.
The ticket for this feature is [perl #116487] (https://rt.perl.org/rt3/
Ticket/Display.html?id=116487).

Unicode in Perl on EBCDIC

21.2.2 Accepted features

These features were so wildly successful and played so well with others that we decided to
remove their experimental status and admit them as full, stable features in the world of
Perl, lavishing all the benefits and luxuries thereof. They are also awarded +5 Stability and
+3 Charisma.

64-bit support
Introduced in Perl 5.005

die accepts a reference
Introduced in Perl 5.005

DB module
Introduced in Perl 5.6.0

See also Section 15.1 [perldebug NAME], page 120, Section 14.1 [perldebtut
NAME], page 107

Weak references
Introduced in Perl 5.6.0

Internal file glob
Introduced in Perl 5.6.0

fork() emulation
Introduced in Perl 5.6.1

See also Section 23.1 [perlfork NAME], page 337

-Dusemultiplicity -Duseithreads
Introduced in Perl 5.6.0

Accepted in Perl 5.8.0

https://rt.perl.org/rt3/Ticket/Display.html?id=123707
https://rt.perl.org/rt3/Ticket/Display.html?id=123707
https://rt.perl.org/rt3/Ticket/Display.html?id=119453
https://rt.perl.org/rt3/Ticket/Display.html?id=119453
https://rt.perl.org/rt3/Ticket/Display.html?id=116487
https://rt.perl.org/rt3/Ticket/Display.html?id=116487

Support for long doubles
Introduced in Perl 5.6.0

Accepted in Perl 5.8.1

The \N regex character class
The \N character class, not to be confused with the named character sequence
\N{NAME}, denotes any non-newline character in a regular expression.

Introduced in Perl 5.12

Exact version of acceptance unclear, but no later than Perl 5.18.

(?{code}) and (??{ code })

Introduced in Perl 5.6.0

Accepted in Perl 5.20.0

See also Section 58.1 [perlre NAME], page 989

Linux abstract Unix domain sockets
Introduced in Perl 5.9.2

Accepted before Perl 5.20.0. The Socket library is now primarily maintained
on CPAN, rather than in the perl core.

See also Socket

Lvalue subroutines
Introduced in Perl 5.6.0

Accepted in Perl 5.20.0

See also Section 73.1 [perlsub NAME], page 1216

Backtracking control verbs
(*ACCEPT)

Introduced in: Perl 5.10

Accepted in Perl 5.20.0

The <:pop> IO pseudolayer
See also Section 69.1 [perlrun NAME], page 1176

Accepted in Perl 5.20.0

\s in regexp matches vertical tab
Accepted in Perl 5.22.0

21.2.3 Removed features

These features are no longer considered experimental and their functionality has disap-
peared. It’s your own fault if you wrote production programs using these features after we
explicitly told you not to (see Section 55.1 [perlpolicy NAME], page 943).

5.005-style threading
Introduced in Perl 5.005

Removed in Perl 5.10

perlcc

Introduced in Perl 5.005

Moved from Perl 5.9.0 to CPAN

The pseudo-hash data type
Introduced in Perl 5.6.0

Removed in Perl 5.9.0

GetOpt::Long Options can now take multiple values at once (experimental)
Getopt::Long upgraded to version 2.35

Removed in Perl 5.8.8

Assertions

The -A command line switch

Introduced in Perl 5.9.0

Removed in Perl 5.9.5

Test::Harness::Straps
Moved from Perl 5.10.1 to CPAN

legacy

The experimental legacy pragma was swallowed by the feature pragma.

Introduced in: 5.11.2

Removed in: 5.11.3

21.3 SEE ALSO

For a complete list of features check feature.

21.4 AUTHORS

brian d foy <brian.d.foy@gmail.com>

Sébastien Aperghis-Tramoni <saper@cpan.org>

21.5 COPYRIGHT

Copyright 2010, brian d foy <brian.d.foy@gmail.com>

21.6 LICENSE

You can use and redistribute this document under the same terms as Perl itself.

22 perlfilter

22.1 NAME

perlfilter - Source Filters

22.2 DESCRIPTION

This article is about a little-known feature of Perl called source filters. Source filters alter
the program text of a module before Perl sees it, much as a C preprocessor alters the source
text of a C program before the compiler sees it. This article tells you more about what
source filters are, how they work, and how to write your own.

The original purpose of source filters was to let you encrypt your program source to
prevent casual piracy. This isn’t all they can do, as you’ll soon learn. But first, the basics.

22.3 CONCEPTS

Before the Perl interpreter can execute a Perl script, it must first read it from a file into
memory for parsing and compilation. If that script itself includes other scripts with a use

or require statement, then each of those scripts will have to be read from their respective
files as well.

Now think of each logical connection between the Perl parser and an individual file as
a source stream. A source stream is created when the Perl parser opens a file, it continues
to exist as the source code is read into memory, and it is destroyed when Perl is finished
parsing the file. If the parser encounters a require or use statement in a source stream, a
new and distinct stream is created just for that file.

The diagram below represents a single source stream, with the flow of source from a Perl
script file on the left into the Perl parser on the right. This is how Perl normally operates.

file -------> parser

There are two important points to remember:

1. Although there can be any number of source streams in existence at any given time,
only one will be active.

2. Every source stream is associated with only one file.

A source filter is a special kind of Perl module that intercepts and modifies a source
stream before it reaches the parser. A source filter changes our diagram like this:

file ----> filter ----> parser

If that doesn’t make much sense, consider the analogy of a command pipeline. Say you
have a shell script stored in the compressed file trial.gz. The simple pipeline command
below runs the script without needing to create a temporary file to hold the uncompressed
file.

gunzip -c trial.gz | sh

In this case, the data flow from the pipeline can be represented as follows:

trial.gz ----> gunzip ----> sh

With source filters, you can store the text of your script compressed and use a source
filter to uncompress it for Perl’s parser:

compressed gunzip

Perl program ---> source filter ---> parser

22.4 USING FILTERS

So how do you use a source filter in a Perl script? Above, I said that a source filter is
just a special kind of module. Like all Perl modules, a source filter is invoked with a use
statement.

Say you want to pass your Perl source through the C preprocessor before execution. As
it happens, the source filters distribution comes with a C preprocessor filter module called
Filter::cpp.

Below is an example program, cpp_test, which makes use of this filter. Line numbers
have been added to allow specific lines to be referenced easily.

1: use Filter::cpp;

2: #define TRUE 1

3: $a = TRUE;

4: print "a = $a\n";

When you execute this script, Perl creates a source stream for the file. Before the parser
processes any of the lines from the file, the source stream looks like this:

cpp_test ---------> parser

Line 1, use Filter::cpp, includes and installs the cpp filter module. All source filters
work this way. The use statement is compiled and executed at compile time, before any
more of the file is read, and it attaches the cpp filter to the source stream behind the scenes.
Now the data flow looks like this:

cpp_test ----> cpp filter ----> parser

As the parser reads the second and subsequent lines from the source stream, it feeds
those lines through the cpp source filter before processing them. The cpp filter simply
passes each line through the real C preprocessor. The output from the C preprocessor is
then inserted back into the source stream by the filter.

.-> cpp --.

| |

| |

| <-’

cpp_test ----> cpp filter ----> parser

The parser then sees the following code:

use Filter::cpp;

$a = 1;

print "a = $a\n";

Let’s consider what happens when the filtered code includes another module with use:

1: use Filter::cpp;

2: #define TRUE 1

3: use Fred;

4: $a = TRUE;

5: print "a = $a\n";

The cpp filter does not apply to the text of the Fred module, only to the text of the file
that used it (cpp_test). Although the use statement on line 3 will pass through the cpp
filter, the module that gets included (Fred) will not. The source streams look like this after
line 3 has been parsed and before line 4 is parsed:

cpp_test ---> cpp filter ---> parser (INACTIVE)

Fred.pm ----> parser

As you can see, a new stream has been created for reading the source from Fred.pm.
This stream will remain active until all of Fred.pm has been parsed. The source stream for
cpp_test will still exist, but is inactive. Once the parser has finished reading Fred.pm, the
source stream associated with it will be destroyed. The source stream for cpp_test then
becomes active again and the parser reads line 4 and subsequent lines from cpp_test.

You can use more than one source filter on a single file. Similarly, you can reuse the
same filter in as many files as you like.

For example, if you have a uuencoded and compressed source file, it is possible to stack
a uudecode filter and an uncompression filter like this:

use Filter::uudecode; use Filter::uncompress;

M’XL(".H<US4’’V9I;F%L’)Q;>7/;1I;_>_I3=&E=%:F*I"T?22Q/

M6]9*<IQCO*XFT"0[PL%%’Y+IG?WN^ZYN-$’J.[.JE$,20/?K=_[>

...

Once the first line has been processed, the flow will look like this:

file ---> uudecode ---> uncompress ---> parser

filter filter

Data flows through filters in the same order they appear in the source file. The uudecode
filter appeared before the uncompress filter, so the source file will be uudecoded before it’s
uncompressed.

22.5 WRITING A SOURCE FILTER

There are three ways to write your own source filter. You can write it in C, use an external
program as a filter, or write the filter in Perl. I won’t cover the first two in any great detail,
so I’ll get them out of the way first. Writing the filter in Perl is most convenient, so I’ll
devote the most space to it.

22.6 WRITING A SOURCE FILTER IN C

The first of the three available techniques is to write the filter completely in C. The external
module you create interfaces directly with the source filter hooks provided by Perl.

The advantage of this technique is that you have complete control over the implemen-
tation of your filter. The big disadvantage is the increased complexity required to write
the filter - not only do you need to understand the source filter hooks, but you also need a
reasonable knowledge of Perl guts. One of the few times it is worth going to this trouble is
when writing a source scrambler. The decrypt filter (which unscrambles the source before
Perl parses it) included with the source filter distribution is an example of a C source filter
(see Decryption Filters, below).

Decryption Filters
All decryption filters work on the principle of "security through obscurity." Re-
gardless of how well you write a decryption filter and how strong your encryp-
tion algorithm is, anyone determined enough can retrieve the original source
code. The reason is quite simple - once the decryption filter has decrypted the
source back to its original form, fragments of it will be stored in the computer’s
memory as Perl parses it. The source might only be in memory for a short
period of time, but anyone possessing a debugger, skill, and lots of patience can
eventually reconstruct your program.

That said, there are a number of steps that can be taken to make life difficult
for the potential cracker. The most important: Write your decryption filter in
C and statically link the decryption module into the Perl binary. For further
tips to make life difficult for the potential cracker, see the file decrypt.pm in the
source filters distribution.

22.7 CREATING A SOURCE FILTER AS A SEPARATE
EXECUTABLE

An alternative to writing the filter in C is to create a separate executable in the language of
your choice. The separate executable reads from standard input, does whatever processing
is necessary, and writes the filtered data to standard output. Filter::cpp is an example of
a source filter implemented as a separate executable - the executable is the C preprocessor
bundled with your C compiler.

The source filter distribution includes two modules that simplify this task: Filter::exec
and Filter::sh. Both allow you to run any external executable. Both use a coprocess to
control the flow of data into and out of the external executable. (For details on coprocesses,
see Stephens, W.R., "Advanced Programming in the UNIX Environment." Addison-Wesley,
ISBN 0-210-56317-7, pages 441-445.) The difference between them is that Filter::exec
spawns the external command directly, while Filter::sh spawns a shell to execute the
external command. (Unix uses the Bourne shell; NT uses the cmd shell.) Spawning a shell
allows you to make use of the shell metacharacters and redirection facilities.

Here is an example script that uses Filter::sh:

use Filter::sh ’tr XYZ PQR’;

$a = 1;

print "XYZ a = $a\n";

The output you’ll get when the script is executed:

PQR a = 1

Writing a source filter as a separate executable works fine, but a small performance
penalty is incurred. For example, if you execute the small example above, a separate
subprocess will be created to run the Unix tr command. Each use of the filter requires its
own subprocess. If creating subprocesses is expensive on your system, you might want to
consider one of the other options for creating source filters.

22.8 WRITING A SOURCE FILTER IN PERL

The easiest and most portable option available for creating your own source filter is to write
it completely in Perl. To distinguish this from the previous two techniques, I’ll call it a Perl
source filter.

To help understand how to write a Perl source filter we need an example to study. Here
is a complete source filter that performs rot13 decoding. (Rot13 is a very simple encryption
scheme used in Usenet postings to hide the contents of offensive posts. It moves every letter
forward thirteen places, so that A becomes N, B becomes O, and Z becomes M.)

package Rot13;

use Filter::Util::Call;

sub import {

my ($type) = @_;

my ($ref) = [];

filter_add(bless $ref);

}

sub filter {

my ($self) = @_;

my ($status);

tr/n-za-mN-ZA-M/a-zA-Z/

if ($status = filter_read()) > 0;

$status;

}

1;

All Perl source filters are implemented as Perl classes and have the same basic structure
as the example above.

First, we include the Filter::Util::Call module, which exports a number of functions
into your filter’s namespace. The filter shown above uses two of these functions, filter_
add() and filter_read().

Next, we create the filter object and associate it with the source stream by defining the
import function. If you know Perl well enough, you know that import is called automati-
cally every time a module is included with a use statement. This makes import the ideal
place to both create and install a filter object.

In the example filter, the object ($ref) is blessed just like any other Perl object. Our
example uses an anonymous array, but this isn’t a requirement. Because this example
doesn’t need to store any context information, we could have used a scalar or hash reference
just as well. The next section demonstrates context data.

The association between the filter object and the source stream is made with the filter_
add() function. This takes a filter object as a parameter ($ref in this case) and installs it
in the source stream.

Finally, there is the code that actually does the filtering. For this type of Perl source
filter, all the filtering is done in a method called filter(). (It is also possible to write
a Perl source filter using a closure. See the Filter::Util::Call manual page for more
details.) It’s called every time the Perl parser needs another line of source to process. The
filter() method, in turn, reads lines from the source stream using the filter_read()

function.

If a line was available from the source stream, filter_read() returns a status value
greater than zero and appends the line to $_. A status value of zero indicates end-of-file,
less than zero means an error. The filter function itself is expected to return its status in
the same way, and put the filtered line it wants written to the source stream in $_. The use
of $_ accounts for the brevity of most Perl source filters.

In order to make use of the rot13 filter we need some way of encoding the source file in
rot13 format. The script below, mkrot13, does just that.

die "usage mkrot13 filename\n" unless @ARGV;

my $in = $ARGV[0];

my $out = "$in.tmp";

open(IN, "<$in") or die "Cannot open file $in: $!\n";

open(OUT, ">$out") or die "Cannot open file $out: $!\n";

print OUT "use Rot13;\n";

while (<IN>) {

tr/a-zA-Z/n-za-mN-ZA-M/;

print OUT;

}

close IN;

close OUT;

unlink $in;

rename $out, $in;

If we encrypt this with mkrot13:

print " hello fred \n";

the result will be this:

use Rot13;

cevag "uryyb serq\a";

Running it produces this output:

hello fred

22.9 USING CONTEXT: THE DEBUG FILTER

The rot13 example was a trivial example. Here’s another demonstration that shows off a
few more features.

Say you wanted to include a lot of debugging code in your Perl script during development,
but you didn’t want it available in the released product. Source filters offer a solution.
In order to keep the example simple, let’s say you wanted the debugging output to be

controlled by an environment variable, DEBUG. Debugging code is enabled if the variable
exists, otherwise it is disabled.

Two special marker lines will bracket debugging code, like this:

DEBUG_BEGIN

if ($year > 1999) {

warn "Debug: millennium bug in year $year\n";

}

DEBUG_END

The filter ensures that Perl parses the code between the <DEBUG BEGIN> and DEBUG_

ENDmarkers only when the DEBUG environment variable exists. That means that when DEBUG

does exist, the code above should be passed through the filter unchanged. The marker lines
can also be passed through as-is, because the Perl parser will see them as comment lines.
When DEBUG isn’t set, we need a way to disable the debug code. A simple way to achieve
that is to convert the lines between the two markers into comments:

DEBUG_BEGIN

#if ($year > 1999) {

warn "Debug: millennium bug in year $year\n";

#}

DEBUG_END

Here is the complete Debug filter:

package Debug;

use strict;

use warnings;

use Filter::Util::Call;

use constant TRUE => 1;

use constant FALSE => 0;

sub import {

my ($type) = @_;

my (%context) = (

Enabled => defined $ENV{DEBUG},

InTraceBlock => FALSE,

Filename => (caller)[1],

LineNo => 0,

LastBegin => 0,

);

filter_add(bless \%context);

}

sub Die {

my ($self) = shift;

my ($message) = shift;

my ($line_no) = shift || $self->{LastBegin};

die "$message at $self->{Filename} line $line_no.\n"

}

sub filter {

my ($self) = @_;

my ($status);

$status = filter_read();

++ $self->{LineNo};

deal with EOF/error first

if ($status <= 0) {

$self->Die("DEBUG_BEGIN has no DEBUG_END")

if $self->{InTraceBlock};

return $status;

}

if ($self->{InTraceBlock}) {

if (/^\s*##\s*DEBUG_BEGIN/) {

$self->Die("Nested DEBUG_BEGIN", $self->{LineNo})

} elsif (/^\s*##\s*DEBUG_END/) {

$self->{InTraceBlock} = FALSE;

}

comment out the debug lines when the filter is disabled

s/^/#/ if ! $self->{Enabled};

} elsif (/^\s*##\s*DEBUG_BEGIN/) {

$self->{InTraceBlock} = TRUE;

$self->{LastBegin} = $self->{LineNo};

} elsif (/^\s*##\s*DEBUG_END/) {

$self->Die("DEBUG_END has no DEBUG_BEGIN", $self->{LineNo});

}

return $status;

}

1;

The big difference between this filter and the previous example is the use of context
data in the filter object. The filter object is based on a hash reference, and is used to keep
various pieces of context information between calls to the filter function. All but two of the
hash fields are used for error reporting. The first of those two, Enabled, is used by the filter
to determine whether the debugging code should be given to the Perl parser. The second,
InTraceBlock, is true when the filter has encountered a DEBUG_BEGIN line, but has not yet
encountered the following DEBUG_END line.

If you ignore all the error checking that most of the code does, the essence of the filter
is as follows:

sub filter {

my ($self) = @_;

my ($status);

$status = filter_read();

deal with EOF/error first

return $status if $status <= 0;

if ($self->{InTraceBlock}) {

if (/^\s*##\s*DEBUG_END/) {

$self->{InTraceBlock} = FALSE

}

comment out debug lines when the filter is disabled

s/^/#/ if ! $self->{Enabled};

} elsif (/^\s*##\s*DEBUG_BEGIN/) {

$self->{InTraceBlock} = TRUE;

}

return $status;

}

Be warned: just as the C-preprocessor doesn’t know C, the Debug filter doesn’t know
Perl. It can be fooled quite easily:

print <<EOM;

##DEBUG_BEGIN

EOM

Such things aside, you can see that a lot can be achieved with a modest amount of code.

22.10 CONCLUSION

You now have better understanding of what a source filter is, and you might even have a
possible use for them. If you feel like playing with source filters but need a bit of inspiration,
here are some extra features you could add to the Debug filter.

First, an easy one. Rather than having debugging code that is all-or-nothing, it would be
much more useful to be able to control which specific blocks of debugging code get included.
Try extending the syntax for debug blocks to allow each to be identified. The contents of
the DEBUG environment variable can then be used to control which blocks get included.

Once you can identify individual blocks, try allowing them to be nested. That isn’t
difficult either.

Here is an interesting idea that doesn’t involve the Debug filter. Currently Perl subrou-
tines have fairly limited support for formal parameter lists. You can specify the number of
parameters and their type, but you still have to manually take them out of the @_ array
yourself. Write a source filter that allows you to have a named parameter list. Such a filter
would turn this:

sub MySub ($first, $second, @rest) { ... }

into this:

sub MySub($$@) {

my ($first) = shift;

my ($second) = shift;

my (@rest) = @_;

...

}

Finally, if you feel like a real challenge, have a go at writing a full-blown Perl macro
preprocessor as a source filter. Borrow the useful features from the C preprocessor and any
other macro processors you know. The tricky bit will be choosing how much knowledge of
Perl’s syntax you want your filter to have.

22.11 LIMITATIONS

Source filters only work on the string level, thus are highly limited in its ability to change
source code on the fly. It cannot detect comments, quoted strings, heredocs, it is no replace-
ment for a real parser. The only stable usage for source filters are encryption, compression,
or the byteloader, to translate binary code back to source code.

See for example the limitations in Switch, which uses source filters, and thus is does
not work inside a string eval, the presence of regexes with embedded newlines that are
specified with raw /.../ delimiters and don’t have a modifier //x are indistinguishable
from code chunks beginning with the division operator /. As a workaround you must
use m/.../ or m?...? for such patterns. Also, the presence of regexes specified with raw
?...? delimiters may cause mysterious errors. The workaround is to use m?...? instead. See
http://search.cpan.org/perldoc?Switch#LIMITATIONS

Currently internal buffer lengths are limited to 32-bit only.

22.12 THINGS TO LOOK OUT FOR

Some Filters Clobber the DATA Handle
Some source filters use the DATA handle to read the calling program. When using
these source filters you cannot rely on this handle, nor expect any particular
kind of behavior when operating on it. Filters based on Filter::Util::Call (and
therefore Filter::Simple) do not alter the DATA filehandle.

22.13 REQUIREMENTS

The Source Filters distribution is available on CPAN, in

CPAN/modules/by-module/Filter

Starting from Perl 5.8 Filter::Util::Call (the core part of the Source Filters distribu-
tion) is part of the standard Perl distribution. Also included is a friendlier interface called
Filter::Simple, by Damian Conway.

22.14 AUTHOR

Paul Marquess <Paul.Marquess@btinternet.com>

22.15 Copyrights

This article originally appeared in The Perl Journal #11, and is copyright 1998 The Perl
Journal. It appears courtesy of Jon Orwant and The Perl Journal. This document may be
distributed under the same terms as Perl itself.

23 perlfork

23.1 NAME

perlfork - Perl’s fork() emulation

23.2 SYNOPSIS

NOTE: As of the 5.8.0 release, fork() emulation has considerably

matured. However, there are still a few known bugs and differences

from real fork() that might affect you. See the "BUGS" and

"CAVEATS AND LIMITATIONS" sections below.

Perl provides a fork() keyword that corresponds to the Unix system call of the same name.
On most Unix-like platforms where the fork() system call is available, Perl’s fork() simply
calls it.

On some platforms such as Windows where the fork() system call is not available, Perl
can be built to emulate fork() at the interpreter level. While the emulation is designed to
be as compatible as possible with the real fork() at the level of the Perl program, there are
certain important differences that stem from the fact that all the pseudo child "processes"
created this way live in the same real process as far as the operating system is concerned.

This document provides a general overview of the capabilities and limitations of the
fork() emulation. Note that the issues discussed here are not applicable to platforms where
a real fork() is available and Perl has been configured to use it.

23.3 DESCRIPTION

The fork() emulation is implemented at the level of the Perl interpreter. What this means
in general is that running fork() will actually clone the running interpreter and all its state,
and run the cloned interpreter in a separate thread, beginning execution in the new thread
just after the point where the fork() was called in the parent. We will refer to the thread
that implements this child "process" as the pseudo-process.

To the Perl program that called fork(), all this is designed to be transparent. The
parent returns from the fork() with a pseudo-process ID that can be subsequently used in
any process-manipulation functions; the child returns from the fork() with a value of 0 to
signify that it is the child pseudo-process.

23.3.1 Behavior of other Perl features in forked pseudo-processes

Most Perl features behave in a natural way within pseudo-processes.

$$ or $PROCESS ID
This special variable is correctly set to the pseudo-process ID. It can be used
to identify pseudo-processes within a particular session. Note that this value
is subject to recycling if any pseudo-processes are launched after others have
been wait()-ed on.

%ENV

Each pseudo-process maintains its own virtual environment. Modifications to
%ENV affect the virtual environment, and are only visible within that pseudo-
process, and in any processes (or pseudo-processes) launched from it.

chdir() and all other builtins that accept filenames
Each pseudo-process maintains its own virtual idea of the current directory.
Modifications to the current directory using chdir() are only visible within that
pseudo-process, and in any processes (or pseudo-processes) launched from it.
All file and directory accesses from the pseudo-process will correctly map the
virtual working directory to the real working directory appropriately.

wait() and waitpid()
wait() and waitpid() can be passed a pseudo-process ID returned by fork().
These calls will properly wait for the termination of the pseudo-process and
return its status.

kill()

kill(’KILL’, ...) can be used to terminate a pseudo-process by passing it the
ID returned by fork(). The outcome of kill on a pseudo-process is unpredictable
and it should not be used except under dire circumstances, because the operat-
ing system may not guarantee integrity of the process resources when a running
thread is terminated. The process which implements the pseudo-processes can
be blocked and the Perl interpreter hangs. Note that using kill(’KILL’, ...)

on a pseudo-process() may typically cause memory leaks, because the thread
that implements the pseudo-process does not get a chance to clean up its re-
sources.

kill(’TERM’, ...) can also be used on pseudo-processes, but the signal will
not be delivered while the pseudo-process is blocked by a system call, e.g.
waiting for a socket to connect, or trying to read from a socket with no data
available. Starting in Perl 5.14 the parent process will not wait for children to
exit once they have been signalled with kill(’TERM’, ...) to avoid deadlock
during process exit. You will have to explicitly call waitpid() to make sure the
child has time to clean-up itself, but you are then also responsible that the child
is not blocking on I/O either.

exec()

Calling exec() within a pseudo-process actually spawns the requested executable
in a separate process and waits for it to complete before exiting with the same
exit status as that process. This means that the process ID reported within
the running executable will be different from what the earlier Perl fork() might
have returned. Similarly, any process manipulation functions applied to the ID
returned by fork() will affect the waiting pseudo-process that called exec(), not
the real process it is waiting for after the exec().

When exec() is called inside a pseudo-process then DESTROY methods and
END blocks will still be called after the external process returns.

exit()

exit() always exits just the executing pseudo-process, after automatically wait()-
ing for any outstanding child pseudo-processes. Note that this means that the

process as a whole will not exit unless all running pseudo-processes have exited.
See below for some limitations with open filehandles.

Open handles to files, directories and network sockets
All open handles are dup()-ed in pseudo-processes, so that closing any handles
in one process does not affect the others. See below for some limitations.

23.3.2 Resource limits

In the eyes of the operating system, pseudo-processes created via the fork() emulation are
simply threads in the same process. This means that any process-level limits imposed by
the operating system apply to all pseudo-processes taken together. This includes any limits
imposed by the operating system on the number of open file, directory and socket handles,
limits on disk space usage, limits on memory size, limits on CPU utilization etc.

23.3.3 Killing the parent process

If the parent process is killed (either using Perl’s kill() builtin, or using some external means)
all the pseudo-processes are killed as well, and the whole process exits.

23.3.4 Lifetime of the parent process and pseudo-processes

During the normal course of events, the parent process and every pseudo-process started by
it will wait for their respective pseudo-children to complete before they exit. This means
that the parent and every pseudo-child created by it that is also a pseudo-parent will only
exit after their pseudo-children have exited.

Starting with Perl 5.14 a parent will not wait() automatically for any child that has been
signalled with kill(’TERM’, ...) to avoid a deadlock in case the child is blocking on I/O
and never receives the signal.

23.4 CAVEATS AND LIMITATIONS

BEGIN blocks
The fork() emulation will not work entirely correctly when called from within
a BEGIN block. The forked copy will run the contents of the BEGIN block,
but will not continue parsing the source stream after the BEGIN block. For
example, consider the following code:

BEGIN {

fork and exit; # fork child and exit the parent

print "inner\n";

}

print "outer\n";

This will print:

inner

rather than the expected:

inner

outer

This limitation arises from fundamental technical difficulties in cloning and
restarting the stacks used by the Perl parser in the middle of a parse.

Open filehandles
Any filehandles open at the time of the fork() will be dup()-ed. Thus, the files
can be closed independently in the parent and child, but beware that the dup()-
ed handles will still share the same seek pointer. Changing the seek position
in the parent will change it in the child and vice-versa. One can avoid this by
opening files that need distinct seek pointers separately in the child.

On some operating systems, notably Solaris and Unixware, calling exit() from
a child process will flush and close open filehandles in the parent, thereby cor-
rupting the filehandles. On these systems, calling _exit() is suggested instead.
_exit() is available in Perl through the POSIX module. Please consult your
system’s manpages for more information on this.

Open directory handles
Perl will completely read from all open directory handles until they reach the
end of the stream. It will then seekdir() back to the original location and all
future readdir() requests will be fulfilled from the cache buffer. That means
that neither the directory handle held by the parent process nor the one held
by the child process will see any changes made to the directory after the fork()
call.

Note that rewinddir() has a similar limitation on Windows and will not force
readdir() to read the directory again either. Only a newly opened directory
handle will reflect changes to the directory.

Forking pipe open() not yet implemented
The open(FOO, "|-") and open(BAR, "-|") constructs are not yet imple-
mented. This limitation can be easily worked around in new code by creating
a pipe explicitly. The following example shows how to write to a forked child:

simulate open(FOO, "|-")

sub pipe_to_fork ($) {

my $parent = shift;

pipe my $child, $parent or die;

my $pid = fork();

die "fork() failed: $!" unless defined $pid;

if ($pid) {

close $child;

}

else {

close $parent;

open(STDIN, "<&=" . fileno($child)) or die;

}

$pid;

}

if (pipe_to_fork(’FOO’)) {

parent

print FOO "pipe_to_fork\n";

close FOO;

}

else {

child

while (<STDIN>) { print; }

exit(0);

}

And this one reads from the child:

simulate open(FOO, "-|")

sub pipe_from_fork ($) {

my $parent = shift;

pipe $parent, my $child or die;

my $pid = fork();

die "fork() failed: $!" unless defined $pid;

if ($pid) {

close $child;

}

else {

close $parent;

open(STDOUT, ">&=" . fileno($child)) or die;

}

$pid;

}

if (pipe_from_fork(’BAR’)) {

parent

while (<BAR>) { print; }

close BAR;

}

else {

child

print "pipe_from_fork\n";

exit(0);

}

Forking pipe open() constructs will be supported in future.

Global state maintained by XSUBs
External subroutines (XSUBs) that maintain their own global state may not
work correctly. Such XSUBs will either need to maintain locks to protect si-
multaneous access to global data from different pseudo-processes, or maintain
all their state on the Perl symbol table, which is copied naturally when fork() is
called. A callback mechanism that provides extensions an opportunity to clone
their state will be provided in the near future.

Interpreter embedded in larger application
The fork() emulation may not behave as expected when it is executed in an
application which embeds a Perl interpreter and calls Perl APIs that can eval-
uate bits of Perl code. This stems from the fact that the emulation only has

knowledge about the Perl interpreter’s own data structures and knows nothing
about the containing application’s state. For example, any state carried on the
application’s own call stack is out of reach.

Thread-safety of extensions
Since the fork() emulation runs code in multiple threads, extensions calling into
non-thread-safe libraries may not work reliably when calling fork(). As Perl’s
threading support gradually becomes more widely adopted even on platforms
with a native fork(), such extensions are expected to be fixed for thread-safety.

23.5 PORTABILITY CAVEATS

In portable Perl code, kill(9, $child) must not be used on forked processes. Killing a
forked process is unsafe and has unpredictable results. See [kill()], page 338, above.

23.6 BUGS

• Having pseudo-process IDs be negative integers breaks down for the integer -1 because
the wait() and waitpid() functions treat this number as being special. The tacit assump-
tion in the current implementation is that the system never allocates a thread ID of 1
for user threads. A better representation for pseudo-process IDs will be implemented
in future.

• In certain cases, the OS-level handles created by the pipe(), socket(), and accept()
operators are apparently not duplicated accurately in pseudo-processes. This only
happens in some situations, but where it does happen, it may result in deadlocks
between the read and write ends of pipe handles, or inability to send or receive data
across socket handles.

• This document may be incomplete in some respects.

23.7 AUTHOR

Support for concurrent interpreters and the fork() emulation was implemented by ActiveS-
tate, with funding from Microsoft Corporation.

This document is authored and maintained by Gurusamy Sarathy <gsar@activestate.com>.

23.8 SEE ALSO

[perlfunc fork], page 386, Section 36.1 [perlipc NAME], page 667

24 perlform

24.1 NAME

perlform - Perl formats

24.2 DESCRIPTION

Perl has a mechanism to help you generate simple reports and charts. To facilitate this,
Perl helps you code up your output page close to how it will look when it’s printed. It
can keep track of things like how many lines are on a page, what page you’re on, when to
print page headers, etc. Keywords are borrowed from FORTRAN: format() to declare and
write() to execute; see their entries in Section 25.1 [perlfunc NAME], page 351. Fortunately,
the layout is much more legible, more like BASIC’s PRINT USING statement. Think of it
as a poor man’s nroff(1).

Formats, like packages and subroutines, are declared rather than executed, so they may
occur at any point in your program. (Usually it’s best to keep them all together though.)
They have their own namespace apart from all the other "types" in Perl. This means that if
you have a function named "Foo", it is not the same thing as having a format named "Foo".
However, the default name for the format associated with a given filehandle is the same as
the name of the filehandle. Thus, the default format for STDOUT is named "STDOUT",
and the default format for filehandle TEMP is named "TEMP". They just look the same.
They aren’t.

Output record formats are declared as follows:

format NAME =

FORMLIST

.

If the name is omitted, format "STDOUT" is defined. A single "." in column 1 is used
to terminate a format. FORMLIST consists of a sequence of lines, each of which may be
one of three types:

1. A comment, indicated by putting a ’#’ in the first column.

2. A "picture" line giving the format for one output line.

3. An argument line supplying values to plug into the previous picture line.

Picture lines contain output field definitions, intermingled with literal text. These lines
do not undergo any kind of variable interpolation. Field definitions are made up from a set
of characters, for starting and extending a field to its desired width. This is the complete
set of characters for field definitions:

>>

@ start of regular field

^ start of special field

< pad character for left justification

| pad character for centering

> pad character for right justification

pad character for a right-justified numeric field

0 instead of first #: pad number with leading zeroes

. decimal point within a numeric field

... terminate a text field, show "..." as truncation evidence

@* variable width field for a multi-line value

^* variable width field for next line of a multi-line value

~ suppress line with all fields empty

~~ repeat line until all fields are exhausted

Each field in a picture line starts with either "@" (at) or "^" (caret), indicating what we’ll
call, respectively, a "regular" or "special" field. The choice of pad characters determines
whether a field is textual or numeric. The tilde operators are not part of a field. Let’s look
at the various possibilities in detail.

24.2.1 Text Fields

The length of the field is supplied by padding out the field with multiple "<", ">", or
"|" characters to specify a non-numeric field with, respectively, left justification, right
justification, or centering. For a regular field, the value (up to the first newline) is taken and
printed according to the selected justification, truncating excess characters. If you terminate
a text field with "...", three dots will be shown if the value is truncated. A special text field
may be used to do rudimentary multi-line text block filling; see Section 24.2.6 [Using Fill
Mode], page 345 for details.

Example:

format STDOUT =

@<<<<<< @|||||| @>>>>>>

"left", "middle", "right"

.

Output:

left middle right

24.2.2 Numeric Fields

Using "#" as a padding character specifies a numeric field, with right justification. An
optional "." defines the position of the decimal point. With a "0" (zero) instead of the
first "#", the formatted number will be padded with leading zeroes if necessary. A special
numeric field is blanked out if the value is undefined. If the resulting value would exceed
the width specified the field is filled with "#" as overflow evidence.

Example:

format STDOUT =

@### @.### @##.### @### @### ^####

42, 3.1415, undef, 0, 10000, undef

.

Output:

42 3.142 0.000 0 ####

24.2.3 The Field @* for Variable-Width Multi-Line Text

The field "@*" can be used for printing multi-line, nontruncated values; it should (but need
not) appear by itself on a line. A final line feed is chomped off, but all other characters are
emitted verbatim.

24.2.4 The Field ^* for Variable-Width One-line-at-a-time Text

Like "@*", this is a variable-width field. The value supplied must be a scalar variable. Perl
puts the first line (up to the first "\n") of the text into the field, and then chops off the
front of the string so that the next time the variable is referenced, more of the text can be
printed. The variable will not be restored.

Example:

$text = "line 1\nline 2\nline 3";

format STDOUT =

Text: ^*

$text

~~ ^*

$text

.

Output:

Text: line 1

line 2

line 3

24.2.5 Specifying Values

The values are specified on the following format line in the same order as the picture
fields. The expressions providing the values must be separated by commas. They are all
evaluated in a list context before the line is processed, so a single list expression could
produce multiple list elements. The expressions may be spread out to more than one line
if enclosed in braces. If so, the opening brace must be the first token on the first line. If
an expression evaluates to a number with a decimal part, and if the corresponding picture
specifies that the decimal part should appear in the output (that is, any picture except
multiple "#" characters without an embedded "."), the character used for the decimal
point is determined by the current LC NUMERIC locale if use locale is in effect. This
means that, if, for example, the run-time environment happens to specify a German locale,
"," will be used instead of the default ".". See Section 38.1 [perllocale NAME], page 701
and Section 24.4 [WARNINGS], page 350 for more information.

24.2.6 Using Fill Mode

On text fields the caret enables a kind of fill mode. Instead of an arbitrary expression, the
value supplied must be a scalar variable that contains a text string. Perl puts the next
portion of the text into the field, and then chops off the front of the string so that the next
time the variable is referenced, more of the text can be printed. (Yes, this means that the
variable itself is altered during execution of the write() call, and is not restored.) The next
portion of text is determined by a crude line-breaking algorithm. You may use the carriage
return character (\r) to force a line break. You can change which characters are legal to

break on by changing the variable $: (that’s $FORMAT LINE BREAK CHARACTERS
if you’re using the English module) to a list of the desired characters.

Normally you would use a sequence of fields in a vertical stack associated with the same
scalar variable to print out a block of text. You might wish to end the final field with the
text "...", which will appear in the output if the text was too long to appear in its entirety.

24.2.7 Suppressing Lines Where All Fields Are Void

Using caret fields can produce lines where all fields are blank. You can suppress such lines
by putting a "~" (tilde) character anywhere in the line. The tilde will be translated to a
space upon output.

24.2.8 Repeating Format Lines

If you put two contiguous tilde characters "~~" anywhere into a line, the line will be repeated
until all the fields on the line are exhausted, i.e. undefined. For special (caret) text fields
this will occur sooner or later, but if you use a text field of the at variety, the expression
you supply had better not give the same value every time forever! (shift(@f) is a simple
example that would work.) Don’t use a regular (at) numeric field in such lines, because it
will never go blank.

24.2.9 Top of Form Processing

Top-of-form processing is by default handled by a format with the same name as the current
filehandle with " TOP" concatenated to it. It’s triggered at the top of each page. See
[perlfunc write], page 489.

Examples:

a report on the /etc/passwd file

format STDOUT_TOP =

Passwd File

Name Login Office Uid Gid Home

--

.

format STDOUT =

@<<<<<<<<<<<<<<<<<< @||||||| @<<<<<<@>>>> @>>>> @<<<<<<<<<<<<<<<<<

$name, $login, $office,$uid,$gid, $home

.

a report from a bug report form

format STDOUT_TOP =

Bug Reports

@<<<<<<<<<<<<<<<<<<<<<<< @||| @>>>>>>>>>>>>>>>>>>>>>>>

$system, $%, $date

--

.

format STDOUT =

Subject: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$subject

Index: @<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$index, $description

Priority: @<<<<<<<<<< Date: @<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$priority, $date, $description

From: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$from, $description

Assigned to: @<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$programmer, $description

~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description

~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description

~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description

~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description

~ ^<<<<<<<<<<<<<<<<<<<<<<<...

$description

.

It is possible to intermix print()s with write()s on the same output channel, but you’ll
have to handle $- ($FORMAT_LINES_LEFT) yourself.

24.2.10 Format Variables

The current format name is stored in the variable $~ ($FORMAT_NAME), and the current
top of form format name is in $^ ($FORMAT_TOP_NAME). The current output page number
is stored in $% ($FORMAT_PAGE_NUMBER), and the number of lines on the page is in $=

($FORMAT_LINES_PER_PAGE). Whether to autoflush output on this handle is stored in $|

($OUTPUT_AUTOFLUSH). The string output before each top of page (except the first) is stored
in $^L ($FORMAT_FORMFEED). These variables are set on a per-filehandle basis, so you’ll need
to select() into a different one to affect them:

select((select(OUTF),

$~ = "My_Other_Format",

$^ = "My_Top_Format"

)[0]);

Pretty ugly, eh? It’s a common idiom though, so don’t be too surprised when you see
it. You can at least use a temporary variable to hold the previous filehandle: (this is a
much better approach in general, because not only does legibility improve, you now have
an intermediary stage in the expression to single-step the debugger through):

$ofh = select(OUTF);

$~ = "My_Other_Format";

$^ = "My_Top_Format";

select($ofh);

If you use the English module, you can even read the variable names:

use English;

$ofh = select(OUTF);

$FORMAT_NAME = "My_Other_Format";

$FORMAT_TOP_NAME = "My_Top_Format";

select($ofh);

But you still have those funny select()s. So just use the FileHandle module. Now, you
can access these special variables using lowercase method names instead:

use FileHandle;

format_name OUTF "My_Other_Format";

format_top_name OUTF "My_Top_Format";

Much better!

24.3 NOTES

Because the values line may contain arbitrary expressions (for at fields, not caret fields),
you can farm out more sophisticated processing to other functions, like sprintf() or one of
your own. For example:

format Ident =

@<<<<<<<<<<<<<<<

&commify($n)

.

To get a real at or caret into the field, do this:

format Ident =

I have an @ here.

"@"

.

To center a whole line of text, do something like this:

format Ident =

@|||

"Some text line"

.

There is no builtin way to say "float this to the right hand side of the page, however
wide it is." You have to specify where it goes. The truly desperate can generate their own
format on the fly, based on the current number of columns, and then eval() it:

$format = "format STDOUT = \n"

. ’^’ . ’<’ x $cols . "\n"

. ’$entry’ . "\n"

. "\t^" . "<" x ($cols-8) . "~~\n"

. ’$entry’ . "\n"

. ".\n";

print $format if $Debugging;

eval $format;

die $@ if $@;

Which would generate a format looking something like this:

format STDOUT =

^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$entry

^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~

$entry

.

Here’s a little program that’s somewhat like fmt(1):

format =

^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~~

$_

.

$/ = ’’;

while (<>) {

s/\s*\n\s*/ /g;

write;

}

24.3.1 Footers

While $FORMAT TOP NAME contains the name of the current header format, there is
no corresponding mechanism to automatically do the same thing for a footer. Not knowing
how big a format is going to be until you evaluate it is one of the major problems. It’s on
the TODO list.

Here’s one strategy: If you have a fixed-size footer, you can get footers by checking
$FORMAT LINES LEFT before each write() and print the footer yourself if necessary.

Here’s another strategy: Open a pipe to yourself, using open(MYSELF, "|-") (see 〈un-
defined〉 [perlfunc open], page 〈undefined〉) and always write() to MYSELF instead of STD-
OUT. Have your child process massage its STDIN to rearrange headers and footers however
you like. Not very convenient, but doable.

24.3.2 Accessing Formatting Internals

For low-level access to the formatting mechanism, you may use formline() and access $^A
(the $ACCUMULATOR variable) directly.

For example:

$str = formline <<’END’, 1,2,3;

@<<< @||| @>>>

END

print "Wow, I just stored ’$^A’ in the accumulator!\n";

Or to make an swrite() subroutine, which is to write() what sprintf() is to printf(), do
this:

use Carp;

sub swrite {

croak "usage: swrite PICTURE ARGS" unless @_;

my $format = shift;

$^A = "";

formline($format,@_);

return $^A;

}

$string = swrite(<<’END’, 1, 2, 3);

Check me out

@<<< @||| @>>>

END

print $string;

24.4 WARNINGS

The lone dot that ends a format can also prematurely end a mail message passing through
a misconfigured Internet mailer (and based on experience, such misconfiguration is the rule,
not the exception). So when sending format code through mail, you should indent it so
that the format-ending dot is not on the left margin; this will prevent SMTP cutoff.

Lexical variables (declared with "my") are not visible within a format unless the format
is declared within the scope of the lexical variable.

If a program’s environment specifies an LC NUMERIC locale and use locale is in effect
when the format is declared, the locale is used to specify the decimal point character in
formatted output. Formatted output cannot be controlled by use locale at the time when
write() is called. See Section 38.1 [perllocale NAME], page 701 for further discussion of
locale handling.

Within strings that are to be displayed in a fixed-length text field, each control character
is substituted by a space. (But remember the special meaning of \r when using fill mode.)
This is done to avoid misalignment when control characters "disappear" on some output
media.

25 perlfunc

25.1 NAME

perlfunc - Perl builtin functions

25.2 DESCRIPTION

The functions in this section can serve as terms in an expression. They fall into two major
categories: list operators and named unary operators. These differ in their precedence
relationship with a following comma. (See the precedence table in Section 48.1 [perlop
NAME], page 798.) List operators take more than one argument, while unary operators
can never take more than one argument. Thus, a comma terminates the argument of a
unary operator, but merely separates the arguments of a list operator. A unary operator
generally provides scalar context to its argument, while a list operator may provide either
scalar or list contexts for its arguments. If it does both, scalar arguments come first and
list argument follow, and there can only ever be one such list argument. For instance,
splice() has three scalar arguments followed by a list, whereas gethostbyname() has four
scalar arguments.

In the syntax descriptions that follow, list operators that expect a list (and provide list
context for elements of the list) are shown with LIST as an argument. Such a list may
consist of any combination of scalar arguments or list values; the list values will be included
in the list as if each individual element were interpolated at that point in the list, forming a
longer single-dimensional list value. Commas should separate literal elements of the LIST.

Any function in the list below may be used either with or without parentheses around
its arguments. (The syntax descriptions omit the parentheses.) If you use parentheses,
the simple but occasionally surprising rule is this: It looks like a function, therefore it is a
function, and precedence doesn’t matter. Otherwise it’s a list operator or unary operator,
and precedence does matter. Whitespace between the function and left parenthesis doesn’t
count, so sometimes you need to be careful:

print 1+2+4; # Prints 7.

print(1+2) + 4; # Prints 3.

print (1+2)+4; # Also prints 3!

print +(1+2)+4; # Prints 7.

print ((1+2)+4); # Prints 7.

If you run Perl with the -w switch it can warn you about this. For example, the third
line above produces:

print (...) interpreted as function at - line 1.

Useless use of integer addition in void context at - line 1.

A few functions take no arguments at all, and therefore work as neither unary nor list
operators. These include such functions as time and endpwent. For example, time+86_400
always means time() + 86_400.

For functions that can be used in either a scalar or list context, nonabortive failure is
generally indicated in scalar context by returning the undefined value, and in list context
by returning the empty list.

Remember the following important rule: There is no rule that relates the behavior of
an expression in list context to its behavior in scalar context, or vice versa. It might do
two totally different things. Each operator and function decides which sort of value would
be most appropriate to return in scalar context. Some operators return the length of the
list that would have been returned in list context. Some operators return the first value in
the list. Some operators return the last value in the list. Some operators return a count of
successful operations. In general, they do what you want, unless you want consistency.

A named array in scalar context is quite different from what would at first glance appear
to be a list in scalar context. You can’t get a list like (1,2,3) into being in scalar context,
because the compiler knows the context at compile time. It would generate the scalar
comma operator there, not the list construction version of the comma. That means it was
never a list to start with.

In general, functions in Perl that serve as wrappers for system calls ("syscalls") of the
same name (like chown(2), fork(2), closedir(2), etc.) return true when they succeed and
undef otherwise, as is usually mentioned in the descriptions below. This is different from
the C interfaces, which return -1 on failure. Exceptions to this rule include wait, waitpid,
and syscall. System calls also set the special $! variable on failure. Other functions do
not, except accidentally.

Extension modules can also hook into the Perl parser to define new kinds of keyword-
headed expression. These may look like functions, but may also look completely different.
The syntax following the keyword is defined entirely by the extension. If you are an imple-
mentor, see Section “PL keyword plugin” in perlapi for the mechanism. If you are using
such a module, see the module’s documentation for details of the syntax that it defines.

25.2.1 Perl Functions by Category

Here are Perl’s functions (including things that look like functions, like some keywords and
named operators) arranged by category. Some functions appear in more than one place.

Functions for SCALARs or strings
chomp, chop, chr, crypt, fc, hex, index, lc, lcfirst, length, oct, ord, pack,
q//, qq//, reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///

fc is available only if the "fc" feature is enabled or if it is prefixed with CORE::.
The "fc" feature is enabled automatically with a use v5.16 (or higher) decla-
ration in the current scope.

Regular expressions and pattern matching
m//, pos, qr//, quotemeta, s///, split, study

Numeric functions
abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Functions for real @ARRAYs
each, keys, pop, push, shift, splice, unshift, values

Functions for list data
grep, join, map, qw//, reverse, sort, unpack

Functions for real %HASHes
delete, each, exists, keys, values

Input and output functions
binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock,
format, getc, print, printf, read, readdir, readline rewinddir, say,
seek, seekdir, select, syscall, sysread, sysseek, syswrite, tell,
telldir, truncate, warn, write

say is available only if the "say" feature is enabled or if it is prefixed with
CORE::. The "say" feature is enabled automatically with a use v5.10 (or
higher) declaration in the current scope.

Functions for fixed-length data or records
pack, read, syscall, sysread, sysseek, syswrite, unpack, vec

Functions for filehandles, files, or directories
-X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir,
open, opendir, readlink, rename, rmdir, stat, symlink, sysopen, umask,
unlink, utime

Keywords related to the control flow of your Perl program
break, caller, continue, die, do, dump, eval, evalbytes exit, __FILE__
, goto, last, __LINE__, next, __PACKAGE__, redo, return, sub, __SUB__,
wantarray

break is available only if you enable the experimental "switch" feature or use
the CORE:: prefix. The "switch" feature also enables the default, given

and when statements, which are documented in Section 74.2.11 [perlsyn Switch
Statements], page 1258. The "switch" feature is enabled automatically with
a use v5.10 (or higher) declaration in the current scope. In Perl v5.14 and
earlier, continue required the "switch" feature, like the other keywords.

evalbytes is only available with the "evalbytes" feature (see feature) or
if prefixed with CORE::. __SUB__ is only available with the "current_sub"

feature or if prefixed with CORE::. Both the "evalbytes" and "current_sub"

features are enabled automatically with a use v5.16 (or higher) declaration in
the current scope.

Keywords related to scoping
caller, import, local, my, our, package, state, use

state is available only if the "state" feature is enabled or if it is prefixed with
CORE::. The "state" feature is enabled automatically with a use v5.10 (or
higher) declaration in the current scope.

Miscellaneous functions
defined, formline, lock, prototype, reset, scalar, undef

Functions for processes and process groups
alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx//,
readpipe, setpgrp, setpriority, sleep, system, times, wait, waitpid

Keywords related to Perl modules
do, import, no, package, require, use

Keywords related to classes and object-orientation
bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Low-level socket functions
accept, bind, connect, getpeername, getsockname, getsockopt, listen,
recv, send, setsockopt, shutdown, socket, socketpair

System V interprocess communication functions
msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget,
shmread, shmwrite

Fetching user and group info
endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid,
getgrnam, getlogin, getpwent, getpwnam, getpwuid, setgrent, setpwent

Fetching network info
endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent,
getnetbyaddr, getnetbyname, getnetent, getprotobyname,
getprotobynumber, getprotoent, getservbyname, getservbyport,
getservent, sethostent, setnetent, setprotoent, setservent

Time-related functions
gmtime, localtime, time, times

Non-function keywords
and, AUTOLOAD, BEGIN, CHECK, cmp, CORE, __DATA__, default, DESTROY, else,
elseif, elsif, END, __END__, eq, for, foreach, ge, given, gt, if, INIT, le,
lt, ne, not, or, UNITCHECK, unless, until, when, while, x, xor

25.2.2 Portability

Perl was born in Unix and can therefore access all common Unix system calls. In non-Unix
environments, the functionality of some Unix system calls may not be available or details
of the available functionality may differ slightly. The Perl functions affected by this are:

-X, binmode, chmod, chown, chroot, crypt, dbmclose, dbmopen, dump, endgrent,
endhostent, endnetent, endprotoent, endpwent, endservent, exec, fcntl, flock,
fork, getgrent, getgrgid, gethostbyname, gethostent, getlogin, getnetbyaddr,
getnetbyname, getnetent, getppid, getpgrp, getpriority, getprotobynumber,
getprotoent, getpwent, getpwnam, getpwuid, getservbyport, getservent, getsockopt,
glob, ioctl, kill, link, lstat, msgctl, msgget, msgrcv, msgsnd, open, pipe, readlink,
rename, select, semctl, semget, semop, setgrent, sethostent, setnetent, setpgrp,
setpriority, setprotoent, setpwent, setservent, setsockopt, shmctl, shmget,
shmread, shmwrite, socket, socketpair, stat, symlink, syscall, sysopen, system,
times, truncate, umask, unlink, utime, wait, waitpid

For more information about the portability of these functions, see Section 56.1 [perlport
NAME], page 951 and other available platform-specific documentation.

25.2.3 Alphabetical Listing of Perl Functions

-X FILEHANDLE
-X EXPR

-X DIRHANDLE
-X

A file test, where X is one of the letters listed below. This unary operator takes
one argument, either a filename, a filehandle, or a dirhandle, and tests the
associated file to see if something is true about it. If the argument is omitted,
tests $_, except for -t, which tests STDIN. Unless otherwise documented, it
returns 1 for true and ’’ for false. If the file doesn’t exist or can’t be examined,
it returns undef and sets $! (errno). Despite the funny names, precedence is
the same as any other named unary operator. The operator may be any of:

-r File is readable by effective uid/gid.

-w File is writable by effective uid/gid.

-x File is executable by effective uid/gid.

-o File is owned by effective uid.

-R File is readable by real uid/gid.

-W File is writable by real uid/gid.

-X File is executable by real uid/gid.

-O File is owned by real uid.

-e File exists.

-z File has zero size (is empty).

-s File has nonzero size (returns size in bytes).

-f File is a plain file.

-d File is a directory.

-l File is a symbolic link (false if symlinks aren’t

supported by the file system).

-p File is a named pipe (FIFO), or Filehandle is a pipe.

-S File is a socket.

-b File is a block special file.

-c File is a character special file.

-t Filehandle is opened to a tty.

-u File has setuid bit set.

-g File has setgid bit set.

-k File has sticky bit set.

-T File is an ASCII or UTF-8 text file (heuristic guess).

-B File is a "binary" file (opposite of -T).

-M Script start time minus file modification time, in days.

-A Same for access time.

-C Same for inode change time (Unix, may differ for other

platforms)

Example:

while (<>) {

chomp;

next unless -f $_; # ignore specials

#...

}

Note that -s/a/b/ does not do a negated substitution. Saying -exp($foo) still
works as expected, however: only single letters following a minus are interpreted
as file tests.

These operators are exempt from the "looks like a function rule" described
above. That is, an opening parenthesis after the operator does not affect how
much of the following code constitutes the argument. Put the opening paren-
theses before the operator to separate it from code that follows (this applies
only to operators with higher precedence than unary operators, of course):

-s($file) + 1024 # probably wrong; same as -s($file + 1024)

(-s $file) + 1024 # correct

The interpretation of the file permission operators -r, -R, -w, -W, -x, and -X

is by default based solely on the mode of the file and the uids and gids of the
user. There may be other reasons you can’t actually read, write, or execute the
file: for example network filesystem access controls, ACLs (access control lists),
read-only filesystems, and unrecognized executable formats. Note that the use
of these six specific operators to verify if some operation is possible is usually
a mistake, because it may be open to race conditions.

Also note that, for the superuser on the local filesystems, the -r, -R, -w, and
-W tests always return 1, and -x and -X return 1 if any execute bit is set in the
mode. Scripts run by the superuser may thus need to do a stat() to determine
the actual mode of the file, or temporarily set their effective uid to something
else.

If you are using ACLs, there is a pragma called filetest that may pro-
duce more accurate results than the bare stat() mode bits. When under use

filetest ’access’ the above-mentioned filetests test whether the permission
can(not) be granted using the access(2) family of system calls. Also note that
the -x and -X may under this pragma return true even if there are no execute
permission bits set (nor any extra execute permission ACLs). This strangeness
is due to the underlying system calls’ definitions. Note also that, due to the im-
plementation of use filetest ’access’, the _ special filehandle won’t cache
the results of the file tests when this pragma is in effect. Read the documenta-
tion for the filetest pragma for more information.

The -T and -B switches work as follows. The first block or so of the file is
examined to see if it is valid UTF-8 that includes non-ASCII characters. If,
so it’s a -T file. Otherwise, that same portion of the file is examined for odd
characters such as strange control codes or characters with the high bit set. If
more than a third of the characters are strange, it’s a -B file; otherwise it’s a -T

file. Also, any file containing a zero byte in the examined portion is considered a
binary file. (If executed within the scope of a Section 38.1 [use locale], page 701
which includes LC_CTYPE, odd characters are anything that isn’t a printable nor
space in the current locale.) If -T or -B is used on a filehandle, the current IO
buffer is examined rather than the first block. Both -T and -B return true on
an empty file, or a file at EOF when testing a filehandle. Because you have to

read a file to do the -T test, on most occasions you want to use a -f against
the file first, as in next unless -f $file && -T $file.

If any of the file tests (or either the stat or lstat operator) is given the
special filehandle consisting of a solitary underline, then the stat structure of
the previous file test (or stat operator) is used, saving a system call. (This
doesn’t work with -t, and you need to remember that lstat() and -l leave
values in the stat structure for the symbolic link, not the real file.) (Also, if the
stat buffer was filled by an lstat call, -T and -B will reset it with the results
of stat _). Example:

print "Can do.\n" if -r $a || -w _ || -x _;

stat($filename);

print "Readable\n" if -r _;

print "Writable\n" if -w _;

print "Executable\n" if -x _;

print "Setuid\n" if -u _;

print "Setgid\n" if -g _;

print "Sticky\n" if -k _;

print "Text\n" if -T _;

print "Binary\n" if -B _;

As of Perl 5.10.0, as a form of purely syntactic sugar, you can stack file test
operators, in a way that -f -w -x $file is equivalent to -x $file && -w _ &&

-f _. (This is only fancy syntax: if you use the return value of -f $file as an
argument to another filetest operator, no special magic will happen.)

Portability issues: [perlport -X], page 972.

To avoid confusing would-be users of your code with mysterious syntax errors,
put something like this at the top of your script:

use 5.010; # so filetest ops can stack

abs VALUE
abs

Returns the absolute value of its argument. If VALUE is omitted, uses $_.

accept NEWSOCKET,GENERICSOCKET
Accepts an incoming socket connect, just as accept(2) does. Returns the packed
address if it succeeded, false otherwise. See the example in Section 36.6 [perlipc
Sockets: Client/Server Communication], page 682.

On systems that support a close-on-exec flag on files, the flag will be set for the
newly opened file descriptor, as determined by the value of $^F. See [perlvar
$^F], page 1381.

alarm SECONDS
alarm

Arranges to have a SIGALRM delivered to this process after the specified num-
ber of wallclock seconds has elapsed. If SECONDS is not specified, the value
stored in $_ is used. (On some machines, unfortunately, the elapsed time may
be up to one second less or more than you specified because of how seconds

are counted, and process scheduling may delay the delivery of the signal even
further.)

Only one timer may be counting at once. Each call disables the previous timer,
and an argument of 0 may be supplied to cancel the previous timer without
starting a new one. The returned value is the amount of time remaining on the
previous timer.

For delays of finer granularity than one second, the Time::HiRes module (from
CPAN, and starting from Perl 5.8 part of the standard distribution) provides
ualarm(). You may also use Perl’s four-argument version of select() leaving
the first three arguments undefined, or you might be able to use the syscall

interface to access setitimer(2) if your system supports it. See perlfaq8 for
details.

It is usually a mistake to intermix alarm and sleep calls, because sleep may
be internally implemented on your system with alarm.

If you want to use alarm to time out a system call you need to use an eval/die
pair. You can’t rely on the alarm causing the system call to fail with $! set to
EINTR because Perl sets up signal handlers to restart system calls on some sys-
tems. Using eval/die always works, modulo the caveats given in Section 36.3
[perlipc Signals], page 667.

eval {

local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required

alarm $timeout;

$nread = sysread SOCKET, $buffer, $size;

alarm 0;

};

if ($@) {

die unless $@ eq "alarm\n"; # propagate unexpected errors

timed out

}

else {

didn’t

}

For more information see Section 36.1 [perlipc NAME], page 667.

Portability issues: [perlport alarm], page 972.

atan2 Y,X

Returns the arctangent of Y/X in the range -PI to PI.

For the tangent operation, you may use the Math::Trig::tan function, or use
the familiar relation:

sub tan { sin($_[0]) / cos($_[0]) }

The return value for atan2(0,0) is implementation-defined; consult your
atan2(3) manpage for more information.

Portability issues: [perlport atan2], page 972.

bind SOCKET,NAME
Binds a network address to a socket, just as bind(2) does. Returns true if it
succeeded, false otherwise. NAME should be a packed address of the appro-
priate type for the socket. See the examples in Section 36.6 [perlipc Sockets:
Client/Server Communication], page 682.

binmode FILEHANDLE, LAYER
binmode FILEHANDLE

Arranges for FILEHANDLE to be read or written in "binary" or "text" mode
on systems where the run-time libraries distinguish between binary and text
files. If FILEHANDLE is an expression, the value is taken as the name of the
filehandle. Returns true on success, otherwise it returns undef and sets $!

(errno).

On some systems (in general, DOS- and Windows-based systems) binmode() is
necessary when you’re not working with a text file. For the sake of portability
it is a good idea always to use it when appropriate, and never to use it when it
isn’t appropriate. Also, people can set their I/O to be by default UTF8-encoded
Unicode, not bytes.

In other words: regardless of platform, use binmode() on binary data, like
images, for example.

If LAYER is present it is a single string, but may contain multiple directives.
The directives alter the behaviour of the filehandle. When LAYER is present,
using binmode on a text file makes sense.

If LAYER is omitted or specified as :raw the filehandle is made suitable for
passing binary data. This includes turning off possible CRLF translation and
marking it as bytes (as opposed to Unicode characters). Note that, despite what
may be implied in "Programming Perl" (the Camel, 3rd edition) or elsewhere,
:raw is not simply the inverse of :crlf. Other layers that would affect the
binary nature of the stream are also disabled. See PerlIO, Section 69.1 [perl-
run NAME], page 1176, and the discussion about the PERLIO environment
variable.

The :bytes, :crlf, :utf8, and any other directives of the form :..., are called
I/O layers. The open pragma can be used to establish default I/O layers. See
open.

The LAYER parameter of the binmode() function is described as "DISCI-
PLINE" in "Programming Perl, 3rd Edition". However, since the publishing
of this book, by many known as "Camel III", the consensus of the naming of
this functionality has moved from "discipline" to "layer". All documentation
of this version of Perl therefore refers to "layers" rather than to "disciplines".
Now back to the regularly scheduled documentation...

To mark FILEHANDLE as UTF-8, use :utf8 or :encoding(UTF-8).
:utf8 just marks the data as UTF-8 without further checking, while
:encoding(UTF-8) checks the data for actually being valid UTF-8. More
details can be found in PerlIO-encoding.

In general, binmode() should be called after open() but before any I/O is done
on the filehandle. Calling binmode() normally flushes any pending buffered

output data (and perhaps pending input data) on the handle. An exception
to this is the :encoding layer that changes the default character encoding of
the handle; see 〈undefined〉 [open], page 〈undefined〉. The :encoding layer
sometimes needs to be called in mid-stream, and it doesn’t flush the stream.
The :encoding also implicitly pushes on top of itself the :utf8 layer because
internally Perl operates on UTF8-encoded Unicode characters.

The operating system, device drivers, C libraries, and Perl run-time system
all conspire to let the programmer treat a single character (\n) as the line
terminator, irrespective of external representation. On many operating systems,
the native text file representation matches the internal representation, but on
some platforms the external representation of \n is made up of more than one
character.

All variants of Unix, Mac OS (old and new), and Stream LF files on VMS
use a single character to end each line in the external representation of text
(even though that single character is CARRIAGE RETURN on old, pre-Darwin
flavors of Mac OS, and is LINE FEED on Unix and most VMS files). In other
systems like OS/2, DOS, and the various flavors of MS-Windows, your program
sees a \n as a simple \cJ, but what’s stored in text files are the two characters
\cM\cJ. That means that if you don’t use binmode() on these systems, \cM\cJ
sequences on disk will be converted to \n on input, and any \n in your program
will be converted back to \cM\cJ on output. This is what you want for text
files, but it can be disastrous for binary files.

Another consequence of using binmode() (on some systems) is that special end-
of-file markers will be seen as part of the data stream. For systems from the
Microsoft family this means that, if your binary data contain \cZ, the I/O
subsystem will regard it as the end of the file, unless you use binmode().

binmode() is important not only for readline() and print() operations, but also
when using read(), seek(), sysread(), syswrite() and tell() (see Section 56.1
[perlport NAME], page 951 for more details). See the $/ and $\ variables in
Section 86.1 [perlvar NAME], page 1375 for how to manually set your input
and output line-termination sequences.

Portability issues: [perlport binmode], page 972.

bless REF,CLASSNAME
bless REF

This function tells the thingy referenced by REF that it is now an object in
the CLASSNAME package. If CLASSNAME is omitted, the current package
is used. Because a bless is often the last thing in a constructor, it returns the
reference for convenience. Always use the two-argument version if a derived
class might inherit the function doing the blessing. See Section 46.1 [perlobj
NAME], page 769 for more about the blessing (and blessings) of objects.

Consider always blessing objects in CLASSNAMEs that are mixed case. Names-
paces with all lowercase names are considered reserved for Perl pragmata.
Builtin types have all uppercase names. To prevent confusion, you may wish
to avoid such package names as well. Make sure that CLASSNAME is a true
value.

See Section 40.2.6 [perlmod Perl Modules], page 738.

break

Break out of a given() block.

This keyword is enabled by the "switch" feature; see feature for more in-
formation on "switch". You can also access it by prefixing it with CORE::.
Alternatively, include a use v5.10 or later to the current scope.

caller EXPR
caller

Returns the context of the current pure perl subroutine call. In scalar context,
returns the caller’s package name if there is a caller (that is, if we’re in a
subroutine or eval or require) and the undefined value otherwise. caller never
returns XS subs and they are skipped. The next pure perl sub will appear
instead of the XS sub in caller’s return values. In list context, caller returns

0 1 2

($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print
a stack trace. The value of EXPR indicates how many call frames to go back
before the current one.

0 1 2 3 4

($package, $filename, $line, $subroutine, $hasargs,

5 6 7 8 9 10

$wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)

= caller($i);

Here, $subroutine is the function that the caller called (rather than the function
containing the caller). Note that $subroutine may be (eval) if the frame is not
a subroutine call, but an eval. In such a case additional elements $evaltext and
$is_require are set: $is_require is true if the frame is created by a require

or use statement, $evaltext contains the text of the eval EXPR statement. In
particular, for an eval BLOCK statement, $subroutine is (eval), but $evaltext is
undefined. (Note also that each use statement creates a require frame inside
an eval EXPR frame.) $subroutine may also be (unknown) if this particular
subroutine happens to have been deleted from the symbol table. $hasargs is
true if a new instance of @_ was set up for the frame. $hints and $bitmask

contain pragmatic hints that the caller was compiled with. $hints corresponds
to $^H, and $bitmask corresponds to ${^WARNING_BITS}. The $hints and
$bitmask values are subject to change between versions of Perl, and are not
meant for external use.

$hinthash is a reference to a hash containing the value of %^H when the caller
was compiled, or undef if %^H was empty. Do not modify the values of this
hash, as they are the actual values stored in the optree.

Furthermore, when called from within the DB package in list context, and with
an argument, caller returns more detailed information: it sets the list variable
@DB::args to be the arguments with which the subroutine was invoked.

Be aware that the optimizer might have optimized call frames away before
caller had a chance to get the information. That means that caller(N)

might not return information about the call frame you expect it to, for N >

1. In particular, @DB::args might have information from the previous time
caller was called.

Be aware that setting @DB::args is best effort, intended for debugging or gen-
erating backtraces, and should not be relied upon. In particular, as @_ contains
aliases to the caller’s arguments, Perl does not take a copy of @_, so @DB::args

will contain modifications the subroutine makes to @_ or its contents, not the
original values at call time. @DB::args, like @_, does not hold explicit references
to its elements, so under certain cases its elements may have become freed and
reallocated for other variables or temporary values. Finally, a side effect of the
current implementation is that the effects of shift @_ can normally be undone
(but not pop @_ or other splicing, and not if a reference to @_ has been taken,
and subject to the caveat about reallocated elements), so @DB::args is actually
a hybrid of the current state and initial state of @_. Buyer beware.

chdir EXPR
chdir FILEHANDLE
chdir DIRHANDLE
chdir

Changes the working directory to EXPR, if possible. If EXPR is omitted,
changes to the directory specified by $ENV{HOME}, if set; if not, changes
to the directory specified by $ENV{LOGDIR}. (Under VMS, the variable
$ENV{SYS$LOGIN} is also checked, and used if it is set.) If neither is set, chdir
does nothing. It returns true on success, false otherwise. See the example
under die.

On systems that support fchdir(2), you may pass a filehandle or directory handle
as the argument. On systems that don’t support fchdir(2), passing handles
raises an exception.

chmod LIST
Changes the permissions of a list of files. The first element of the list must
be the numeric mode, which should probably be an octal number, and which
definitely should not be a string of octal digits: 0644 is okay, but "0644" is not.
Returns the number of files successfully changed. See also [oct], page 406 if all
you have is a string.

$cnt = chmod 0755, "foo", "bar";

chmod 0755, @executables;

$mode = "0644"; chmod $mode, "foo"; # !!! sets mode to

--w----r-T

$mode = "0644"; chmod oct($mode), "foo"; # this is better

$mode = 0644; chmod $mode, "foo"; # this is best

On systems that support fchmod(2), you may pass filehandles among the files.
On systems that don’t support fchmod(2), passing filehandles raises an excep-
tion. Filehandles must be passed as globs or glob references to be recognized;
barewords are considered filenames.

open(my $fh, "<", "foo");

my $perm = (stat $fh)[2] & 07777;

chmod($perm | 0600, $fh);

You can also import the symbolic S_I* constants from the Fcntl module:

use Fcntl qw(:mode);

chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;

Identical to the chmod 0755 of the example above.

Portability issues: [perlport chmod], page 972.

chomp VARIABLE
chomp(LIST)
chomp

This safer version of [chop], page 363 removes any trailing string
that corresponds to the current value of $/ (also known as $IN-
PUT RECORD SEPARATOR in the English module). It returns the total
number of characters removed from all its arguments. It’s often used to remove
the newline from the end of an input record when you’re worried that the
final record may be missing its newline. When in paragraph mode ($/ = ’’),
it removes all trailing newlines from the string. When in slurp mode ($/ =

undef) or fixed-length record mode ($/ is a reference to an integer or the like;
see Section 86.1 [perlvar NAME], page 1375) chomp() won’t remove anything.
If VARIABLE is omitted, it chomps $_. Example:

while (<>) {

chomp; # avoid \n on last field

@array = split(/:/);

...

}

If VARIABLE is a hash, it chomps the hash’s values, but not its keys, resetting
the each iterator in the process.

You can actually chomp anything that’s an lvalue, including an assignment:

chomp($cwd = ‘pwd‘);

chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters
removed is returned.

Note that parentheses are necessary when you’re chomping anything that is not
a simple variable. This is because chomp $cwd = ‘pwd‘; is interpreted as (chomp
$cwd) = ‘pwd‘;, rather than as chomp($cwd = ‘pwd‘) which you might ex-
pect. Similarly, chomp $a, $b is interpreted as chomp($a), $b rather than as
chomp($a, $b).

chop VARIABLE
chop(LIST)
chop

Chops off the last character of a string and returns the character chopped. It
is much more efficient than s/.$//s because it neither scans nor copies the

string. If VARIABLE is omitted, chops $_. If VARIABLE is a hash, it chops
the hash’s values, but not its keys, resetting the each iterator in the process.

You can actually chop anything that’s an lvalue, including an assignment.

If you chop a list, each element is chopped. Only the value of the last chop is
returned.

Note that chop returns the last character. To return all but the last character,
use substr($string, 0, -1).

See also [chomp], page 363.

chown LIST
Changes the owner (and group) of a list of files. The first two elements of the
list must be the numeric uid and gid, in that order. A value of -1 in either
position is interpreted by most systems to leave that value unchanged. Returns
the number of files successfully changed.

$cnt = chown $uid, $gid, ’foo’, ’bar’;

chown $uid, $gid, @filenames;

On systems that support fchown(2), you may pass filehandles among the files.
On systems that don’t support fchown(2), passing filehandles raises an excep-
tion. Filehandles must be passed as globs or glob references to be recognized;
barewords are considered filenames.

Here’s an example that looks up nonnumeric uids in the passwd file:

print "User: ";

chomp($user = <STDIN>);

print "Files: ";

chomp($pattern = <STDIN>);

($login,$pass,$uid,$gid) = getpwnam($user)

or die "$user not in passwd file";

@ary = glob($pattern); # expand filenames

chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless
you’re the superuser, although you should be able to change the group to any of
your secondary groups. On insecure systems, these restrictions may be relaxed,
but this is not a portable assumption. On POSIX systems, you can detect this
condition this way:

use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);

$can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);

Portability issues: [perlport chown], page 973.

chr NUMBER
chr

Returns the character represented by that NUMBER in the character set. For
example, chr(65) is "A" in either ASCII or Unicode, and chr(0x263a) is a
Unicode smiley face.

Negative values give the Unicode replacement character (chr(0xfffd)), except
under the bytes pragma, where the low eight bits of the value (truncated to
an integer) are used.

If NUMBER is omitted, uses $_.

For the reverse, use [ord], page 414.

Note that characters from 128 to 255 (inclusive) are by default internally not
encoded as UTF-8 for backward compatibility reasons.

See Section 81.1 [perlunicode NAME], page 1317 for more about Unicode.

chroot FILENAME
chroot

This function works like the system call by the same name: it makes the named
directory the new root directory for all further pathnames that begin with a /

by your process and all its children. (It doesn’t change your current working
directory, which is unaffected.) For security reasons, this call is restricted to
the superuser. If FILENAME is omitted, does a chroot to $_.

NOTE: It is good security practice to do chdir("/") (to the root directory)
immediately after a chroot().

Portability issues: [perlport chroot], page 973.

close FILEHANDLE
close

Closes the file or pipe associated with the filehandle, flushes the IO buffers,
and closes the system file descriptor. Returns true if those operations succeed
and if no error was reported by any PerlIO layer. Closes the currently selected
filehandle if the argument is omitted.

You don’t have to close FILEHANDLE if you are immediately going to do
another open on it, because open closes it for you. (See [open], page 407.)
However, an explicit close on an input file resets the line counter ($.), while
the implicit close done by open does not.

If the filehandle came from a piped open, close returns false if one of the other
syscalls involved fails or if its program exits with non-zero status. If the only
problem was that the program exited non-zero, $! will be set to 0. Closing a
pipe also waits for the process executing on the pipe to exit–in case you wish
to look at the output of the pipe afterwards–and implicitly puts the exit status
value of that command into $? and ${^CHILD_ERROR_NATIVE}.

If there are multiple threads running, close on a filehandle from a piped open
returns true without waiting for the child process to terminate, if the filehandle
is still open in another thread.

Closing the read end of a pipe before the process writing to it at the other end
is done writing results in the writer receiving a SIGPIPE. If the other end can’t
handle that, be sure to read all the data before closing the pipe.

Example:

open(OUTPUT, ’|sort >foo’) # pipe to sort

or die "Can’t start sort: $!";

#... # print stuff to output

close OUTPUT # wait for sort to finish

or warn $! ? "Error closing sort pipe: $!"

: "Exit status $? from sort";

open(INPUT, ’foo’) # get sort’s results

or die "Can’t open ’foo’ for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect
filehandle, usually the real filehandle name or an autovivified handle.

closedir DIRHANDLE
Closes a directory opened by opendir and returns the success of that system
call.

connect SOCKET,NAME
Attempts to connect to a remote socket, just like connect(2). Returns true
if it succeeded, false otherwise. NAME should be a packed address of the
appropriate type for the socket. See the examples in Section 36.6 [perlipc
Sockets: Client/Server Communication], page 682.

continue BLOCK
continue

When followed by a BLOCK, continue is actually a flow control statement
rather than a function. If there is a continue BLOCK attached to a BLOCK
(typically in a while or foreach), it is always executed just before the condi-
tional is about to be evaluated again, just like the third part of a for loop in
C. Thus it can be used to increment a loop variable, even when the loop has
been continued via the next statement (which is similar to the C continue

statement).

last, next, or redo may appear within a continue block; last and redo

behave as if they had been executed within the main block. So will next, but
since it will execute a continue block, it may be more entertaining.

while (EXPR) {

redo always comes here

do_something;

} continue {

next always comes here

do_something_else;

then back the top to re-check EXPR

}

last always comes here

Omitting the continue section is equivalent to using an empty one, logically
enough, so next goes directly back to check the condition at the top of the loop.

When there is no BLOCK, continue is a function that falls through the current
when or default block instead of iterating a dynamically enclosing foreach

or exiting a lexically enclosing given. In Perl 5.14 and earlier, this form of
continue was only available when the "switch" feature was enabled. See
feature and Section 74.2.11 [perlsyn Switch Statements], page 1258 for more
information.

cos EXPR

cos

Returns the cosine of EXPR (expressed in radians). If EXPR is omitted, takes
the cosine of $_.

For the inverse cosine operation, you may use the Math::Trig::acos() func-
tion, or use this relation:

sub acos { atan2(sqrt(1 - $_[0] * $_[0]), $_[0]) }

crypt PLAINTEXT,SALT
Creates a digest string exactly like the crypt(3) function in the C library (as-
suming that you actually have a version there that has not been extirpated as
a potential munition).

crypt() is a one-way hash function. The PLAINTEXT and SALT are turned
into a short string, called a digest, which is returned. The same PLAINTEXT
and SALT will always return the same string, but there is no (known) way to get
the original PLAINTEXT from the hash. Small changes in the PLAINTEXT
or SALT will result in large changes in the digest.

There is no decrypt function. This function isn’t all that useful for cryptography
(for that, look for Crypt modules on your nearby CPAN mirror) and the name
"crypt" is a bit of a misnomer. Instead it is primarily used to check if two pieces
of text are the same without having to transmit or store the text itself. An
example is checking if a correct password is given. The digest of the password
is stored, not the password itself. The user types in a password that is crypt()’d
with the same salt as the stored digest. If the two digests match, the password
is correct.

When verifying an existing digest string you should use the digest as the salt
(like crypt($plain, $digest) eq $digest). The SALT used to create the di-
gest is visible as part of the digest. This ensures crypt() will hash the new
string with the same salt as the digest. This allows your code to work with
the standard 〈undefined〉 [crypt], page 〈undefined〉 and with more exotic im-
plementations. In other words, assume nothing about the returned string itself
nor about how many bytes of SALT may matter.

Traditionally the result is a string of 13 bytes: two first bytes of the salt,
followed by 11 bytes from the set [./0-9A-Za-z], and only the first eight bytes
of PLAINTEXT mattered. But alternative hashing schemes (like MD5), higher
level security schemes (like C2), and implementations on non-Unix platforms
may produce different strings.

When choosing a new salt create a random two character string whose
characters come from the set [./0-9A-Za-z] (like join ’’, (’.’, ’/’,

0..9, ’A’..’Z’, ’a’..’z’)[rand 64, rand 64]). This set of characters is
just a recommendation; the characters allowed in the salt depend solely on
your system’s crypt library, and Perl can’t restrict what salts crypt() accepts.

Here’s an example that makes sure that whoever runs this program knows their
password:

$pwd = (getpwuid($<))[1];

system "stty -echo";

print "Password: ";

chomp($word = <STDIN>);

print "\n";

system "stty echo";

if (crypt($word, $pwd) ne $pwd) {

die "Sorry...\n";

} else {

print "ok\n";

}

Of course, typing in your own password to whoever asks you for it is unwise.

The 〈undefined〉 [crypt], page 〈undefined〉 function is unsuitable for hashing
large quantities of data, not least of all because you can’t get the information
back. Look at the Digest module for more robust algorithms.

If using crypt() on a Unicode string (which potentially has characters with
codepoints above 255), Perl tries to make sense of the situation by trying to
downgrade (a copy of) the string back to an eight-bit byte string before calling
crypt() (on that copy). If that works, good. If not, crypt() dies with Wide

character in crypt.

Portability issues: [perlport crypt], page 973.

dbmclose HASH
[This function has been largely superseded by the untie function.]

Breaks the binding between a DBM file and a hash.

Portability issues: [perlport dbmclose], page 973.

dbmopen HASH,DBNAME,MASK
[This function has been largely superseded by the [tie], page 473 function.]

This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a
hash. HASH is the name of the hash. (Unlike normal open, the first argument
is not a filehandle, even though it looks like one). DBNAME is the name of
the database (without the .dir or .pag extension if any). If the database does
not exist, it is created with protection specified by MASK (as modified by the
umask). To prevent creation of the database if it doesn’t exist, you may specify
a MODE of 0, and the function will return a false value if it can’t find an
existing database. If your system supports only the older DBM functions, you
may make only one dbmopen call in your program. In older versions of Perl,
if your system had neither DBM nor ndbm, calling dbmopen produced a fatal
error; it now falls back to sdbm(3).

If you don’t have write access to the DBM file, you can only read hash variables,
not set them. If you want to test whether you can write, either use file tests or
try setting a dummy hash entry inside an eval to trap the error.

Note that functions such as keys and values may return huge lists when used
on large DBM files. You may prefer to use the each function to iterate over
large DBM files. Example:

print out history file offsets

dbmopen(%HIST,’/usr/lib/news/history’,0666);

while (($key,$val) = each %HIST) {

print $key, ’ = ’, unpack(’L’,$val), "\n";

}

dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons of
the various dbm approaches, as well as DB_File for a particularly rich imple-
mentation.

You can control which DBM library you use by loading that library before you
call dbmopen():

use DB_File;

dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")

or die "Can’t open netscape history file: $!";

Portability issues: [perlport dbmopen], page 973.

defined EXPR
defined

Returns a Boolean value telling whether EXPR has a value other than the
undefined value undef. If EXPR is not present, $_ is checked.

Many operations return undef to indicate failure, end of file, system error,
uninitialized variable, and other exceptional conditions. This function allows
you to distinguish undef from other values. (A simple Boolean test will not
distinguish among undef, zero, the empty string, and "0", which are all equally
false.) Note that since undef is a valid scalar, its presence doesn’t necessarily
indicate an exceptional condition: pop returns undef when its argument is an
empty array, or when the element to return happens to be undef.

You may also use defined(&func) to check whether subroutine &func has ever
been defined. The return value is unaffected by any forward declarations of
&func. A subroutine that is not defined may still be callable: its package may
have an AUTOLOAD method that makes it spring into existence the first time that
it is called; see Section 73.1 [perlsub NAME], page 1216.

Use of defined on aggregates (hashes and arrays) is deprecated. It used to re-
port whether memory for that aggregate had ever been allocated. This behavior
may disappear in future versions of Perl. You should instead use a simple test
for size:

if (@an_array) { print "has array elements\n" }

if (%a_hash) { print "has hash members\n" }

When used on a hash element, it tells you whether the value is defined, not
whether the key exists in the hash. Use 〈undefined〉 [exists], page 〈undefined〉
for the latter purpose.

Examples:

print if defined $switch{D};

print "$val\n" while defined($val = pop(@ary));

die "Can’t readlink $sym: $!"

unless defined($value = readlink $sym);

sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }

$debugging = 0 unless defined $debugging;

Note: Many folks tend to overuse defined and are then surprised to discover
that the number 0 and "" (the zero-length string) are, in fact, defined values.
For example, if you say

"ab" =~ /a(.*)b/;

The pattern match succeeds and $1 is defined, although it matched "nothing".
It didn’t really fail to match anything. Rather, it matched something that
happened to be zero characters long. This is all very above-board and honest.
When a function returns an undefined value, it’s an admission that it couldn’t
give you an honest answer. So you should use defined only when questioning
the integrity of what you’re trying to do. At other times, a simple comparison
to 0 or "" is what you want.

See also [undef], page 477, 〈undefined〉 [exists], page 〈undefined〉, [ref], page 435.

delete EXPR
Given an expression that specifies an element or slice of a hash, delete deletes
the specified elements from that hash so that exists() on that element no longer
returns true. Setting a hash element to the undefined value does not remove
its key, but deleting it does; see 〈undefined〉 [exists], page 〈undefined〉.
In list context, returns the value or values deleted, or the last such element
in scalar context. The return list’s length always matches that of the argu-
ment list: deleting non-existent elements returns the undefined value in their
corresponding positions.

delete() may also be used on arrays and array slices, but its behavior is less
straightforward. Although exists() will return false for deleted entries, deleting
array elements never changes indices of existing values; use shift() or splice()
for that. However, if any deleted elements fall at the end of an array, the
array’s size shrinks to the position of the highest element that still tests true
for exists(), or to 0 if none do. In other words, an array won’t have trailing
nonexistent elements after a delete.

WARNING: Calling delete on array values is strongly discouraged. The notion
of deleting or checking the existence of Perl array elements is not conceptually
coherent, and can lead to surprising behavior.

Deleting from %ENV modifies the environment. Deleting from a hash tied to a
DBM file deletes the entry from the DBM file. Deleting from a tied hash or
array may not necessarily return anything; it depends on the implementation
of the tied package’s DELETE method, which may do whatever it pleases.

The delete local EXPR construct localizes the deletion to the current block at
run time. Until the block exits, elements locally deleted temporarily no longer
exist. See Section 73.3.4.5 [perlsub Localized deletion of elements of composite
types], page 1230.

%hash = (foo => 11, bar => 22, baz => 33);

$scalar = delete $hash{foo}; # $scalar is 11

$scalar = delete @hash{qw(foo bar)}; # $scalar is 22

@array = delete @hash{qw(foo baz)}; # @array is (undef,33)

The following (inefficiently) deletes all the values of %HASH and @ARRAY:

foreach $key (keys %HASH) {

delete $HASH{$key};

}

foreach $index (0 .. $#ARRAY) {

delete $ARRAY[$index];

}

And so do these:

delete @HASH{keys %HASH};

delete @ARRAY[0 .. $#ARRAY];

But both are slower than assigning the empty list or undefining %HASH or
@ARRAY, which is the customary way to empty out an aggregate:

%HASH = (); # completely empty %HASH

undef %HASH; # forget %HASH ever existed

@ARRAY = (); # completely empty @ARRAY

undef @ARRAY; # forget @ARRAY ever existed

The EXPR can be arbitrarily complicated provided its final operation is an
element or slice of an aggregate:

delete $ref->[$x][$y]{$key};

delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};

delete $ref->[$x][$y][$index];

delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];

die LIST

die raises an exception. Inside an eval the error message is stuffed into $@ and
the eval is terminated with the undefined value. If the exception is outside of
all enclosing evals, then the uncaught exception prints LIST to STDERR and
exits with a non-zero value. If you need to exit the process with a specific exit
code, see [exit], page 382.

Equivalent examples:

die "Can’t cd to spool: $!\n" unless chdir ’/usr/spool/news’;

chdir ’/usr/spool/news’ or die "Can’t cd to spool: $!\n"

If the last element of LIST does not end in a newline, the current script line
number and input line number (if any) are also printed, and a newline is sup-
plied. Note that the "input line number" (also known as "chunk") is subject
to whatever notion of "line" happens to be currently in effect, and is also avail-
able as the special variable $.. See [perlvar $/], page 1395 and [perlvar $.],
page 1395.

Hint: sometimes appending ", stopped" to your message will cause it to make
better sense when the string "at foo line 123" is appended. Suppose you are
running script "canasta".

die "/etc/games is no good";

die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.

/etc/games is no good, stopped at canasta line 123.

If the output is empty and $@ already contains a value (typically from a previous
eval) that value is reused after appending "\t...propagated". This is useful
for propagating exceptions:

eval { ... };

die unless $@ =~ /Expected exception/;

If the output is empty and $@ contains an object reference that has a PROPAGATE
method, that method will be called with additional file and line number pa-
rameters. The return value replaces the value in $@; i.e., as if $@ = eval {

$@->PROPAGATE(__FILE__, __LINE__) }; were called.

If $@ is empty then the string "Died" is used.

If an uncaught exception results in interpreter exit, the exit code is determined
from the values of $! and $? with this pseudocode:

exit $! if $!; # errno

exit $? >> 8 if $? >> 8; # child exit status

exit 255; # last resort

The intent is to squeeze as much possible information about the likely cause
into the limited space of the system exit code. However, as $! is the value of
C’s errno, which can be set by any system call, this means that the value of
the exit code used by die can be non-predictable, so should not be relied upon,
other than to be non-zero.

You can also call die with a reference argument, and if this is trapped within
an eval, $@ contains that reference. This permits more elaborate exception
handling using objects that maintain arbitrary state about the exception. Such
a scheme is sometimes preferable to matching particular string values of $@
with regular expressions. Because $@ is a global variable and eval may be
used within object implementations, be careful that analyzing the error object
doesn’t replace the reference in the global variable. It’s easiest to make a local
copy of the reference before any manipulations. Here’s an example:

use Scalar::Util "blessed";

eval { ... ; die Some::Module::Exception->new(FOO => "bar") };

if (my $ev_err = $@) {

if (blessed($ev_err)

&& $ev_err->isa("Some::Module::Exception")) {

handle Some::Module::Exception

}

else {

handle all other possible exceptions

}

}

Because Perl stringifies uncaught exception messages before display, you’ll prob-
ably want to overload stringification operations on exception objects. See
overload for details about that.

You can arrange for a callback to be run just before the die does its deed,
by setting the $SIG{__DIE__} hook. The associated handler is called with
the error text and can change the error message, if it sees fit, by calling die

again. See [perlvar %SIG], page 1383 for details on setting %SIG entries, and
[eval BLOCK], page 377 for some examples. Although this feature was to be
run only right before your program was to exit, this is not currently so: the
$SIG{__DIE__} hook is currently called even inside eval()ed blocks/strings! If
one wants the hook to do nothing in such situations, put

die @_ if $^S;

as the first line of the handler (see [perlvar $^S], page 1399). Because this
promotes strange action at a distance, this counterintuitive behavior may be
fixed in a future release.

See also exit(), warn(), and the Carp module.

do BLOCK
Not really a function. Returns the value of the last command in the sequence of
commands indicated by BLOCK. When modified by the while or until loop
modifier, executes the BLOCK once before testing the loop condition. (On
other statements the loop modifiers test the conditional first.)

do BLOCK does not count as a loop, so the loop control statements next, last,
or redo cannot be used to leave or restart the block. See Section 74.1 [perlsyn
NAME], page 1249 for alternative strategies.

do EXPR

Uses the value of EXPR as a filename and executes the contents of the file as
a Perl script.

do ’stat.pl’;

is largely like

eval ‘cat stat.pl‘;

except that it’s more concise, runs no external processes, keeps track of the
current filename for error messages, searches the @INC directories, and updates
%INC if the file is found. See [perlvar @INC], page 1382 and [perlvar %INC],
page 1382 for these variables. It also differs in that code evaluated with do

FILENAME cannot see lexicals in the enclosing scope; eval STRING does. It’s the
same, however, in that it does reparse the file every time you call it, so you
probably don’t want to do this inside a loop.

If do can read the file but cannot compile it, it returns undef and sets an error
message in $@. If do cannot read the file, it returns undef and sets $! to the

error. Always check $@ first, as compilation could fail in a way that also sets $!.
If the file is successfully compiled, do returns the value of the last expression
evaluated.

Inclusion of library modules is better done with the use and require opera-
tors, which also do automatic error checking and raise an exception if there’s a
problem.

You might like to use do to read in a program configuration file. Manual error
checking can be done this way:

read in config files: system first, then user

for $file ("/share/prog/defaults.rc",

"$ENV{HOME}/.someprogrc")

{

unless ($return = do $file) {

warn "couldn’t parse $file: $@" if $@;

warn "couldn’t do $file: $!" unless defined $return;

warn "couldn’t run $file" unless $return;

}

}

dump LABEL
dump EXPR
dump

This function causes an immediate core dump. See also the -u command-line
switch in Section 69.1 [perlrun NAME], page 1176, which does the same thing.
Primarily this is so that you can use the undump program (not supplied) to
turn your core dump into an executable binary after having initialized all your
variables at the beginning of the program. When the new binary is executed
it will begin by executing a goto LABEL (with all the restrictions that goto

suffers). Think of it as a goto with an intervening core dump and reincarnation.
If LABEL is omitted, restarts the program from the top. The dump EXPR form,
available starting in Perl 5.18.0, allows a name to be computed at run time,
being otherwise identical to dump LABEL.

WARNING: Any files opened at the time of the dump will not be open any
more when the program is reincarnated, with possible resulting confusion by
Perl.

This function is now largely obsolete, mostly because it’s very hard to con-
vert a core file into an executable. That’s why you should now invoke it as
CORE::dump(), if you don’t want to be warned against a possible typo.

Unlike most named operators, this has the same precedence as assignment. It
is also exempt from the looks-like-a-function rule, so dump ("foo")."bar" will
cause "bar" to be part of the argument to dump.

Portability issues: [perlport dump], page 973.

each HASH
each ARRAY
each EXPR

When called on a hash in list context, returns a 2-element list consisting of the
key and value for the next element of a hash. In Perl 5.12 and later only, it
will also return the index and value for the next element of an array so that
you can iterate over it; older Perls consider this a syntax error. When called in
scalar context, returns only the key (not the value) in a hash, or the index in
an array.

Hash entries are returned in an apparently random order. The actual random
order is specific to a given hash; the exact same series of operations on two
hashes may result in a different order for each hash. Any insertion into the
hash may change the order, as will any deletion, with the exception that the
most recent key returned by each or keys may be deleted without changing
the order. So long as a given hash is unmodified you may rely on keys, values
and each to repeatedly return the same order as each other. See Section 70.4.9
[perlsec Algorithmic Complexity Attacks], page 1205 for details on why hash
order is randomized. Aside from the guarantees provided here the exact details
of Perl’s hash algorithm and the hash traversal order are subject to change in
any release of Perl.

After each has returned all entries from the hash or array, the next call to each

returns the empty list in list context and undef in scalar context; the next call
following that one restarts iteration. Each hash or array has its own internal
iterator, accessed by each, keys, and values. The iterator is implicitly reset
when each has reached the end as just described; it can be explicitly reset by
calling keys or values on the hash or array. If you add or delete a hash’s
elements while iterating over it, the effect on the iterator is unspecified; for
example, entries may be skipped or duplicated–so don’t do that. Exception:
It is always safe to delete the item most recently returned by each(), so the
following code works properly:

while (($key, $value) = each %hash) {

print $key, "\n";

delete $hash{$key}; # This is safe

}

Tied hashes may have a different ordering behaviour to perl’s hash implemen-
tation.

This prints out your environment like the printenv(1) program, but in a different
order:

while (($key,$value) = each %ENV) {

print "$key=$value\n";

}

Starting with Perl 5.14, each can take a scalar EXPR, which must hold a
reference to an unblessed hash or array. The argument will be dereferenced
automatically. This aspect of each is considered highly experimental. The
exact behaviour may change in a future version of Perl.

while (($key,$value) = each $hashref) { ... }

As of Perl 5.18 you can use a bare each in a while loop, which will set $_ on
every iteration.

while(each %ENV) {

print "$_=$ENV{$_}\n";

}

To avoid confusing would-be users of your code who are running earlier versions
of Perl with mysterious syntax errors, put this sort of thing at the top of your
file to signal that your code will work only on Perls of a recent vintage:

use 5.012; # so keys/values/each work on arrays

use 5.014; # so keys/values/each work on scalars (experimental)

use 5.018; # so each assigns to $_ in a lone while test

See also keys, values, and sort.

eof FILEHANDLE
eof ()

eof

Returns 1 if the next read on FILEHANDLE will return end of file or if FILE-
HANDLE is not open. FILEHANDLE may be an expression whose value gives
the real filehandle. (Note that this function actually reads a character and then
ungetcs it, so isn’t useful in an interactive context.) Do not read from a termi-
nal file (or call eof(FILEHANDLE) on it) after end-of-file is reached. File types
such as terminals may lose the end-of-file condition if you do.

An eof without an argument uses the last file read. Using eof() with empty
parentheses is different. It refers to the pseudo file formed from the files listed
on the command line and accessed via the <> operator. Since <> isn’t explicitly
opened, as a normal filehandle is, an eof() before <> has been used will cause
@ARGV to be examined to determine if input is available. Similarly, an eof()

after <> has returned end-of-file will assume you are processing another @ARGV
list, and if you haven’t set @ARGV, will read input from STDIN; see Section 48.2.33
[perlop I/O Operators], page 844.

In a while (<>) loop, eof or eof(ARGV) can be used to detect the end of each
file, whereas eof() will detect the end of the very last file only. Examples:

reset line numbering on each input file

while (<>) {

next if /^\s*#/; # skip comments

print "$.\t$_";

} continue {

close ARGV if eof; # Not eof()!

}

insert dashes just before last line of last file

while (<>) {

if (eof()) { # check for end of last file

print "--------------\n";

}

print;

last if eof(); # needed if we’re reading from a terminal

}

Practical hint: you almost never need to use eof in Perl, because the input
operators typically return undef when they run out of data or encounter an
error.

eval EXPR
eval BLOCK
eval

In the first form, often referred to as a "string eval", the return value of EXPR
is parsed and executed as if it were a little Perl program. The value of the
expression (which is itself determined within scalar context) is first parsed,
and if there were no errors, executed as a block within the lexical context of
the current Perl program. This means, that in particular, any outer lexical
variables are visible to it, and any package variable settings or subroutine and
format definitions remain afterwards.

Note that the value is parsed every time the eval executes. If EXPR is omitted,
evaluates $_. This form is typically used to delay parsing and subsequent
execution of the text of EXPR until run time.

If the unicode_eval feature is enabled (which is the default under a use 5.16

or higher declaration), EXPR or $_ is treated as a string of characters, so use

utf8 declarations have no effect, and source filters are forbidden. In the absence
of the unicode_eval feature, the string will sometimes be treated as charac-
ters and sometimes as bytes, depending on the internal encoding, and source
filters activated within the eval exhibit the erratic, but historical, behaviour of
affecting some outer file scope that is still compiling. See also the [evalbytes],
page 380 keyword, which always treats its input as a byte stream and works
properly with source filters, and the feature pragma.

Problems can arise if the string expands a scalar containing a floating point
number. That scalar can expand to letters, such as "NaN" or "Infinity"; or,
within the scope of a use locale, the decimal point character may be something
other than a dot (such as a comma). None of these are likely to parse as you
are likely expecting.

In the second form, the code within the BLOCK is parsed only once–at the
same time the code surrounding the eval itself was parsed–and executed within
the context of the current Perl program. This form is typically used to trap
exceptions more efficiently than the first (see below), while also providing the
benefit of checking the code within BLOCK at compile time.

The final semicolon, if any, may be omitted from the value of EXPR or within
the BLOCK.

In both forms, the value returned is the value of the last expression evaluated
inside the mini-program; a return statement may be also used, just as with sub-
routines. The expression providing the return value is evaluated in void, scalar,

or list context, depending on the context of the eval itself. See [wantarray],
page 488 for more on how the evaluation context can be determined.

If there is a syntax error or runtime error, or a die statement is executed, eval
returns undef in scalar context or an empty list in list context, and $@ is set
to the error message. (Prior to 5.16, a bug caused undef to be returned in list
context for syntax errors, but not for runtime errors.) If there was no error,
$@ is set to the empty string. A control flow operator like last or goto can
bypass the setting of $@. Beware that using eval neither silences Perl from
printing warnings to STDERR, nor does it stuff the text of warning messages
into $@. To do either of those, you have to use the $SIG{__WARN__} facility, or
turn off warnings inside the BLOCK or EXPR using no warnings ’all’. See
〈undefined〉 [warn], page 〈undefined〉, Section 86.1 [perlvar NAME], page 1375,
and warnings.

Note that, because eval traps otherwise-fatal errors, it is useful for determining
whether a particular feature (such as socket or symlink) is implemented. It
is also Perl’s exception-trapping mechanism, where the die operator is used to
raise exceptions.

If you want to trap errors when loading an XS module, some problems with the
binary interface (such as Perl version skew) may be fatal even with eval unless
$ENV{PERL_DL_NONLAZY} is set. See Section 69.1 [perlrun NAME], page 1176.

If the code to be executed doesn’t vary, you may use the eval-BLOCK form to
trap run-time errors without incurring the penalty of recompiling each time.
The error, if any, is still returned in $@. Examples:

make divide-by-zero nonfatal

eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient

eval ’$answer = $a / $b’; warn $@ if $@;

a compile-time error

eval { $answer = }; # WRONG

a run-time error

eval ’$answer =’; # sets $@

Using the eval{} form as an exception trap in libraries does have some issues.
Due to the current arguably broken state of __DIE__ hooks, you may wish not
to trigger any __DIE__ hooks that user code may have installed. You can use
the local $SIG{__DIE__} construct for this purpose, as this example shows:

a private exception trap for divide-by-zero

eval { local $SIG{’__DIE__’}; $answer = $a / $b; };

warn $@ if $@;

This is especially significant, given that __DIE__ hooks can call die again,
which has the effect of changing their error messages:

__DIE__ hooks may modify error messages

{

local $SIG{’__DIE__’} =

sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };

eval { die "foo lives here" };

print $@ if $@; # prints "bar lives here"

}

Because this promotes action at a distance, this counterintuitive behavior may
be fixed in a future release.

With an eval, you should be especially careful to remember what’s being looked
at when:

eval $x; # CASE 1

eval "$x"; # CASE 2

eval ’$x’; # CASE 3

eval { $x }; # CASE 4

eval "\$$x++"; # CASE 5

$$x++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the
variable $x. (Although case 2 has misleading double quotes making the reader
wonder what else might be happening (nothing is).) Cases 3 and 4 likewise
behave in the same way: they run the code ’$x’, which does nothing but
return the value of $x. (Case 4 is preferred for purely visual reasons, but it also
has the advantage of compiling at compile-time instead of at run-time.) Case
5 is a place where normally you would like to use double quotes, except that
in this particular situation, you can just use symbolic references instead, as in
case 6.

Before Perl 5.14, the assignment to $@ occurred before restoration of localized
variables, which means that for your code to run on older versions, a temporary
is required if you want to mask some but not all errors:

alter $@ on nefarious repugnancy only

{

my $e;

{

local $@; # protect existing $@

eval { test_repugnancy() };

$@ =~ /nefarious/ and die $@; # Perl 5.14 and higher only

$@ =~ /nefarious/ and $e = $@;

}

die $e if defined $e

}

eval BLOCK does not count as a loop, so the loop control statements next, last,
or redo cannot be used to leave or restart the block.

An eval ’’ executed within a subroutine defined in the DB package doesn’t see
the usual surrounding lexical scope, but rather the scope of the first non-DB

piece of code that called it. You don’t normally need to worry about this unless
you are writing a Perl debugger.

evalbytes EXPR
evalbytes

This function is like [eval], page 377 with a string argument, except it always
parses its argument, or $_ if EXPR is omitted, as a string of bytes. A string
containing characters whose ordinal value exceeds 255 results in an error. Source
filters activated within the evaluated code apply to the code itself.

This function is only available under the evalbytes feature, a use v5.16 (or
higher) declaration, or with a CORE:: prefix. See feature for more information.

exec LIST

exec PROGRAM LIST
The exec function executes a system command and never returns; use system
instead of exec if you want it to return. It fails and returns false only if the
command does not exist and it is executed directly instead of via your system’s
command shell (see below).

Since it’s a common mistake to use exec instead of system, Perl warns you if
exec is called in void context and if there is a following statement that isn’t
die, warn, or exit (if -w is set–but you always do that, right?). If you really
want to follow an exec with some other statement, you can use one of these
styles to avoid the warning:

exec (’foo’) or print STDERR "couldn’t exec foo: $!";

{ exec (’foo’) }; print STDERR "couldn’t exec foo: $!";

If there is more than one argument in LIST, this calls execvp(3) with the
arguments in LIST. If there is only one element in LIST, the argument is checked
for shell metacharacters, and if there are any, the entire argument is passed to
the system’s command shell for parsing (this is /bin/sh -c on Unix platforms,
but varies on other platforms). If there are no shell metacharacters in the
argument, it is split into words and passed directly to execvp, which is more
efficient. Examples:

exec ’/bin/echo’, ’Your arguments are: ’, @ARGV;

exec "sort $outfile | uniq";

If you don’t really want to execute the first argument, but want to lie to the
program you are executing about its own name, you can specify the program
you actually want to run as an "indirect object" (without a comma) in front
of the LIST, as in exec PROGRAM LIST. (This always forces interpretation of
the LIST as a multivalued list, even if there is only a single scalar in the list.)
Example:

$shell = ’/bin/csh’;

exec $shell ’-sh’; # pretend it’s a login shell

or, more directly,

exec {’/bin/csh’} ’-sh’; # pretend it’s a login shell

When the arguments get executed via the system shell, results are subject to
its quirks and capabilities. See [perlop ‘STRING‘], page 832 for details.

Using an indirect object with exec or system is also more secure. This usage
(which also works fine with system()) forces interpretation of the arguments as
a multivalued list, even if the list had just one argument. That way you’re safe
from the shell expanding wildcards or splitting up words with whitespace in
them.

@args = ("echo surprise");

exec @args; # subject to shell escapes

if @args == 1

exec { $args[0] } @args; # safe even with one-arg list

The first version, the one without the indirect object, ran the echo program,
passing it "surprise" an argument. The second version didn’t; it tried to run
a program named "echo surprise", didn’t find it, and set $? to a non-zero value
indicating failure.

On Windows, only the exec PROGRAM LIST indirect object syntax will reliably
avoid using the shell; exec LIST, even with more than one element, will fall
back to the shell if the first spawn fails.

Perl attempts to flush all files opened for output before the exec, but this
may not be supported on some platforms (see Section 56.1 [perlport NAME],
page 951). To be safe, you may need to set $| ($AUTOFLUSH in English) or
call the autoflush() method of IO::Handle on any open handles to avoid lost
output.

Note that exec will not call your END blocks, nor will it invoke DESTROYmethods
on your objects.

Portability issues: [perlport exec], page 973.

exists EXPR
Given an expression that specifies an element of a hash, returns true if the
specified element in the hash has ever been initialized, even if the corresponding
value is undefined.

print "Exists\n" if exists $hash{$key};

print "Defined\n" if defined $hash{$key};

print "True\n" if $hash{$key};

exists may also be called on array elements, but its behavior is much less obvious
and is strongly tied to the use of 〈undefined〉 [delete], page 〈undefined〉 on arrays.

WARNING: Calling exists on array values is strongly discouraged. The notion
of deleting or checking the existence of Perl array elements is not conceptually
coherent, and can lead to surprising behavior.

print "Exists\n" if exists $array[$index];

print "Defined\n" if defined $array[$index];

print "True\n" if $array[$index];

A hash or array element can be true only if it’s defined and defined only if it
exists, but the reverse doesn’t necessarily hold true.

Given an expression that specifies the name of a subroutine, returns true if the
specified subroutine has ever been declared, even if it is undefined. Mentioning

a subroutine name for exists or defined does not count as declaring it. Note
that a subroutine that does not exist may still be callable: its package may have
an AUTOLOAD method that makes it spring into existence the first time that it
is called; see Section 73.1 [perlsub NAME], page 1216.

print "Exists\n" if exists &subroutine;

print "Defined\n" if defined &subroutine;

Note that the EXPR can be arbitrarily complicated as long as the final operation
is a hash or array key lookup or subroutine name:

if (exists $ref->{A}->{B}->{$key}) { }

if (exists $hash{A}{B}{$key}) { }

if (exists $ref->{A}->{B}->[$ix]) { }

if (exists $hash{A}{B}[$ix]) { }

if (exists &{$ref->{A}{B}{$key}}) { }

Although the most deeply nested array or hash element will not spring into
existence just because its existence was tested, any intervening ones will. Thus
$ref->{"A"} and $ref->{"A"}->{"B"} will spring into existence due to the
existence test for the $key element above. This happens anywhere the arrow
operator is used, including even here:

undef $ref;

if (exists $ref->{"Some key"}) { }

print $ref; # prints HASH(0x80d3d5c)

This surprising autovivification in what does not at first–or even second–glance
appear to be an lvalue context may be fixed in a future release.

Use of a subroutine call, rather than a subroutine name, as an argument to
exists() is an error.

exists ⊂ # OK

exists &sub(); # Error

exit EXPR
exit

Evaluates EXPR and exits immediately with that value. Example:

$ans = <STDIN>;

exit 0 if $ans =~ /^[Xx]/;

See also die. If EXPR is omitted, exits with 0 status. The only universally
recognized values for EXPR are 0 for success and 1 for error; other values are
subject to interpretation depending on the environment in which the Perl pro-
gram is running. For example, exiting 69 (EX UNAVAILABLE) from a send-
mail incoming-mail filter will cause the mailer to return the item undelivered,
but that’s not true everywhere.

Don’t use exit to abort a subroutine if there’s any chance that someone might
want to trap whatever error happened. Use die instead, which can be trapped
by an eval.

The exit() function does not always exit immediately. It calls any defined
END routines first, but these END routines may not themselves abort the exit.
Likewise any object destructors that need to be called are called before the real
exit. END routines and destructors can change the exit status by modifying $?.
If this is a problem, you can call POSIX::_exit($status) to avoid END and
destructor processing. See Section 40.1 [perlmod NAME], page 732 for details.

Portability issues: [perlport exit], page 973.

exp EXPR
exp

Returns e (the natural logarithm base) to the power of EXPR. If EXPR is
omitted, gives exp($_).

fc EXPR

fc

Returns the casefolded version of EXPR. This is the internal function imple-
menting the \F escape in double-quoted strings.

Casefolding is the process of mapping strings to a form where case differences
are erased; comparing two strings in their casefolded form is effectively a way
of asking if two strings are equal, regardless of case.

Roughly, if you ever found yourself writing this

lc($this) eq lc($that) # Wrong!

or

uc($this) eq uc($that) # Also wrong!

or

$this =~ /^\Q$that\E\z/i # Right!

Now you can write

fc($this) eq fc($that)

And get the correct results.

Perl only implements the full form of casefolding, but you can access the simple
folds using Section “casefold()” in Unicode-UCD and Section “prop invmap()”
in Unicode-UCD. For further information on casefolding, refer to the
Unicode Standard, specifically sections 3.13 Default Case Operations, 4.2
Case-Normative, and 5.18 Case Mappings, available at http://www.unicode.
org/versions/latest/, as well as the Case Charts available at http://www.
unicode.org/charts/case/.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragma, such as within
"use feature ’unicode_strings", as [lc], page 399 does, with the single ex-
ception of fc of LATIN CAPITAL LETTER SHARP S (U+1E9E) within the
scope of use locale. The foldcase of this character would normally be "ss",
but as explained in the [lc], page 399 section, case changes that cross the 255/256
boundary are problematic under locales, and are hence prohibited. Therefore,
this function under locale returns instead the string "\x{17F}\x{17F}", which
is the LATIN SMALL LETTER LONG S. Since that character itself folds to

http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/
http://www.unicode.org/charts/case/
http://www.unicode.org/charts/case/

"s", the string of two of them together should be equivalent to a single U+1E9E
when foldcased.

While the Unicode Standard defines two additional forms of casefolding, one
for Turkic languages and one that never maps one character into multiple char-
acters, these are not provided by the Perl core; However, the CPAN module
Unicode::Casing may be used to provide an implementation.

This keyword is available only when the "fc" feature is enabled, or when pre-
fixed with CORE::; See feature. Alternately, include a use v5.16 or later to
the current scope.

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements the fcntl(2) function. You’ll probably have to say

use Fcntl;

first to get the correct constant definitions. Argument processing and value
returned work just like ioctl below. For example:

use Fcntl;

fcntl($filehandle, F_GETFL, $packed_return_buffer)

or die "can’t fcntl F_GETFL: $!";

You don’t have to check for defined on the return from fcntl. Like ioctl, it
maps a 0 return from the system call into "0 but true" in Perl. This string is
true in boolean context and 0 in numeric context. It is also exempt from the
normal -w warnings on improper numeric conversions.

Note that fcntl raises an exception if used on a machine that doesn’t implement
fcntl(2). See the Fcntl module or your fcntl(2) manpage to learn what functions
are available on your system.

Here’s an example of setting a filehandle named REMOTE to be non-blocking at
the system level. You’ll have to negotiate $| on your own, though.

use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

$flags = fcntl(REMOTE, F_GETFL, 0)

or die "Can’t get flags for the socket: $!\n";

$flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)

or die "Can’t set flags for the socket: $!\n";

Portability issues: [perlport fcntl], page 974.

FILE

A special token that returns the name of the file in which it occurs.

fileno FILEHANDLE
Returns the file descriptor for a filehandle, or undefined if the filehandle is not
open. If there is no real file descriptor at the OS level, as can happen with
filehandles connected to memory objects via open with a reference for the third
argument, -1 is returned.

This is mainly useful for constructing bitmaps for select and low-level POSIX
tty-handling operations. If FILEHANDLE is an expression, the value is taken
as an indirect filehandle, generally its name.

You can use this to find out whether two handles refer to the same underlying
descriptor:

if (fileno(THIS) != -1 && fileno(THIS) == fileno(THAT)) {

print "THIS and THAT are dups\n";

} elsif (fileno(THIS) != -1 && fileno(THAT) != -1) {

print "THIS and THAT have different " .

"underlying file descriptors\n";

} else {

print "At least one of THIS and THAT does " .

"not have a real file descriptor\n";

}

The behavior of fileno on a directory handle depends on the operating system.
On a system with dirfd(3) or similar, fileno on a directory handle returns the
underlying file descriptor associated with the handle; on systems with no such
support, it returns the undefined value, and sets $! (errno).

flock FILEHANDLE,OPERATION
Calls flock(2), or an emulation of it, on FILEHANDLE. Returns true for suc-
cess, false on failure. Produces a fatal error if used on a machine that doesn’t
implement flock(2), fcntl(2) locking, or lockf(3). flock is Perl’s portable file-
locking interface, although it locks entire files only, not records.

Two potentially non-obvious but traditional flock semantics are that it waits
indefinitely until the lock is granted, and that its locks are merely advisory.
Such discretionary locks are more flexible, but offer fewer guarantees. This
means that programs that do not also use flock may modify files locked with
flock. See Section 56.1 [perlport NAME], page 951, your port’s specific doc-
umentation, and your system-specific local manpages for details. It’s best to
assume traditional behavior if you’re writing portable programs. (But if you’re
not, you should as always feel perfectly free to write for your own system’s
idiosyncrasies (sometimes called "features"). Slavish adherence to portability
concerns shouldn’t get in the way of your getting your job done.)

OPERATION is one of LOCK SH, LOCK EX, or LOCK UN, possibly com-
bined with LOCK NB. These constants are traditionally valued 1, 2, 8 and 4,
but you can use the symbolic names if you import them from the Fcntl mod-
ule, either individually, or as a group using the :flock tag. LOCK SH requests
a shared lock, LOCK EX requests an exclusive lock, and LOCK UN releases
a previously requested lock. If LOCK NB is bitwise-or’ed with LOCK SH or
LOCK EX, then flock returns immediately rather than blocking waiting for
the lock; check the return status to see if you got it.

To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
before locking or unlocking it.

Note that the emulation built with lockf(3) doesn’t provide shared locks, and it
requires that FILEHANDLE be open with write intent. These are the semantics
that lockf(3) implements. Most if not all systems implement lockf(3) in terms
of fcntl(2) locking, though, so the differing semantics shouldn’t bite too many
people.

Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE be
open with read intent to use LOCK SH and requires that it be open with write
intent to use LOCK EX.

Note also that some versions of flock cannot lock things over the network;
you would need to use the more system-specific fcntl for that. If you like you
can force Perl to ignore your system’s flock(2) function, and so provide its own
fcntl(2)-based emulation, by passing the switch -Ud_flock to the Configure

program when you configure and build a new Perl.

Here’s a mailbox appender for BSD systems.

import LOCK_* and SEEK_END constants

use Fcntl qw(:flock SEEK_END);

sub lock {

my ($fh) = @_;

flock($fh, LOCK_EX) or die "Cannot lock mailbox - $!\n";

and, in case someone appended while we were waiting...

seek($fh, 0, SEEK_END) or die "Cannot seek - $!\n";

}

sub unlock {

my ($fh) = @_;

flock($fh, LOCK_UN) or die "Cannot unlock mailbox - $!\n";

}

open(my $mbox, ">>", "/usr/spool/mail/$ENV{’USER’}")

or die "Can’t open mailbox: $!";

lock($mbox);

print $mbox $msg,"\n\n";

unlock($mbox);

On systems that support a real flock(2), locks are inherited across fork() calls,
whereas those that must resort to the more capricious fcntl(2) function lose
their locks, making it seriously harder to write servers.

See also DB_File for other flock() examples.

Portability issues: [perlport flock], page 974.

fork

Does a fork(2) system call to create a new process running the same program
at the same point. It returns the child pid to the parent process, 0 to the child
process, or undef if the fork is unsuccessful. File descriptors (and sometimes
locks on those descriptors) are shared, while everything else is copied. On
most systems supporting fork(), great care has gone into making it extremely
efficient (for example, using copy-on-write technology on data pages), making
it the dominant paradigm for multitasking over the last few decades.

Perl attempts to flush all files opened for output before forking the child process,
but this may not be supported on some platforms (see Section 56.1 [perlport
NAME], page 951). To be safe, you may need to set $| ($AUTOFLUSH in
English) or call the autoflush() method of IO::Handle on any open handles
to avoid duplicate output.

If you fork without ever waiting on your children, you will accumulate zombies.
On some systems, you can avoid this by setting $SIG{CHLD} to "IGNORE". See
also Section 36.1 [perlipc NAME], page 667 for more examples of forking and
reaping moribund children.

Note that if your forked child inherits system file descriptors like STDIN and
STDOUT that are actually connected by a pipe or socket, even if you exit, then
the remote server (such as, say, a CGI script or a backgrounded job launched
from a remote shell) won’t think you’re done. You should reopen those to
/dev/null if it’s any issue.

On some platforms such as Windows, where the fork() system call is not avail-
able, Perl can be built to emulate fork() in the Perl interpreter. The emulation
is designed, at the level of the Perl program, to be as compatible as possible
with the "Unix" fork(). However it has limitations that have to be considered
in code intended to be portable. See Section 23.1 [perlfork NAME], page 337
for more details.

Portability issues: [perlport fork], page 974.

format

Declare a picture format for use by the write function. For example:

format Something =

Test: @<<<<<<<< @||||| @>>>>>

$str, $%, ’$’ . int($num)

.

$str = "widget";

$num = $cost/$quantity;

$~ = ’Something’;

write;

See Section 24.1 [perlform NAME], page 343 for many details and examples.

formline PICTURE,LIST
This is an internal function used by formats, though you may call it, too. It
formats (see Section 24.1 [perlform NAME], page 343) a list of values according
to the contents of PICTURE, placing the output into the format output accu-
mulator, $^A (or $ACCUMULATOR in English). Eventually, when a write is done,
the contents of $^A are written to some filehandle. You could also read $^A and
then set $^A back to "". Note that a format typically does one formline per
line of form, but the formline function itself doesn’t care how many newlines
are embedded in the PICTURE. This means that the ~ and ~~ tokens treat
the entire PICTURE as a single line. You may therefore need to use multiple
formlines to implement a single record format, just like the format compiler.

Be careful if you put double quotes around the picture, because an @ character
may be taken to mean the beginning of an array name. formline always returns
true. See Section 24.1 [perlform NAME], page 343 for other examples.

If you are trying to use this instead of write to capture the output, you may
find it easier to open a filehandle to a scalar (open $fh, ">", \$output) and
write to that instead.

getc FILEHANDLE
getc

Returns the next character from the input file attached to FILEHANDLE, or
the undefined value at end of file or if there was an error (in the latter case $! is
set). If FILEHANDLE is omitted, reads from STDIN. This is not particularly
efficient. However, it cannot be used by itself to fetch single characters without
waiting for the user to hit enter. For that, try something more like:

if ($BSD_STYLE) {

system "stty cbreak </dev/tty >/dev/tty 2>&1";

}

else {

system "stty", ’-icanon’, ’eol’, "\001";

}

$key = getc(STDIN);

if ($BSD_STYLE) {

system "stty -cbreak </dev/tty >/dev/tty 2>&1";

}

else {

system ’stty’, ’icanon’, ’eol’, ’^@’; # ASCII NUL

}

print "\n";

Determination of whether $BSD STYLE should be set is left as an exercise to
the reader.

The POSIX::getattr function can do this more portably on systems purporting
POSIX compliance. See also the Term::ReadKey module from your nearest
CPAN (http://www.cpan.org) site.

getlogin

This implements the C library function of the same name, which on most sys-
tems returns the current login from /etc/utmp, if any. If it returns the empty
string, use getpwuid.

$login = getlogin || getpwuid($<) || "Kilroy";

Do not consider getlogin for authentication: it is not as secure as getpwuid.

Portability issues: [perlport getlogin], page 974.

getpeername SOCKET
Returns the packed sockaddr address of the other end of the SOCKET connec-
tion.

http://www.cpan.org

use Socket;

$hersockaddr = getpeername(SOCK);

($port, $iaddr) = sockaddr_in($hersockaddr);

$herhostname = gethostbyaddr($iaddr, AF_INET);

$herstraddr = inet_ntoa($iaddr);

getpgrp PID
Returns the current process group for the specified PID. Use a PID of 0 to
get the current process group for the current process. Will raise an exception
if used on a machine that doesn’t implement getpgrp(2). If PID is omitted,
returns the process group of the current process. Note that the POSIX version
of getpgrp does not accept a PID argument, so only PID==0 is truly portable.

Portability issues: [perlport getpgrp], page 974.

getppid

Returns the process id of the parent process.

Note for Linux users: Between v5.8.1 and v5.16.0 Perl would work around
non-POSIX thread semantics the minority of Linux systems (and Debian
GNU/kFreeBSD systems) that used LinuxThreads, this emulation has since
been removed. See the documentation for [$$], page 1377 for details.

Portability issues: [perlport getppid], page 974.

getpriority WHICH,WHO
Returns the current priority for a process, a process group, or a user. (See
getpriority(2).) Will raise a fatal exception if used on a machine that doesn’t
implement getpriority(2).

Portability issues: [perlport getpriority], page 974.

getpwnam NAME
getgrnam NAME
gethostbyname NAME
getnetbyname NAME
getprotobyname NAME
getpwuid UID
getgrgid GID
getservbyname NAME,PROTO
gethostbyaddr ADDR,ADDRTYPE
getnetbyaddr ADDR,ADDRTYPE
getprotobynumber NUMBER
getservbyport PORT,PROTO
getpwent

getgrent

gethostent

getnetent

getprotoent
getservent

http://man.he.net/man2/getpriority

setpwent

setgrent

sethostent STAYOPEN
setnetent STAYOPEN
setprotoent STAYOPEN
setservent STAYOPEN
endpwent

endgrent

endhostent
endnetent

endprotoent
endservent

These routines are the same as their counterparts in the system C library. In
list context, the return values from the various get routines are as follows:

0 1 2 3 4

($name, $passwd, $gid, $members) = getgr*

($name, $aliases, $addrtype, $net) = getnet*

($name, $aliases, $port, $proto) = getserv*

($name, $aliases, $proto) = getproto*

($name, $aliases, $addrtype, $length, @addrs) = gethost*

($name, $passwd, $uid, $gid, $quota,

$comment, $gcos, $dir, $shell, $expire) = getpw*

5 6 7 8 9

(If the entry doesn’t exist, the return value is a single meaningless true value.)

The exact meaning of the $gcos field varies but it usually contains the real name
of the user (as opposed to the login name) and other information pertaining
to the user. Beware, however, that in many system users are able to change
this information and therefore it cannot be trusted and therefore the $gcos is
tainted (see Section 70.1 [perlsec NAME], page 1198). The $passwd and $shell,
user’s encrypted password and login shell, are also tainted, for the same reason.

In scalar context, you get the name, unless the function was a lookup by name,
in which case you get the other thing, whatever it is. (If the entry doesn’t exist
you get the undefined value.) For example:

$uid = getpwnam($name);

$name = getpwuid($num);

$name = getpwent();

$gid = getgrnam($name);

$name = getgrgid($num);

$name = getgrent();

#etc.

In getpw*() the fields $quota, $comment, and $expire are special in that they
are unsupported on many systems. If the $quota is unsupported, it is an empty
scalar. If it is supported, it usually encodes the disk quota. If the $comment

field is unsupported, it is an empty scalar. If it is supported it usually encodes
some administrative comment about the user. In some systems the $quota field
may be $change or $age, fields that have to do with password aging. In some
systems the $comment field may be $class. The $expire field, if present, encodes
the expiration period of the account or the password. For the availability and
the exact meaning of these fields in your system, please consult getpwnam(3)
and your system’s pwd.h file. You can also find out from within Perl what your
$quota and $comment fields mean and whether you have the $expire field by
using the Config module and the values d_pwquota, d_pwage, d_pwchange, d_
pwcomment, and d_pwexpire. Shadow password files are supported only if your
vendor has implemented them in the intuitive fashion that calling the regular C
library routines gets the shadow versions if you’re running under privilege or if
there exists the shadow(3) functions as found in System V (this includes Solaris
and Linux). Those systems that implement a proprietary shadow password
facility are unlikely to be supported.

The $members value returned by getgr*() is a space-separated list of the login
names of the members of the group.

For the gethost*() functions, if the h_errno variable is supported in C, it will be
returned to you via $? if the function call fails. The @addrs value returned by
a successful call is a list of raw addresses returned by the corresponding library
call. In the Internet domain, each address is four bytes long; you can unpack it
by saying something like:

($a,$b,$c,$d) = unpack(’W4’,$addr[0]);

The Socket library makes this slightly easier:

use Socket;

$iaddr = inet_aton("127.1"); # or whatever address

$name = gethostbyaddr($iaddr, AF_INET);

or going the other way

$straddr = inet_ntoa($iaddr);

In the opposite way, to resolve a hostname to the IP address you can write this:

use Socket;

$packed_ip = gethostbyname("www.perl.org");

if (defined $packed_ip) {

$ip_address = inet_ntoa($packed_ip);

}

Make sure gethostbyname() is called in SCALAR context and that its return
value is checked for definedness.

The getprotobynumber function, even though it only takes one argument, has
the precedence of a list operator, so beware:

getprotobynumber $number eq ’icmp’ # WRONG

getprotobynumber($number eq ’icmp’) # actually means this

getprotobynumber($number) eq ’icmp’ # better this way

If you get tired of remembering which element of the return list contains
which return value, by-name interfaces are provided in standard modules:

File::stat, Net::hostent, Net::netent, Net::protoent, Net::servent,
Time::gmtime, Time::localtime, and User::grent. These override the
normal built-ins, supplying versions that return objects with the appropriate
names for each field. For example:

use File::stat;

use User::pwent;

$is_his = (stat($filename)->uid == pwent($whoever)->uid);

Even though it looks as though they’re the same method calls (uid), they aren’t,
because a File::stat object is different from a User::pwent object.

Portability issues: [perlport getpwnam], page 974 to [perlport endservent],
page 976.

getsockname SOCKET
Returns the packed sockaddr address of this end of the SOCKET connection,
in case you don’t know the address because you have several different IPs that
the connection might have come in on.

use Socket;

$mysockaddr = getsockname(SOCK);

($port, $myaddr) = sockaddr_in($mysockaddr);

printf "Connect to %s [%s]\n",

scalar gethostbyaddr($myaddr, AF_INET),

inet_ntoa($myaddr);

getsockopt SOCKET,LEVEL,OPTNAME
Queries the option named OPTNAME associated with SOCKET at a given
LEVEL. Options may exist at multiple protocol levels depending on the socket
type, but at least the uppermost socket level SOL SOCKET (defined in the
Socket module) will exist. To query options at another level the protocol
number of the appropriate protocol controlling the option should be supplied.
For example, to indicate that an option is to be interpreted by the TCP protocol,
LEVEL should be set to the protocol number of TCP, which you can get using
getprotobyname.

The function returns a packed string representing the requested socket option,
or undef on error, with the reason for the error placed in $!. Just what is in
the packed string depends on LEVEL and OPTNAME; consult getsockopt(2)
for details. A common case is that the option is an integer, in which case the
result is a packed integer, which you can decode using unpack with the i (or
I) format.

Here’s an example to test whether Nagle’s algorithm is enabled on a socket:

use Socket qw(:all);

defined(my $tcp = getprotobyname("tcp"))

or die "Could not determine the protocol number for tcp";

my $tcp = IPPROTO_TCP; # Alternative

my $packed = getsockopt($socket, $tcp, TCP_NODELAY)

or die "getsockopt TCP_NODELAY: $!";

my $nodelay = unpack("I", $packed);

print "Nagle’s algorithm is turned ",

$nodelay ? "off\n" : "on\n";

Portability issues: 〈undefined〉 [perlport getsockopt], page 〈undefined〉.

glob EXPR
glob

In list context, returns a (possibly empty) list of filename expansions on the
value of EXPR such as the standard Unix shell /bin/csh would do. In scalar
context, glob iterates through such filename expansions, returning undef when
the list is exhausted. This is the internal function implementing the <*.c>

operator, but you can use it directly. If EXPR is omitted, $_ is used. The <*.c>
operator is discussed in more detail in Section 48.2.33 [perlop I/O Operators],
page 844.

Note that glob splits its arguments on whitespace and treats each segment as
separate pattern. As such, glob("*.c *.h") matches all files with a .c or .h
extension. The expression glob(".* *")matches all files in the current working
directory. If you want to glob filenames that might contain whitespace, you’ll
have to use extra quotes around the spacey filename to protect it. For example,
to glob filenames that have an e followed by a space followed by an f, use either
of:

@spacies = <"*e f*">;

@spacies = glob ’"*e f*"’;

@spacies = glob q("*e f*");

If you had to get a variable through, you could do this:

@spacies = glob "’*${var}e f*’";

@spacies = glob qq("*${var}e f*");

If non-empty braces are the only wildcard characters used in the glob, no
filenames are matched, but potentially many strings are returned. For example,
this produces nine strings, one for each pairing of fruits and colors:

@many = glob "{apple,tomato,cherry}={green,yellow,red}";

This operator is implemented using the standard File::Glob extension. See
File-Glob for details, including bsd_glob which does not treat whitespace as
a pattern separator.

Portability issues: [perlport glob], page 976.

gmtime EXPR
gmtime

Works just like [localtime], page 401 but the returned values are localized for
the standard Greenwich time zone.

Note: When called in list context, $isdst, the last value returned by gmtime, is
always 0. There is no Daylight Saving Time in GMT.

Portability issues: [perlport gmtime], page 976.

goto LABEL
goto EXPR
goto &NAME

The goto LABEL form finds the statement labeled with LABEL and resumes
execution there. It can’t be used to get out of a block or subroutine given to
sort. It can be used to go almost anywhere else within the dynamic scope,
including out of subroutines, but it’s usually better to use some other construct
such as last or die. The author of Perl has never felt the need to use this form
of goto (in Perl, that is; C is another matter). (The difference is that C does
not offer named loops combined with loop control. Perl does, and this replaces
most structured uses of goto in other languages.)

The goto EXPR form expects to evaluate EXPR to a code reference or a label
name. If it evaluates to a code reference, it will be handled like goto &NAME,
below. This is especially useful for implementing tail recursion via goto __SUB_

_.

If the expression evaluates to a label name, its scope will be resolved dynam-
ically. This allows for computed gotos per FORTRAN, but isn’t necessarily
recommended if you’re optimizing for maintainability:

goto ("FOO", "BAR", "GLARCH")[$i];

As shown in this example, goto EXPR is exempt from the "looks like a function"
rule. A pair of parentheses following it does not (necessarily) delimit its argu-
ment. goto("NE")."XT" is equivalent to goto NEXT. Also, unlike most named
operators, this has the same precedence as assignment.

Use of goto LABEL or goto EXPR to jump into a construct is deprecated and will
issue a warning. Even then, it may not be used to go into any construct that
requires initialization, such as a subroutine or a foreach loop. It also can’t be
used to go into a construct that is optimized away.

The goto &NAME form is quite different from the other forms of goto. In fact, it
isn’t a goto in the normal sense at all, and doesn’t have the stigma associated
with other gotos. Instead, it exits the current subroutine (losing any changes
set by local()) and immediately calls in its place the named subroutine using
the current value of @ . This is used by AUTOLOAD subroutines that wish to load
another subroutine and then pretend that the other subroutine had been called
in the first place (except that any modifications to @_ in the current subroutine
are propagated to the other subroutine.) After the goto, not even caller will
be able to tell that this routine was called first.

NAME needn’t be the name of a subroutine; it can be a scalar variable con-
taining a code reference or a block that evaluates to a code reference.

grep BLOCK LIST
grep EXPR,LIST

This is similar in spirit to, but not the same as, grep(1) and its relatives. In
particular, it is not limited to using regular expressions.

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to
each element) and returns the list value consisting of those elements for which

the expression evaluated to true. In scalar context, returns the number of times
the expression was true.

@foo = grep(!/^#/, @bar); # weed out comments

or equivalently,

@foo = grep {!/^#/} @bar; # weed out comments

Note that $_ is an alias to the list value, so it can be used to modify the elements
of the LIST. While this is useful and supported, it can cause bizarre results if
the elements of LIST are not variables. Similarly, grep returns aliases into the
original list, much as a for loop’s index variable aliases the list elements. That
is, modifying an element of a list returned by grep (for example, in a foreach,
map or another grep) actually modifies the element in the original list. This is
usually something to be avoided when writing clear code.

If $_ is lexical in the scope where the grep appears (because it has been declared
with the deprecated my $_ construct) then, in addition to being locally aliased
to the list elements, $_ keeps being lexical inside the block; i.e., it can’t be seen
from the outside, avoiding any potential side-effects.

See also 〈undefined〉 [map], page 〈undefined〉 for a list composed of the results
of the BLOCK or EXPR.

hex EXPR
hex

Interprets EXPR as a hex string and returns the corresponding value. (To
convert strings that might start with either 0, 0x, or 0b, see [oct], page 406.) If
EXPR is omitted, uses $_.

print hex ’0xAf’; # prints ’175’

print hex ’aF’; # same

Hex strings may only represent integers. Strings that would cause integer over-
flow trigger a warning. Leading whitespace is not stripped, unlike oct(). To
present something as hex, look into [printf], page 429, 〈undefined〉 [sprintf],
page 〈undefined〉, and 〈undefined〉 [unpack], page 〈undefined〉.

import LIST
There is no builtin import function. It is just an ordinary method (subroutine)
defined (or inherited) by modules that wish to export names to another module.
The use function calls the import method for the package used. See also 〈un-
defined〉 [use], page 〈undefined〉, Section 40.1 [perlmod NAME], page 732, and
Exporter.

index STR,SUBSTR,POSITION
index STR,SUBSTR

The index function searches for one string within another, but without the
wildcard-like behavior of a full regular-expression pattern match. It returns
the position of the first occurrence of SUBSTR in STR at or after POSITION.
If POSITION is omitted, starts searching from the beginning of the string.
POSITION before the beginning of the string or after its end is treated as if it
were the beginning or the end, respectively. POSITION and the return value
are based at zero. If the substring is not found, index returns -1.

int EXPR

int

Returns the integer portion of EXPR. If EXPR is omitted, uses $_. You
should not use this function for rounding: one because it truncates towards 0,
and two because machine representations of floating-point numbers can some-
times produce counterintuitive results. For example, int(-6.725/0.025) pro-
duces -268 rather than the correct -269; that’s because it’s really more like
-268.99999999999994315658 instead. Usually, the sprintf, printf, or the
POSIX::floor and POSIX::ceil functions will serve you better than will int().

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements the ioctl(2) function. You’ll probably first have to say

require "sys/ioctl.ph"; # probably in

$Config{archlib}/sys/ioctl.ph

to get the correct function definitions. If sys/ioctl.ph doesn’t exist or doesn’t
have the correct definitions you’ll have to roll your own, based on your C header
files such as <sys/ioctl.h>. (There is a Perl script called h2ph that comes
with the Perl kit that may help you in this, but it’s nontrivial.) SCALAR will
be read and/or written depending on the FUNCTION; a C pointer to the string
value of SCALAR will be passed as the third argument of the actual ioctl call.
(If SCALAR has no string value but does have a numeric value, that value will
be passed rather than a pointer to the string value. To guarantee this to be
true, add a 0 to the scalar before using it.) The pack and unpack functions
may be needed to manipulate the values of structures used by ioctl.

The return value of ioctl (and fcntl) is as follows:

if OS returns: then Perl returns:

-1 undefined value

0 string "0 but true"

anything else that number

Thus Perl returns true on success and false on failure, yet you can still easily
determine the actual value returned by the operating system:

$retval = ioctl(...) || -1;

printf "System returned %d\n", $retval;

The special string "0 but true" is exempt from -w complaints about improper
numeric conversions.

Portability issues: 〈undefined〉 [perlport ioctl], page 〈undefined〉.

join EXPR,LIST
Joins the separate strings of LIST into a single string with fields separated by
the value of EXPR, and returns that new string. Example:

$rec = join(’:’, $login,$passwd,$uid,$gid,$gcos,$home,$shell);

Beware that unlike split, join doesn’t take a pattern as its first argument.
Compare [split], page 453.

keys HASH
keys ARRAY
keys EXPR

Called in list context, returns a list consisting of all the keys of the named
hash, or in Perl 5.12 or later only, the indices of an array. Perl releases prior to
5.12 will produce a syntax error if you try to use an array argument. In scalar
context, returns the number of keys or indices.

Hash entries are returned in an apparently random order. The actual random
order is specific to a given hash; the exact same series of operations on two
hashes may result in a different order for each hash. Any insertion into the
hash may change the order, as will any deletion, with the exception that the
most recent key returned by each or keys may be deleted without changing
the order. So long as a given hash is unmodified you may rely on keys, values
and each to repeatedly return the same order as each other. See Section 70.4.9
[perlsec Algorithmic Complexity Attacks], page 1205 for details on why hash
order is randomized. Aside from the guarantees provided here the exact details
of Perl’s hash algorithm and the hash traversal order are subject to change in
any release of Perl. Tied hashes may behave differently to Perl’s hashes with
respect to changes in order on insertion and deletion of items.

As a side effect, calling keys() resets the internal iterator of the HASH or AR-
RAY (see 〈undefined〉 [each], page 〈undefined〉). In particular, calling keys() in
void context resets the iterator with no other overhead.

Here is yet another way to print your environment:

@keys = keys %ENV;

@values = values %ENV;

while (@keys) {

print pop(@keys), ’=’, pop(@values), "\n";

}

or how about sorted by key:

foreach $key (sort(keys %ENV)) {

print $key, ’=’, $ENV{$key}, "\n";

}

The returned values are copies of the original keys in the hash, so modifying
them will not affect the original hash. Compare 〈undefined〉 [values], page 〈un-
defined〉.
To sort a hash by value, you’ll need to use a sort function. Here’s a descending
numeric sort of a hash by its values:

foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {

printf "%4d %s\n", $hash{$key}, $key;

}

Used as an lvalue, keys allows you to increase the number of hash buckets
allocated for the given hash. This can gain you a measure of efficiency if you
know the hash is going to get big. (This is similar to pre-extending an array by
assigning a larger number to $#array.) If you say

keys %hash = 200;

then %hash will have at least 200 buckets allocated for it–256 of them, in fact,
since it rounds up to the next power of two. These buckets will be retained
even if you do %hash = (), use undef %hash if you want to free the storage
while %hash is still in scope. You can’t shrink the number of buckets allocated
for the hash using keys in this way (but you needn’t worry about doing this by
accident, as trying has no effect). keys @array in an lvalue context is a syntax
error.

Starting with Perl 5.14, keys can take a scalar EXPR, which must contain a
reference to an unblessed hash or array. The argument will be dereferenced
automatically. This aspect of keys is considered highly experimental. The
exact behaviour may change in a future version of Perl.

for (keys $hashref) { ... }

for (keys $obj->get_arrayref) { ... }

To avoid confusing would-be users of your code who are running earlier versions
of Perl with mysterious syntax errors, put this sort of thing at the top of your
file to signal that your code will work only on Perls of a recent vintage:

use 5.012; # so keys/values/each work on arrays

use 5.014; # so keys/values/each work on scalars (experimental)

See also each, values, and sort.

kill SIGNAL, LIST
kill SIGNAL

Sends a signal to a list of processes. Returns the number of arguments that were
successfully used to signal (which is not necessarily the same as the number of
processes actually killed, e.g. where a process group is killed).

$cnt = kill ’HUP’, $child1, $child2;

kill ’KILL’, @goners;

SIGNAL may be either a signal name (a string) or a signal number. A signal
name may start with a SIG prefix, thus FOO and SIGFOO refer to the same signal.
The string form of SIGNAL is recommended for portability because the same
signal may have different numbers in different operating systems.

A list of signal names supported by the current platform can be found in
$Config{sig_name}, which is provided by the Config module. See Config

for more details.

A negative signal name is the same as a negative signal number, killing process
groups instead of processes. For example, kill ’-KILL’, $pgrp and kill -9,

$pgrp will send SIGKILL to the entire process group specified. That means you
usually want to use positive not negative signals.

If SIGNAL is either the number 0 or the string ZERO (or SIGZERO), no signal is
sent to the process, but kill checks whether it’s possible to send a signal to it
(that means, to be brief, that the process is owned by the same user, or we are
the super-user). This is useful to check that a child process is still alive (even
if only as a zombie) and hasn’t changed its UID. See Section 56.1 [perlport
NAME], page 951 for notes on the portability of this construct.

The behavior of kill when a PROCESS number is zero or negative depends
on the operating system. For example, on POSIX-conforming systems, zero

will signal the current process group, -1 will signal all processes, and any other
negative PROCESS number will act as a negative signal number and kill the
entire process group specified.

If both the SIGNAL and the PROCESS are negative, the results are undefined.
A warning may be produced in a future version.

See Section 36.3 [perlipc Signals], page 667 for more details.

On some platforms such as Windows where the fork() system call is not avail-
able, Perl can be built to emulate fork() at the interpreter level. This emulation
has limitations related to kill that have to be considered, for code running on
Windows and in code intended to be portable.

See Section 23.1 [perlfork NAME], page 337 for more details.

If there is no LIST of processes, no signal is sent, and the return value is 0.
This form is sometimes used, however, because it causes tainting checks to be
run. But see Section 70.4.2 [perlsec Laundering and Detecting Tainted Data],
page 1200.

Portability issues: [perlport kill], page 976.

last LABEL
last EXPR
last

The last command is like the break statement in C (as used in loops); it
immediately exits the loop in question. If the LABEL is omitted, the command
refers to the innermost enclosing loop. The last EXPR form, available starting
in Perl 5.18.0, allows a label name to be computed at run time, and is otherwise
identical to last LABEL. The continue block, if any, is not executed:

LINE: while (<STDIN>) {

last LINE if /^$/; # exit when done with header

#...

}

last cannot be used to exit a block that returns a value such as eval {}, sub
{}, or do {}, and should not be used to exit a grep() or map() operation.

Note that a block by itself is semantically identical to a loop that executes once.
Thus last can be used to effect an early exit out of such a block.

See also [continue], page 366 for an illustration of how last, next, and redo

work.

Unlike most named operators, this has the same precedence as assignment. It
is also exempt from the looks-like-a-function rule, so last ("foo")."bar" will
cause "bar" to be part of the argument to last.

lc EXPR

lc

Returns a lowercased version of EXPR. This is the internal function implement-
ing the \L escape in double-quoted strings.

If EXPR is omitted, uses $_.

What gets returned depends on several factors:

If use bytes is in effect:
The results follow ASCII rules. Only the characters A-Z change, to
a-z respectively.

Otherwise, if use locale for LC_CTYPE is in effect:
Respects current LC_CTYPE locale for code points < 256; and uses
Unicode rules for the remaining code points (this last can only
happen if the UTF8 flag is also set). See Section 38.1 [perllocale
NAME], page 701.

Starting in v5.20, Perl uses full Unicode rules if the locale is UTF-8.
Otherwise, there is a deficiency in this scheme, which is that case
changes that cross the 255/256 boundary are not well-defined. For
example, the lower case of LATIN CAPITAL LETTER SHARP
S (U+1E9E) in Unicode rules is U+00DF (on ASCII platforms).
But under use locale (prior to v5.20 or not a UTF-8 locale), the
lower case of U+1E9E is itself, because 0xDF may not be LATIN
SMALL LETTER SHARP S in the current locale, and Perl has no
way of knowing if that character even exists in the locale, much less
what code point it is. Perl returns a result that is above 255 (al-
most always the input character unchanged, for all instances (and
there aren’t many) where the 255/256 boundary would otherwise be
crossed; and starting in v5.22, it raises a [locale], page 148 warning.

Otherwise, If EXPR has the UTF8 flag set:
Unicode rules are used for the case change.

Otherwise, if use feature ’unicode_strings’ or use locale

’:not_characters’ is in effect:
Unicode rules are used for the case change.

Otherwise:
ASCII rules are used for the case change. The lowercase of any
character outside the ASCII range is the character itself.

lcfirst EXPR
lcfirst

Returns the value of EXPR with the first character lowercased. This is the
internal function implementing the \l escape in double-quoted strings.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragmata, such as in a locale,
as [lc], page 399 does.

length EXPR
length

Returns the length in characters of the value of EXPR. If EXPR is omitted,
returns the length of $_. If EXPR is undefined, returns undef.

This function cannot be used on an entire array or hash to find out how many
elements these have. For that, use scalar @array and scalar keys %hash,
respectively.

Like all Perl character operations, length() normally deals in logical characters,
not physical bytes. For how many bytes a string encoded as UTF-8 would
take up, use length(Encode::encode_utf8(EXPR)) (you’ll have to use Encode

first). See Encode and Section 81.1 [perlunicode NAME], page 1317.

LINE

A special token that compiles to the current line number.

link OLDFILE,NEWFILE
Creates a new filename linked to the old filename. Returns true for success,
false otherwise.

Portability issues: [perlport link], page 976.

listen SOCKET,QUEUESIZE
Does the same thing that the listen(2) system call does. Returns true if it
succeeded, false otherwise. See the example in Section 36.6 [perlipc Sockets:
Client/Server Communication], page 682.

local EXPR
You really probably want to be using my instead, because local isn’t what
most people think of as "local". See Section 73.3.2 [perlsub Private Variables
via my()], page 1223 for details.

A local modifies the listed variables to be local to the enclosing block, file, or
eval. If more than one value is listed, the list must be placed in parentheses.
See Section 73.3.4 [perlsub Temporary Values via local()], page 1228 for details,
including issues with tied arrays and hashes.

The delete local EXPR construct can also be used to localize the deletion of ar-
ray/hash elements to the current block. See Section 73.3.4.5 [perlsub Localized
deletion of elements of composite types], page 1230.

localtime EXPR
localtime

Converts a time as returned by the time function to a 9-element list with the
time analyzed for the local time zone. Typically used as follows:

0 1 2 3 4 5 6 7 8

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

localtime(time);

All list elements are numeric and come straight out of the C ‘struct tm’. $sec,
$min, and $hour are the seconds, minutes, and hours of the specified time.

$mday is the day of the month and $mon the month in the range 0..11, with
0 indicating January and 11 indicating December. This makes it easy to get a
month name from a list:

my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

print "$abbr[$mon] $mday";

$mon=9, $mday=18 gives "Oct 18"

$year contains the number of years since 1900. To get a 4-digit year write:

$year += 1900;

To get the last two digits of the year (e.g., "01" in 2001) do:

$year = sprintf("%02d", $year % 100);

$wday is the day of the week, with 0 indicating Sunday and 3 indicating Wednes-
day. $yday is the day of the year, in the range 0..364 (or 0..365 in leap years.)

$isdst is true if the specified time occurs during Daylight Saving Time, false
otherwise.

If EXPR is omitted, localtime() uses the current time (as returned by
time(3)).

In scalar context, localtime() returns the ctime(3) value:

$now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

The format of this scalar value is not locale-dependent but built into Perl. For
GMT instead of local time use the [gmtime], page 393 builtin. See also the
Time::Local module (for converting seconds, minutes, hours, and such back to
the integer value returned by time()), and the POSIX module’s strftime(3) and
mktime(3) functions.

To get somewhat similar but locale-dependent date strings, set up your locale
environment variables appropriately (please see Section 38.1 [perllocale NAME],
page 701) and try for example:

use POSIX qw(strftime);

$now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;

or for GMT formatted appropriately for your locale:

$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that the %a and %b, the short forms of the day of the week and the month
of the year, may not necessarily be three characters wide.

The Time-gmtime and Time-localtimemodules provide a convenient, by-name
access mechanism to the gmtime() and localtime() functions, respectively.

For a comprehensive date and time representation look at the DateTime module
on CPAN.

Portability issues: [perlport localtime], page 977.

lock THING
This function places an advisory lock on a shared variable or referenced object
contained in THING until the lock goes out of scope.

The value returned is the scalar itself, if the argument is a scalar, or a reference,
if the argument is a hash, array or subroutine.

lock() is a "weak keyword" : this means that if you’ve defined a function by
this name (before any calls to it), that function will be called instead. If you
are not under use threads::shared this does nothing. See threads-shared.

log EXPR

log

Returns the natural logarithm (base e) of EXPR. If EXPR is omitted, returns
the log of $_. To get the log of another base, use basic algebra: The base-N log
of a number is equal to the natural log of that number divided by the natural
log of N. For example:

sub log10 {

my $n = shift;

return log($n)/log(10);

}

See also [exp], page 383 for the inverse operation.

lstat FILEHANDLE
lstat EXPR
lstat DIRHANDLE
lstat

Does the same thing as the stat function (including setting the special _ file-
handle) but stats a symbolic link instead of the file the symbolic link points to.
If symbolic links are unimplemented on your system, a normal stat is done.
For much more detailed information, please see the documentation for stat.

If EXPR is omitted, stats $_.

Portability issues: [perlport lstat], page 977.

m//

The match operator. See Section 48.2.30 [perlop Regexp Quote-Like Operators],
page 823.

map BLOCK LIST
map EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_

to each element) and returns the list value composed of the results of each
such evaluation. In scalar context, returns the total number of elements so
generated. Evaluates BLOCK or EXPR in list context, so each element of
LIST may produce zero, one, or more elements in the returned value.

@chars = map(chr, @numbers);

translates a list of numbers to the corresponding characters.

my @squares = map { $_ * $_ } @numbers;

translates a list of numbers to their squared values.

my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers;

shows that number of returned elements can differ from the number of input
elements. To omit an element, return an empty list (). This could also be
achieved by writing

my @squares = map { $_ * $_ } grep { $_ > 5 } @numbers;

which makes the intention more clear.

Map always returns a list, which can be assigned to a hash such that the
elements become key/value pairs. See Section 11.1 [perldata NAME], page 70
for more details.

%hash = map { get_a_key_for($_) => $_ } @array;

is just a funny way to write

%hash = ();

foreach (@array) {

$hash{get_a_key_for($_)} = $_;

}

Note that $_ is an alias to the list value, so it can be used to modify the elements
of the LIST. While this is useful and supported, it can cause bizarre results if
the elements of LIST are not variables. Using a regular foreach loop for this
purpose would be clearer in most cases. See also 〈undefined〉 [grep], page 〈un-
defined〉 for an array composed of those items of the original list for which the
BLOCK or EXPR evaluates to true.

If $_ is lexical in the scope where the map appears (because it has been declared
with the deprecated my $_ construct), then, in addition to being locally aliased
to the list elements, $_ keeps being lexical inside the block; that is, it can’t be
seen from the outside, avoiding any potential side-effects.

{ starts both hash references and blocks, so map { ... could be either the start
of map BLOCK LIST or map EXPR, LIST. Because Perl doesn’t look ahead
for the closing } it has to take a guess at which it’s dealing with based on
what it finds just after the {. Usually it gets it right, but if it doesn’t it won’t
realize something is wrong until it gets to the } and encounters the missing (or
unexpected) comma. The syntax error will be reported close to the }, but you’ll
need to change something near the { such as using a unary + or semicolon to
give Perl some help:

%hash = map { "\L$_" => 1 } @array # perl guesses EXPR. wrong

%hash = map { +"\L$_" => 1 } @array # perl guesses BLOCK. right

%hash = map {; "\L$_" => 1 } @array # this also works

%hash = map { ("\L$_" => 1) } @array # as does this

%hash = map { lc($_) => 1 } @array # and this.

%hash = map +(lc($_) => 1), @array # this is EXPR and works!

%hash = map (lc($_), 1), @array # evaluates to (1, @array)

or to force an anon hash constructor use +{:

@hashes = map +{ lc($_) => 1 }, @array # EXPR, so needs

comma at end

to get a list of anonymous hashes each with only one entry apiece.

mkdir FILENAME,MASK
mkdir FILENAME
mkdir

Creates the directory specified by FILENAME, with permissions specified by
MASK (as modified by umask). If it succeeds it returns true; otherwise it returns
false and sets $! (errno). MASK defaults to 0777 if omitted, and FILENAME
defaults to $_ if omitted.

In general, it is better to create directories with a permissive MASK and let
the user modify that with their umask than it is to supply a restrictive MASK
and give the user no way to be more permissive. The exceptions to this rule
are when the file or directory should be kept private (mail files, for instance).
The perlfunc(1) entry on umask discusses the choice of MASK in more detail.

Note that according to the POSIX 1003.1-1996 the FILENAME may have any
number of trailing slashes. Some operating and filesystems do not get this right,
so Perl automatically removes all trailing slashes to keep everyone happy.

To recursively create a directory structure, look at the make_path function of
the File-Path module.

msgctl ID,CMD,ARG
Calls the System V IPC function msgctl(2). You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT, then ARG
must be a variable that will hold the returned msqid_ds structure. Returns
like ioctl: the undefined value for error, "0 but true" for zero, or the actual
return value otherwise. See also Section 36.10 [perlipc SysV IPC], page 696 and
the documentation for IPC::SysV and IPC::Semaphore.

Portability issues: [perlport msgctl], page 977.

msgget KEY,FLAGS
Calls the System V IPC function msgget(2). Returns the message queue id, or
undef on error. See also Section 36.10 [perlipc SysV IPC], page 696 and the
documentation for IPC::SysV and IPC::Msg.

Portability issues: [perlport msgget], page 977.

msgrcv ID,VAR,SIZE,TYPE,FLAGS
Calls the System V IPC function msgrcv to receive a message from message
queue ID into variable VAR with a maximum message size of SIZE. Note that
when a message is received, the message type as a native long integer will be
the first thing in VAR, followed by the actual message. This packing may be
opened with unpack("l! a*"). Taints the variable. Returns true if successful,
false on error. See also Section 36.10 [perlipc SysV IPC], page 696 and the
documentation for IPC::SysV and IPC::SysV::Msg.

Portability issues: [perlport msgrcv], page 977.

msgsnd ID,MSG,FLAGS
Calls the System V IPC function msgsnd to send the message MSG to the
message queue ID. MSG must begin with the native long integer message type,
be followed by the length of the actual message, and then finally the mes-
sage itself. This kind of packing can be achieved with pack("l! a*", $type,

$message). Returns true if successful, false on error. See also the IPC::SysV

and IPC::SysV::Msg documentation.

Portability issues: [perlport msgsnd], page 977.

my VARLIST
my TYPE VARLIST
my VARLIST : ATTRS
my TYPE VARLIST : ATTRS

A my declares the listed variables to be local (lexically) to the enclosing block,
file, or eval. If more than one variable is listed, the list must be placed in
parentheses.

The exact semantics and interface of TYPE and ATTRS are still evolving.
TYPE may be a bareword, a constant declared with use constant, or __

PACKAGE__. It is currently bound to the use of the fields pragma, and at-
tributes are handled using the attributes pragma, or starting from Perl 5.8.0
also via the Attribute::Handlers module. See Section 73.3.2 [perlsub Pri-
vate Variables via my()], page 1223 for details, and fields, attributes, and
Attribute-Handlers.

Note that with a parenthesised list, undef can be used as a dummy placeholder,
for example to skip assignment of initial values:

my (undef, $min, $hour) = localtime;

next LABEL
next EXPR
next

The next command is like the continue statement in C; it starts the next
iteration of the loop:

LINE: while (<STDIN>) {

next LINE if /^#/; # discard comments

#...

}

Note that if there were a continue block on the above, it would get executed
even on discarded lines. If LABEL is omitted, the command refers to the
innermost enclosing loop. The next EXPR form, available as of Perl 5.18.0,
allows a label name to be computed at run time, being otherwise identical to
next LABEL.

next cannot be used to exit a block which returns a value such as eval {}, sub
{}, or do {}, and should not be used to exit a grep() or map() operation.

Note that a block by itself is semantically identical to a loop that executes once.
Thus next will exit such a block early.

See also [continue], page 366 for an illustration of how last, next, and redo

work.

Unlike most named operators, this has the same precedence as assignment. It
is also exempt from the looks-like-a-function rule, so next ("foo")."bar" will
cause "bar" to be part of the argument to next.

no MODULE VERSION LIST
no MODULE VERSION
no MODULE LIST
no MODULE
no VERSION

See the use function, of which no is the opposite.

oct EXPR

oct

Interprets EXPR as an octal string and returns the corresponding value. (If
EXPR happens to start off with 0x, interprets it as a hex string. If EXPR starts

off with 0b, it is interpreted as a binary string. Leading whitespace is ignored
in all three cases.) The following will handle decimal, binary, octal, and hex in
standard Perl notation:

$val = oct($val) if $val =~ /^0/;

If EXPR is omitted, uses $_. To go the other way (produce a number in octal),
use sprintf() or printf():

$dec_perms = (stat("filename"))[2] & 07777;

$oct_perm_str = sprintf "%o", $perms;

The oct() function is commonly used when a string such as 644 needs to be
converted into a file mode, for example. Although Perl automatically converts
strings into numbers as needed, this automatic conversion assumes base 10.

Leading white space is ignored without warning, as too are any trailing non-
digits, such as a decimal point (oct only handles non-negative integers, not
negative integers or floating point).

open FILEHANDLE,EXPR
open FILEHANDLE,MODE,EXPR
open FILEHANDLE,MODE,EXPR,LIST
open FILEHANDLE,MODE,REFERENCE
open FILEHANDLE

Opens the file whose filename is given by EXPR, and associates it with FILE-
HANDLE.

Simple examples to open a file for reading:

open(my $fh, "<", "input.txt")

or die "cannot open < input.txt: $!";

and for writing:

open(my $fh, ">", "output.txt")

or die "cannot open > output.txt: $!";

(The following is a comprehensive reference to open(): for a gentler introduction
you may consider Section 49.1 [perlopentut NAME], page 852.)

If FILEHANDLE is an undefined scalar variable (or array or hash element), a
new filehandle is autovivified, meaning that the variable is assigned a reference
to a newly allocated anonymous filehandle. Otherwise if FILEHANDLE is
an expression, its value is the real filehandle. (This is considered a symbolic
reference, so use strict "refs" should not be in effect.)

If three (or more) arguments are specified, the open mode (including optional
encoding) in the second argument are distinct from the filename in the third.
If MODE is < or nothing, the file is opened for input. If MODE is >, the file is
opened for output, with existing files first being truncated ("clobbered") and
nonexisting files newly created. If MODE is >>, the file is opened for appending,
again being created if necessary.

You can put a + in front of the > or < to indicate that you want both read
and write access to the file; thus +< is almost always preferred for read/write
updates–the +> mode would clobber the file first. You can’t usually use either
read-write mode for updating textfiles, since they have variable-length records.

See the -i switch in Section 69.1 [perlrun NAME], page 1176 for a better ap-
proach. The file is created with permissions of 0666 modified by the process’s
umask value.

These various prefixes correspond to the fopen(3) modes of r, r+, w, w+, a, and
a+.

In the one- and two-argument forms of the call, the mode and filename should
be concatenated (in that order), preferably separated by white space. You can–
but shouldn’t–omit the mode in these forms when that mode is <. It is always
safe to use the two-argument form of open if the filename argument is a known
literal.

For three or more arguments if MODE is |-, the filename is interpreted as a
command to which output is to be piped, and if MODE is -|, the filename
is interpreted as a command that pipes output to us. In the two-argument
(and one-argument) form, one should replace dash (-) with the command. See
Section 36.5 [perlipc Using open() for IPC], page 674 for more examples of
this. (You are not allowed to open to a command that pipes both in and
out, but see IPC-Open2, IPC-Open3, and Section 36.5.6 [perlipc Bidirectional
Communication with Another Process], page 680 for alternatives.)

In the form of pipe opens taking three or more arguments, if LIST is specified
(extra arguments after the command name) then LIST becomes arguments
to the command invoked if the platform supports it. The meaning of open
with more than three arguments for non-pipe modes is not yet defined, but
experimental "layers" may give extra LIST arguments meaning.

In the two-argument (and one-argument) form, opening <- or - opens STDIN
and opening >- opens STDOUT.

You may (and usually should) use the three-argument form of open to specify
I/O layers (sometimes referred to as "disciplines") to apply to the handle that
affect how the input and output are processed (see open and PerlIO for more
details). For example:

open(my $fh, "<:encoding(UTF-8)", "filename")

|| die "can’t open UTF-8 encoded filename: $!";

opens the UTF8-encoded file containing Unicode characters; see Section 83.1
[perluniintro NAME], page 1352. Note that if layers are specified in the three-
argument form, then default layers stored in ${^OPEN} (see Section 86.1 [per-
lvar NAME], page 1375; usually set by the open pragma or the switch -CioD)
are ignored. Those layers will also be ignored if you specifying a colon with no
name following it. In that case the default layer for the operating system (:raw
on Unix, :crlf on Windows) is used.

Open returns nonzero on success, the undefined value otherwise. If the open

involved a pipe, the return value happens to be the pid of the subprocess.

If you’re running Perl on a system that distinguishes between text files and
binary files, then you should check out 〈undefined〉 [binmode], page 〈undefined〉
for tips for dealing with this. The key distinction between systems that need
binmode and those that don’t is their text file formats. Systems like Unix, Mac

OS, and Plan 9, that end lines with a single character and encode that character
in C as "\n" do not need binmode. The rest need it.

When opening a file, it’s seldom a good idea to continue if the request failed,
so open is frequently used with die. Even if die won’t do what you want (say,
in a CGI script, where you want to format a suitable error message (but there
are modules that can help with that problem)) always check the return value
from opening a file.

The filehandle will be closed when its reference count reaches zero. If it is a
lexically scoped variable declared with my, that usually means the end of the
enclosing scope. However, this automatic close does not check for errors, so it
is better to explicitly close filehandles, especially those used for writing:

close($handle)

|| warn "close failed: $!";

An older style is to use a bareword as the filehandle, as

open(FH, "<", "input.txt")

or die "cannot open < input.txt: $!";

Then you can use FH as the filehandle, in close FH and <FH> and so on. Note
that it’s a global variable, so this form is not recommended in new code.

As a shortcut a one-argument call takes the filename from the global scalar
variable of the same name as the filehandle:

$ARTICLE = 100;

open(ARTICLE) or die "Can’t find article $ARTICLE: $!\n";

Here $ARTICLE must be a global (package) scalar variable - not one declared
with my or state.

As a special case the three-argument form with a read/write mode and the
third argument being undef:

open(my $tmp, "+>", undef) or die ...

opens a filehandle to an anonymous temporary file. Also using +< works for
symmetry, but you really should consider writing something to the temporary
file first. You will need to seek() to do the reading.

Perl is built using PerlIO by default; Unless you’ve changed this (such as build-
ing Perl with Configure -Uuseperlio), you can open filehandles directly to
Perl scalars via:

open($fh, ">", \$variable) || ..

To (re)open STDOUT or STDERR as an in-memory file, close it first:

close STDOUT;

open(STDOUT, ">", \$variable)

or die "Can’t open STDOUT: $!";

General examples:

open(LOG, ">>/usr/spool/news/twitlog"); # (log is reserved)

if the open fails, output is discarded

open(my $dbase, "+<", "dbase.mine") # open for update

or die "Can’t open ’dbase.mine’ for update: $!";

open(my $dbase, "+<dbase.mine") # ditto

or die "Can’t open ’dbase.mine’ for update: $!";

open(ARTICLE, "-|", "caesar <$article") # decrypt article

or die "Can’t start caesar: $!";

open(ARTICLE, "caesar <$article |") # ditto

or die "Can’t start caesar: $!";

open(EXTRACT, "|sort >Tmp$$") # $$ is our process id

or die "Can’t start sort: $!";

in-memory files

open(MEMORY, ">", \$var)

or die "Can’t open memory file: $!";

print MEMORY "foo!\n"; # output will appear in $var

process argument list of files along with any includes

foreach $file (@ARGV) {

process($file, "fh00");

}

sub process {

my($filename, $input) = @_;

$input++; # this is a string increment

unless (open($input, "<", $filename)) {

print STDERR "Can’t open $filename: $!\n";

return;

}

local $_;

while (<$input>) { # note use of indirection

if (/^#include "(.*)"/) {

process($1, $input);

next;

}

#... # whatever

}

}

See Section 35.1 [perliol NAME], page 651 for detailed info on PerlIO.

You may also, in the Bourne shell tradition, specify an EXPR beginning with
>&, in which case the rest of the string is interpreted as the name of a filehandle
(or file descriptor, if numeric) to be duped (as dup(2)) and opened. You may

use & after >, >>, <, +>, +>>, and +<. The mode you specify should match the
mode of the original filehandle. (Duping a filehandle does not take into account
any existing contents of IO buffers.) If you use the three-argument form, then
you can pass either a number, the name of a filehandle, or the normal "reference
to a glob".

Here is a script that saves, redirects, and restores STDOUT and STDERR using
various methods:

#!/usr/bin/perl

open(my $oldout, ">&STDOUT") or die "Can’t dup STDOUT: $!";

open(OLDERR, ">&", *STDERR) or die "Can’t dup STDERR: $!";

open(STDOUT, ’>’, "foo.out") or die "Can’t redirect STDOUT: $!";

open(STDERR, ">&STDOUT") or die "Can’t dup STDOUT: $!";

select STDERR; $| = 1; # make unbuffered

select STDOUT; $| = 1; # make unbuffered

print STDOUT "stdout 1\n"; # this works for

print STDERR "stderr 1\n"; # subprocesses too

open(STDOUT, ">&", $oldout) or die "Can’t dup \$oldout: $!";

open(STDERR, ">&OLDERR") or die "Can’t dup OLDERR: $!";

print STDOUT "stdout 2\n";

print STDERR "stderr 2\n";

If you specify ’<&=X’, where X is a file descriptor number or a filehandle, then
Perl will do an equivalent of C’s fdopen of that file descriptor (and not call
dup(2)); this is more parsimonious of file descriptors. For example:

open for input, reusing the fileno of $fd

open(FILEHANDLE, "<&=$fd")

or

open(FILEHANDLE, "<&=", $fd)

or

open for append, using the fileno of OLDFH

open(FH, ">>&=", OLDFH)

or

open(FH, ">>&=OLDFH")

Being parsimonious on filehandles is also useful (besides being parsimonious)
for example when something is dependent on file descriptors, like for example
locking using flock(). If you do just open(A, ">>&B"), the filehandle A will not
have the same file descriptor as B, and therefore flock(A) will not flock(B) nor
vice versa. But with open(A, ">>&=B"), the filehandles will share the same
underlying system file descriptor.

Note that under Perls older than 5.8.0, Perl uses the standard C library’s’
fdopen() to implement the = functionality. On many Unix systems, fdopen()

fails when file descriptors exceed a certain value, typically 255. For Perls 5.8.0
and later, PerlIO is (most often) the default.

You can see whether your Perl was built with PerlIO by running perl -V and
looking for the useperlio= line. If useperlio is define, you have PerlIO;
otherwise you don’t.

If you open a pipe on the command - (that is, specify either |- or -| with the
one- or two-argument forms of open), an implicit fork is done, so open returns
twice: in the parent process it returns the pid of the child process, and in the
child process it returns (a defined) 0. Use defined($pid) or // to determine
whether the open was successful.

For example, use either

$child_pid = open(FROM_KID, "-|") // die "can’t fork: $!";

or

$child_pid = open(TO_KID, "|-") // die "can’t fork: $!";

followed by

if ($child_pid) {

am the parent:

either write TO_KID or else read FROM_KID

...

waitpid $child_pid, 0;

} else {

am the child; use STDIN/STDOUT normally

...

exit;

}

The filehandle behaves normally for the parent, but I/O to that filehandle is
piped from/to the STDOUT/STDIN of the child process. In the child process,
the filehandle isn’t opened–I/O happens from/to the new STDOUT/STDIN.
Typically this is used like the normal piped open when you want to exercise more
control over just how the pipe command gets executed, such as when running
setuid and you don’t want to have to scan shell commands for metacharacters.

The following blocks are more or less equivalent:

open(FOO, "|tr ’[a-z]’ ’[A-Z]’");

open(FOO, "|-", "tr ’[a-z]’ ’[A-Z]’");

open(FOO, "|-") || exec ’tr’, ’[a-z]’, ’[A-Z]’;

open(FOO, "|-", "tr", ’[a-z]’, ’[A-Z]’);

open(FOO, "cat -n ’$file’|");

open(FOO, "-|", "cat -n ’$file’");

open(FOO, "-|") || exec "cat", "-n", $file;

open(FOO, "-|", "cat", "-n", $file);

The last two examples in each block show the pipe as "list form", which is not
yet supported on all platforms. A good rule of thumb is that if your platform
has a real fork() (in other words, if your platform is Unix, including Linux

and MacOS X), you can use the list form. You would want to use the list
form of the pipe so you can pass literal arguments to the command without
risk of the shell interpreting any shell metacharacters in them. However, this
also bars you from opening pipes to commands that intentionally contain shell
metacharacters, such as:

open(FOO, "|cat -n | expand -4 | lpr")

// die "Can’t open pipeline to lpr: $!";

See Section 36.5.4 [perlipc Safe Pipe Opens], page 676 for more examples of
this.

Perl will attempt to flush all files opened for output before any operation
that may do a fork, but this may not be supported on some platforms (see
Section 56.1 [perlport NAME], page 951). To be safe, you may need to set $|
($AUTOFLUSH in English) or call the autoflush() method of IO::Handle
on any open handles.

On systems that support a close-on-exec flag on files, the flag will be set for the
newly opened file descriptor as determined by the value of $^F. See [perlvar
$^F], page 1381.

Closing any piped filehandle causes the parent process to wait for the child to
finish, then returns the status value in $? and ${^CHILD_ERROR_NATIVE}.

The filename passed to the one- and two-argument forms of open() will have
leading and trailing whitespace deleted and normal redirection characters hon-
ored. This property, known as "magic open", can often be used to good effect.
A user could specify a filename of "rsh cat file |", or you could change cer-
tain filenames as needed:

$filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;

open(FH, $filename) or die "Can’t open $filename: $!";

Use the three-argument form to open a file with arbitrary weird characters in
it,

open(FOO, "<", $file)

|| die "can’t open < $file: $!";

otherwise it’s necessary to protect any leading and trailing whitespace:

$file =~ s#^(\s)#./$1#;

open(FOO, "< $file\0")

|| die "open failed: $!";

(this may not work on some bizarre filesystems). One should conscientiously
choose between the magic and three-argument form of open():

open(IN, $ARGV[0]) || die "can’t open $ARGV[0]: $!";

will allow the user to specify an argument of the form "rsh cat file |", but
will not work on a filename that happens to have a trailing space, while

open(IN, "<", $ARGV[0])

|| die "can’t open < $ARGV[0]: $!";

will have exactly the opposite restrictions.

If you want a "real" C open (see open(2) on your system), then you should
use the sysopen function, which involves no such magic (but may use subtly

http://man.he.net/man2/open

different filemodes than Perl open(), which is mapped to C fopen()). This is
another way to protect your filenames from interpretation. For example:

use IO::Handle;

sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)

or die "sysopen $path: $!";

$oldfh = select(HANDLE); $| = 1; select($oldfh);

print HANDLE "stuff $$\n";

seek(HANDLE, 0, 0);

print "File contains: ", <HANDLE>;

See 〈undefined〉 [seek], page 〈undefined〉 for some details about mixing reading
and writing.

Portability issues: [perlport open], page 977.

opendir DIRHANDLE,EXPR
Opens a directory named EXPR for processing by readdir, telldir, seekdir,
rewinddir, and closedir. Returns true if successful. DIRHANDLE may be
an expression whose value can be used as an indirect dirhandle, usually the
real dirhandle name. If DIRHANDLE is an undefined scalar variable (or array
or hash element), the variable is assigned a reference to a new anonymous
dirhandle; that is, it’s autovivified. DIRHANDLEs have their own namespace
separate from FILEHANDLEs.

See the example at readdir.

ord EXPR
ord

Returns the numeric value of the first character of EXPR. If EXPR is an empty
string, returns 0. If EXPR is omitted, uses $_. (Note character, not byte.)

For the reverse, see [chr], page 364. See Section 81.1 [perlunicode NAME],
page 1317 for more about Unicode.

our VARLIST
our TYPE VARLIST
our VARLIST : ATTRS
our TYPE VARLIST : ATTRS

our makes a lexical alias to a package (i.e. global) variable of the same name
in the current package for use within the current lexical scope.

our has the same scoping rules as my or state, meaning that it is only valid
within a lexical scope. Unlike my and state, which both declare new (lexical)
variables, our only creates an alias to an existing variable: a package variable
of the same name.

This means that when use strict ’vars’ is in effect, our lets you use a package
variable without qualifying it with the package name, but only within the lexical
scope of the our declaration. This applies immediately–even within the same
statement.

package Foo;

use strict;

$Foo::foo = 23;

{

our $foo; # alias to $Foo::foo

print $foo; # prints 23

}

print $Foo::foo; # prints 23

print $foo; # ERROR: requires explicit package name

This works even if the package variable has not been used before, as package
variables spring into existence when first used.

package Foo;

use strict;

our $foo = 23; # just like $Foo::foo = 23

print $Foo::foo; # prints 23

Because the variable becomes legal immediately under use strict ’vars’, so
long as there is no variable with that name is already in scope, you can then
reference the package variable again even within the same statement.

package Foo;

use strict;

my $foo = $foo; # error, undeclared $foo on right-hand side

our $foo = $foo; # no errors

If more than one variable is listed, the list must be placed in parentheses.

our($bar, $baz);

An our declaration declares an alias for a package variable that will be visible
across its entire lexical scope, even across package boundaries. The package in
which the variable is entered is determined at the point of the declaration, not
at the point of use. This means the following behavior holds:

package Foo;

our $bar; # declares $Foo::bar for rest of lexical scope

$bar = 20;

package Bar;

print $bar; # prints 20, as it refers to $Foo::bar

Multiple our declarations with the same name in the same lexical scope are
allowed if they are in different packages. If they happen to be in the same
package, Perl will emit warnings if you have asked for them, just like multiple
my declarations. Unlike a second my declaration, which will bind the name to a
fresh variable, a second our declaration in the same package, in the same scope,
is merely redundant.

use warnings;

package Foo;

our $bar; # declares $Foo::bar for rest of lexical scope

$bar = 20;

package Bar;

our $bar = 30; # declares $Bar::bar for rest of lexical scope

print $bar; # prints 30

our $bar; # emits warning but has no other effect

print $bar; # still prints 30

An our declaration may also have a list of attributes associated with it.

The exact semantics and interface of TYPE and ATTRS are still evolving.
TYPE is currently bound to the use of the fields pragma, and attributes
are handled using the attributes pragma, or, starting from Perl 5.8.0, also
via the Attribute::Handlers module. See Section 73.3.2 [perlsub Private
Variables via my()], page 1223 for details, and fields, attributes, and
Attribute-Handlers.

Note that with a parenthesised list, undef can be used as a dummy placeholder,
for example to skip assignment of initial values:

our (undef, $min, $hour) = localtime;

our differs from use vars, which allows use of an unqualified name only within
the affected package, but across scopes.

pack TEMPLATE,LIST
Takes a LIST of values and converts it into a string using the rules given by the
TEMPLATE. The resulting string is the concatenation of the converted values.
Typically, each converted value looks like its machine-level representation. For
example, on 32-bit machines an integer may be represented by a sequence of 4
bytes, which will in Perl be presented as a string that’s 4 characters long.

See Section 50.1 [perlpacktut NAME], page 857 for an introduction to this
function.

The TEMPLATE is a sequence of characters that give the order and type of
values, as follows:

a A string with arbitrary binary data, will be null padded.

A A text (ASCII) string, will be space padded.

Z A null-terminated (ASCIZ) string, will be null padded.

b A bit string (ascending bit order inside each byte,

like vec()).

B A bit string (descending bit order inside each byte).

h A hex string (low nybble first).

H A hex string (high nybble first).

c A signed char (8-bit) value.

C An unsigned char (octet) value.

W An unsigned char value (can be greater than 255).

s A signed short (16-bit) value.

S An unsigned short value.

l A signed long (32-bit) value.

L An unsigned long value.

q A signed quad (64-bit) value.

Q An unsigned quad value.

(Quads are available only if your system supports 64-bit

integer values _and_ if Perl has been compiled to support

those. Raises an exception otherwise.)

i A signed integer value.

I A unsigned integer value.

(This ’integer’ is _at_least_ 32 bits wide. Its exact

size depends on what a local C compiler calls ’int’.)

n An unsigned short (16-bit) in "network" (big-endian) order.

N An unsigned long (32-bit) in "network" (big-endian) order.

v An unsigned short (16-bit) in "VAX" (little-endian) order.

V An unsigned long (32-bit) in "VAX" (little-endian) order.

j A Perl internal signed integer value (IV).

J A Perl internal unsigned integer value (UV).

f A single-precision float in native format.

d A double-precision float in native format.

F A Perl internal floating-point value (NV) in native format

D A float of long-double precision in native format.

(Long doubles are available only if your system supports

long double values _and_ if Perl has been compiled to

support those. Raises an exception otherwise.

Note that there are different long double formats.)

p A pointer to a null-terminated string.

P A pointer to a structure (fixed-length string).

u A uuencoded string.

U A Unicode character number. Encodes to a character in char-

acter mode and UTF-8 (or UTF-EBCDIC in EBCDIC platforms) in

byte mode.

w A BER compressed integer (not an ASN.1 BER, see perlpacktut

for details). Its bytes represent an unsigned integer in

base 128, most significant digit first, with as few digits

as possible. Bit eight (the high bit) is set on each byte

except the last.

x A null byte (a.k.a ASCII NUL, "\000", chr(0))

X Back up a byte.

@ Null-fill or truncate to absolute position, counted from the

start of the innermost ()-group.

. Null-fill or truncate to absolute position specified by

the value.

(Start of a ()-group.

One or more modifiers below may optionally follow certain letters in the TEM-
PLATE (the second column lists letters for which the modifier is valid):

! sSlLiI Forces native (short, long, int) sizes instead

of fixed (16-/32-bit) sizes.

! xX Make x and X act as alignment commands.

! nNvV Treat integers as signed instead of unsigned.

! @. Specify position as byte offset in the internal

representation of the packed string. Efficient

but dangerous.

> sSiIlLqQ Force big-endian byte-order on the type.

jJfFdDpP (The "big end" touches the construct.)

< sSiIlLqQ Force little-endian byte-order on the type.

jJfFdDpP (The "little end" touches the construct.)

The > and < modifiers can also be used on () groups to force a particular
byte-order on all components in that group, including all its subgroups.

The following rules apply:

• Each letter may optionally be followed by a number indicating the repeat
count. A numeric repeat count may optionally be enclosed in brackets, as
in pack("C[80]", @arr). The repeat count gobbles that many values from
the LIST when used with all format types other than a, A, Z, b, B, h, H, @,
., x, X, and P, where it means something else, described below. Supplying
a * for the repeat count instead of a number means to use however many
items are left, except for:

• @, x, and X, where it is equivalent to 0.

• <.>, where it means relative to the start of the string.

• u, where it is equivalent to 1 (or 45, which here is equivalent).

One can replace a numeric repeat count with a template letter enclosed in
brackets to use the packed byte length of the bracketed template for the
repeat count.

For example, the template x[L] skips as many bytes as in a packed long,
and the template "$t X[$t] $t" unpacks twice whatever $t (when variable-
expanded) unpacks. If the template in brackets contains alignment com-
mands (such as x![d]), its packed length is calculated as if the start of the
template had the maximal possible alignment.

When used with Z, a * as the repeat count is guaranteed to add a trailing
null byte, so the resulting string is always one byte longer than the byte
length of the item itself.

When used with @, the repeat count represents an offset from the start of
the innermost () group.

When used with ., the repeat count determines the starting position to
calculate the value offset as follows:

• If the repeat count is 0, it’s relative to the current position.

• If the repeat count is *, the offset is relative to the start of the packed
string.

• And if it’s an integer n, the offset is relative to the start of the nth
innermost () group, or to the start of the string if n is bigger then
the group level.

The repeat count for u is interpreted as the maximal number of bytes to
encode per line of output, with 0, 1 and 2 replaced by 45. The repeat count
should not be more than 65.

• The a, A, and Z types gobble just one value, but pack it as a string of length
count, padding with nulls or spaces as needed. When unpacking, A strips
trailing whitespace and nulls, Z strips everything after the first null, and a

returns data with no stripping at all.

If the value to pack is too long, the result is truncated. If it’s too long and
an explicit count is provided, Z packs only $count-1 bytes, followed by a
null byte. Thus Z always packs a trailing null, except when the count is 0.

• Likewise, the b and B formats pack a string that’s that many bits long. Each
such format generates 1 bit of the result. These are typically followed by
a repeat count like B8 or B64.

Each result bit is based on the least-significant bit of the corresponding
input character, i.e., on ord($char)%2. In particular, characters "0" and
"1" generate bits 0 and 1, as do characters "\000" and "\001".

Starting from the beginning of the input string, each 8-tuple of characters
is converted to 1 character of output. With format b, the first character of
the 8-tuple determines the least-significant bit of a character; with format
B, it determines the most-significant bit of a character.

If the length of the input string is not evenly divisible by 8, the remainder
is packed as if the input string were padded by null characters at the end.
Similarly during unpacking, "extra" bits are ignored.

If the input string is longer than needed, remaining characters are ignored.

A * for the repeat count uses all characters of the input field. On unpacking,
bits are converted to a string of 0s and 1s.

• The h and H formats pack a string that many nybbles (4-bit groups, rep-
resentable as hexadecimal digits, "0".."9" "a".."f") long.

For each such format, pack() generates 4 bits of result. With
non-alphabetical characters, the result is based on the 4 least-significant
bits of the input character, i.e., on ord($char)%16. In particular,
characters "0" and "1" generate nybbles 0 and 1, as do bytes "\000" and
"\001". For characters "a".."f" and "A".."F", the result is compatible
with the usual hexadecimal digits, so that "a" and "A" both generate the
nybble 0xA==10. Use only these specific hex characters with this format.

Starting from the beginning of the template to pack(), each pair of charac-
ters is converted to 1 character of output. With format h, the first character
of the pair determines the least-significant nybble of the output character;
with format H, it determines the most-significant nybble.

If the length of the input string is not even, it behaves as if padded by a
null character at the end. Similarly, "extra" nybbles are ignored during
unpacking.

If the input string is longer than needed, extra characters are ignored.

A * for the repeat count uses all characters of the input field. For unpack(),
nybbles are converted to a string of hexadecimal digits.

• The p format packs a pointer to a null-terminated string. You are respon-
sible for ensuring that the string is not a temporary value, as that could
potentially get deallocated before you got around to using the packed re-
sult. The P format packs a pointer to a structure of the size indicated by
the length. A null pointer is created if the corresponding value for p or P is
undef; similarly with unpack(), where a null pointer unpacks into undef.

If your system has a strange pointer size–meaning a pointer is neither as
big as an int nor as big as a long–it may not be possible to pack or unpack
pointers in big- or little-endian byte order. Attempting to do so raises an
exception.

• The / template character allows packing and unpacking of a sequence of
items where the packed structure contains a packed item count followed
by the packed items themselves. This is useful when the structure you’re
unpacking has encoded the sizes or repeat counts for some of its fields
within the structure itself as separate fields.

For pack, you write length-item/sequence-item, and the length-item de-
scribes how the length value is packed. Formats likely to be of most use
are integer-packing ones like n for Java strings, w for ASN.1 or SNMP, and
N for Sun XDR.

For pack, sequence-item may have a repeat count, in which case the mini-
mum of that and the number of available items is used as the argument for
length-item. If it has no repeat count or uses a ’*’, the number of available
items is used.

For unpack, an internal stack of integer arguments unpacked so far is used.
You write /sequence-item and the repeat count is obtained by popping off

the last element from the stack. The sequence-item must not have a repeat
count.

If sequence-item refers to a string type ("A", "a", or "Z"), the length-item
is the string length, not the number of strings. With an explicit repeat
count for pack, the packed string is adjusted to that length. For example:

This code: gives this result:

unpack("W/a", "\004Gurusamy") ("Guru")

unpack("a3/A A*", "007 Bond J ") (" Bond", "J")

unpack("a3 x2 /A A*", "007: Bond, J.") ("Bond, J", ".")

pack("n/a* w/a","hello,","world") "\000\006hello,\005world"

pack("a/W2", ord("a") .. ord("z")) "2ab"

The length-item is not returned explicitly from unpack.

Supplying a count to the length-item format letter is only useful with A, a,
or Z. Packing with a length-item of a or Zmay introduce "\000" characters,
which Perl does not regard as legal in numeric strings.

• The integer types s, S, l, and L may be followed by a ! modifier to specify
native shorts or longs. As shown in the example above, a bare l means
exactly 32 bits, although the native long as seen by the local C compiler
may be larger. This is mainly an issue on 64-bit platforms. You can see
whether using ! makes any difference this way:

printf "format s is %d, s! is %d\n",

length pack("s"), length pack("s!");

printf "format l is %d, l! is %d\n",

length pack("l"), length pack("l!");

i! and I! are also allowed, but only for completeness’ sake: they are
identical to i and I.

The actual sizes (in bytes) of native shorts, ints, longs, and long longs on
the platform where Perl was built are also available from the command
line:

$ perl -V:{short,int,long{,long}}size

shortsize=’2’;

intsize=’4’;

longsize=’4’;

longlongsize=’8’;

or programmatically via the Config module:

use Config;

print $Config{shortsize}, "\n";

print $Config{intsize}, "\n";

print $Config{longsize}, "\n";

print $Config{longlongsize}, "\n";

$Config{longlongsize} is undefined on systems without long long sup-
port.

• The integer formats s, S, i, I, l, L, j, and J are inherently non-portable be-
tween processors and operating systems because they obey native byteorder
and endianness. For example, a 4-byte integer 0x12345678 (305419896 dec-
imal) would be ordered natively (arranged in and handled by the CPU
registers) into bytes as

0x12 0x34 0x56 0x78 # big-endian

0x78 0x56 0x34 0x12 # little-endian

Basically, Intel and VAX CPUs are little-endian, while everybody else,
including Motorola m68k/88k, PPC, Sparc, HP PA, Power, and Cray, are
big-endian. Alpha and MIPS can be either: Digital/Compaq uses (well,
used) them in little-endian mode, but SGI/Cray uses them in big-endian
mode.

The names big-endian and little-endian are comic references to the egg-
eating habits of the little-endian Lilliputians and the big-endian Blefuscu-
dians from the classic Jonathan Swift satire, Gulliver’s Travels. This en-
tered computer lingo via the paper "On Holy Wars and a Plea for Peace"
by Danny Cohen, USC/ISI IEN 137, April 1, 1980.

Some systems may have even weirder byte orders such as

0x56 0x78 0x12 0x34

0x34 0x12 0x78 0x56

These are called mid-endian, middle-endian, mixed-endian, or just weird.

You can determine your system endianness with this incantation:

printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678);

The byteorder on the platform where Perl was built is also available via
Config:

use Config;

print "$Config{byteorder}\n";

or from the command line:

$ perl -V:byteorder

Byteorders "1234" and "12345678" are little-endian; "4321" and
"87654321" are big-endian. Systems with multiarchitecture binaries will
have "ffff", signifying that static information doesn’t work, one must
use runtime probing.

For portably packed integers, either use the formats n, N, v, and V or else use
the > and < modifiers described immediately below. See also Section 56.1
[perlport NAME], page 951.

• Also floating point numbers have endianness. Usually (but not always)
this agrees with the integer endianness. Even though most platforms these
days use the IEEE 754 binary format, there are differences, especially if the
long doubles are involved. You can see the Config variables doublekind
and longdblkind (also doublesize, longdblsize): the "kind" values are
enums, unlike byteorder.

Portability-wise the best option is probably to keep to the IEEE 754 64-bit
doubles, and of agreed-upon endianness. Another possibility is the "%a")
format of printf.

• Starting with Perl 5.10.0, integer and floating-point formats, along with
the p and P formats and () groups, may all be followed by the > or <

endianness modifiers to respectively enforce big- or little-endian byte-order.
These modifiers are especially useful given how n, N, v, and V don’t cover
signed integers, 64-bit integers, or floating-point values.

Here are some concerns to keep in mind when using an endianness modifier:

• Exchanging signed integers between different platforms works only
when all platforms store them in the same format. Most platforms
store signed integers in two’s-complement notation, so usually this is
not an issue.

• The > or < modifiers can only be used on floating-point formats on big-
or little-endian machines. Otherwise, attempting to use them raises
an exception.

• Forcing big- or little-endian byte-order on floating-point values for
data exchange can work only if all platforms use the same binary
representation such as IEEE floating-point. Even if all platforms are
using IEEE, there may still be subtle differences. Being able to use
> or < on floating-point values can be useful, but also dangerous if
you don’t know exactly what you’re doing. It is not a general way to
portably store floating-point values.

• When using > or < on a () group, this affects all types inside the
group that accept byte-order modifiers, including all subgroups. It is
silently ignored for all other types. You are not allowed to override
the byte-order within a group that already has a byte-order modifier
suffix.

• Real numbers (floats and doubles) are in native machine format only. Due
to the multiplicity of floating-point formats and the lack of a standard
"network" representation for them, no facility for interchange has been
made. This means that packed floating-point data written on one machine
may not be readable on another, even if both use IEEE floating-point
arithmetic (because the endianness of the memory representation is not
part of the IEEE spec). See also Section 56.1 [perlport NAME], page 951.

If you know exactly what you’re doing, you can use the > or < modifiers to
force big- or little-endian byte-order on floating-point values.

Because Perl uses doubles (or long doubles, if configured) internally for
all numeric calculation, converting from double into float and thence to
double again loses precision, so unpack("f", pack("f", $foo)) will not
in general equal $foo.

• Pack and unpack can operate in two modes: character mode (C0 mode)
where the packed string is processed per character, and UTF-8 byte mode
(U0 mode) where the packed string is processed in its UTF-8-encoded Uni-
code form on a byte-by-byte basis. Character mode is the default unless

the format string starts with U. You can always switch mode mid-format
with an explicit C0 or U0 in the format. This mode remains in effect until
the next mode change, or until the end of the () group it (directly) applies
to.

Using C0 to get Unicode characters while using U0 to get non-Unicode
bytes is not necessarily obvious. Probably only the first of these is what
you want:

$ perl -CS -E ’say "\x{3B1}\x{3C9}"’ |

perl -CS -ne ’printf "%v04X\n", $_ for unpack("C0A*", $_)’

03B1.03C9

$ perl -CS -E ’say "\x{3B1}\x{3C9}"’ |

perl -CS -ne ’printf "%v02X\n", $_ for unpack("U0A*", $_)’

CE.B1.CF.89

$ perl -CS -E ’say "\x{3B1}\x{3C9}"’ |

perl -C0 -ne ’printf "%v02X\n", $_ for unpack("C0A*", $_)’

CE.B1.CF.89

$ perl -CS -E ’say "\x{3B1}\x{3C9}"’ |

perl -C0 -ne ’printf "%v02X\n", $_ for unpack("U0A*", $_)’

C3.8E.C2.B1.C3.8F.C2.89

Those examples also illustrate that you should not try to use pack/unpack
as a substitute for the Encode module.

• You must yourself do any alignment or padding by inserting, for example,
enough "x"es while packing. There is no way for pack() and unpack() to
know where characters are going to or coming from, so they handle their
output and input as flat sequences of characters.

• A () group is a sub-TEMPLATE enclosed in parentheses. A group may
take a repeat count either as postfix, or for unpack(), also via the / template
character. Within each repetition of a group, positioning with @ starts over
at 0. Therefore, the result of

pack("@1A((@2A)@3A)", qw[X Y Z])

is the string "\0X\0\0YZ".

• x and X accept the ! modifier to act as alignment commands: they jump
forward or back to the closest position aligned at a multiple of count

characters. For example, to pack() or unpack() a C structure like

struct {

char c; /* one signed, 8-bit character */

double d;

char cc[2];

}

one may need to use the template c x![d] d c[2]. This assumes that
doubles must be aligned to the size of double.

For alignment commands, a count of 0 is equivalent to a count of 1; both
are no-ops.

• n, N, v and V accept the ! modifier to represent signed 16-/32-bit integers in
big-/little-endian order. This is portable only when all platforms sharing

packed data use the same binary representation for signed integers; for
example, when all platforms use two’s-complement representation.

• Comments can be embedded in a TEMPLATE using # through the end of
line. White space can separate pack codes from each other, but modifiers
and repeat counts must follow immediately. Breaking complex templates
into individual line-by-line components, suitably annotated, can do as much
to improve legibility and maintainability of pack/unpack formats as /x can
for complicated pattern matches.

• If TEMPLATE requires more arguments than pack() is given, pack() as-
sumes additional "" arguments. If TEMPLATE requires fewer arguments
than given, extra arguments are ignored.

• Attempting to pack the special floating point values Inf and NaN (infinity,
also in negative, and not-a-number) into packed integer values (like "L")
is a fatal error. The reason for this is that there simply isn’t any sensible
mapping for these special values into integers.

Examples:

$foo = pack("WWWW",65,66,67,68);

foo eq "ABCD"

$foo = pack("W4",65,66,67,68);

same thing

$foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);

same thing with Unicode circled letters.

$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);

same thing with Unicode circled letters. You don’t get the

UTF-8 bytes because the U at the start of the format caused

a switch to U0-mode, so the UTF-8 bytes get joined into

characters

$foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);

foo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"

This is the UTF-8 encoding of the string in the

previous example

$foo = pack("ccxxcc",65,66,67,68);

foo eq "AB\0\0CD"

NOTE: The examples above featuring "W" and "c" are true

only on ASCII and ASCII-derived systems such as ISO Latin 1

and UTF-8. On EBCDIC systems, the first example would be

$foo = pack("WWWW",193,194,195,196);

$foo = pack("s2",1,2);

"\001\000\002\000" on little-endian

"\000\001\000\002" on big-endian

$foo = pack("a4","abcd","x","y","z");

"abcd"

$foo = pack("aaaa","abcd","x","y","z");

"axyz"

$foo = pack("a14","abcdefg");

"abcdefg\0\0\0\0\0\0\0"

$foo = pack("i9pl", gmtime);

a real struct tm (on my system anyway)

$utmp_template = "Z8 Z8 Z16 L";

$utmp = pack($utmp_template, @utmp1);

a struct utmp (BSDish)

@utmp2 = unpack($utmp_template, $utmp);

"@utmp1" eq "@utmp2"

sub bintodec {

unpack("N", pack("B32", substr("0" x 32 . shift, -32)));

}

$foo = pack(’sx2l’, 12, 34);

short 12, two zero bytes padding, long 34

$bar = pack(’s@4l’, 12, 34);

short 12, zero fill to position 4, long 34

$foo eq $bar

$baz = pack(’s.l’, 12, 4, 34);

short 12, zero fill to position 4, long 34

$foo = pack(’nN’, 42, 4711);

pack big-endian 16- and 32-bit unsigned integers

$foo = pack(’S>L>’, 42, 4711);

exactly the same

$foo = pack(’s<l<’, -42, 4711);

pack little-endian 16- and 32-bit signed integers

$foo = pack(’(sl)<’, -42, 4711);

exactly the same

The same template may generally also be used in unpack().

package NAMESPACE
package NAMESPACE VERSION
package NAMESPACE BLOCK
package NAMESPACE VERSION BLOCK

Declares the BLOCK or the rest of the compilation unit as being in the given
namespace. The scope of the package declaration is either the supplied code
BLOCK or, in the absence of a BLOCK, from the declaration itself through
the end of current scope (the enclosing block, file, or eval). That is, the forms

without a BLOCK are operative through the end of the current scope, just
like the my, state, and our operators. All unqualified dynamic identifiers in
this scope will be in the given namespace, except where overridden by another
package declaration or when they’re one of the special identifiers that qualify
into main::, like STDOUT, ARGV, ENV, and the punctuation variables.

A package statement affects dynamic variables only, including those you’ve
used local on, but not lexically-scoped variables, which are created with my,
state, or our. Typically it would be the first declaration in a file included by
require or use. You can switch into a package in more than one place, since
this only determines which default symbol table the compiler uses for the rest
of that block. You can refer to identifiers in other packages than the current
one by prefixing the identifier with the package name and a double colon, as
in $SomePack::var or ThatPack::INPUT_HANDLE. If package name is omitted,
the main package as assumed. That is, $::sail is equivalent to $main::sail

(as well as to $main’sail, still seen in ancient code, mostly from Perl 4).

If VERSION is provided, package sets the $VERSION variable in the given
namespace to a version object with the VERSION provided. VERSION must
be a "strict" style version number as defined by the version module: a pos-
itive decimal number (integer or decimal-fraction) without exponentiation or
else a dotted-decimal v-string with a leading ’v’ character and at least three
components. You should set $VERSION only once per package.

See Section 40.2.2 [perlmod Packages], page 732 for more information about
packages, modules, and classes. See Section 73.1 [perlsub NAME], page 1216
for other scoping issues.

PACKAGE
A special token that returns the name of the package in which it occurs.

pipe READHANDLE,WRITEHANDLE
Opens a pair of connected pipes like the corresponding system call. Note that
if you set up a loop of piped processes, deadlock can occur unless you are very
careful. In addition, note that Perl’s pipes use IO buffering, so you may need
to set $| to flush your WRITEHANDLE after each command, depending on
the application.

Returns true on success.

See IPC-Open2, IPC-Open3, and Section 36.5.6 [perlipc Bidirectional Commu-
nication with Another Process], page 680 for examples of such things.

On systems that support a close-on-exec flag on files, that flag is set on all
newly opened file descriptors whose filenos are higher than the current value
of $^F (by default 2 for STDERR). See [perlvar $^F], page 1381.

pop ARRAY
pop EXPR
pop

Pops and returns the last value of the array, shortening the array by one element.

Returns the undefined value if the array is empty, although this may also hap-
pen at other times. If ARRAY is omitted, pops the @ARGV array in the main
program, but the @_ array in subroutines, just like shift.

Starting with Perl 5.14, pop can take a scalar EXPR, which must hold a refer-
ence to an unblessed array. The argument will be dereferenced automatically.
This aspect of pop is considered highly experimental. The exact behaviour may
change in a future version of Perl.

To avoid confusing would-be users of your code who are running earlier versions
of Perl with mysterious syntax errors, put this sort of thing at the top of your
file to signal that your code will work only on Perls of a recent vintage:

use 5.014; # so push/pop/etc work on scalars (experimental)

pos SCALAR
pos

Returns the offset of where the last m//g search left off for the variable in
question ($_ is used when the variable is not specified). Note that 0 is a valid
match offset. undef indicates that the search position is reset (usually due to
match failure, but can also be because no match has yet been run on the scalar).

pos directly accesses the location used by the regexp engine to store the offset,
so assigning to pos will change that offset, and so will also influence the \G

zero-width assertion in regular expressions. Both of these effects take place for
the next match, so you can’t affect the position with pos during the current
match, such as in (?{pos() = 5}) or s//pos() = 5/e.

Setting pos also resets the matched with zero-length flag, described under
Section 58.2.9 [perlre Repeated Patterns Matching a Zero-length Substring],
page 1026.

Because a failed m//gc match doesn’t reset the offset, the return from pos

won’t change either in this case. See Section 58.1 [perlre NAME], page 989 and
Section 48.1 [perlop NAME], page 798.

print FILEHANDLE LIST
print FILEHANDLE
print LIST
print

Prints a string or a list of strings. Returns true if successful. FILEHANDLE
may be a scalar variable containing the name of or a reference to the filehandle,
thus introducing one level of indirection. (NOTE: If FILEHANDLE is a variable
and the next token is a term, it may be misinterpreted as an operator unless
you interpose a + or put parentheses around the arguments.) If FILEHANDLE
is omitted, prints to the last selected (see [select], page 443) output handle.
If LIST is omitted, prints $_ to the currently selected output handle. To use
FILEHANDLE alone to print the content of $_ to it, you must use a real
filehandle like FH, not an indirect one like $fh. To set the default output
handle to something other than STDOUT, use the select operation.

The current value of $, (if any) is printed between each LIST item. The current
value of $\ (if any) is printed after the entire LIST has been printed. Because

print takes a LIST, anything in the LIST is evaluated in list context, including
any subroutines whose return lists you pass to print. Be careful not to follow
the print keyword with a left parenthesis unless you want the corresponding
right parenthesis to terminate the arguments to the print; put parentheses
around all arguments (or interpose a +, but that doesn’t look as good).

If you’re storing handles in an array or hash, or in general whenever you’re using
any expression more complex than a bareword handle or a plain, unsubscripted
scalar variable to retrieve it, you will have to use a block returning the filehandle
value instead, in which case the LIST may not be omitted:

print { $files[$i] } "stuff\n";

print { $OK ? STDOUT : STDERR } "stuff\n";

Printing to a closed pipe or socket will generate a SIGPIPE signal. See
Section 36.1 [perlipc NAME], page 667 for more on signal handling.

printf FILEHANDLE FORMAT, LIST
printf FILEHANDLE
printf FORMAT, LIST
printf

Equivalent to print FILEHANDLE sprintf(FORMAT, LIST), except that $\ (the
output record separator) is not appended. The FORMAT and the LIST are
actually parsed as a single list. The first argument of the list will be inter-
preted as the printf format. This means that printf(@_) will use $_[0]

as the format. See [sprintf], page 456 for an explanation of the format argu-
ment. If use locale for LC_NUMERIC Look for this throught pod is in effect and
POSIX::setlocale() has been called, the character used for the decimal separa-
tor in formatted floating-point numbers is affected by the LC_NUMERIC locale
setting. See Section 38.1 [perllocale NAME], page 701 and POSIX.

For historical reasons, if you omit the list, $_ is used as the format; to use
FILEHANDLE without a list, you must use a real filehandle like FH, not an
indirect one like $fh. However, this will rarely do what you want; if $ contains
formatting codes, they will be replaced with the empty string and a warning
will be emitted if warnings are enabled. Just use print if you want to print
the contents of $.

Don’t fall into the trap of using a printf when a simple print would do. The
print is more efficient and less error prone.

prototype FUNCTION
prototype

Returns the prototype of a function as a string (or undef if the function has no
prototype). FUNCTION is a reference to, or the name of, the function whose
prototype you want to retrieve. If FUNCTION is omitted, $ is used.

If FUNCTION is a string starting with CORE::, the rest is taken as a name for
a Perl builtin. If the builtin’s arguments cannot be adequately expressed by
a prototype (such as system), prototype() returns undef, because the builtin
does not really behave like a Perl function. Otherwise, the string describing the
equivalent prototype is returned.

push ARRAY,LIST
push EXPR,LIST

Treats ARRAY as a stack by appending the values of LIST to the end of
ARRAY. The length of ARRAY increases by the length of LIST. Has the same
effect as

for $value (LIST) {

$ARRAY[++$#ARRAY] = $value;

}

but is more efficient. Returns the number of elements in the array following the
completed push.

Starting with Perl 5.14, push can take a scalar EXPR, which must hold a refer-
ence to an unblessed array. The argument will be dereferenced automatically.
This aspect of push is considered highly experimental. The exact behaviour
may change in a future version of Perl.

To avoid confusing would-be users of your code who are running earlier versions
of Perl with mysterious syntax errors, put this sort of thing at the top of your
file to signal that your code will work only on Perls of a recent vintage:

use 5.014; # so push/pop/etc work on scalars (experimental)

q/STRING/
qq/STRING/
qw/STRING/
qx/STRING/

Generalized quotes. See Section 48.2.31 [perlop Quote-Like Operators],
page 832.

qr/STRING/
Regexp-like quote. See Section 48.2.30 [perlop Regexp Quote-Like Operators],
page 823.

quotemeta EXPR
quotemeta

Returns the value of EXPR with all the ASCII non-"word" characters back-
slashed. (That is, all ASCII characters not matching /[A-Za-z_0-9]/ will
be preceded by a backslash in the returned string, regardless of any locale
settings.) This is the internal function implementing the \Q escape in double-
quoted strings. (See below for the behavior on non-ASCII code points.)

If EXPR is omitted, uses $_.

quotemeta (and \Q ... \E) are useful when interpolating strings into regular
expressions, because by default an interpolated variable will be considered a
mini-regular expression. For example:

my $sentence = ’The quick brown fox jumped over the lazy dog’;

my $substring = ’quick.*?fox’;

$sentence =~ s{$substring}{big bad wolf};

Will cause $sentence to become ’The big bad wolf jumped over...’.

On the other hand:

my $sentence = ’The quick brown fox jumped over the lazy dog’;

my $substring = ’quick.*?fox’;

$sentence =~ s{\Q$substring\E}{big bad wolf};

Or:

my $sentence = ’The quick brown fox jumped over the lazy dog’;

my $substring = ’quick.*?fox’;

my $quoted_substring = quotemeta($substring);

$sentence =~ s{$quoted_substring}{big bad wolf};

Will both leave the sentence as is. Normally, when accepting literal string input
from the user, quotemeta() or \Q must be used.

In Perl v5.14, all non-ASCII characters are quoted in non-UTF-8-encoded
strings, but not quoted in UTF-8 strings.

Starting in Perl v5.16, Perl adopted a Unicode-defined strategy for quoting
non-ASCII characters; the quoting of ASCII characters is unchanged.

Also unchanged is the quoting of non-UTF-8 strings when outside the scope
of a use feature ’unicode_strings’, which is to quote all characters in the
upper Latin1 range. This provides complete backwards compatibility for old
programs which do not use Unicode. (Note that unicode_strings is automat-
ically enabled within the scope of a use v5.12 or greater.)

Within the scope of use locale, all non-ASCII Latin1 code points are quoted
whether the string is encoded as UTF-8 or not. As mentioned above, locale
does not affect the quoting of ASCII-range characters. This protects against
those locales where characters such as "|" are considered to be word characters.

Otherwise, Perl quotes non-ASCII characters using an adaptation from Unicode
(see http://www.unicode.org/reports/tr31/). The only code points that
are quoted are those that have any of the Unicode properties: Pattern Syntax,
Pattern White Space, White Space, Default Ignorable Code Point, or Gen-
eral Category=Control.

Of these properties, the two important ones are Pattern Syntax and
Pattern White Space. They have been set up by Unicode for exactly this
purpose of deciding which characters in a regular expression pattern should be
quoted. No character that can be in an identifier has these properties.

Perl promises, that if we ever add regular expression pattern metacharacters
to the dozen already defined (\ | () [{ ^ $ * + ? .), that we will only use
ones that have the Pattern Syntax property. Perl also promises, that if we
ever add characters that are considered to be white space in regular expressions
(currently mostly affected by /x), they will all have the Pattern White Space
property.

Unicode promises that the set of code points that have these two properties
will never change, so something that is not quoted in v5.16 will never need
to be quoted in any future Perl release. (Not all the code points that match
Pattern Syntax have actually had characters assigned to them; so there is room
to grow, but they are quoted whether assigned or not. Perl, of course, would
never use an unassigned code point as an actual metacharacter.)

http://www.unicode.org/reports/tr31/

Quoting characters that have the other 3 properties is done to enhance the
readability of the regular expression and not because they actually need to
be quoted for regular expression purposes (characters with the White Space
property are likely to be indistinguishable on the page or screen from those
with the Pattern White Space property; and the other two properties contain
non-printing characters).

rand EXPR
rand

Returns a random fractional number greater than or equal to 0 and less than
the value of EXPR. (EXPR should be positive.) If EXPR is omitted, the value
1 is used. Currently EXPR with the value 0 is also special-cased as 1 (this was
undocumented before Perl 5.8.0 and is subject to change in future versions of
Perl). Automatically calls srand unless srand has already been called. See also
srand.

Apply int() to the value returned by rand() if you want random integers
instead of random fractional numbers. For example,

int(rand(10))

returns a random integer between 0 and 9, inclusive.

(Note: If your rand function consistently returns numbers that are too large
or too small, then your version of Perl was probably compiled with the wrong
number of RANDBITS.)

rand() is not cryptographically secure. You should not rely on it in security-
sensitive situations. As of this writing, a number of third-party CPAN modules
offer random number generators intended by their authors to be cryptograph-
ically secure, including: Data-Entropy, Crypt-Random, Math-Random-Secure,
and Math-TrulyRandom.

read FILEHANDLE,SCALAR,LENGTH,OFFSET
read FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH characters of data into variable SCALAR from the
specified FILEHANDLE. Returns the number of characters actually read, 0 at
end of file, or undef if there was an error (in the latter case $! is also set).
SCALAR will be grown or shrunk so that the last character actually read is the
last character of the scalar after the read.

An OFFSET may be specified to place the read data at some place in the
string other than the beginning. A negative OFFSET specifies placement at
that many characters counting backwards from the end of the string. A positive
OFFSET greater than the length of SCALAR results in the string being padded
to the required size with "\0" bytes before the result of the read is appended.

The call is implemented in terms of either Perl’s or your system’s native fread(3)
library function. To get a true read(2) system call, see [sysread], page 470.

Note the characters: depending on the status of the filehandle, either (8-bit)
bytes or characters are read. By default, all filehandles operate on bytes, but
for example if the filehandle has been opened with the :utf8 I/O layer (see
〈undefined〉 [open], page 〈undefined〉, and the open pragma, open), the I/O

will operate on UTF8-encoded Unicode characters, not bytes. Similarly for the
:encoding pragma: in that case pretty much any characters can be read.

readdir DIRHANDLE
Returns the next directory entry for a directory opened by opendir. If used in
list context, returns all the rest of the entries in the directory. If there are no
more entries, returns the undefined value in scalar context and the empty list
in list context.

If you’re planning to filetest the return values out of a readdir, you’d better
prepend the directory in question. Otherwise, because we didn’t chdir there,
it would have been testing the wrong file.

opendir(my $dh, $some_dir) || die "can’t opendir $some_dir: $!";

@dots = grep { /^\./ && -f "$some_dir/$_" } readdir($dh);

closedir $dh;

As of Perl 5.12 you can use a bare readdir in a while loop, which will set $_
on every iteration.

opendir(my $dh, $some_dir) || die;

while(readdir $dh) {

print "$some_dir/$_\n";

}

closedir $dh;

To avoid confusing would-be users of your code who are running earlier versions
of Perl with mysterious failures, put this sort of thing at the top of your file to
signal that your code will work only on Perls of a recent vintage:

use 5.012; # so readdir assigns to $_ in a lone while test

readline EXPR
readline

Reads from the filehandle whose typeglob is contained in EXPR (or from *ARGV

if EXPR is not provided). In scalar context, each call reads and returns the next
line until end-of-file is reached, whereupon the subsequent call returns undef.
In list context, reads until end-of-file is reached and returns a list of lines. Note
that the notion of "line" used here is whatever you may have defined with $/

or $INPUT_RECORD_SEPARATOR). See [perlvar $/], page 1395.

When $/ is set to undef, when readline is in scalar context (i.e., file slurp
mode), and when an empty file is read, it returns ’’ the first time, followed by
undef subsequently.

This is the internal function implementing the <EXPR> operator, but you can use
it directly. The <EXPR> operator is discussed in more detail in Section 48.2.33
[perlop I/O Operators], page 844.

$line = <STDIN>;

$line = readline(*STDIN); # same thing

If readline encounters an operating system error, $! will be set with the
corresponding error message. It can be helpful to check $! when you are reading
from filehandles you don’t trust, such as a tty or a socket. The following example
uses the operator form of readline and dies if the result is not defined.

while (! eof($fh)) {

defined($_ = <$fh>) or die "readline failed: $!";

...

}

Note that you have can’t handle readline errors that way with the ARGV file-
handle. In that case, you have to open each element of @ARGV yourself since
eof handles ARGV differently.

foreach my $arg (@ARGV) {

open(my $fh, $arg) or warn "Can’t open $arg: $!";

while (! eof($fh)) {

defined($_ = <$fh>)

or die "readline failed for $arg: $!";

...

}

}

readlink EXPR
readlink

Returns the value of a symbolic link, if symbolic links are implemented. If not,
raises an exception. If there is a system error, returns the undefined value and
sets $! (errno). If EXPR is omitted, uses $_.

Portability issues: [perlport readlink], page 977.

readpipe EXPR
readpipe

EXPR is executed as a system command. The collected standard output of the
command is returned. In scalar context, it comes back as a single (potentially
multi-line) string. In list context, returns a list of lines (however you’ve defined
lines with $/ or $INPUT_RECORD_SEPARATOR). This is the internal function
implementing the qx/EXPR/ operator, but you can use it directly. The qx/EXPR/
operator is discussed in more detail in Section 48.2.33 [perlop I/O Operators],
page 844. If EXPR is omitted, uses $_.

recv SOCKET,SCALAR,LENGTH,FLAGS
Receives a message on a socket. Attempts to receive LENGTH characters of
data into variable SCALAR from the specified SOCKET filehandle. SCALAR
will be grown or shrunk to the length actually read. Takes the same flags as the
system call of the same name. Returns the address of the sender if SOCKET’s
protocol supports this; returns an empty string otherwise. If there’s an error,
returns the undefined value. This call is actually implemented in terms of
recvfrom(2) system call. See Section 36.9 [perlipc UDP: Message Passing],
page 695 for examples.

Note the characters: depending on the status of the socket, either (8-bit) bytes
or characters are received. By default all sockets operate on bytes, but for
example if the socket has been changed using binmode() to operate with the
:encoding(utf8) I/O layer (see the open pragma, open), the I/O will operate

on UTF8-encoded Unicode characters, not bytes. Similarly for the :encoding

pragma: in that case pretty much any characters can be read.

redo LABEL
redo EXPR
redo

The redo command restarts the loop block without evaluating the conditional
again. The continue block, if any, is not executed. If the LABEL is omitted,
the command refers to the innermost enclosing loop. The redo EXPR form,
available starting in Perl 5.18.0, allows a label name to be computed at run
time, and is otherwise identical to redo LABEL. Programs that want to lie to
themselves about what was just input normally use this command:

a simpleminded Pascal comment stripper

(warning: assumes no { or } in strings)

LINE: while (<STDIN>) {

while (s|({.*}.*){.*}|$1 |) {}

s|{.*}| |;

if (s|{.*| |) {

$front = $_;

while (<STDIN>) {

if (/}/) { # end of comment?

s|^|$front\{|;

redo LINE;

}

}

}

print;

}

redo cannot be used to retry a block that returns a value such as eval {}, sub
{}, or do {}, and should not be used to exit a grep() or map() operation.

Note that a block by itself is semantically identical to a loop that executes once.
Thus redo inside such a block will effectively turn it into a looping construct.

See also [continue], page 366 for an illustration of how last, next, and redo

work.

Unlike most named operators, this has the same precedence as assignment. It
is also exempt from the looks-like-a-function rule, so redo ("foo")."bar" will
cause "bar" to be part of the argument to redo.

ref EXPR

ref

Returns a non-empty string if EXPR is a reference, the empty string otherwise.
If EXPR is not specified, $_ will be used. The value returned depends on the
type of thing the reference is a reference to.

Builtin types include:

SCALAR

ARRAY

HASH

CODE

REF

GLOB

LVALUE

FORMAT

IO

VSTRING

Regexp

You can think of ref as a typeof operator.

if (ref($r) eq "HASH") {

print "r is a reference to a hash.\n";

}

unless (ref($r)) {

print "r is not a reference at all.\n";

}

The return value LVALUE indicates a reference to an lvalue that is not a variable.
You get this from taking the reference of function calls like pos() or substr().
VSTRING is returned if the reference points to a Section 11.2.5.2 [version string],
page 77.

The result Regexp indicates that the argument is a regular expression resulting
from qr//.

If the referenced object has been blessed into a package, then that package name
is returned instead. But don’t use that, as it’s now considered "bad practice".
For one reason, an object could be using a class called Regexp or IO, or even
HASH. Also, ref doesn’t take into account subclasses, like isa does.

Instead, use blessed (in the Scalar-Util module) for boolean checks, isa
for specific class checks and reftype (also from Scalar-Util) for type checks.
(See Section 46.1 [perlobj NAME], page 769 for details and a blessed/isa

example.)

See also Section 62.1 [perlref NAME], page 1077.

rename OLDNAME,NEWNAME
Changes the name of a file; an existing file NEWNAME will be clobbered.
Returns true for success, false otherwise.

Behavior of this function varies wildly depending on your system implemen-
tation. For example, it will usually not work across file system boundaries,
even though the system mv command sometimes compensates for this. Other
restrictions include whether it works on directories, open files, or pre-existing
files. Check Section 56.1 [perlport NAME], page 951 and either the rename(2)
manpage or equivalent system documentation for details.

For a platform independent move function look at the File-Copy module.

Portability issues: [perlport rename], page 977.

require VERSION
require EXPR
require

Demands a version of Perl specified by VERSION, or demands some semantics
specified by EXPR or by $_ if EXPR is not supplied.

VERSION may be either a numeric argument such as 5.006, which will be
compared to $], or a literal of the form v5.6.1, which will be compared to $^V

(aka $PERL VERSION). An exception is raised if VERSION is greater than
the version of the current Perl interpreter. Compare with 〈undefined〉 [use],
page 〈undefined〉, which can do a similar check at compile time.

Specifying VERSION as a literal of the form v5.6.1 should generally be avoided,
because it leads to misleading error messages under earlier versions of Perl that
do not support this syntax. The equivalent numeric version should be used
instead.

require v5.6.1; # run time version check

require 5.6.1; # ditto

require 5.006_001; # ditto; preferred for backwards

compatibility

Otherwise, require demands that a library file be included if it hasn’t already
been included. The file is included via the do-FILE mechanism, which is essen-
tially just a variety of eval with the caveat that lexical variables in the invoking
script will be invisible to the included code. If it were implemented in pure Perl,
it would have semantics similar to the following:

use Carp ’croak’;

use version;

sub require {

my ($filename) = @_;

if (my $version = eval { version->parse($filename) }) {

if ($version > $^V) {

my $vn = $version->normal;

croak "Perl $vn required--this is only $^V, stopped";

}

return 1;

}

if (exists $INC{$filename}) {

return 1 if $INC{$filename};

croak "Compilation failed in require";

}

foreach $prefix (@INC) {

if (ref($prefix)) {

#... do other stuff - see text below

}

(see text below about possible appending of .pmc

suffix to $filename)

my $realfilename = "$prefix/$filename";

next if ! -e $realfilename || -d _ || -b _;

$INC{$filename} = $realfilename;

my $result = do($realfilename);

but run in caller’s namespace

if (!defined $result) {

$INC{$filename} = undef;

croak $@ ? "$@Compilation failed in require"

: "Can’t locate $filename: $!\n";

}

if (!$result) {

delete $INC{$filename};

croak "$filename did not return true value";

}

$! = 0;

return $result;

}

croak "Can’t locate $filename in \@INC ...";

}

Note that the file will not be included twice under the same specified name.

The file must return true as the last statement to indicate successful execution
of any initialization code, so it’s customary to end such a file with 1; unless
you’re sure it’ll return true otherwise. But it’s better just to put the 1;, in case
you add more statements.

If EXPR is a bareword, the require assumes a ".pm" extension and replaces "::"
with "/" in the filename for you, to make it easy to load standard modules.
This form of loading of modules does not risk altering your namespace.

In other words, if you try this:

require Foo::Bar; # a splendid bareword

The require function will actually look for the "Foo/Bar.pm" file in the direc-
tories specified in the @INC array.

But if you try this:

$class = ’Foo::Bar’;

require $class; # $class is not a bareword

#or

require "Foo::Bar"; # not a bareword because of the ""

The require function will look for the "Foo::Bar" file in the @INC array and
will complain about not finding "Foo::Bar" there. In this case you can do:

eval "require $class";

Now that you understand how require looks for files with a bareword argument,
there is a little extra functionality going on behind the scenes. Before require
looks for a ".pm" extension, it will first look for a similar filename with a ".pmc"

extension. If this file is found, it will be loaded in place of any file ending in a
".pm" extension.

You can also insert hooks into the import facility by putting Perl code directly
into the @INC array. There are three forms of hooks: subroutine references,
array references, and blessed objects.

Subroutine references are the simplest case. When the inclusion system walks
through @INC and encounters a subroutine, this subroutine gets called with
two parameters, the first a reference to itself, and the second the name of the
file to be included (e.g., "Foo/Bar.pm"). The subroutine should return either
nothing or else a list of up to four values in the following order:

1. A reference to a scalar, containing any initial source code to prepend to
the file or generator output.

2. A filehandle, from which the file will be read.

3. A reference to a subroutine. If there is no filehandle (previous item), then
this subroutine is expected to generate one line of source code per call,
writing the line into $_ and returning 1, then finally at end of file returning
0. If there is a filehandle, then the subroutine will be called to act as a
simple source filter, with the line as read in $_. Again, return 1 for each
valid line, and 0 after all lines have been returned.

4. Optional state for the subroutine. The state is passed in as $_[1]. A
reference to the subroutine itself is passed in as $_[0].

If an empty list, undef, or nothing that matches the first 3 values above is
returned, then require looks at the remaining elements of @INC. Note that
this filehandle must be a real filehandle (strictly a typeglob or reference to a
typeglob, whether blessed or unblessed); tied filehandles will be ignored and
processing will stop there.

If the hook is an array reference, its first element must be a subroutine reference.
This subroutine is called as above, but the first parameter is the array reference.
This lets you indirectly pass arguments to the subroutine.

In other words, you can write:

push @INC, \&my_sub;

sub my_sub {

my ($coderef, $filename) = @_; # $coderef is \&my_sub

...

}

or:

push @INC, [\&my_sub, $x, $y, ...];

sub my_sub {

my ($arrayref, $filename) = @_;

Retrieve $x, $y, ...

my @parameters = @$arrayref[1..$#$arrayref];

...

}

If the hook is an object, it must provide an INC method that will be called as
above, the first parameter being the object itself. (Note that you must fully
qualify the sub’s name, as unqualified INC is always forced into package main.)
Here is a typical code layout:

In Foo.pm

package Foo;

sub new { ... }

sub Foo::INC {

my ($self, $filename) = @_;

...

}

In the main program

push @INC, Foo->new(...);

These hooks are also permitted to set the %INC entry corresponding to the
files they have loaded. See [perlvar %INC], page 1382.

For a yet-more-powerful import facility, see 〈undefined〉 [use], page 〈undefined〉
and Section 40.1 [perlmod NAME], page 732.

reset EXPR
reset

Generally used in a continue block at the end of a loop to clear variables
and reset ?? searches so that they work again. The expression is interpreted
as a list of single characters (hyphens allowed for ranges). All variables and
arrays beginning with one of those letters are reset to their pristine state. If
the expression is omitted, one-match searches (?pattern?) are reset to match
again. Only resets variables or searches in the current package. Always returns
1. Examples:

reset ’X’; # reset all X variables

reset ’a-z’; # reset lower case variables

reset; # just reset ?one-time? searches

Resetting "A-Z" is not recommended because you’ll wipe out your @ARGV and
@INC arrays and your %ENV hash. Resets only package variables; lexical variables
are unaffected, but they clean themselves up on scope exit anyway, so you’ll
probably want to use them instead. See 〈undefined〉 [my], page 〈undefined〉.

return EXPR
return

Returns from a subroutine, eval, or do FILE with the value given in EXPR.
Evaluation of EXPR may be in list, scalar, or void context, depending on how
the return value will be used, and the context may vary from one execution to
the next (see [wantarray], page 488). If no EXPR is given, returns an empty list
in list context, the undefined value in scalar context, and (of course) nothing
at all in void context.

(In the absence of an explicit return, a subroutine, eval, or do FILE automat-
ically returns the value of the last expression evaluated.)

Unlike most named operators, this is also exempt from the looks-like-a-function
rule, so return ("foo")."bar" will cause "bar" to be part of the argument to
return.

reverse LIST
In list context, returns a list value consisting of the elements of LIST in the
opposite order. In scalar context, concatenates the elements of LIST and returns
a string value with all characters in the opposite order.

print join(", ", reverse "world", "Hello"); # Hello, world

print scalar reverse "dlrow ,", "olleH"; # Hello, world

Used without arguments in scalar context, reverse() reverses $_.

$_ = "dlrow ,olleH";

print reverse; # No output, list context

print scalar reverse; # Hello, world

Note that reversing an array to itself (as in @a = reverse @a) will preserve
non-existent elements whenever possible; i.e., for non-magical arrays or for tied
arrays with EXISTS and DELETE methods.

This operator is also handy for inverting a hash, although there are some
caveats. If a value is duplicated in the original hash, only one of those can
be represented as a key in the inverted hash. Also, this has to unwind one hash
and build a whole new one, which may take some time on a large hash, such as
from a DBM file.

%by_name = reverse %by_address; # Invert the hash

rewinddir DIRHANDLE
Sets the current position to the beginning of the directory for the readdir

routine on DIRHANDLE.

Portability issues: [perlport rewinddir], page 977.

rindex STR,SUBSTR,POSITION
rindex STR,SUBSTR

Works just like index() except that it returns the position of the last occurrence
of SUBSTR in STR. If POSITION is specified, returns the last occurrence
beginning at or before that position.

rmdir FILENAME
rmdir

Deletes the directory specified by FILENAME if that directory is empty. If
it succeeds it returns true; otherwise it returns false and sets $! (errno). If
FILENAME is omitted, uses $_.

To remove a directory tree recursively (rm -rf on Unix) look at the rmtree

function of the File-Path module.

s///

The substitution operator. See Section 48.2.30 [perlop Regexp Quote-Like Op-
erators], page 823.

say FILEHANDLE LIST
say FILEHANDLE
say LIST

say

Just like print, but implicitly appends a newline. say LIST is simply an abbre-
viation for { local $\ = "\n"; print LIST }. To use FILEHANDLE without
a LIST to print the contents of $_ to it, you must use a real filehandle like FH,
not an indirect one like $fh.

This keyword is available only when the "say" feature is enabled, or when
prefixed with CORE::; see feature. Alternately, include a use v5.10 or later
to the current scope.

scalar EXPR
Forces EXPR to be interpreted in scalar context and returns the value of EXPR.

@counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to be interpolated in list
context because in practice, this is never needed. If you really wanted to do
so, however, you could use the construction @{[(some expression)]}, but
usually a simple (some expression) suffices.

Because scalar is a unary operator, if you accidentally use a parenthesized list
for the EXPR, this behaves as a scalar comma expression, evaluating all but
the last element in void context and returning the final element evaluated in
scalar context. This is seldom what you want.

The following single statement:

print uc(scalar(&foo,$bar)),$baz;

is the moral equivalent of these two:

&foo;

print(uc($bar),$baz);

See Section 48.1 [perlop NAME], page 798 for more details on unary operators
and the comma operator.

seek FILEHANDLE,POSITION,WHENCE
Sets FILEHANDLE’s position, just like the fseek call of stdio. FILEHANDLE
may be an expression whose value gives the name of the filehandle. The values
for WHENCE are 0 to set the new position in bytes to POSITION; 1 to set it to
the current position plus POSITION; and 2 to set it to EOF plus POSITION,
typically negative. For WHENCE you may use the constants SEEK_SET, SEEK_
CUR, and SEEK_END (start of the file, current position, end of the file) from the
Fcntl module. Returns 1 on success, false otherwise.

Note the in bytes: even if the filehandle has been set to operate on characters
(for example by using the :encoding(utf8) open layer), tell() will return byte
offsets, not character offsets (because implementing that would render seek()
and tell() rather slow).

If you want to position the file for sysread or syswrite, don’t use seek, because
buffering makes its effect on the file’s read-write position unpredictable and
non-portable. Use sysseek instead.

Due to the rules and rigors of ANSI C, on some systems you have to do a seek
whenever you switch between reading and writing. Amongst other things, this
may have the effect of calling stdio’s clearerr(3). A WHENCE of 1 (SEEK_CUR)
is useful for not moving the file position:

seek(TEST,0,1);

This is also useful for applications emulating tail -f. Once you hit EOF on
your read and then sleep for a while, you (probably) have to stick in a dummy
seek() to reset things. The seek doesn’t change the position, but it does clear
the end-of-file condition on the handle, so that the next <FILE> makes Perl try
again to read something. (We hope.)

If that doesn’t work (some I/O implementations are particularly cantankerous),
you might need something like this:

for (;;) {

for ($curpos = tell(FILE); $_ = <FILE>;

$curpos = tell(FILE)) {

search for some stuff and put it into files

}

sleep($for_a_while);

seek(FILE, $curpos, 0);

}

seekdir DIRHANDLE,POS
Sets the current position for the readdir routine on DIRHANDLE. POS must
be a value returned by telldir. seekdir also has the same caveats about
possible directory compaction as the corresponding system library routine.

select FILEHANDLE
select

Returns the currently selected filehandle. If FILEHANDLE is supplied, sets the
new current default filehandle for output. This has two effects: first, a write or
a print without a filehandle default to this FILEHANDLE. Second, references
to variables related to output will refer to this output channel.

For example, to set the top-of-form format for more than one output channel,
you might do the following:

select(REPORT1);

$^ = ’report1_top’;

select(REPORT2);

$^ = ’report2_top’;

FILEHANDLE may be an expression whose value gives the name of the actual
filehandle. Thus:

$oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods,
preferring to write the last example as:

use IO::Handle;

STDERR->autoflush(1);

Portability issues: [perlport select], page 977.

select RBITS,WBITS,EBITS,TIMEOUT
This calls the select(2) syscall with the bit masks specified, which can be con-
structed using fileno and vec, along these lines:

$rin = $win = $ein = ’’;

vec($rin, fileno(STDIN), 1) = 1;

vec($win, fileno(STDOUT), 1) = 1;

$ein = $rin | $win;

If you want to select on many filehandles, you may wish to write a subroutine
like this:

sub fhbits {

my @fhlist = @_;

my $bits = "";

for my $fh (@fhlist) {

vec($bits, fileno($fh), 1) = 1;

}

return $bits;

}

$rin = fhbits(*STDIN, *TTY, *MYSOCK);

The usual idiom is:

($nfound,$timeleft) =

select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready just do this

$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

Most systems do not bother to return anything useful in $timeleft, so calling
select() in scalar context just returns $nfound.

Any of the bit masks can also be undef. The timeout, if specified, is in seconds,
which may be fractional. Note: not all implementations are capable of return-
ing the $timeleft. If not, they always return $timeleft equal to the supplied
$timeout.

You can effect a sleep of 250 milliseconds this way:

select(undef, undef, undef, 0.25);

Note that whether select gets restarted after signals (say, SIGALRM) is
implementation-dependent. See also Section 56.1 [perlport NAME], page 951
for notes on the portability of select.

On error, select behaves just like select(2): it returns -1 and sets $!.

On some Unixes, select(2) may report a socket file descriptor as "ready for
reading" even when no data is available, and thus any subsequent read would
block. This can be avoided if you always use O NONBLOCK on the socket.
See select(2) and fcntl(2) for further details.

The standard IO::Selectmodule provides a user-friendlier interface to select,
mostly because it does all the bit-mask work for you.

WARNING: One should not attempt to mix buffered I/O (like read or <FH>)
with select, except as permitted by POSIX, and even then only on POSIX
systems. You have to use sysread instead.

Portability issues: [perlport select], page 977.

semctl ID,SEMNUM,CMD,ARG
Calls the System V IPC function semctl(2). You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC STAT or GETALL,
then ARG must be a variable that will hold the returned semid ds structure
or semaphore value array. Returns like ioctl: the undefined value for er-
ror, "0 but true" for zero, or the actual return value otherwise. The ARG
must consist of a vector of native short integers, which may be created with
pack("s!",(0)x$nsem). See also Section 36.10 [perlipc SysV IPC], page 696,
IPC::SysV, IPC::Semaphore documentation.

Portability issues: [perlport semctl], page 977.

semget KEY,NSEMS,FLAGS
Calls the System V IPC function semget(2). Returns the semaphore id, or the
undefined value on error. See also Section 36.10 [perlipc SysV IPC], page 696,
IPC::SysV, IPC::SysV::Semaphore documentation.

Portability issues: [perlport semget], page 977.

semop KEY,OPSTRING
Calls the System V IPC function semop(2) for semaphore operations such as sig-
nalling and waiting. OPSTRING must be a packed array of semop structures.
Each semop structure can be generated with pack("s!3", $semnum, $semop,

$semflag). The length of OPSTRING implies the number of semaphore oper-
ations. Returns true if successful, false on error. As an example, the following
code waits on semaphore $semnum of semaphore id $semid:

$semop = pack("s!3", $semnum, -1, 0);

die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace -1 with 1. See also Section 36.10 [perlipc
SysV IPC], page 696, IPC::SysV, and IPC::SysV::Semaphore documentation.

Portability issues: [perlport semop], page 977.

send SOCKET,MSG,FLAGS,TO
send SOCKET,MSG,FLAGS

Sends a message on a socket. Attempts to send the scalar MSG to the SOCKET
filehandle. Takes the same flags as the system call of the same name. On
unconnected sockets, you must specify a destination to send to, in which case
it does a sendto(2) syscall. Returns the number of characters sent, or the
undefined value on error. The sendmsg(2) syscall is currently unimplemented.
See Section 36.9 [perlipc UDP: Message Passing], page 695 for examples.

Note the characters: depending on the status of the socket, either (8-bit) bytes
or characters are sent. By default all sockets operate on bytes, but for ex-
ample if the socket has been changed using binmode() to operate with the
:encoding(utf8) I/O layer (see 〈undefined〉 [open], page 〈undefined〉, or the
open pragma, open), the I/O will operate on UTF-8 encoded Unicode charac-
ters, not bytes. Similarly for the :encoding pragma: in that case pretty much
any characters can be sent.

setpgrp PID,PGRP
Sets the current process group for the specified PID, 0 for the current process.
Raises an exception when used on a machine that doesn’t implement POSIX
setpgid(2) or BSD setpgrp(2). If the arguments are omitted, it defaults to 0,0.
Note that the BSD 4.2 version of setpgrp does not accept any arguments, so
only setpgrp(0,0) is portable. See also POSIX::setsid().

Portability issues: [perlport setpgrp], page 978.

setpriority WHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or a user. (See setpri-
ority(2).) Raises an exception when used on a machine that doesn’t implement
setpriority(2).

Portability issues: [perlport setpriority], page 978.

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested. Returns undef on error. Use integer constants
provided by the Socket module for LEVEL and OPNAME. Values for LEVEL
can also be obtained from getprotobyname. OPTVAL might either be a packed
string or an integer. An integer OPTVAL is shorthand for pack("i", OPTVAL).

An example disabling Nagle’s algorithm on a socket:

use Socket qw(IPPROTO_TCP TCP_NODELAY);

setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

Portability issues: [perlport setsockopt], page 978.

shift ARRAY
shift EXPR
shift

Shifts the first value of the array off and returns it, shortening the array by 1
and moving everything down. If there are no elements in the array, returns the
undefined value. If ARRAY is omitted, shifts the @_ array within the lexical
scope of subroutines and formats, and the @ARGV array outside a subroutine
and also within the lexical scopes established by the eval STRING, BEGIN {},
INIT {}, CHECK {}, UNITCHECK {}, and END {} constructs.

Starting with Perl 5.14, shift can take a scalar EXPR, which must hold a ref-
erence to an unblessed array. The argument will be dereferenced automatically.
This aspect of shift is considered highly experimental. The exact behaviour
may change in a future version of Perl.

To avoid confusing would-be users of your code who are running earlier versions
of Perl with mysterious syntax errors, put this sort of thing at the top of your
file to signal that your code will work only on Perls of a recent vintage:

use 5.014; # so push/pop/etc work on scalars (experimental)

See also unshift, push, and pop. shift and unshift do the same thing to the
left end of an array that pop and push do to the right end.

shmctl ID,CMD,ARG
Calls the System V IPC function shmctl. You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT, then ARG
must be a variable that will hold the returned shmid_ds structure. Returns
like ioctl: undef for error; "0 but true" for zero; and the actual return value
otherwise. See also Section 36.10 [perlipc SysV IPC], page 696 and IPC::SysV

documentation.

Portability issues: [perlport shmctl], page 978.

shmget KEY,SIZE,FLAGS
Calls the System V IPC function shmget. Returns the shared memory segment
id, or undef on error. See also Section 36.10 [perlipc SysV IPC], page 696 and
IPC::SysV documentation.

Portability issues: [perlport shmget], page 978.

shmread ID,VAR,POS,SIZE
shmwrite ID,STRING,POS,SIZE

Reads or writes the System V shared memory segment ID starting at position
POS for size SIZE by attaching to it, copying in/out, and detaching from it.
When reading, VAR must be a variable that will hold the data read. When
writing, if STRING is too long, only SIZE bytes are used; if STRING is too
short, nulls are written to fill out SIZE bytes. Return true if successful, false
on error. shmread() taints the variable. See also Section 36.10 [perlipc SysV
IPC], page 696, IPC::SysV, and the IPC::Shareable module from CPAN.

Portability issues: [perlport shmread], page 978 and [perlport shmwrite],
page 978.

shutdown SOCKET,HOW
Shuts down a socket connection in the manner indicated by HOW, which has
the same interpretation as in the syscall of the same name.

shutdown(SOCKET, 0); # I/we have stopped reading data

shutdown(SOCKET, 1); # I/we have stopped writing data

shutdown(SOCKET, 2); # I/we have stopped using this socket

This is useful with sockets when you want to tell the other side you’re done
writing but not done reading, or vice versa. It’s also a more insistent form of
close because it also disables the file descriptor in any forked copies in other
processes.

Returns 1 for success; on error, returns undef if the first argument is not a
valid filehandle, or returns 0 and sets $! for any other failure.

sin EXPR

sin

Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns
sine of $_.

For the inverse sine operation, you may use the Math::Trig::asin function,
or use this relation:

sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }

sleep EXPR
sleep

Causes the script to sleep for (integer) EXPR seconds, or forever if no argument
is given. Returns the integer number of seconds actually slept.

May be interrupted if the process receives a signal such as SIGALRM.

eval {

local $SIG{ALARM} = sub { die "Alarm!\n" };

sleep;

};

die $@ unless $@ eq "Alarm!\n";

You probably cannot mix alarm and sleep calls, because sleep is often imple-
mented using alarm.

On some older systems, it may sleep up to a full second less than what you
requested, depending on how it counts seconds. Most modern systems always
sleep the full amount. They may appear to sleep longer than that, however,
because your process might not be scheduled right away in a busy multitasking
system.

For delays of finer granularity than one second, the Time::HiRes module (from
CPAN, and starting from Perl 5.8 part of the standard distribution) provides
usleep(). You may also use Perl’s four-argument version of select() leaving
the first three arguments undefined, or you might be able to use the syscall

interface to access setitimer(2) if your system supports it. See perlfaq8 for
details.

See also the POSIX module’s pause function.

socket SOCKET,DOMAIN,TYPE,PROTOCOL
Opens a socket of the specified kind and attaches it to filehandle SOCKET.
DOMAIN, TYPE, and PROTOCOL are specified the same as for the syscall
of the same name. You should use Socket first to get the proper definitions
imported. See the examples in Section 36.6 [perlipc Sockets: Client/Server
Communication], page 682.

On systems that support a close-on-exec flag on files, the flag will be set for the
newly opened file descriptor, as determined by the value of $^F. See [perlvar
$^F], page 1381.

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
Creates an unnamed pair of sockets in the specified domain, of the specified
type. DOMAIN, TYPE, and PROTOCOL are specified the same as for the
syscall of the same name. If unimplemented, raises an exception. Returns true
if successful.

On systems that support a close-on-exec flag on files, the flag will be set for the
newly opened file descriptors, as determined by the value of $^F. See [perlvar
$^F], page 1381.

Some systems defined pipe in terms of socketpair, in which a call to
pipe(Rdr, Wtr) is essentially:

use Socket;

socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);

shutdown(Rdr, 1); # no more writing for reader

shutdown(Wtr, 0); # no more reading for writer

See Section 36.1 [perlipc NAME], page 667 for an example of socketpair use.
Perl 5.8 and later will emulate socketpair using IP sockets to localhost if your
system implements sockets but not socketpair.

Portability issues: [perlport socketpair], page 978.

sort SUBNAME LIST
sort BLOCK LIST
sort LIST

In list context, this sorts the LIST and returns the sorted list value. In scalar
context, the behaviour of sort() is undefined.

If SUBNAME or BLOCK is omitted, sorts in standard string comparison order.
If SUBNAME is specified, it gives the name of a subroutine that returns an
integer less than, equal to, or greater than 0, depending on how the elements
of the list are to be ordered. (The <=> and cmp operators are extremely useful
in such routines.) SUBNAME may be a scalar variable name (unsubscripted),
in which case the value provides the name of (or a reference to) the actual
subroutine to use. In place of a SUBNAME, you can provide a BLOCK as an
anonymous, in-line sort subroutine.

If the subroutine’s prototype is ($$), the elements to be compared are passed
by reference in @_, as for a normal subroutine. This is slower than unprototyped
subroutines, where the elements to be compared are passed into the subroutine
as the package global variables $a and $b (see example below). Note that in
the latter case, it is usually highly counter-productive to declare $a and $b as
lexicals.

If the subroutine is an XSUB, the elements to be compared are pushed on to
the stack, the way arguments are usually passed to XSUBs. $a and $b are not
set.

The values to be compared are always passed by reference and should not be
modified.

You also cannot exit out of the sort block or subroutine using any of the loop
control operators described in Section 74.1 [perlsyn NAME], page 1249 or with
goto.

When use locale (but not use locale ’not_characters’) is in effect, sort
LIST sorts LIST according to the current collation locale. See Section 38.1
[perllocale NAME], page 701.

sort() returns aliases into the original list, much as a for loop’s index variable
aliases the list elements. That is, modifying an element of a list returned by
sort() (for example, in a foreach, map or grep) actually modifies the element
in the original list. This is usually something to be avoided when writing clear
code.

Perl 5.6 and earlier used a quicksort algorithm to implement sort. That al-
gorithm was not stable, so could go quadratic. (A stable sort preserves the

input order of elements that compare equal. Although quicksort’s run time is
O(NlogN) when averaged over all arrays of length N, the time can be O(N**2),
quadratic behavior, for some inputs.) In 5.7, the quicksort implementation
was replaced with a stable mergesort algorithm whose worst-case behavior is
O(NlogN). But benchmarks indicated that for some inputs, on some platforms,
the original quicksort was faster. 5.8 has a sort pragma for limited control of
the sort. Its rather blunt control of the underlying algorithm may not per-
sist into future Perls, but the ability to characterize the input or output in
implementation independent ways quite probably will. See sort.

Examples:

sort lexically

@articles = sort @files;

same thing, but with explicit sort routine

@articles = sort {$a cmp $b} @files;

now case-insensitively

@articles = sort {fc($a) cmp fc($b)} @files;

same thing in reversed order

@articles = sort {$b cmp $a} @files;

sort numerically ascending

@articles = sort {$a <=> $b} @files;

sort numerically descending

@articles = sort {$b <=> $a} @files;

this sorts the %age hash by value instead of key

using an in-line function

@eldest = sort { $age{$b} <=> $age{$a} } keys %age;

sort using explicit subroutine name

sub byage {

$age{$a} <=> $age{$b}; # presuming numeric

}

@sortedclass = sort byage @class;

sub backwards { $b cmp $a }

@harry = qw(dog cat x Cain Abel);

@george = qw(gone chased yz Punished Axed);

print sort @harry;

prints AbelCaincatdogx

print sort backwards @harry;

prints xdogcatCainAbel

print sort @george, ’to’, @harry;

prints AbelAxedCainPunishedcatchaseddoggonetoxyz

inefficiently sort by descending numeric compare using

the first integer after the first = sign, or the

whole record case-insensitively otherwise

my @new = sort {

($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]

||

fc($a) cmp fc($b)

} @old;

same thing, but much more efficiently;

we’ll build auxiliary indices instead

for speed

my @nums = @caps = ();

for (@old) {

push @nums, (/=(\d+)/ ? $1 : undef);

push @caps, fc($_);

}

my @new = @old[sort {

$nums[$b] <=> $nums[$a]

||

$caps[$a] cmp $caps[$b]

} 0..$#old

];

same thing, but without any temps

@new = map { $_->[0] }

sort { $b->[1] <=> $a->[1]

||

$a->[2] cmp $b->[2]

} map { [$_, /=(\d+)/, fc($_)] } @old;

using a prototype allows you to use any comparison subroutine

as a sort subroutine (including other package’s subroutines)

package other;

sub backwards ($$) { $_[1] cmp $_[0]; } # $a and $b are

not set here

package main;

@new = sort other::backwards @old;

guarantee stability, regardless of algorithm

use sort ’stable’;

@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

force use of mergesort (not portable outside Perl 5.8)

use sort ’_mergesort’; # note discouraging _

@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

Warning: syntactical care is required when sorting the list returned from a
function. If you want to sort the list returned by the function call find_
records(@key), you can use:

@contact = sort { $a cmp $b } find_records @key;

@contact = sort +find_records(@key);

@contact = sort &find_records(@key);

@contact = sort(find_records(@key));

If instead you want to sort the array @key with the comparison routine find_
records() then you can use:

@contact = sort { find_records() } @key;

@contact = sort find_records(@key);

@contact = sort(find_records @key);

@contact = sort(find_records (@key));

If you’re using strict, you must not declare $a and $b as lexicals. They are
package globals. That means that if you’re in the main package and type

@articles = sort {$b <=> $a} @files;

then $a and $b are $main::a and $main::b (or $::a and $::b), but if you’re
in the FooPack package, it’s the same as typing

@articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behave. If it returns inconsistent results
(sometimes saying $x[1] is less than $x[2] and sometimes saying the opposite,
for example) the results are not well-defined.

Because <=> returns undef when either operand is NaN (not-a-number), be
careful when sorting with a comparison function like $a <=> $b any lists that
might contain a NaN. The following example takes advantage that NaN != NaN

to eliminate any NaNs from the input list.

@result = sort { $a <=> $b } grep { $_ == $_ } @input;

splice ARRAY,OFFSET,LENGTH,LIST
splice ARRAY,OFFSET,LENGTH
splice ARRAY,OFFSET
splice ARRAY
splice EXPR,OFFSET,LENGTH,LIST
splice EXPR,OFFSET,LENGTH
splice EXPR,OFFSET
splice EXPR

Removes the elements designated by OFFSET and LENGTH from an array,
and replaces them with the elements of LIST, if any. In list context, returns the
elements removed from the array. In scalar context, returns the last element
removed, or undef if no elements are removed. The array grows or shrinks as
necessary. If OFFSET is negative then it starts that far from the end of the
array. If LENGTH is omitted, removes everything from OFFSET onward. If

LENGTH is negative, removes the elements from OFFSET onward except for
-LENGTH elements at the end of the array. If both OFFSET and LENGTH
are omitted, removes everything. If OFFSET is past the end of the array and
a LENGTH was provided, Perl issues a warning, and splices at the end of the
array.

The following equivalences hold (assuming $#a >= $i)

push(@a,$x,$y) splice(@a,@a,0,$x,$y)

pop(@a) splice(@a,-1)

shift(@a) splice(@a,0,1)

unshift(@a,$x,$y) splice(@a,0,0,$x,$y)

$a[$i] = $y splice(@a,$i,1,$y)

splice can be used, for example, to implement n-ary queue processing:

sub nary_print {

my $n = shift;

while (my @next_n = splice @_, 0, $n) {

say join q{ -- }, @next_n;

}

}

nary_print(3, qw(a b c d e f g h));

prints:

a -- b -- c

d -- e -- f

g -- h

Starting with Perl 5.14, splice can take scalar EXPR, which must hold a ref-
erence to an unblessed array. The argument will be dereferenced automatically.
This aspect of splice is considered highly experimental. The exact behaviour
may change in a future version of Perl.

To avoid confusing would-be users of your code who are running earlier versions
of Perl with mysterious syntax errors, put this sort of thing at the top of your
file to signal that your code will work only on Perls of a recent vintage:

use 5.014; # so push/pop/etc work on scalars (experimental)

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/
split

Splits the string EXPR into a list of strings and returns the list in list context,
or the size of the list in scalar context.

If only PATTERN is given, EXPR defaults to $_.

Anything in EXPR that matches PATTERN is taken to be a separator that
separates the EXPR into substrings (called "fields") that do not include the
separator. Note that a separator may be longer than one character or even have
no characters at all (the empty string, which is a zero-width match).

The PATTERN need not be constant; an expression may be used to specify a
pattern that varies at runtime.

If PATTERN matches the empty string, the EXPR is split at the match position
(between characters). As an example, the following:

print join(’:’, split(’b’, ’abc’)), "\n";

uses the ’b’ in ’abc’ as a separator to produce the output ’a:c’. However, this:

print join(’:’, split(’’, ’abc’)), "\n";

uses empty string matches as separators to produce the output ’a:b:c’; thus, the
empty string may be used to split EXPR into a list of its component characters.

As a special case for split, the empty pattern given in [match operator],
page 825 syntax (//) specifically matches the empty string, which is contrary
to its usual interpretation as the last successful match.

If PATTERN is /^/, then it is treated as if it used the Section 67.2.1 [multiline
modifier], page 1124 (/^/m), since it isn’t much use otherwise.

As another special case, split emulates the default behavior of the command
line tool awk when the PATTERN is either omitted or a literal string composed
of a single space character (such as ’ ’ or "\x20", but not e.g. / /). In this
case, any leading whitespace in EXPR is removed before splitting occurs, and
the PATTERN is instead treated as if it were /\s+/; in particular, this means
that any contiguous whitespace (not just a single space character) is used as
a separator. However, this special treatment can be avoided by specifying
the pattern / / instead of the string " ", thereby allowing only a single space
character to be a separator. In earlier Perls this special case was restricted to
the use of a plain " " as the pattern argument to split, in Perl 5.18.0 and later
this special case is triggered by any expression which evaluates as the simple
string " ".

If omitted, PATTERN defaults to a single space, " ", triggering the previously
described awk emulation.

If LIMIT is specified and positive, it represents the maximum number of fields
into which the EXPR may be split; in other words, LIMIT is one greater than
the maximum number of times EXPR may be split. Thus, the LIMIT value 1

means that EXPRmay be split a maximum of zero times, producing a maximum
of one field (namely, the entire value of EXPR). For instance:

print join(’:’, split(//, ’abc’, 1)), "\n";

produces the output ’abc’, and this:

print join(’:’, split(//, ’abc’, 2)), "\n";

produces the output ’a:bc’, and each of these:

print join(’:’, split(//, ’abc’, 3)), "\n";

print join(’:’, split(//, ’abc’, 4)), "\n";

produces the output ’a:b:c’.

If LIMIT is negative, it is treated as if it were instead arbitrarily large; as many
fields as possible are produced.

If LIMIT is omitted (or, equivalently, zero), then it is usually treated as if
it were instead negative but with the exception that trailing empty fields are
stripped (empty leading fields are always preserved); if all fields are empty, then

all fields are considered to be trailing (and are thus stripped in this case). Thus,
the following:

print join(’:’, split(’,’, ’a,b,c,,,’)), "\n";

produces the output ’a:b:c’, but the following:

print join(’:’, split(’,’, ’a,b,c,,,’, -1)), "\n";

produces the output ’a:b:c:::’.

In time-critical applications, it is worthwhile to avoid splitting into more fields
than necessary. Thus, when assigning to a list, if LIMIT is omitted (or zero),
then LIMIT is treated as though it were one larger than the number of variables
in the list; for the following, LIMIT is implicitly 3:

($login, $passwd) = split(/:/);

Note that splitting an EXPR that evaluates to the empty string always produces
zero fields, regardless of the LIMIT specified.

An empty leading field is produced when there is a positive-width match at the
beginning of EXPR. For instance:

print join(’:’, split(/ /, ’ abc’)), "\n";

produces the output ’:abc’. However, a zero-width match at the beginning of
EXPR never produces an empty field, so that:

print join(’:’, split(//, ’ abc’));

produces the output ’ :a:b:c’ (rather than ’: :a:b:c’).

An empty trailing field, on the other hand, is produced when there is a match
at the end of EXPR, regardless of the length of the match (of course, unless
a non-zero LIMIT is given explicitly, such fields are removed, as in the last
example). Thus:

print join(’:’, split(//, ’ abc’, -1)), "\n";

produces the output ’ :a:b:c:’.

If the PATTERN contains Section 68.3.4 [capturing groups], page 1140, then
for each separator, an additional field is produced for each substring captured
by a group (in the order in which the groups are specified, as per Section 68.3.6
[backreferences], page 1142); if any group does not match, then it captures the
undef value instead of a substring. Also, note that any such additional field
is produced whenever there is a separator (that is, whenever a split occurs),
and such an additional field does not count towards the LIMIT. Consider the
following expressions evaluated in list context (each returned list is provided in
the associated comment):

split(/-|,/, "1-10,20", 3)

(’1’, ’10’, ’20’)

split(/(-|,)/, "1-10,20", 3)

(’1’, ’-’, ’10’, ’,’, ’20’)

split(/-|(,)/, "1-10,20", 3)

(’1’, undef, ’10’, ’,’, ’20’)

split(/(-)|,/, "1-10,20", 3)

(’1’, ’-’, ’10’, undef, ’20’)

split(/(-)|(,)/, "1-10,20", 3)

(’1’, ’-’, undef, ’10’, undef, ’,’, ’20’)

sprintf FORMAT, LIST
Returns a string formatted by the usual printf conventions of the C library
function sprintf. See below for more details and see sprintf(3) or printf(3) on
your system for an explanation of the general principles.

For example:

Format number with up to 8 leading zeroes

$result = sprintf("%08d", $number);

Round number to 3 digits after decimal point

$rounded = sprintf("%.3f", $number);

Perl does its own sprintf formatting: it emulates the C function sprintf(3), but
doesn’t use it except for floating-point numbers, and even then only standard
modifiers are allowed. Non-standard extensions in your local sprintf(3) are
therefore unavailable from Perl.

Unlike printf, sprintf does not do what you probably mean when you pass it
an array as your first argument. The array is given scalar context, and instead
of using the 0th element of the array as the format, Perl will use the count of
elements in the array as the format, which is almost never useful.

Perl’s sprintf permits the following universally-known conversions:

%% a percent sign

%c a character with the given number

%s a string

%d a signed integer, in decimal

%u an unsigned integer, in decimal

%o an unsigned integer, in octal

%x an unsigned integer, in hexadecimal

%e a floating-point number, in scientific notation

%f a floating-point number, in fixed decimal notation

%g a floating-point number, in %e or %f notation

In addition, Perl permits the following widely-supported conversions:

%X like %x, but using upper-case letters

%E like %e, but using an upper-case "E"

%G like %g, but with an upper-case "E" (if applicable)

%b an unsigned integer, in binary

%B like %b, but using an upper-case "B" with the # flag

%p a pointer (outputs the Perl value’s address in hexadecimal)

%n special: *stores* the number of characters output so far

into the next argument in the parameter list

%a hexadecimal floating point

http://man.he.net/man3/sprintf
http://man.he.net/man3/printf

%A like %a, but using upper-case letters

Finally, for backward (and we do mean "backward") compatibility, Perl permits
these unnecessary but widely-supported conversions:

%i a synonym for %d

%D a synonym for %ld

%U a synonym for %lu

%O a synonym for %lo

%F a synonym for %f

Note that the number of exponent digits in the scientific notation produced by
%e, %E, %g and %G for numbers with the modulus of the exponent less than 100
is system-dependent: it may be three or less (zero-padded as necessary). In
other words, 1.23 times ten to the 99th may be either "1.23e99" or "1.23e099".
Similarly for %a and %A: the exponent or the hexadecimal digits may float:
especially the "long doubles" Perl configuration option may cause surprises.

Between the % and the format letter, you may specify several additional at-
tributes controlling the interpretation of the format. In order, these are:

format parameter index
An explicit format parameter index, such as 2$. By default sprintf
will format the next unused argument in the list, but this allows
you to take the arguments out of order:

printf ’%2$d %1$d’, 12, 34; # prints "34 12"

printf ’%3$d %d %1$d’, 1, 2, 3; # prints "3 1 1"

flags

one or more of:

space prefix non-negative number with a space

+ prefix non-negative number with a plus sign

- left-justify within the field

0 use zeros, not spaces, to right-justify

ensure the leading "0" for any octal,

prefix non-zero hexadecimal with "0x" or "0X",

prefix non-zero binary with "0b" or "0B"

For example:

printf ’<% d>’, 12; # prints "< 12>"

printf ’<%+d>’, 12; # prints "<+12>"

printf ’<%6s>’, 12; # prints "< 12>"

printf ’<%-6s>’, 12; # prints "<12 >"

printf ’<%06s>’, 12; # prints "<000012>"

printf ’<%#o>’, 12; # prints "<014>"

printf ’<%#x>’, 12; # prints "<0xc>"

printf ’<%#X>’, 12; # prints "<0XC>"

printf ’<%#b>’, 12; # prints "<0b1100>"

printf ’<%#B>’, 12; # prints "<0B1100>"

When a space and a plus sign are given as the flags at once, a plus
sign is used to prefix a positive number.

printf ’<%+ d>’, 12; # prints "<+12>"

printf ’<% +d>’, 12; # prints "<+12>"

When the # flag and a precision are given in the %o conversion,
the precision is incremented if it’s necessary for the leading "0".

printf ’<%#.5o>’, 012; # prints "<00012>"

printf ’<%#.5o>’, 012345; # prints "<012345>"

printf ’<%#.0o>’, 0; # prints "<0>"

vector flag

This flag tells Perl to interpret the supplied string as a vector of
integers, one for each character in the string. Perl applies the for-
mat to each integer in turn, then joins the resulting strings with a
separator (a dot . by default). This can be useful for displaying
ordinal values of characters in arbitrary strings:

printf "%vd", "AB\x{100}"; # prints "65.66.256"

printf "version is v%vd\n", $^V; # Perl’s version

Put an asterisk * before the v to override the string to use to
separate the numbers:

printf "address is %*vX\n", ":", $addr; # IPv6 address

printf "bits are %0*v8b\n", " ", $bits; # random bitstring

You can also explicitly specify the argument number to use for the
join string using something like *2$v; for example:

printf ’%*4$vX %*4$vX %*4$vX’, # 3 IPv6 addresses

@addr[1..3], ":";

(minimum) width
Arguments are usually formatted to be only as wide as required to
display the given value. You can override the width by putting a
number here, or get the width from the next argument (with *) or
from a specified argument (e.g., with *2$):

printf "<%s>", "a"; # prints "<a>"

printf "<%6s>", "a"; # prints "< a>"

printf "<%*s>", 6, "a"; # prints "< a>"

printf ’<%*2$s>’, "a", 6; # prints "< a>"

printf "<%2s>", "long"; # prints "<long>" (does not truncate)

If a field width obtained through * is negative, it has the same
effect as the - flag: left-justification.

precision, or maximum width
You can specify a precision (for numeric conversions) or a maxi-
mum width (for string conversions) by specifying a . followed by
a number. For floating-point formats except g and G, this specifies
how many places right of the decimal point to show (the default
being 6). For example:

these examples are subject to system-specific variation

printf ’<%f>’, 1; # prints "<1.000000>"

printf ’<%.1f>’, 1; # prints "<1.0>"

printf ’<%.0f>’, 1; # prints "<1>"

printf ’<%e>’, 10; # prints "<1.000000e+01>"

printf ’<%.1e>’, 10; # prints "<1.0e+01>"

For "g" and "G", this specifies the maximum number of digits to
show, including those prior to the decimal point and those after it;
for example:

These examples are subject to system-specific variation.

printf ’<%g>’, 1; # prints "<1>"

printf ’<%.10g>’, 1; # prints "<1>"

printf ’<%g>’, 100; # prints "<100>"

printf ’<%.1g>’, 100; # prints "<1e+02>"

printf ’<%.2g>’, 100.01; # prints "<1e+02>"

printf ’<%.5g>’, 100.01; # prints "<100.01>"

printf ’<%.4g>’, 100.01; # prints "<100>"

For integer conversions, specifying a precision implies that the out-
put of the number itself should be zero-padded to this width, where
the 0 flag is ignored:

printf ’<%.6d>’, 1; # prints "<000001>"

printf ’<%+.6d>’, 1; # prints "<+000001>"

printf ’<%-10.6d>’, 1; # prints "<000001 >"

printf ’<%10.6d>’, 1; # prints "< 000001>"

printf ’<%010.6d>’, 1; # prints "< 000001>"

printf ’<%+10.6d>’, 1; # prints "< +000001>"

printf ’<%.6x>’, 1; # prints "<000001>"

printf ’<%#.6x>’, 1; # prints "<0x000001>"

printf ’<%-10.6x>’, 1; # prints "<000001 >"

printf ’<%10.6x>’, 1; # prints "< 000001>"

printf ’<%010.6x>’, 1; # prints "< 000001>"

printf ’<%#10.6x>’, 1; # prints "< 0x000001>"

For string conversions, specifying a precision truncates the string
to fit the specified width:

printf ’<%.5s>’, "truncated"; # prints "<trunc>"

printf ’<%10.5s>’, "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using .*:

printf ’<%.6x>’, 1; # prints "<000001>"

printf ’<%.*x>’, 6, 1; # prints "<000001>"

If a precision obtained through * is negative, it counts as having
no precision at all.

printf ’<%.*s>’, 7, "string"; # prints "<string>"

printf ’<%.*s>’, 3, "string"; # prints "<str>"

printf ’<%.*s>’, 0, "string"; # prints "<>"

printf ’<%.*s>’, -1, "string"; # prints "<string>"

printf ’<%.*d>’, 1, 0; # prints "<0>"

printf ’<%.*d>’, 0, 0; # prints "<>"

printf ’<%.*d>’, -1, 0; # prints "<0>"

You cannot currently get the precision from a specified number, but
it is intended that this will be possible in the future, for example
using .*2$:

printf ’<%.*2$x>’, 1, 6; # INVALID, but in future will print

"<000001>"

size

For numeric conversions, you can specify the size to interpret the
number as using l, h, V, q, L, or ll. For integer conversions (d u

o x X b i D U O), numbers are usually assumed to be whatever the
default integer size is on your platform (usually 32 or 64 bits), but
you can override this to use instead one of the standard C types,
as supported by the compiler used to build Perl:

hh interpret integer as C type "char" or "unsigned

char" on Perl 5.14 or later

h interpret integer as C type "short" or

"unsigned short"

j interpret integer as C type "intmax_t" on Perl

5.14 or later, and only with a C99 compiler

(unportable)

l interpret integer as C type "long" or

"unsigned long"

q, L, or ll interpret integer as C type "long long",

"unsigned long long", or "quad" (typically

64-bit integers)

t interpret integer as C type "ptrdiff_t" on Perl

5.14 or later

z interpret integer as C type "size_t" on Perl 5.14

or later

As of 5.14, none of these raises an exception if they are not sup-
ported on your platform. However, if warnings are enabled, a warn-
ing of the printf warning class is issued on an unsupported con-
version flag. Should you instead prefer an exception, do this:

use warnings FATAL => "printf";

If you would like to know about a version dependency before you
start running the program, put something like this at its top:

use 5.014; # for hh/j/t/z/ printf modifiers

You can find out whether your Perl supports quads via Config:

use Config;

if ($Config{use64bitint} eq "define"

|| $Config{longsize} >= 8) {

print "Nice quads!\n";

}

For floating-point conversions (e f g E F G), numbers are usually
assumed to be the default floating-point size on your platform (dou-
ble or long double), but you can force "long double" with q, L, or
ll if your platform supports them. You can find out whether your
Perl supports long doubles via Config:

use Config;

print "long doubles\n" if $Config{d_longdbl} eq "define";

You can find out whether Perl considers "long double" to be the
default floating-point size to use on your platform via Config:

use Config;

if ($Config{uselongdouble} eq "define") {

print "long doubles by default\n";

}

It can also be that long doubles and doubles are the same thing:

use Config;

($Config{doublesize} == $Config{longdblsize}) &&

print "doubles are long doubles\n";

The size specifier V has no effect for Perl code, but is supported for
compatibility with XS code. It means "use the standard size for a
Perl integer or floating-point number", which is the default.

order of arguments
Normally, sprintf() takes the next unused argument as the value
to format for each format specification. If the format specification
uses * to require additional arguments, these are consumed from the
argument list in the order they appear in the format specification
before the value to format. Where an argument is specified by
an explicit index, this does not affect the normal order for the
arguments, even when the explicitly specified index would have
been the next argument.

So:

printf "<%*.*s>", $a, $b, $c;

uses $a for the width, $b for the precision, and $c as the value to
format; while:

printf ’<%*1$.*s>’, $a, $b;

would use $a for the width and precision, and $b as the value to
format.

Here are some more examples; be aware that when using an explicit
index, the $ may need escaping:

printf "%2\$d %d\n", 12, 34; # will print "34 12\n"

printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"

printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"

printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"

If use locale (including use locale ’not_characters’) is in effect and
POSIX::setlocale() has been called, the character used for the decimal
separator in formatted floating-point numbers is affected by the LC_NUMERIC

locale. See Section 38.1 [perllocale NAME], page 701 and POSIX.

sqrt EXPR
sqrt

Return the positive square root of EXPR. If EXPR is omitted, uses $_. Works
only for non-negative operands unless you’ve loaded the Math::Complex mod-
ule.

use Math::Complex;

print sqrt(-4); # prints 2i

srand EXPR
srand

Sets and returns the random number seed for the rand operator.

The point of the function is to "seed" the rand function so that rand can
produce a different sequence each time you run your program. When called
with a parameter, srand uses that for the seed; otherwise it (semi-)randomly
chooses a seed. In either case, starting with Perl 5.14, it returns the seed. To
signal that your code will work only on Perls of a recent vintage:

use 5.014; # so srand returns the seed

If srand() is not called explicitly, it is called implicitly without a parameter at
the first use of the rand operator. However, there are a few situations where
programs are likely to want to call srand. One is for generating predictable
results, generally for testing or debugging. There, you use srand($seed), with
the same $seed each time. Another case is that you may want to call srand()
after a fork() to avoid child processes sharing the same seed value as the parent
(and consequently each other).

Do not call srand() (i.e., without an argument) more than once per process.
The internal state of the random number generator should contain more entropy
than can be provided by any seed, so calling srand() again actually loses
randomness.

Most implementations of srand take an integer and will silently truncate deci-
mal numbers. This means srand(42) will usually produce the same results as
srand(42.1). To be safe, always pass srand an integer.

A typical use of the returned seed is for a test program which has too many
combinations to test comprehensively in the time available to it each run. It
can test a random subset each time, and should there be a failure, log the seed
used for that run so that it can later be used to reproduce the same results.

rand() is not cryptographically secure. You should not rely on it in security-
sensitive situations. As of this writing, a number of third-party CPAN modules
offer random number generators intended by their authors to be cryptograph-
ically secure, including: Data-Entropy, Crypt-Random, Math-Random-Secure,
and Math-TrulyRandom.

stat FILEHANDLE
stat EXPR
stat DIRHANDLE
stat

Returns a 13-element list giving the status info for a file, either the file opened
via FILEHANDLE or DIRHANDLE, or named by EXPR. If EXPR is omitted,
it stats $_ (not _!). Returns the empty list if stat fails. Typically used as
follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,

$atime,$mtime,$ctime,$blksize,$blocks)

= stat($filename);

Not all fields are supported on all filesystem types. Here are the meanings of
the fields:

0 dev device number of filesystem

1 ino inode number

2 mode file mode (type and permissions)

3 nlink number of (hard) links to the file

4 uid numeric user ID of file’s owner

5 gid numeric group ID of file’s owner

6 rdev the device identifier (special files only)

7 size total size of file, in bytes

8 atime last access time in seconds since the epoch

9 mtime last modify time in seconds since the epoch

10 ctime inode change time in seconds since the epoch (*)

11 blksize preferred I/O size in bytes for interacting with the

file (may vary from file to file)

12 blocks actual number of system-specific blocks allocated

on disk (often, but not always, 512 bytes each)

(The epoch was at 00:00 January 1, 1970 GMT.)

(*) Not all fields are supported on all filesystem types. Notably, the ctime field
is non-portable. In particular, you cannot expect it to be a "creation time";
see Section 56.3.3 [perlport Files and Filesystems], page 955 for details.

If stat is passed the special filehandle consisting of an underline, no stat is
done, but the current contents of the stat structure from the last stat, lstat,
or filetest are returned. Example:

if (-x $file && (($d) = stat(_)) && $d < 0) {

print "$file is executable NFS file\n";

}

(This works on machines only for which the device number is negative under
NFS.)

Because the mode contains both the file type and its permissions, you should
mask off the file type portion and (s)printf using a "%o" if you want to see the
real permissions.

$mode = (stat($filename))[2];

printf "Permissions are %04o\n", $mode & 07777;

In scalar context, stat returns a boolean value indicating success or failure,
and, if successful, sets the information associated with the special filehandle _.

The File-stat module provides a convenient, by-name access mechanism:

use File::stat;

$sb = stat($filename);

printf "File is %s, size is %s, perm %04o, mtime %s\n",

$filename, $sb->size, $sb->mode & 07777,

scalar localtime $sb->mtime;

You can import symbolic mode constants (S_IF*) and functions (S_IS*) from
the Fcntl module:

use Fcntl ’:mode’;

$mode = (stat($filename))[2];

$user_rwx = ($mode & S_IRWXU) >> 6;

$group_read = ($mode & S_IRGRP) >> 3;

$other_execute = $mode & S_IXOTH;

printf "Permissions are %04o\n", S_IMODE($mode), "\n";

$is_setuid = $mode & S_ISUID;

$is_directory = S_ISDIR($mode);

You could write the last two using the -u and -d operators. Commonly available
S_IF* constants are:

Permissions: read, write, execute, for user, group, others.

S_IRWXU S_IRUSR S_IWUSR S_IXUSR

S_IRWXG S_IRGRP S_IWGRP S_IXGRP

S_IRWXO S_IROTH S_IWOTH S_IXOTH

Setuid/Setgid/Stickiness/SaveText.

Note that the exact meaning of these is system-dependent.

S_ISUID S_ISGID S_ISVTX S_ISTXT

File types. Not all are necessarily available on

your system.

S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR

S_IFIFO S_IFSOCK S_IFWHT S_ENFMT

The following are compatibility aliases for S_IRUSR,

S_IWUSR, and S_IXUSR.

S_IREAD S_IWRITE S_IEXEC

and the S_IF* functions are

S_IMODE($mode) the part of $mode containing the permission

bits and the setuid/setgid/sticky bits

S_IFMT($mode) the part of $mode containing the file type

which can be bit-anded with (for example)

S_IFREG or with the following functions

The operators -f, -d, -l, -b, -c, -p, and -S.

S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)

S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

No direct -X operator counterpart, but for the first one

the -g operator is often equivalent. The ENFMT stands for

record flocking enforcement, a platform-dependent feature.

S_ISENFMT($mode) S_ISWHT($mode)

See your native chmod(2) and stat(2) documentation for more details about
the S_* constants. To get status info for a symbolic link instead of the target
file behind the link, use the lstat function.

Portability issues: [perlport stat], page 978.

state VARLIST
state TYPE VARLIST
state VARLIST : ATTRS
state TYPE VARLIST : ATTRS

state declares a lexically scoped variable, just like my. However, those variables
will never be reinitialized, contrary to lexical variables that are reinitialized each
time their enclosing block is entered. See Section 73.3.3 [perlsub Persistent
Private Variables], page 1226 for details.

If more than one variable is listed, the list must be placed in parentheses. With
a parenthesised list, undef can be used as a dummy placeholder. However,
since initialization of state variables in list context is currently not possible this
would serve no purpose.

state variables are enabled only when the use feature "state" pragma is
in effect, unless the keyword is written as CORE::state. See also feature.
Alternately, include a use v5.10 or later to the current scope.

study SCALAR
study

May take extra time to study SCALAR ($_ if unspecified) in anticipation of
doing many pattern matches on the string before it is next modified. This
may or may not save time, depending on the nature and number of patterns
you are searching and the distribution of character frequencies in the string
to be searched; you probably want to compare run times with and without it

to see which is faster. Those loops that scan for many short constant strings
(including the constant parts of more complex patterns) will benefit most.

Note that since Perl version 5.16 this function has been a no-op, but this might
change in a future release.

(The way study works is this: a linked list of every character in the string to
be searched is made, so we know, for example, where all the ’k’ characters are.
From each search string, the rarest character is selected, based on some static
frequency tables constructed from some C programs and English text. Only
those places that contain this "rarest" character are examined.)

For example, here is a loop that inserts index producing entries before any line
containing a certain pattern:

while (<>) {

study;

print ".IX foo\n" if /\bfoo\b/;

print ".IX bar\n" if /\bbar\b/;

print ".IX blurfl\n" if /\bblurfl\b/;

...

print;

}

In searching for /\bfoo\b/, only locations in $_ that contain f will be looked
at, because f is rarer than o. In general, this is a big win except in pathological
cases. The only question is whether it saves you more time than it took to build
the linked list in the first place.

Note that if you have to look for strings that you don’t know till runtime, you
can build an entire loop as a string and eval that to avoid recompiling all
your patterns all the time. Together with undefining $/ to input entire files as
one record, this can be quite fast, often faster than specialized programs like
fgrep(1). The following scans a list of files (@files) for a list of words (@words),
and prints out the names of those files that contain a match:

$search = ’while (<>) { study;’;

foreach $word (@words) {

$search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";

}

$search .= "}";

@ARGV = @files;

undef $/;

eval $search; # this screams

$/ = "\n"; # put back to normal input delimiter

foreach $file (sort keys(%seen)) {

print $file, "\n";

}

sub NAME BLOCK
sub NAME (PROTO) BLOCK
sub NAME : ATTRS BLOCK
sub NAME (PROTO) : ATTRS BLOCK

This is subroutine definition, not a real function per se. Without a BLOCK
it’s just a forward declaration. Without a NAME, it’s an anonymous function
declaration, so does return a value: the CODE ref of the closure just created.

See Section 73.1 [perlsub NAME], page 1216 and Section 62.1 [perlref NAME],
page 1077 for details about subroutines and references; see attributes and
Attribute-Handlers for more information about attributes.

SUB

A special token that returns a reference to the current subroutine, or undef

outside of a subroutine.

The behaviour of __SUB__ within a regex code block (such as /(?{...})/) is
subject to change.

This token is only available under use v5.16 or the "current sub" feature. See
feature.

substr EXPR,OFFSET,LENGTH,REPLACEMENT
substr EXPR,OFFSET,LENGTH
substr EXPR,OFFSET

Extracts a substring out of EXPR and returns it. First character is at offset
zero. If OFFSET is negative, starts that far back from the end of the string.
If LENGTH is omitted, returns everything through the end of the string. If
LENGTH is negative, leaves that many characters off the end of the string.

my $s = "The black cat climbed the green tree";

my $color = substr $s, 4, 5; # black

my $middle = substr $s, 4, -11; # black cat climbed the

my $end = substr $s, 14; # climbed the green tree

my $tail = substr $s, -4; # tree

my $z = substr $s, -4, 2; # tr

You can use the substr() function as an lvalue, in which case EXPR must itself
be an lvalue. If you assign something shorter than LENGTH, the string will
shrink, and if you assign something longer than LENGTH, the string will grow
to accommodate it. To keep the string the same length, you may need to pad
or chop your value using sprintf.

If OFFSET and LENGTH specify a substring that is partly outside the string,
only the part within the string is returned. If the substring is beyond either
end of the string, substr() returns the undefined value and produces a warning.
When used as an lvalue, specifying a substring that is entirely outside the string
raises an exception. Here’s an example showing the behavior for boundary cases:

my $name = ’fred’;

substr($name, 4) = ’dy’; # $name is now ’freddy’

my $null = substr $name, 6, 2; # returns "" (no warning)

my $oops = substr $name, 7; # returns undef, with warning

substr($name, 7) = ’gap’; # raises an exception

An alternative to using substr() as an lvalue is to specify the replacement string
as the 4th argument. This allows you to replace parts of the EXPR and return
what was there before in one operation, just as you can with splice().

my $s = "The black cat climbed the green tree";

my $z = substr $s, 14, 7, "jumped from"; # climbed

$s is now "The black cat jumped from the green tree"

Note that the lvalue returned by the three-argument version of substr() acts
as a ’magic bullet’; each time it is assigned to, it remembers which part of the
original string is being modified; for example:

$x = ’1234’;

for (substr($x,1,2)) {

$_ = ’a’; print $x,"\n"; # prints 1a4

$_ = ’xyz’; print $x,"\n"; # prints 1xyz4

$x = ’56789’;

$_ = ’pq’; print $x,"\n"; # prints 5pq9

}

With negative offsets, it remembers its position from the end of the string when
the target string is modified:

$x = ’1234’;

for (substr($x, -3, 2)) {

$_ = ’a’; print $x,"\n"; # prints 1a4, as above

$x = ’abcdefg’;

print $_,"\n"; # prints f

}

Prior to Perl version 5.10, the result of using an lvalue multiple times was
unspecified. Prior to 5.16, the result with negative offsets was unspecified.

symlink OLDFILE,NEWFILE
Creates a new filename symbolically linked to the old filename. Returns 1 for
success, 0 otherwise. On systems that don’t support symbolic links, raises an
exception. To check for that, use eval:

$symlink_exists = eval { symlink("",""); 1 };

Portability issues: [perlport symlink], page 979.

syscall NUMBER, LIST
Calls the system call specified as the first element of the list, passing the re-
maining elements as arguments to the system call. If unimplemented, raises
an exception. The arguments are interpreted as follows: if a given argument
is numeric, the argument is passed as an int. If not, the pointer to the string
value is passed. You are responsible to make sure a string is pre-extended long
enough to receive any result that might be written into a string. You can’t use
a string literal (or other read-only string) as an argument to syscall because
Perl has to assume that any string pointer might be written through. If your
integer arguments are not literals and have never been interpreted in a numeric
context, you may need to add 0 to them to force them to look like numbers.
This emulates the syswrite function (or vice versa):

require ’syscall.ph’; # may need to run h2ph

$s = "hi there\n";

syscall(&SYS_write, fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only 14 arguments to your syscall,
which in practice should (usually) suffice.

Syscall returns whatever value returned by the system call it calls. If the system
call fails, syscall returns -1 and sets $! (errno). Note that some system calls
can legitimately return -1. The proper way to handle such calls is to assign
$!=0 before the call, then check the value of $! if syscall returns -1.

There’s a problem with syscall(&SYS_pipe): it returns the file number of the
read end of the pipe it creates, but there is no way to retrieve the file number
of the other end. You can avoid this problem by using pipe instead.

Portability issues: [perlport syscall], page 979.

sysopen FILEHANDLE,FILENAME,MODE
sysopen FILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it with
FILEHANDLE. If FILEHANDLE is an expression, its value is used as the
real filehandle wanted; an undefined scalar will be suitably autovivified. This
function calls the underlying operating system’s open(2) function with the pa-
rameters FILENAME, MODE, and PERMS.

The possible values and flag bits of the MODE parameter are system-dependent;
they are available via the standard module Fcntl. See the documentation of
your operating system’s open(2) syscall to see which values and flag bits are
available. You may combine several flags using the |-operator.

Some of the most common values are O_RDONLY for opening the file in read-
only mode, O_WRONLY for opening the file in write-only mode, and O_RDWR for
opening the file in read-write mode.

For historical reasons, some values work on almost every system supported by
Perl: 0 means read-only, 1 means write-only, and 2 means read/write. We
know that these values do not work under OS/390 and on the Macintosh; you
probably don’t want to use them in new code.

If the file named by FILENAME does not exist and the open call creates it
(typically because MODE includes the O_CREAT flag), then the value of PERMS
specifies the permissions of the newly created file. If you omit the PERMS
argument to sysopen, Perl uses the octal value 0666. These permission values
need to be in octal, and are modified by your process’s current umask.

In many systems the O_EXCL flag is available for opening files in exclusive mode.
This is not locking: exclusiveness means here that if the file already exists,
sysopen() fails. O_EXCL may not work on network filesystems, and has no effect
unless the O_CREAT flag is set as well. Setting O_CREAT|O_EXCL prevents the file
from being opened if it is a symbolic link. It does not protect against symbolic
links in the file’s path.

Sometimes you may want to truncate an already-existing file. This can be done
using the O_TRUNC flag. The behavior of O_TRUNC with O_RDONLY is undefined.

You should seldom if ever use 0644 as argument to sysopen, because that takes
away the user’s option to have a more permissive umask. Better to omit it. See
the perlfunc(1) entry on umask for more on this.

Note that sysopen depends on the fdopen() C library function. On many Unix
systems, fdopen() is known to fail when file descriptors exceed a certain value,
typically 255. If you need more file descriptors than that, consider using the
POSIX::open() function.

See Section 49.1 [perlopentut NAME], page 852 for a kinder, gentler explanation
of opening files.

Portability issues: [perlport sysopen], page 979.

sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
sysread FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the
specified FILEHANDLE, using the read(2). It bypasses buffered IO, so mixing
this with other kinds of reads, print, write, seek, tell, or eof can cause
confusion because the perlio or stdio layers usually buffers data. Returns the
number of bytes actually read, 0 at end of file, or undef if there was an error
(in the latter case $! is also set). SCALAR will be grown or shrunk so that the
last byte actually read is the last byte of the scalar after the read.

An OFFSET may be specified to place the read data at some place in the
string other than the beginning. A negative OFFSET specifies placement at
that many characters counting backwards from the end of the string. A positive
OFFSET greater than the length of SCALAR results in the string being padded
to the required size with "\0" bytes before the result of the read is appended.

There is no syseof() function, which is ok, since eof() doesn’t work well on
device files (like ttys) anyway. Use sysread() and check for a return value for 0
to decide whether you’re done.

Note that if the filehandle has been marked as :utf8 Unicode characters are
read instead of bytes (the LENGTH, OFFSET, and the return value of sysread()
are in Unicode characters). The :encoding(...) layer implicitly introduces the
:utf8 layer. See 〈undefined〉 [binmode], page 〈undefined〉, 〈undefined〉 [open],
page 〈undefined〉, and the open pragma, open.

sysseek FILEHANDLE,POSITION,WHENCE
Sets FILEHANDLE’s system position in bytes using lseek(2). FILEHANDLE
may be an expression whose value gives the name of the filehandle. The values
for WHENCE are 0 to set the new position to POSITION; 1 to set the it to
the current position plus POSITION; and 2 to set it to EOF plus POSITION,
typically negative.

Note the in bytes: even if the filehandle has been set to operate on characters
(for example by using the :encoding(utf8) I/O layer), tell() will return byte
offsets, not character offsets (because implementing that would render sysseek()
unacceptably slow).

sysseek() bypasses normal buffered IO, so mixing it with reads other than
sysread (for example <> or read()) print, write, seek, tell, or eof may
cause confusion.

For WHENCE, you may also use the constants SEEK_SET, SEEK_CUR, and SEEK_

END (start of the file, current position, end of the file) from the Fcntl module.
Use of the constants is also more portable than relying on 0, 1, and 2. For
example to define a "systell" function:

use Fcntl ’SEEK_CUR’;

sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the new position, or the undefined value on failure. A position of zero
is returned as the string "0 but true"; thus sysseek returns true on success
and false on failure, yet you can still easily determine the new position.

system LIST
system PROGRAM LIST

Does exactly the same thing as exec LIST, except that a fork is done first and
the parent process waits for the child process to exit. Note that argument
processing varies depending on the number of arguments. If there is more than
one argument in LIST, or if LIST is an array with more than one value, starts
the program given by the first element of the list with arguments given by the
rest of the list. If there is only one scalar argument, the argument is checked for
shell metacharacters, and if there are any, the entire argument is passed to the
system’s command shell for parsing (this is /bin/sh -c on Unix platforms, but
varies on other platforms). If there are no shell metacharacters in the argument,
it is split into words and passed directly to execvp, which is more efficient. On
Windows, only the system PROGRAM LIST syntax will reliably avoid using the
shell; system LIST, even with more than one element, will fall back to the shell
if the first spawn fails.

Perl will attempt to flush all files opened for output before any operation
that may do a fork, but this may not be supported on some platforms (see
Section 56.1 [perlport NAME], page 951). To be safe, you may need to set $|
($AUTOFLUSH in English) or call the autoflush() method of IO::Handle
on any open handles.

The return value is the exit status of the program as returned by the wait call.
To get the actual exit value, shift right by eight (see below). See also 〈unde-
fined〉 [exec], page 〈undefined〉. This is not what you want to use to capture the
output from a command; for that you should use merely backticks or qx//, as
described in [perlop ‘STRING‘], page 832. Return value of -1 indicates a failure
to start the program or an error of the wait(2) system call (inspect $! for the
reason).

If you’d like to make system (and many other bits of Perl) die on error, have a
look at the autodie pragma.

Like exec, system allows you to lie to a program about its name if you use the
system PROGRAM LIST syntax. Again, see 〈undefined〉 [exec], page 〈undefined〉.
Since SIGINT and SIGQUIT are ignored during the execution of system, if you
expect your program to terminate on receipt of these signals you will need to
arrange to do so yourself based on the return value.

@args = ("command", "arg1", "arg2");

system(@args) == 0

or die "system @args failed: $?"

If you’d like to manually inspect system’s failure, you can check all possible
failure modes by inspecting $? like this:

if ($? == -1) {

print "failed to execute: $!\n";

}

elsif ($? & 127) {

printf "child died with signal %d, %s coredump\n",

($? & 127), ($? & 128) ? ’with’ : ’without’;

}

else {

printf "child exited with value %d\n", $? >> 8;

}

Alternatively, you may inspect the value of ${^CHILD_ERROR_NATIVE} with the
W*() calls from the POSIX module.

When system’s arguments are executed indirectly by the shell, results and
return codes are subject to its quirks. See [perlop ‘STRING‘], page 832 and
〈undefined〉 [exec], page 〈undefined〉 for details.
Since system does a fork and wait it may affect a SIGCHLD handler. See
Section 36.1 [perlipc NAME], page 667 for details.

Portability issues: [perlport system], page 979.

syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
syswrite FILEHANDLE,SCALAR,LENGTH
syswrite FILEHANDLE,SCALAR

Attempts to write LENGTH bytes of data from variable SCALAR to the
specified FILEHANDLE, using write(2). If LENGTH is not specified, writes
whole SCALAR. It bypasses buffered IO, so mixing this with reads (other than
sysread()), print, write, seek, tell, or eof may cause confusion because
the perlio and stdio layers usually buffer data. Returns the number of bytes ac-
tually written, or undef if there was an error (in this case the errno variable $!
is also set). If the LENGTH is greater than the data available in the SCALAR
after the OFFSET, only as much data as is available will be written.

An OFFSET may be specified to write the data from some part of the string
other than the beginning. A negative OFFSET specifies writing that many
characters counting backwards from the end of the string. If SCALAR is of
length zero, you can only use an OFFSET of 0.

WARNING: If the filehandle is marked :utf8, Unicode characters encoded
in UTF-8 are written instead of bytes, and the LENGTH, OFFSET, and
return value of syswrite() are in (UTF8-encoded Unicode) characters. The
:encoding(...) layer implicitly introduces the :utf8 layer. Alternately, if
the handle is not marked with an encoding but you attempt to write charac-
ters with code points over 255, raises an exception. See 〈undefined〉 [binmode],
page 〈undefined〉, 〈undefined〉 [open], page 〈undefined〉, and the open pragma,
open.

tell FILEHANDLE
tell

Returns the current position in bytes for FILEHANDLE, or -1 on error. FILE-
HANDLE may be an expression whose value gives the name of the actual file-
handle. If FILEHANDLE is omitted, assumes the file last read.

Note the in bytes: even if the filehandle has been set to operate on characters
(for example by using the :encoding(utf8) open layer), tell() will return byte
offsets, not character offsets (because that would render seek() and tell() rather
slow).

The return value of tell() for the standard streams like the STDIN depends on
the operating system: it may return -1 or something else. tell() on pipes, fifos,
and sockets usually returns -1.

There is no systell function. Use sysseek(FH, 0, 1) for that.

Do not use tell() (or other buffered I/O operations) on a filehandle that has
been manipulated by sysread(), syswrite(), or sysseek(). Those functions ignore
the buffering, while tell() does not.

telldir DIRHANDLE
Returns the current position of the readdir routines on DIRHANDLE. Value
may be given to seekdir to access a particular location in a directory. telldir
has the same caveats about possible directory compaction as the corresponding
system library routine.

tie VARIABLE,CLASSNAME,LIST
This function binds a variable to a package class that will provide the implemen-
tation for the variable. VARIABLE is the name of the variable to be enchanted.
CLASSNAME is the name of a class implementing objects of correct type. Any
additional arguments are passed to the appropriate constructor method of the
class (meaning TIESCALAR, TIEHANDLE, TIEARRAY, or TIEHASH). Typically these
are arguments such as might be passed to the dbm_open() function of C. The
object returned by the constructor is also returned by the tie function, which
would be useful if you want to access other methods in CLASSNAME.

Note that functions such as keys and values may return huge lists when used
on large objects, like DBM files. You may prefer to use the each function to
iterate over such. Example:

print out history file offsets

use NDBM_File;

tie(%HIST, ’NDBM_File’, ’/usr/lib/news/history’, 1, 0);

while (($key,$val) = each %HIST) {

print $key, ’ = ’, unpack(’L’,$val), "\n";

}

untie(%HIST);

A class implementing a hash should have the following methods:

TIEHASH classname, LIST

FETCH this, key

STORE this, key, value

DELETE this, key

CLEAR this

EXISTS this, key

FIRSTKEY this

NEXTKEY this, lastkey

SCALAR this

DESTROY this

UNTIE this

A class implementing an ordinary array should have the following methods:

TIEARRAY classname, LIST

FETCH this, key

STORE this, key, value

FETCHSIZE this

STORESIZE this, count

CLEAR this

PUSH this, LIST

POP this

SHIFT this

UNSHIFT this, LIST

SPLICE this, offset, length, LIST

EXTEND this, count

DELETE this, key

EXISTS this, key

DESTROY this

UNTIE this

A class implementing a filehandle should have the following methods:

TIEHANDLE classname, LIST

READ this, scalar, length, offset

READLINE this

GETC this

WRITE this, scalar, length, offset

PRINT this, LIST

PRINTF this, format, LIST

BINMODE this

EOF this

FILENO this

SEEK this, position, whence

TELL this

OPEN this, mode, LIST

CLOSE this

DESTROY this

UNTIE this

A class implementing a scalar should have the following methods:

TIESCALAR classname, LIST

FETCH this,

STORE this, value

DESTROY this

UNTIE this

Not all methods indicated above need be implemented. See Section 76.1 [perltie
NAME], page 1289, Tie-Hash, Tie-Array, Tie-Scalar, and Tie-Handle.

Unlike dbmopen, the tie function will not use or require a module for you;
you need to do that explicitly yourself. See DB_File or the Config module for
interesting tie implementations.

For further details see Section 76.1 [perltie NAME], page 1289, [tied VARI-
ABLE], page 475.

tied VARIABLE
Returns a reference to the object underlying VARIABLE (the same value that
was originally returned by the tie call that bound the variable to a package.)
Returns the undefined value if VARIABLE isn’t tied to a package.

time

Returns the number of non-leap seconds since whatever time the system con-
siders to be the epoch, suitable for feeding to gmtime and localtime. On most
systems the epoch is 00:00:00 UTC, January 1, 1970; a prominent exception
being Mac OS Classic which uses 00:00:00, January 1, 1904 in the current local
time zone for its epoch.

For measuring time in better granularity than one second, use the Time-HiRes
module from Perl 5.8 onwards (or from CPAN before then), or, if you have
gettimeofday(2), you may be able to use the syscall interface of Perl. See
perlfaq8 for details.

For date and time processing look at the many related modules on CPAN. For
a comprehensive date and time representation look at the DateTime module.

times

Returns a four-element list giving the user and system times in seconds for this
process and any exited children of this process.

($user,$system,$cuser,$csystem) = times;

In scalar context, times returns $user.

Children’s times are only included for terminated children.

Portability issues: [perlport times], page 980.

tr///

The transliteration operator. Same as y///. See Section 48.2.31 [perlop Quote-
Like Operators], page 832.

truncate FILEHANDLE,LENGTH
truncate EXPR,LENGTH

Truncates the file opened on FILEHANDLE, or named by EXPR, to the spec-
ified length. Raises an exception if truncate isn’t implemented on your system.
Returns true if successful, undef on error.

The behavior is undefined if LENGTH is greater than the length of the file.

The position in the file of FILEHANDLE is left unchanged. You may want to
call [seek], page 442 before writing to the file.

Portability issues: [perlport truncate], page 980.

uc EXPR

uc

Returns an uppercased version of EXPR. This is the internal function imple-
menting the \U escape in double-quoted strings. It does not attempt to do
titlecase mapping on initial letters. See [ucfirst], page 476 for that.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragma, such as in a locale,
as [lc], page 399 does.

ucfirst EXPR
ucfirst

Returns the value of EXPR with the first character in uppercase (titlecase in
Unicode). This is the internal function implementing the \u escape in double-
quoted strings.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragma, such as in a locale,
as [lc], page 399 does.

umask EXPR
umask

Sets the umask for the process to EXPR and returns the previous value. If
EXPR is omitted, merely returns the current umask.

The Unix permission rwxr-x--- is represented as three sets of three bits, or
three octal digits: 0750 (the leading 0 indicates octal and isn’t one of the digits).
The umask value is such a number representing disabled permissions bits. The
permission (or "mode") values you pass mkdir or sysopen are modified by your
umask, so even if you tell sysopen to create a file with permissions 0777, if your
umask is 0022, then the file will actually be created with permissions 0755. If
your umask were 0027 (group can’t write; others can’t read, write, or execute),
then passing sysopen 0666 would create a file with mode 0640 (because 0666

&~ 027 is 0640).

Here’s some advice: supply a creation mode of 0666 for regular files (in sysopen)
and one of 0777 for directories (in mkdir) and executable files. This gives users
the freedom of choice: if they want protected files, they might choose process
umasks of 022, 027, or even the particularly antisocial mask of 077. Programs
should rarely if ever make policy decisions better left to the user. The exception
to this is when writing files that should be kept private: mail files, web browser
cookies, .rhosts files, and so on.

If umask(2) is not implemented on your system and you are trying to restrict
access for yourself (i.e., (EXPR & 0700) > 0), raises an exception. If umask(2) is
not implemented and you are not trying to restrict access for yourself, returns
undef.

Remember that a umask is a number, usually given in octal; it is not a string
of octal digits. See also [oct], page 406, if all you have is a string.

Portability issues: [perlport umask], page 980.

undef EXPR
undef

Undefines the value of EXPR, which must be an lvalue. Use only on a scalar
value, an array (using @), a hash (using %), a subroutine (using &), or a typeglob
(using *). Saying undef $hash{$key} will probably not do what you expect
on most predefined variables or DBM list values, so don’t do that; see 〈un-
defined〉 [delete], page 〈undefined〉. Always returns the undefined value. You
can omit the EXPR, in which case nothing is undefined, but you still get an
undefined value that you could, for instance, return from a subroutine, assign
to a variable, or pass as a parameter. Examples:

undef $foo;

undef $bar{’blurfl’}; # Compare to: delete $bar{’blurfl’};

undef @ary;

undef %hash;

undef &mysub;

undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.

return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;

select undef, undef, undef, 0.25;

($a, $b, undef, $c) = &foo; # Ignore third value returned

Note that this is a unary operator, not a list operator.

unlink LIST
unlink

Deletes a list of files. On success, it returns the number of files it successfully
deleted. On failure, it returns false and sets $! (errno):

my $unlinked = unlink ’a’, ’b’, ’c’;

unlink @goners;

unlink glob "*.bak";

On error, unlink will not tell you which files it could not remove. If you want
to know which files you could not remove, try them one at a time:

foreach my $file (@goners) {

unlink $file or warn "Could not unlink $file: $!";

}

Note: unlink will not attempt to delete directories unless you are superuser
and the -U flag is supplied to Perl. Even if these conditions are met, be warned
that unlinking a directory can inflict damage on your filesystem. Finally, using
unlink on directories is not supported on many operating systems. Use rmdir
instead.

If LIST is omitted, unlink uses $_.

unpack TEMPLATE,EXPR
unpack TEMPLATE

unpack does the reverse of pack: it takes a string and expands it out into a list
of values. (In scalar context, it returns merely the first value produced.)

If EXPR is omitted, unpacks the $_ string. See Section 50.1 [perlpacktut
NAME], page 857 for an introduction to this function.

The string is broken into chunks described by the TEMPLATE. Each chunk is
converted separately to a value. Typically, either the string is a result of pack,
or the characters of the string represent a C structure of some kind.

The TEMPLATE has the same format as in the pack function. Here’s a sub-
routine that does substring:

sub substr {

my($what,$where,$howmuch) = @_;

unpack("x$where a$howmuch", $what);

}

and then there’s

sub ordinal { unpack("W",$_[0]); } # same as ord()

In addition to fields allowed in pack(), you may prefix a field with a %<number>
to indicate that you want a <number>-bit checksum of the items instead of
the items themselves. Default is a 16-bit checksum. Checksum is calculated
by summing numeric values of expanded values (for string fields the sum of
ord($char) is taken; for bit fields the sum of zeroes and ones).

For example, the following computes the same number as the System V sum
program:

$checksum = do {

local $/; # slurp!

unpack("%32W*",<>) % 65535;

};

The following efficiently counts the number of set bits in a bit vector:

$setbits = unpack("%32b*", $selectmask);

The p and P formats should be used with care. Since Perl has no way of checking
whether the value passed to unpack() corresponds to a valid memory location,
passing a pointer value that’s not known to be valid is likely to have disastrous
consequences.

If there are more pack codes or if the repeat count of a field or a group is larger
than what the remainder of the input string allows, the result is not well defined:
the repeat count may be decreased, or unpack() may produce empty strings
or zeros, or it may raise an exception. If the input string is longer than one
described by the TEMPLATE, the remainder of that input string is ignored.

See 〈undefined〉 [pack], page 〈undefined〉 for more examples and notes.

unshift ARRAY,LIST
unshift EXPR,LIST

Does the opposite of a shift. Or the opposite of a push, depending on how you
look at it. Prepends list to the front of the array and returns the new number
of elements in the array.

unshift(@ARGV, ’-e’) unless $ARGV[0] =~ /^-/;

Note the LIST is prepended whole, not one element at a time, so the prepended
elements stay in the same order. Use reverse to do the reverse.

Starting with Perl 5.14, unshift can take a scalar EXPR, which must hold a
reference to an unblessed array. The argument will be dereferenced automat-
ically. This aspect of unshift is considered highly experimental. The exact
behaviour may change in a future version of Perl.

To avoid confusing would-be users of your code who are running earlier versions
of Perl with mysterious syntax errors, put this sort of thing at the top of your
file to signal that your code will work only on Perls of a recent vintage:

use 5.014; # so push/pop/etc work on scalars (experimental)

untie VARIABLE
Breaks the binding between a variable and a package. (See [tie], page 473.) Has
no effect if the variable is not tied.

use Module VERSION LIST
use Module VERSION
use Module LIST
use Module
use VERSION

Imports some semantics into the current package from the named module, gen-
erally by aliasing certain subroutine or variable names into your package. It is
exactly equivalent to

BEGIN { require Module; Module->import(LIST); }

except that Module must be a bareword. The importation can be made condi-
tional by using the if module.

In the peculiar use VERSION form, VERSION may be either a positive decimal
fraction such as 5.006, which will be compared to $], or a v-string of the form
v5.6.1, which will be compared to $^V (aka $PERL VERSION). An exception
is raised if VERSION is greater than the version of the current Perl interpreter;
Perl will not attempt to parse the rest of the file. Compare with [require],
page 437, which can do a similar check at run time. Symmetrically, no VERSION

allows you to specify that you want a version of Perl older than the specified
one.

Specifying VERSION as a literal of the form v5.6.1 should generally be avoided,
because it leads to misleading error messages under earlier versions of Perl (that
is, prior to 5.6.0) that do not support this syntax. The equivalent numeric
version should be used instead.

use v5.6.1; # compile time version check

use 5.6.1; # ditto

use 5.006_001; # ditto; preferred for backwards compatibility

This is often useful if you need to check the current Perl version before useing
library modules that won’t work with older versions of Perl. (We try not to do
this more than we have to.)

use VERSION also lexically enables all features available in the requested version
as defined by the feature pragma, disabling any features not in the requested
version’s feature bundle. See feature. Similarly, if the specified Perl version
is greater than or equal to 5.12.0, strictures are enabled lexically as with use

strict. Any explicit use of use strict or no strict overrides use VERSION,
even if it comes before it. Later use of use VERSION will override all behavior of
a previous use VERSION, possibly removing the strict and feature added by
use VERSION. use VERSION does not load the feature.pm or strict.pm files.

The BEGIN forces the require and import to happen at compile time. The
require makes sure the module is loaded into memory if it hasn’t been yet.
The import is not a builtin; it’s just an ordinary static method call into the
Module package to tell the module to import the list of features back into
the current package. The module can implement its import method any way
it likes, though most modules just choose to derive their import method via
inheritance from the Exporter class that is defined in the Exporter module.
See Exporter. If no import method can be found then the call is skipped, even
if there is an AUTOLOAD method.

If you do not want to call the package’s import method (for instance, to stop
your namespace from being altered), explicitly supply the empty list:

use Module ();

That is exactly equivalent to

BEGIN { require Module }

If the VERSION argument is present between Module and LIST, then the
use will call the VERSION method in class Module with the given version as
an argument. The default VERSION method, inherited from the UNIVER-
SAL class, croaks if the given version is larger than the value of the variable
$Module::VERSION.

Again, there is a distinction between omitting LIST (import called with no
arguments) and an explicit empty LIST () (import not called). Note that
there is no comma after VERSION!

Because this is a wide-open interface, pragmas (compiler directives) are also
implemented this way. Currently implemented pragmas are:

use constant;

use diagnostics;

use integer;

use sigtrap qw(SEGV BUS);

use strict qw(subs vars refs);

use subs qw(afunc blurfl);

use warnings qw(all);

use sort qw(stable _quicksort _mergesort);

Some of these pseudo-modules import semantics into the current block scope
(like strict or integer, unlike ordinary modules, which import symbols into
the current package (which are effective through the end of the file).

Because use takes effect at compile time, it doesn’t respect the ordinary flow
control of the code being compiled. In particular, putting a use inside the false
branch of a conditional doesn’t prevent it from being processed. If a module
or pragma only needs to be loaded conditionally, this can be done using the if
pragma:

use if $] < 5.008, "utf8";

use if WANT_WARNINGS, warnings => qw(all);

There’s a corresponding no declaration that unimports meanings imported by
use, i.e., it calls unimport Module LIST instead of import. It behaves just
as import does with VERSION, an omitted or empty LIST, or no unimport
method being found.

no integer;

no strict ’refs’;

no warnings;

Care should be taken when using the no VERSION form of no. It is only meant to
be used to assert that the running Perl is of a earlier version than its argument
and not to undo the feature-enabling side effects of use VERSION.

See perlmodlib for a list of standard modules and pragmas. See Section 69.1
[perlrun NAME], page 1176 for the -M and -m command-line options to Perl
that give use functionality from the command-line.

utime LIST
Changes the access and modification times on each file of a list of files. The
first two elements of the list must be the NUMERIC access and modification
times, in that order. Returns the number of files successfully changed. The
inode change time of each file is set to the current time. For example, this code
has the same effect as the Unix touch(1) command when the files already exist
and belong to the user running the program:

#!/usr/bin/perl

$atime = $mtime = time;

utime $atime, $mtime, @ARGV;

Since Perl 5.8.0, if the first two elements of the list are undef, the utime(2)
syscall from your C library is called with a null second argument. On most
systems, this will set the file’s access and modification times to the current
time (i.e., equivalent to the example above) and will work even on files you
don’t own provided you have write permission:

for $file (@ARGV) {

utime(undef, undef, $file)

|| warn "couldn’t touch $file: $!";

}

Under NFS this will use the time of the NFS server, not the time of the local
machine. If there is a time synchronization problem, the NFS server and local

machine will have different times. The Unix touch(1) command will in fact
normally use this form instead of the one shown in the first example.

Passing only one of the first two elements as undef is equivalent to passing a 0
and will not have the effect described when both are undef. This also triggers
an uninitialized warning.

On systems that support futimes(2), you may pass filehandles among the files.
On systems that don’t support futimes(2), passing filehandles raises an excep-
tion. Filehandles must be passed as globs or glob references to be recognized;
barewords are considered filenames.

Portability issues: [perlport utime], page 980.

values HASH
values ARRAY
values EXPR

In list context, returns a list consisting of all the values of the named hash. In
Perl 5.12 or later only, will also return a list of the values of an array; prior to
that release, attempting to use an array argument will produce a syntax error.
In scalar context, returns the number of values.

Hash entries are returned in an apparently random order. The actual random
order is specific to a given hash; the exact same series of operations on two
hashes may result in a different order for each hash. Any insertion into the
hash may change the order, as will any deletion, with the exception that the
most recent key returned by each or keys may be deleted without changing
the order. So long as a given hash is unmodified you may rely on keys, values
and each to repeatedly return the same order as each other. See Section 70.4.9
[perlsec Algorithmic Complexity Attacks], page 1205 for details on why hash
order is randomized. Aside from the guarantees provided here the exact details
of Perl’s hash algorithm and the hash traversal order are subject to change in
any release of Perl. Tied hashes may behave differently to Perl’s hashes with
respect to changes in order on insertion and deletion of items.

As a side effect, calling values() resets the HASH or ARRAY’s internal itera-
tor, see 〈undefined〉 [each], page 〈undefined〉. (In particular, calling values() in
void context resets the iterator with no other overhead. Apart from resetting
the iterator, values @array in list context is the same as plain @array. (We
recommend that you use void context keys @array for this, but reasoned that
taking values @array out would require more documentation than leaving it
in.)

Note that the values are not copied, which means modifying them will modify
the contents of the hash:

for (values %hash) { s/foo/bar/g } # modifies %hash values

for (@hash{keys %hash}) { s/foo/bar/g } # same

Starting with Perl 5.14, values can take a scalar EXPR, which must hold a
reference to an unblessed hash or array. The argument will be dereferenced
automatically. This aspect of values is considered highly experimental. The
exact behaviour may change in a future version of Perl.

for (values $hashref) { ... }

for (values $obj->get_arrayref) { ... }

To avoid confusing would-be users of your code who are running earlier versions
of Perl with mysterious syntax errors, put this sort of thing at the top of your
file to signal that your code will work only on Perls of a recent vintage:

use 5.012; # so keys/values/each work on arrays

use 5.014; # so keys/values/each work on scalars (experimental)

See also keys, each, and sort.

vec EXPR,OFFSET,BITS
Treats the string in EXPR as a bit vector made up of elements of width BITS
and returns the value of the element specified by OFFSET as an unsigned
integer. BITS therefore specifies the number of bits that are reserved for each
element in the bit vector. This must be a power of two from 1 to 32 (or 64, if
your platform supports that).

If BITS is 8, "elements" coincide with bytes of the input string.

If BITS is 16 or more, bytes of the input string are grouped into chunks of
size BITS/8, and each group is converted to a number as with pack()/unpack()
with big-endian formats n/N (and analogously for BITS==64). See 〈undefined〉
[pack], page 〈undefined〉 for details.
If bits is 4 or less, the string is broken into bytes, then the bits of each byte
are broken into 8/BITS groups. Bits of a byte are numbered in a little-endian-
ish way, as in 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80. For example,
breaking the single input byte chr(0x36) into two groups gives a list (0x6,

0x3); breaking it into 4 groups gives (0x2, 0x1, 0x3, 0x0).

vec may also be assigned to, in which case parentheses are needed to give the
expression the correct precedence as in

vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, the value 0 is returned. If an
element off the end of the string is written to, Perl will first extend the string
with sufficiently many zero bytes. It is an error to try to write off the beginning
of the string (i.e., negative OFFSET).

If the string happens to be encoded as UTF-8 internally (and thus has the UTF8
flag set), this is ignored by vec, and it operates on the internal byte string, not
the conceptual character string, even if you only have characters with values
less than 256.

Strings created with vec can also be manipulated with the logical operators
|, &, ^, and ~. These operators will assume a bit vector operation is desired
when both operands are strings. See Section 48.2.36 [perlop Bitwise String
Operators], page 848.

The following code will build up an ASCII string saying ’PerlPerlPerl’. The
comments show the string after each step. Note that this code works in the
same way on big-endian or little-endian machines.

my $foo = ’’;

vec($foo, 0, 32) = 0x5065726C; # ’Perl’

$foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits

print vec($foo, 0, 8); # prints 80 == 0x50 == ord(’P’)

vec($foo, 2, 16) = 0x5065; # ’PerlPe’

vec($foo, 3, 16) = 0x726C; # ’PerlPerl’

vec($foo, 8, 8) = 0x50; # ’PerlPerlP’

vec($foo, 9, 8) = 0x65; # ’PerlPerlPe’

vec($foo, 20, 4) = 2; # ’PerlPerlPe’ . "\x02"

vec($foo, 21, 4) = 7; # ’PerlPerlPer’

’r’ is "\x72"

vec($foo, 45, 2) = 3; # ’PerlPerlPer’ . "\x0c"

vec($foo, 93, 1) = 1; # ’PerlPerlPer’ . "\x2c"

vec($foo, 94, 1) = 1; # ’PerlPerlPerl’

’l’ is "\x6c"

To transform a bit vector into a string or list of 0’s and 1’s, use these:

$bits = unpack("b*", $vector);

@bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

Here is an example to illustrate how the bits actually fall in place:

#!/usr/bin/perl -wl

print <<’EOT’;

0 1 2 3

unpack("V",$_) 01234567890123456789012345678901

--

EOT

for $w (0..3) {

$width = 2**$w;

for ($shift=0; $shift < $width; ++$shift) {

for ($off=0; $off < 32/$width; ++$off) {

$str = pack("B*", "0"x32);

$bits = (1<<$shift);

vec($str, $off, $width) = $bits;

$res = unpack("b*",$str);

$val = unpack("V", $str);

write;

}

}

}

format STDOUT =

vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

$off, $width, $bits, $val, $res

.

__END__

Regardless of the machine architecture on which it runs, the example above
should print the following table:

0 1 2 3

unpack("V",$_) 01234567890123456789012345678901

--

vec($_, 0, 1) = 1 == 1 10000000000000000000000000000000

vec($_, 1, 1) = 1 == 2 01000000000000000000000000000000

vec($_, 2, 1) = 1 == 4 00100000000000000000000000000000

vec($_, 3, 1) = 1 == 8 00010000000000000000000000000000

vec($_, 4, 1) = 1 == 16 00001000000000000000000000000000

vec($_, 5, 1) = 1 == 32 00000100000000000000000000000000

vec($_, 6, 1) = 1 == 64 00000010000000000000000000000000

vec($_, 7, 1) = 1 == 128 00000001000000000000000000000000

vec($_, 8, 1) = 1 == 256 00000000100000000000000000000000

vec($_, 9, 1) = 1 == 512 00000000010000000000000000000000

vec($_,10, 1) = 1 == 1024 00000000001000000000000000000000

vec($_,11, 1) = 1 == 2048 00000000000100000000000000000000

vec($_,12, 1) = 1 == 4096 00000000000010000000000000000000

vec($_,13, 1) = 1 == 8192 00000000000001000000000000000000

vec($_,14, 1) = 1 == 16384 00000000000000100000000000000000

vec($_,15, 1) = 1 == 32768 00000000000000010000000000000000

vec($_,16, 1) = 1 == 65536 00000000000000001000000000000000

vec($_,17, 1) = 1 == 131072 00000000000000000100000000000000

vec($_,18, 1) = 1 == 262144 00000000000000000010000000000000

vec($_,19, 1) = 1 == 524288 00000000000000000001000000000000

vec($_,20, 1) = 1 == 1048576 00000000000000000000100000000000

vec($_,21, 1) = 1 == 2097152 00000000000000000000010000000000

vec($_,22, 1) = 1 == 4194304 00000000000000000000001000000000

vec($_,23, 1) = 1 == 8388608 00000000000000000000000100000000

vec($_,24, 1) = 1 == 16777216 00000000000000000000000010000000

vec($_,25, 1) = 1 == 33554432 00000000000000000000000001000000

vec($_,26, 1) = 1 == 67108864 00000000000000000000000000100000

vec($_,27, 1) = 1 == 134217728 00000000000000000000000000010000

vec($_,28, 1) = 1 == 268435456 00000000000000000000000000001000

vec($_,29, 1) = 1 == 536870912 00000000000000000000000000000100

vec($_,30, 1) = 1 == 1073741824 00000000000000000000000000000010

vec($_,31, 1) = 1 == 2147483648 00000000000000000000000000000001

vec($_, 0, 2) = 1 == 1 10000000000000000000000000000000

vec($_, 1, 2) = 1 == 4 00100000000000000000000000000000

vec($_, 2, 2) = 1 == 16 00001000000000000000000000000000

vec($_, 3, 2) = 1 == 64 00000010000000000000000000000000

vec($_, 4, 2) = 1 == 256 00000000100000000000000000000000

vec($_, 5, 2) = 1 == 1024 00000000001000000000000000000000

vec($_, 6, 2) = 1 == 4096 00000000000010000000000000000000

vec($_, 7, 2) = 1 == 16384 00000000000000100000000000000000

vec($_, 8, 2) = 1 == 65536 00000000000000001000000000000000

vec($_, 9, 2) = 1 == 262144 00000000000000000010000000000000

vec($_,10, 2) = 1 == 1048576 00000000000000000000100000000000

vec($_,11, 2) = 1 == 4194304 00000000000000000000001000000000

vec($_,12, 2) = 1 == 16777216 00000000000000000000000010000000

vec($_,13, 2) = 1 == 67108864 00000000000000000000000000100000

vec($_,14, 2) = 1 == 268435456 00000000000000000000000000001000

vec($_,15, 2) = 1 == 1073741824 00000000000000000000000000000010

vec($_, 0, 2) = 2 == 2 01000000000000000000000000000000

vec($_, 1, 2) = 2 == 8 00010000000000000000000000000000

vec($_, 2, 2) = 2 == 32 00000100000000000000000000000000

vec($_, 3, 2) = 2 == 128 00000001000000000000000000000000

vec($_, 4, 2) = 2 == 512 00000000010000000000000000000000

vec($_, 5, 2) = 2 == 2048 00000000000100000000000000000000

vec($_, 6, 2) = 2 == 8192 00000000000001000000000000000000

vec($_, 7, 2) = 2 == 32768 00000000000000010000000000000000

vec($_, 8, 2) = 2 == 131072 00000000000000000100000000000000

vec($_, 9, 2) = 2 == 524288 00000000000000000001000000000000

vec($_,10, 2) = 2 == 2097152 00000000000000000000010000000000

vec($_,11, 2) = 2 == 8388608 00000000000000000000000100000000

vec($_,12, 2) = 2 == 33554432 00000000000000000000000001000000

vec($_,13, 2) = 2 == 134217728 00000000000000000000000000010000

vec($_,14, 2) = 2 == 536870912 00000000000000000000000000000100

vec($_,15, 2) = 2 == 2147483648 00000000000000000000000000000001

vec($_, 0, 4) = 1 == 1 10000000000000000000000000000000

vec($_, 1, 4) = 1 == 16 00001000000000000000000000000000

vec($_, 2, 4) = 1 == 256 00000000100000000000000000000000

vec($_, 3, 4) = 1 == 4096 00000000000010000000000000000000

vec($_, 4, 4) = 1 == 65536 00000000000000001000000000000000

vec($_, 5, 4) = 1 == 1048576 00000000000000000000100000000000

vec($_, 6, 4) = 1 == 16777216 00000000000000000000000010000000

vec($_, 7, 4) = 1 == 268435456 00000000000000000000000000001000

vec($_, 0, 4) = 2 == 2 01000000000000000000000000000000

vec($_, 1, 4) = 2 == 32 00000100000000000000000000000000

vec($_, 2, 4) = 2 == 512 00000000010000000000000000000000

vec($_, 3, 4) = 2 == 8192 00000000000001000000000000000000

vec($_, 4, 4) = 2 == 131072 00000000000000000100000000000000

vec($_, 5, 4) = 2 == 2097152 00000000000000000000010000000000

vec($_, 6, 4) = 2 == 33554432 00000000000000000000000001000000

vec($_, 7, 4) = 2 == 536870912 00000000000000000000000000000100

vec($_, 0, 4) = 4 == 4 00100000000000000000000000000000

vec($_, 1, 4) = 4 == 64 00000010000000000000000000000000

vec($_, 2, 4) = 4 == 1024 00000000001000000000000000000000

vec($_, 3, 4) = 4 == 16384 00000000000000100000000000000000

vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000

vec($_, 5, 4) = 4 == 4194304 00000000000000000000001000000000

vec($_, 6, 4) = 4 == 67108864 00000000000000000000000000100000

vec($_, 7, 4) = 4 == 1073741824 00000000000000000000000000000010

vec($_, 0, 4) = 8 == 8 00010000000000000000000000000000

vec($_, 1, 4) = 8 == 128 00000001000000000000000000000000

vec($_, 2, 4) = 8 == 2048 00000000000100000000000000000000

vec($_, 3, 4) = 8 == 32768 00000000000000010000000000000000

vec($_, 4, 4) = 8 == 524288 00000000000000000001000000000000

vec($_, 5, 4) = 8 == 8388608 00000000000000000000000100000000

vec($_, 6, 4) = 8 == 134217728 00000000000000000000000000010000

vec($_, 7, 4) = 8 == 2147483648 00000000000000000000000000000001

vec($_, 0, 8) = 1 == 1 10000000000000000000000000000000

vec($_, 1, 8) = 1 == 256 00000000100000000000000000000000

vec($_, 2, 8) = 1 == 65536 00000000000000001000000000000000

vec($_, 3, 8) = 1 == 16777216 00000000000000000000000010000000

vec($_, 0, 8) = 2 == 2 01000000000000000000000000000000

vec($_, 1, 8) = 2 == 512 00000000010000000000000000000000

vec($_, 2, 8) = 2 == 131072 00000000000000000100000000000000

vec($_, 3, 8) = 2 == 33554432 00000000000000000000000001000000

vec($_, 0, 8) = 4 == 4 00100000000000000000000000000000

vec($_, 1, 8) = 4 == 1024 00000000001000000000000000000000

vec($_, 2, 8) = 4 == 262144 00000000000000000010000000000000

vec($_, 3, 8) = 4 == 67108864 00000000000000000000000000100000

vec($_, 0, 8) = 8 == 8 00010000000000000000000000000000

vec($_, 1, 8) = 8 == 2048 00000000000100000000000000000000

vec($_, 2, 8) = 8 == 524288 00000000000000000001000000000000

vec($_, 3, 8) = 8 == 134217728 00000000000000000000000000010000

vec($_, 0, 8) = 16 == 16 00001000000000000000000000000000

vec($_, 1, 8) = 16 == 4096 00000000000010000000000000000000

vec($_, 2, 8) = 16 == 1048576 00000000000000000000100000000000

vec($_, 3, 8) = 16 == 268435456 00000000000000000000000000001000

vec($_, 0, 8) = 32 == 32 00000100000000000000000000000000

vec($_, 1, 8) = 32 == 8192 00000000000001000000000000000000

vec($_, 2, 8) = 32 == 2097152 00000000000000000000010000000000

vec($_, 3, 8) = 32 == 536870912 00000000000000000000000000000100

vec($_, 0, 8) = 64 == 64 00000010000000000000000000000000

vec($_, 1, 8) = 64 == 16384 00000000000000100000000000000000

vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000

vec($_, 3, 8) = 64 == 1073741824 00000000000000000000000000000010

vec($_, 0, 8) = 128 == 128 00000001000000000000000000000000

vec($_, 1, 8) = 128 == 32768 00000000000000010000000000000000

vec($_, 2, 8) = 128 == 8388608 00000000000000000000000100000000

vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001

wait

Behaves like wait(2) on your system: it waits for a child process to terminate
and returns the pid of the deceased process, or -1 if there are no child processes.
The status is returned in $? and ${^CHILD_ERROR_NATIVE}. Note that a return
value of -1 could mean that child processes are being automatically reaped, as
described in Section 36.1 [perlipc NAME], page 667.

If you use wait in your handler for $SIG{CHLD}, it may accidentally wait
for the child created by qx() or system(). See Section 36.1 [perlipc NAME],
page 667 for details.

Portability issues: [perlport wait], page 980.

waitpid PID,FLAGS
Waits for a particular child process to terminate and returns the pid of the
deceased process, or -1 if there is no such child process. On some systems, a
value of 0 indicates that there are processes still running. The status is returned
in $? and ${^CHILD_ERROR_NATIVE}. If you say

use POSIX ":sys_wait_h";

#...

do {

$kid = waitpid(-1, WNOHANG);

} while $kid > 0;

then you can do a non-blocking wait for all pending zombie processes. Non-
blocking wait is available on machines supporting either the waitpid(2) or
wait4(2) syscalls. However, waiting for a particular pid with FLAGS of 0 is
implemented everywhere. (Perl emulates the system call by remembering the
status values of processes that have exited but have not been harvested by the
Perl script yet.)

Note that on some systems, a return value of -1 could mean that child processes
are being automatically reaped. See Section 36.1 [perlipc NAME], page 667 for
details, and for other examples.

Portability issues: [perlport waitpid], page 980.

wantarray

Returns true if the context of the currently executing subroutine or eval is
looking for a list value. Returns false if the context is looking for a scalar.
Returns the undefined value if the context is looking for no value (void context).

return unless defined wantarray; # don’t bother doing more

my @a = complex_calculation();

return wantarray ? @a : "@a";

wantarray()’s result is unspecified in the top level of a file, in a BEGIN,
UNITCHECK, CHECK, INIT or END block, or in a DESTROY method.

This function should have been named wantlist() instead.

warn LIST
Prints the value of LIST to STDERR. If the last element of LIST does not end
in a newline, it appends the same file/line number text as die does.

If the output is empty and $@ already contains a value (typically from a previous
eval) that value is used after appending "\t...caught" to $@. This is useful
for staying almost, but not entirely similar to die.

If $@ is empty then the string "Warning: Something’s wrong" is used.

No message is printed if there is a $SIG{__WARN__} handler installed. It is the
handler’s responsibility to deal with the message as it sees fit (like, for instance,

converting it into a die). Most handlers must therefore arrange to actually
display the warnings that they are not prepared to deal with, by calling warn

again in the handler. Note that this is quite safe and will not produce an endless
loop, since __WARN__ hooks are not called from inside one.

You will find this behavior is slightly different from that of $SIG{__DIE__}
handlers (which don’t suppress the error text, but can instead call die again
to change it).

Using a __WARN__ handler provides a powerful way to silence all warnings (even
the so-called mandatory ones). An example:

wipe out *all* compile-time warnings

BEGIN { $SIG{’__WARN__’} = sub { warn $_[0] if $DOWARN } }

my $foo = 10;

my $foo = 20; # no warning about duplicate my $foo,

but hey, you asked for it!

no compile-time or run-time warnings before here

$DOWARN = 1;

run-time warnings enabled after here

warn "\$foo is alive and $foo!"; # does show up

See Section 86.1 [perlvar NAME], page 1375 for details on setting %SIG entries
and for more examples. See the Carp module for other kinds of warnings using
its carp() and cluck() functions.

write FILEHANDLE
write EXPR
write

Writes a formatted record (possibly multi-line) to the specified FILEHANDLE,
using the format associated with that file. By default the format for a file is
the one having the same name as the filehandle, but the format for the current
output channel (see the select function) may be set explicitly by assigning the
name of the format to the $~ variable.

Top of form processing is handled automatically: if there is insufficient room
on the current page for the formatted record, the page is advanced by writing a
form feed and a special top-of-page format is used to format the new page header
before the record is written. By default, the top-of-page format is the name of
the filehandle with " TOP" appended, or "top" in the current package if the
former does not exist. This would be a problem with autovivified filehandles,
but it may be dynamically set to the format of your choice by assigning the
name to the $^ variable while that filehandle is selected. The number of lines
remaining on the current page is in variable $-, which can be set to 0 to force
a new page.

If FILEHANDLE is unspecified, output goes to the current default output chan-
nel, which starts out as STDOUT but may be changed by the select operator.
If the FILEHANDLE is an EXPR, then the expression is evaluated and the
resulting string is used to look up the name of the FILEHANDLE at run time.
For more on formats, see Section 24.1 [perlform NAME], page 343.

Note that write is not the opposite of read. Unfortunately.

y///

The transliteration operator. Same as tr///. See Section 48.2.31 [perlop
Quote-Like Operators], page 832.

25.2.4 Non-function Keywords by Cross-reference

25.2.4.1 perldata

DATA

END

These keywords are documented in Section 11.2.5.3 [perldata Special Literals],
page 78.

25.2.4.2 perlmod

BEGIN

CHECK

END

INIT

UNITCHECK
These compile phase keywords are documented in Section 40.2.4 [perlmod BE-
GIN, UNITCHECK, CHECK, INIT and END], page 736.

25.2.4.3 perlobj

DESTROY
This method keyword is documented in Section 46.2.14 [perlobj Destructors],
page 782.

25.2.4.4 perlop

and

cmp

eq

ge

gt

le

lt

ne

not

or

x

xor

These operators are documented in Section 48.1 [perlop NAME], page 798.

25.2.4.5 perlsub

AUTOLOAD
This keyword is documented in Section 73.3.13 [perlsub Autoloading],
page 1246.

25.2.4.6 perlsyn

else

elsif

for

foreach

if

unless

until

while

These flow-control keywords are documented in Section 74.2.6 [perlsyn Com-
pound Statements], page 1252.

elseif

The "else if" keyword is spelled elsif in Perl. There’s no elif or else if

either. It does parse elseif, but only to warn you about not using it.

See the documentation for flow-control keywords in Section 74.2.6 [perlsyn Com-
pound Statements], page 1252.

default

given

when

These flow-control keywords related to the experimental switch feature are doc-
umented in Section 74.2.11 [perlsyn Switch Statements], page 1258.

26 perlgit

26.1 NAME

perlgit - Detailed information about git and the Perl repository

26.2 DESCRIPTION

This document provides details on using git to develop Perl. If you are just interested in
working on a quick patch, see Section 29.1 [perlhack NAME], page 562 first. This document
is intended for people who are regular contributors to Perl, including those with write access
to the git repository.

26.3 CLONING THE REPOSITORY

All of Perl’s source code is kept centrally in a Git repository at perl5.git.perl.org.

You can make a read-only clone of the repository by running:

% git clone git://perl5.git.perl.org/perl.git perl

This uses the git protocol (port 9418).

If you cannot use the git protocol for firewall reasons, you can also clone via http, though
this is much slower:

% git clone http://perl5.git.perl.org/perl.git perl

26.4 WORKING WITH THE REPOSITORY

Once you have changed into the repository directory, you can inspect it. After a clone the
repository will contain a single local branch, which will be the current branch as well, as
indicated by the asterisk.

% git branch

* blead

Using the -a switch to branch will also show the remote tracking branches in the repos-
itory:

% git branch -a

* blead

origin/HEAD

origin/blead

...

The branches that begin with "origin" correspond to the "git remote" that you cloned
from (which is named "origin"). Each branch on the remote will be exactly tracked by
these branches. You should NEVER do work on these remote tracking branches. You only
ever do work in a local branch. Local branches can be configured to automerge (on pull)
from a designated remote tracking branch. This is the case with the default branch blead

which will be configured to merge from the remote tracking branch origin/blead.

You can see recent commits:

% git log

And pull new changes from the repository, and update your local repository (must be
clean first)

% git pull

Assuming we are on the branch blead immediately after a pull, this command would be
more or less equivalent to:

% git fetch

% git merge origin/blead

In fact if you want to update your local repository without touching your working di-
rectory you do:

% git fetch

And if you want to update your remote-tracking branches for all defined remotes simul-
taneously you can do

% git remote update

Neither of these last two commands will update your working directory, however both
will update the remote-tracking branches in your repository.

To make a local branch of a remote branch:

% git checkout -b maint-5.10 origin/maint-5.10

To switch back to blead:

% git checkout blead

26.4.1 Finding out your status

The most common git command you will use will probably be

% git status

This command will produce as output a description of the current state of the repository,
including modified files and unignored untracked files, and in addition it will show things
like what files have been staged for the next commit, and usually some useful information
about how to change things. For instance the following:

$ git status

On branch blead

Your branch is ahead of ’origin/blead’ by 1 commit.

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: pod/perlgit.pod

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: pod/perlgit.pod

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

deliberate.untracked

This shows that there were changes to this document staged for commit, and that there
were further changes in the working directory not yet staged. It also shows that there was
an untracked file in the working directory, and as you can see shows how to change all of
this. It also shows that there is one commit on the working branch blead which has not
been pushed to the origin remote yet. NOTE: that this output is also what you see as a
template if you do not provide a message to git commit.

26.4.2 Patch workflow

First, please read Section 29.1 [perlhack NAME], page 562 for details on hacking the Perl
core. That document covers many details on how to create a good patch.

If you already have a Perl repository, you should ensure that you’re on the blead branch,
and your repository is up to date:

% git checkout blead

% git pull

It’s preferable to patch against the latest blead version, since this is where new develop-
ment occurs for all changes other than critical bug fixes. Critical bug fix patches should be
made against the relevant maint branches, or should be submitted with a note indicating
all the branches where the fix should be applied.

Now that we have everything up to date, we need to create a temporary new branch for
these changes and switch into it:

% git checkout -b orange

which is the short form of

% git branch orange

% git checkout orange

Creating a topic branch makes it easier for the maintainers to rebase or merge back
into the master blead for a more linear history. If you don’t work on a topic branch the
maintainer has to manually cherry pick your changes onto blead before they can be applied.

That’ll get you scolded on perl5-porters, so don’t do that. Be Awesome.

Then make your changes. For example, if Leon Brocard changes his name to Orange
Brocard, we should change his name in the AUTHORS file:

% perl -pi -e ’s{Leon Brocard}{Orange Brocard}’ AUTHORS

You can see what files are changed:

% git status

On branch orange

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: AUTHORS

#

And you can see the changes:

% git diff

diff --git a/AUTHORS b/AUTHORS

index 293dd70..722c93e 100644

--- a/AUTHORS

+++ b/AUTHORS

@@ -541,7 +541,7 @@ Lars Hecking <lhecking@nmrc.ucc.ie>

Laszlo Molnar <laszlo.molnar@eth.ericsson.se>

Leif Huhn <leif@hale.dkstat.com>

Len Johnson <lenjay@ibm.net>

-Leon Brocard <acme@astray.com>

+Orange Brocard <acme@astray.com>

Les Peters <lpeters@aol.net>

Lesley Binks <lesley.binks@gmail.com>

Lincoln D. Stein <lstein@cshl.org>

Now commit your change locally:

% git commit -a -m ’Rename Leon Brocard to Orange Brocard’

Created commit 6196c1d: Rename Leon Brocard to Orange Brocard

1 files changed, 1 insertions(+), 1 deletions(-)

The -a option is used to include all files that git tracks that you have changed. If at this
time, you only want to commit some of the files you have worked on, you can omit the -a

and use the command git add FILE ... before doing the commit. git add --interactive

allows you to even just commit portions of files instead of all the changes in them.

The -m option is used to specify the commit message. If you omit it, git will open a text
editor for you to compose the message interactively. This is useful when the changes are
more complex than the sample given here, and, depending on the editor, to know that the
first line of the commit message doesn’t exceed the 50 character legal maximum.

Once you’ve finished writing your commit message and exited your editor, git will write
your change to disk and tell you something like this:

Created commit daf8e63: explain git status and stuff about remotes

1 files changed, 83 insertions(+), 3 deletions(-)

If you re-run git status, you should see something like this:

% git status

On branch blead

Your branch is ahead of ’origin/blead’ by 2 commits.

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

deliberate.untracked

nothing added to commit but untracked files present (use "git add" to track)

When in doubt, before you do anything else, check your status and read it carefully,
many questions are answered directly by the git status output.

You can examine your last commit with:

% git show HEAD

and if you are not happy with either the description or the patch itself you can fix it up
by editing the files once more and then issue:

% git commit -a --amend

Now you should create a patch file for all your local changes:

% git format-patch -M blead..

0001-Rename-Leon-Brocard-to-Orange-Brocard.patch

Or for a lot of changes, e.g. from a topic branch:

% git format-patch --stdout -M blead.. > topic-branch-changes.patch

You should now send an email to perlbug@perl.org (mailto:perlbug@perl.org) with
a description of your changes, and include this patch file as an attachment. In addi-
tion to being tracked by RT, mail to perlbug will automatically be forwarded to perl5-
porters (with manual moderation, so please be patient). You should only send patches
to perl5-porters@perl.org (mailto:perl5-porters@perl.org) directly if the patch is not
ready to be applied, but intended for discussion.

Please do not use git-send-email(1) to send your patch. See Section 26.4.4 [Sending
patch emails], page 497 for more information.

If you want to delete your temporary branch, you may do so with:

% git checkout blead

% git branch -d orange

error: The branch ’orange’ is not an ancestor of your current HEAD.

If you are sure you want to delete it, run ’git branch -D orange’.

% git branch -D orange

Deleted branch orange.

26.4.3 Committing your changes

Assuming that you’d like to commit all the changes you’ve made as a single atomic unit,
run this command:

% git commit -a

(That -a tells git to add every file you’ve changed to this commit. New files aren’t
automatically added to your commit when you use commit -a If you want to add files or to
commit some, but not all of your changes, have a look at the documentation for git add.)

Git will start up your favorite text editor, so that you can craft a commit message for your
change. See Section 29.7.2.2 [perlhack Commit message], page 566 for more information
about what makes a good commit message.

Once you’ve finished writing your commit message and exited your editor, git will write
your change to disk and tell you something like this:

Created commit daf8e63: explain git status and stuff about remotes

1 files changed, 83 insertions(+), 3 deletions(-)

If you re-run git status, you should see something like this:

% git status

On branch blead

Your branch is ahead of ’origin/blead’ by 2 commits.

#

mailto:perlbug@perl.org
mailto:perl5-porters@perl.org

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

deliberate.untracked

nothing added to commit but untracked files present (use "git add" to track)

When in doubt, before you do anything else, check your status and read it carefully,
many questions are answered directly by the git status output.

26.4.4 Sending patch emails

After you’ve generated your patch you should sent it to perlbug@perl.org (as discussed
Section 26.4.2 [in the previous section], page 494) with a normal mail client as an attach-
ment, along with a description of the patch.

You must not use git-send-email(1) to send patches generated with git-format-patch(1).
The RT ticketing system living behind perlbug@perl.org does not respect the inline contents
of E-Mails, sending an inline patch to RT guarantees that your patch will be destroyed.

Someone may download your patch from RT, which will result in the subject (the first
line of the commit message) being omitted. See RT #74192 and commit a4583001 for an
example. Alternatively someone may apply your patch from RT after it arrived in their
mailbox, by which time RT will have modified the inline content of the message. See RT
#74532 and commit f9bcfeac for a bad example of this failure mode.

26.4.5 A note on derived files

Be aware that many files in the distribution are derivative–avoid patching them, because git
won’t see the changes to them, and the build process will overwrite them. Patch the originals
instead. Most utilities (like perldoc) are in this category, i.e. patch utils/perldoc.PL

rather than utils/perldoc. Similarly, don’t create patches for files under $src root/ext
from their copies found in $install root/lib. If you are unsure about the proper location
of a file that may have gotten copied while building the source distribution, consult the
MANIFEST.

26.4.6 Cleaning a working directory

The command git clean can with varying arguments be used as a replacement for make
clean.

To reset your working directory to a pristine condition you can do:

% git clean -dxf

However, be aware this will delete ALL untracked content. You can use

% git clean -Xf

to remove all ignored untracked files, such as build and test byproduct, but leave any
manually created files alone.

If you only want to cancel some uncommitted edits, you can use git checkout and give
it a list of files to be reverted, or git checkout -f to revert them all.

If you want to cancel one or several commits, you can use git reset.

26.4.7 Bisecting

git provides a built-in way to determine which commit should be blamed for introducing a
given bug. git bisect performs a binary search of history to locate the first failing commit.
It is fast, powerful and flexible, but requires some setup and to automate the process an
auxiliary shell script is needed.

The core provides a wrapper program, Porting/bisect.pl, which attempts to simplify
as much as possible, making bisecting as simple as running a Perl one-liner. For example,
if you want to know when this became an error:

perl -e ’my $a := 2’

you simply run this:

.../Porting/bisect.pl -e ’my $a := 2;’

Using bisect.pl, with one command (and no other files) it’s easy to find out

• Which commit caused this example code to break?

• Which commit caused this example code to start working?

• Which commit added the first file to match this regex?

• Which commit removed the last file to match this regex?

usually without needing to know which versions of perl to use as start and end revisions,
as bisect.pl automatically searches to find the earliest stable version for which the test
case passes. Run Porting/bisect.pl --help for the full documentation, including how to
set the Configure and build time options.

If you require more flexibility than Porting/bisect.pl has to offer, you’ll need to run
git bisect yourself. It’s most useful to use git bisect run to automate the building
and testing of perl revisions. For this you’ll need a shell script for git to call to test a
particular revision. An example script is Porting/bisect-example.sh, which you should
copy outside of the repository, as the bisect process will reset the state to a clean checkout
as it runs. The instructions below assume that you copied it as ~/run and then edited it
as appropriate.

You first enter in bisect mode with:

% git bisect start

For example, if the bug is present on HEAD but wasn’t in 5.10.0, git will learn about this
when you enter:

% git bisect bad

% git bisect good perl-5.10.0

Bisecting: 853 revisions left to test after this

This results in checking out the median commit between HEAD and perl-5.10.0. You
can then run the bisecting process with:

% git bisect run ~/run

When the first bad commit is isolated, git bisect will tell you so:

ca4cfd28534303b82a216cfe83a1c80cbc3b9dc5 is first bad commit

commit ca4cfd28534303b82a216cfe83a1c80cbc3b9dc5

Author: Dave Mitchell <davem@fdisolutions.com>

Date: Sat Feb 9 14:56:23 2008 +0000

[perl #49472] Attributes + Unknown Error

...

bisect run success

You can peek into the bisecting process with git bisect log and git bisect

visualize. git bisect reset will get you out of bisect mode.

Please note that the first good state must be an ancestor of the first bad state. If you
want to search for the commit that solved some bug, you have to negate your test case (i.e.
exit with 1 if OK and 0 if not) and still mark the lower bound as good and the upper as
bad. The "first bad commit" has then to be understood as the "first commit where the bug
is solved".

git help bisect has much more information on how you can tweak your binary searches.

26.4.8 Topic branches and rewriting history

Individual committers should create topic branches under yourname/some descriptive name.
Other committers should check with a topic branch’s creator before making any change to
it.

The simplest way to create a remote topic branch that works on all versions of git is to
push the current head as a new branch on the remote, then check it out locally:

$ branch="$yourname/$some_descriptive_name"

$ git push origin HEAD:$branch

$ git checkout -b $branch origin/$branch

Users of git 1.7 or newer can do it in a more obvious manner:

$ branch="$yourname/$some_descriptive_name"

$ git checkout -b $branch

$ git push origin -u $branch

If you are not the creator of yourname/some descriptive name, you might sometimes
find that the original author has edited the branch’s history. There are lots of good reasons
for this. Sometimes, an author might simply be rebasing the branch onto a newer source
point. Sometimes, an author might have found an error in an early commit which they
wanted to fix before merging the branch to blead.

Currently the master repository is configured to forbid non-fast-forward merges. This
means that the branches within can not be rebased and pushed as a single step.

The only way you will ever be allowed to rebase or modify the history of a pushed branch
is to delete it and push it as a new branch under the same name. Please think carefully
about doing this. It may be better to sequentially rename your branches so that it is easier
for others working with you to cherry-pick their local changes onto the new version. (XXX:
needs explanation).

If you want to rebase a personal topic branch, you will have to delete your existing topic
branch and push as a new version of it. You can do this via the following formula (see
the explanation about refspec’s in the git push documentation for details) after you have
rebased your branch:

first rebase

$ git checkout $user/$topic

$ git fetch

$ git rebase origin/blead

then "delete-and-push"

$ git push origin :$user/$topic

$ git push origin $user/$topic

NOTE: it is forbidden at the repository level to delete any of the "primary" branches.
That is any branch matching m!^(blead|maint|perl)!. Any attempt to do so will result
in git producing an error like this:

$ git push origin :blead

*** It is forbidden to delete blead/maint branches in this repository

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/blead

To ssh://perl5.git.perl.org/perl

! [remote rejected] blead (hook declined)

error: failed to push some refs to ’ssh://perl5.git.perl.org/perl’

As a matter of policy we do not edit the history of the blead and maint-* branches. If
a typo (or worse) sneaks into a commit to blead or maint-*, we’ll fix it in another commit.
The only types of updates allowed on these branches are "fast-forward’s", where all history
is preserved.

Annotated tags in the canonical perl.git repository will never be deleted or modified.
Think long and hard about whether you want to push a local tag to perl.git before doing
so. (Pushing unannotated tags is not allowed.)

26.4.9 Grafts

The perl history contains one mistake which was not caught in the conversion: a merge was
recorded in the history between blead and maint-5.10 where no merge actually occurred.
Due to the nature of git, this is now impossible to fix in the public repository. You can
remove this mis-merge locally by adding the following line to your .git/info/grafts file:

296f12bbbbaa06de9be9d09d3dcf8f4528898a49 434946e0cb7a32589ed92d18008aaa1d88515930

It is particularly important to have this graft line if any bisecting is done in the area of
the "merge" in question.

26.5 WRITE ACCESS TO THE GIT REPOSITORY

Once you have write access, you will need to modify the URL for the origin remote to enable
pushing. Edit .git/config with the git-config(1) command:

% git config remote.origin.url ssh://perl5.git.perl.org/perl.git

You can also set up your user name and e-mail address. Most people do this once globally
in their ~/.gitconfig by doing something like:

% git config --global user.name "Ævar Arnfjörð Bjarmason"

% git config --global user.email avarab@gmail.com

However, if you’d like to override that just for perl, execute something like the following
in perl:

% git config user.email avar@cpan.org

It is also possible to keep origin as a git remote, and add a new remote for ssh access:

% git remote add camel perl5.git.perl.org:/perl.git

This allows you to update your local repository by pulling from origin, which is faster
and doesn’t require you to authenticate, and to push your changes back with the camel

remote:

% git fetch camel

% git push camel

The fetch command just updates the camel refs, as the objects themselves should have
been fetched when pulling from origin.

26.5.1 Accepting a patch

If you have received a patch file generated using the above section, you should try out the
patch.

First we need to create a temporary new branch for these changes and switch into it:

% git checkout -b experimental

Patches that were formatted by git format-patch are applied with git am:

% git am 0001-Rename-Leon-Brocard-to-Orange-Brocard.patch

Applying Rename Leon Brocard to Orange Brocard

If just a raw diff is provided, it is also possible use this two-step process:

% git apply bugfix.diff

% git commit -a -m "Some fixing" --author="That Guy <that.guy@internets.com>"

Now we can inspect the change:

% git show HEAD

commit b1b3dab48344cff6de4087efca3dbd63548ab5e2

Author: Leon Brocard <acme@astray.com>

Date: Fri Dec 19 17:02:59 2008 +0000

Rename Leon Brocard to Orange Brocard

diff --git a/AUTHORS b/AUTHORS

index 293dd70..722c93e 100644

--- a/AUTHORS

+++ b/AUTHORS

@@ -541,7 +541,7 @@ Lars Hecking <lhecking@nmrc.ucc.ie>

Laszlo Molnar <laszlo.molnar@eth.ericsson.se>

Leif Huhn <leif@hale.dkstat.com>

Len Johnson <lenjay@ibm.net>

-Leon Brocard <acme@astray.com>

+Orange Brocard <acme@astray.com>

Les Peters <lpeters@aol.net>

Lesley Binks <lesley.binks@gmail.com>

Lincoln D. Stein <lstein@cshl.org>

If you are a committer to Perl and you think the patch is good, you can then merge it
into blead then push it out to the main repository:

% git checkout blead

% git merge experimental

% git push origin blead

If you want to delete your temporary branch, you may do so with:

% git checkout blead

% git branch -d experimental

error: The branch ’experimental’ is not an ancestor of your current HEAD.

If you are sure you want to delete it, run ’git branch -D experimental’.

% git branch -D experimental

Deleted branch experimental.

26.5.2 Committing to blead

The ’blead’ branch will become the next production release of Perl.

Before pushing any local change to blead, it’s incredibly important that you do a few
things, lest other committers come after you with pitchforks and torches:

• Make sure you have a good commit message. See Section 29.7.2.2 [perlhack Commit
message], page 566 for details.

• Run the test suite. You might not think that one typo fix would break a test file.
You’d be wrong. Here’s an example of where not running the suite caused problems. A
patch was submitted that added a couple of tests to an existing .t. It couldn’t possibly
affect anything else, so no need to test beyond the single affected .t, right? But, the
submitter’s email address had changed since the last of their submissions, and this
caused other tests to fail. Running the test target given in the next item would have
caught this problem.

• If you don’t run the full test suite, at least make test_porting. This will run basic
sanity checks. To see which sanity checks, have a look in t/porting.

• If you make any changes that affect miniperl or core routines that have different code
paths for miniperl, be sure to run make minitest. This will catch problems that even
the full test suite will not catch because it runs a subset of tests under miniperl rather
than perl.

26.5.3 On merging and rebasing

Simple, one-off commits pushed to the ’blead’ branch should be simple commits that apply
cleanly. In other words, you should make sure your work is committed against the current
position of blead, so that you can push back to the master repository without merging.

Sometimes, blead will move while you’re building or testing your changes. When this
happens, your push will be rejected with a message like this:

To ssh://perl5.git.perl.org/perl.git

! [rejected] blead -> blead (non-fast-forward)

error: failed to push some refs to ’ssh://perl5.git.perl.org/perl.git’

To prevent you from losing history, non-fast-forward updates were rejected

Merge the remote changes (e.g. ’git pull’) before pushing again. See the

’Note about fast-forwards’ section of ’git push --help’ for details.

When this happens, you can just rebase your work against the new position of blead,
like this (assuming your remote for the master repository is "p5p"):

$ git fetch p5p

$ git rebase p5p/blead

You will see your commits being re-applied, and you will then be able to push safely.
More information about rebasing can be found in the documentation for the git-rebase(1)
command.

For larger sets of commits that only make sense together, or that would benefit from a
summary of the set’s purpose, you should use a merge commit. You should perform your
work on a Section 26.4.8 [topic branch], page 499, which you should regularly rebase against
blead to ensure that your code is not broken by blead moving. When you have finished
your work, please perform a final rebase and test. Linear history is something that gets lost
with every commit on blead, but a final rebase makes the history linear again, making it
easier for future maintainers to see what has happened. Rebase as follows (assuming your
work was on the branch committer/somework):

$ git checkout committer/somework

$ git rebase blead

Then you can merge it into master like this:

$ git checkout blead

$ git merge --no-ff --no-commit committer/somework

$ git commit -a

The switches above deserve explanation. --no-ff indicates that even if all your work
can be applied linearly against blead, a merge commit should still be prepared. This ensures
that all your work will be shown as a side branch, with all its commits merged into the
mainstream blead by the merge commit.

--no-commit means that the merge commit will be prepared but not committed. The
commit is then actually performed when you run the next command, which will bring up
your editor to describe the commit. Without --no-commit, the commit would be made
with nearly no useful message, which would greatly diminish the value of the merge commit
as a placeholder for the work’s description.

When describing the merge commit, explain the purpose of the branch, and keep in mind
that this description will probably be used by the eventual release engineer when reviewing
the next perldelta document.

26.5.4 Committing to maintenance versions

Maintenance versions should only be altered to add critical bug fixes, see Section 55.1
[perlpolicy NAME], page 943.

To commit to a maintenance version of perl, you need to create a local tracking branch:

% git checkout --track -b maint-5.005 origin/maint-5.005

This creates a local branch named maint-5.005, which tracks the remote branch
origin/maint-5.005. Then you can pull, commit, merge and push as before.

You can also cherry-pick commits from blead and another branch, by using the git

cherry-pick command. It is recommended to use the -x option to git cherry-pick in
order to record the SHA1 of the original commit in the new commit message.

Before pushing any change to a maint version, make sure you’ve satisfied the steps in
Section 26.5.2 [Committing to blead], page 502 above.

26.5.5 Merging from a branch via GitHub

While we don’t encourage the submission of patches via GitHub, that will still happen.
Here is a guide to merging patches from a GitHub repository.

% git remote add avar git://github.com/avar/perl.git

% git fetch avar

Now you can see the differences between the branch and blead:

% git diff avar/orange

And you can see the commits:

% git log avar/orange

If you approve of a specific commit, you can cherry pick it:

% git cherry-pick 0c24b290ae02b2ab3304f51d5e11e85eb3659eae

Or you could just merge the whole branch if you like it all:

% git merge avar/orange

And then push back to the repository:

% git push origin blead

26.5.6 Using a smoke-me branch to test changes

Sometimes a change affects code paths which you cannot test on the OSes which are directly
available to you and it would be wise to have users on other OSes test the change before
you commit it to blead.

Fortunately, there is a way to get your change smoke-tested on various OSes: push it to
a "smoke-me" branch and wait for certain automated smoke-testers to report the results
from their OSes.

The procedure for doing this is roughly as follows (using the example of of tonyc’s
smoke-me branch called win32stat):

First, make a local branch and switch to it:

% git checkout -b win32stat

Make some changes, build perl and test your changes, then commit them to your local
branch. Then push your local branch to a remote smoke-me branch:

% git push origin win32stat:smoke-me/tonyc/win32stat

Now you can switch back to blead locally:

% git checkout blead

and continue working on other things while you wait a day or two, keeping an eye on
the results reported for your smoke-me branch at http://perl.develop-help.com/ ?

b=smoke-me/tonyc/win32state.

If all is well then update your blead branch:

http://perl.develop-help.com/?b=smoke-me/tonyc/win32state
http://perl.develop-help.com/?b=smoke-me/tonyc/win32state

% git pull

then checkout your smoke-me branch once more and rebase it on blead:

% git rebase blead win32stat

Now switch back to blead and merge your smoke-me branch into it:

% git checkout blead

% git merge win32stat

As described earlier, if there are many changes on your smoke-me branch then you should
prepare a merge commit in which to give an overview of those changes by using the following
command instead of the last command above:

% git merge win32stat --no-ff --no-commit

You should now build perl and test your (merged) changes one last time (ideally run the
whole test suite, but failing that at least run the t/porting/*.t tests) before pushing your
changes as usual:

% git push origin blead

Finally, you should then delete the remote smoke-me branch:

% git push origin :smoke-me/tonyc/win32stat

(which is likely to produce a warning like this, which can be ignored:

remote: fatal: ambiguous argument ’refs/heads/smoke-me/tonyc/win32stat’:

unknown revision or path not in the working tree.

remote: Use ’--’ to separate paths from revisions

) and then delete your local branch:

% git branch -d win32stat

26.5.7 A note on camel and dromedary

The committers have SSH access to the two servers that serve perl5.git.perl.org. One
is perl5.git.perl.org itself (camel), which is the ’master’ repository. The second one
is users.perl5.git.perl.org (dromedary), which can be used for general testing and
development. Dromedary syncs the git tree from camel every few minutes, you should
not push there. Both machines also have a full CPAN mirror in /srv/CPAN, please use
this. To share files with the general public, dromedary serves your ~/public html/ as
http://users.perl5.git.perl.org/~yourlogin/

These hosts have fairly strict firewalls to the outside. Outgoing, only rsync, ssh and
git are allowed. For http and ftp, you can use http://webproxy:3128 as proxy. Incoming,
the firewall tries to detect attacks and blocks IP addresses with suspicious activity. This
sometimes (but very rarely) has false positives and you might get blocked. The quickest
way to get unblocked is to notify the admins.

These two boxes are owned, hosted, and operated by booking.com. You can reach the
sysadmins in #p5p on irc.perl.org or via mail to perl5-porters@perl.org.

27 perlgpl

27.1 NAME

perlgpl - the GNU General Public License, version 1

27.2 SYNOPSIS

You can refer to this document in Pod via "L<perlgpl>"

Or you can see this document by entering "perldoc perlgpl"

27.3 DESCRIPTION

Perl is free software; you can redistribute it and/or modify it under the terms of either:

a) the GNU General Public License as published by the Free

Software Foundation; either version 1, or (at your option) any

later version, or

b) the "Artistic License" which comes with this Kit.

This is the "GNU General Public License, version 1". It’s here so that modules, pro-
grams, etc., that want to declare this as their distribution license can link to it.

For the Perl Artistic License, see Section 3.1 [perlartistic NAME], page 18.

27.4 GNU GENERAL PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE

Version 1, February 1989

Copyright (C) 1989 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The license agreements of most software companies try to keep users

at the mercy of those companies. By contrast, our General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. The

General Public License applies to the Free Software Foundation’s

software and to any other program whose authors commit to using it.

You can use it for your programs, too.

When we speak of free software, we are referring to freedom, not

price. Specifically, the General Public License is designed to make

sure that you have the freedom to give away or sell copies of free

software, that you receive source code or can get it if you want it,

that you can change the software or use pieces of it in new free

programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors’ reputations.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any program or other work which

contains a notice placed by the copyright holder saying it may be

distributed under the terms of this General Public License. The

"Program", below, refers to any such program or work, and a "work based

on the Program" means either the Program or any work containing the

Program or a portion of it, either verbatim or with modifications. Each

licensee is addressed as "you".

1. You may copy and distribute verbatim copies of the Program’s source

code as you receive it, in any medium, provided that you conspicuously and

appropriately publish on each copy an appropriate copyright notice and

disclaimer of warranty; keep intact all the notices that refer to this

General Public License and to the absence of any warranty; and give any

other recipients of the Program a copy of this General Public License

along with the Program. You may charge a fee for the physical act of

transferring a copy.

2. You may modify your copy or copies of the Program or any portion of

it, and copy and distribute such modifications under the terms of Paragraph

1 above, provided that you also do the following:

a) cause the modified files to carry prominent notices stating that

you changed the files and the date of any change; and

b) cause the whole of any work that you distribute or publish, that

in whole or in part contains the Program or any part thereof, either

with or without modifications, to be licensed at no charge to all

third parties under the terms of this General Public License (except

that you may choose to grant warranty protection to some or all

third parties, at your option).

c) If the modified program normally reads commands interactively when

run, you must cause it, when started running for such interactive use

in the simplest and most usual way, to print or display an

announcement including an appropriate copyright notice and a notice

that there is no warranty (or else, saying that you provide a

warranty) and that users may redistribute the program under these

conditions, and telling the user how to view a copy of this General

Public License.

d) You may charge a fee for the physical act of transferring a

copy, and you may at your option offer warranty protection in

exchange for a fee.

Mere aggregation of another independent work with the Program (or its

derivative) on a volume of a storage or distribution medium does not bring

the other work under the scope of these terms.

3. You may copy and distribute the Program (or a portion or derivative of

it, under Paragraph 2) in object code or executable form under the terms of

Paragraphs 1 and 2 above provided that you also do one of the following:

a) accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of

Paragraphs 1 and 2 above; or,

b) accompany it with a written offer, valid for at least three

years, to give any third party free (except for a nominal charge

for the cost of distribution) a complete machine-readable copy of the

corresponding source code, to be distributed under the terms of

Paragraphs 1 and 2 above; or,

c) accompany it with the information you received as to where the

corresponding source code may be obtained. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form alone.)

Source code for a work means the preferred form of the work for making

modifications to it. For an executable file, complete source code means

all the source code for all modules it contains; but, as a special

exception, it need not include source code for modules which are standard

libraries that accompany the operating system on which the executable

file runs, or for standard header files or definitions files that

accompany that operating system.

4. You may not copy, modify, sublicense, distribute or transfer the

Program except as expressly provided under this General Public License.

Any attempt otherwise to copy, modify, sublicense, distribute or transfer

the Program is void, and will automatically terminate your rights to use

the Program under this License. However, parties who have received

copies, or rights to use copies, from you under this General Public

License will not have their licenses terminated so long as such parties

remain in full compliance.

5. By copying, distributing or modifying the Program (or any work based

on the Program) you indicate your acceptance of this license to do so,

and all its terms and conditions.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the original

licensor to copy, distribute or modify the Program subject to these

terms and conditions. You may not impose any further restrictions on the

recipients’ exercise of the rights granted herein.

7. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of the license which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

the license, you may choose any version ever published by the Free Software

Foundation.

8. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

9. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

10. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to humanity, the best way to achieve this is to make it

free software which everyone can redistribute and change under these

terms.

To do so, attach the following notices to the program. It is safest to

attach them to the start of each source file to most effectively convey

the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 1, or (at your option)

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA

02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this

when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19xx name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ’show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ’show c’ for details.

The hypothetical commands ’show w’ and ’show c’ should show the

appropriate parts of the General Public License. Of course, the

commands you use may be called something other than ’show w’ and ’show

c’; they could even be mouse-clicks or menu items--whatever suits your

program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the program, if

necessary. Here a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

program ’Gnomovision’ (a program to direct compilers to make passes

at assemblers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

That’s all there is to it!

28 perlguts

28.1 NAME

perlguts - Introduction to the Perl API

28.2 DESCRIPTION

This document attempts to describe how to use the Perl API, as well as to provide some
info on the basic workings of the Perl core. It is far from complete and probably contains
many errors. Please refer any questions or comments to the author below.

28.3 Variables

28.3.1 Datatypes

Perl has three typedefs that handle Perl’s three main data types:

SV Scalar Value

AV Array Value

HV Hash Value

Each typedef has specific routines that manipulate the various data types.

28.3.2 What is an "IV"?

Perl uses a special typedef IV which is a simple signed integer type that is guaranteed to be
large enough to hold a pointer (as well as an integer). Additionally, there is the UV, which
is simply an unsigned IV.

Perl also uses two special typedefs, I32 and I16, which will always be at least 32-bits and
16-bits long, respectively. (Again, there are U32 and U16, as well.) They will usually be
exactly 32 and 16 bits long, but on Crays they will both be 64 bits.

28.3.3 Working with SVs

An SV can be created and loaded with one command. There are five types of values that can
be loaded: an integer value (IV), an unsigned integer value (UV), a double (NV), a string
(PV), and another scalar (SV). ("PV" stands for "Pointer Value". You might think that it
is misnamed because it is described as pointing only to strings. However, it is possible to
have it point to other things. For example, it could point to an array of UVs. But, using it
for non-strings requires care, as the underlying assumption of much of the internals is that
PVs are just for strings. Often, for example, a trailing NUL is tacked on automatically. The
non-string use is documented only in this paragraph.)

The seven routines are:

SV* newSViv(IV);

SV* newSVuv(UV);

SV* newSVnv(double);

SV* newSVpv(const char*, STRLEN);

SV* newSVpvn(const char*, STRLEN);

SV* newSVpvf(const char*, ...);

SV* newSVsv(SV*);

STRLEN is an integer type (Size t, usually defined as size t in config.h) guaranteed to
be large enough to represent the size of any string that perl can handle.

In the unlikely case of a SV requiring more complex initialization, you can create an
empty SV with newSV(len). If len is 0 an empty SV of type NULL is returned, else an SV
of type PV is returned with len + 1 (for the NUL) bytes of storage allocated, accessible via
SvPVX. In both cases the SV has the undef value.

SV *sv = newSV(0); /* no storage allocated */

SV *sv = newSV(10); /* 10 (+1) bytes of uninitialised storage

* allocated */

To change the value of an already-existing SV, there are eight routines:

void sv_setiv(SV*, IV);

void sv_setuv(SV*, UV);

void sv_setnv(SV*, double);

void sv_setpv(SV*, const char*);

void sv_setpvn(SV*, const char*, STRLEN)

void sv_setpvf(SV*, const char*, ...);

void sv_vsetpvfn(SV*, const char*, STRLEN, va_list *,

SV **, I32, bool *);

void sv_setsv(SV*, SV*);

Notice that you can choose to specify the length of the string to be assigned by using
sv_setpvn, newSVpvn, or newSVpv, or you may allow Perl to calculate the length by using
sv_setpv or by specifying 0 as the second argument to newSVpv. Be warned, though,
that Perl will determine the string’s length by using strlen, which depends on the string
terminating with a NUL character, and not otherwise containing NULs.

The arguments of sv_setpvf are processed like sprintf, and the formatted output
becomes the value.

sv_vsetpvfn is an analogue of vsprintf, but it allows you to specify either a pointer
to a variable argument list or the address and length of an array of SVs. The last argument
points to a boolean; on return, if that boolean is true, then locale-specific information has
been used to format the string, and the string’s contents are therefore untrustworthy (see
Section 70.1 [perlsec NAME], page 1198). This pointer may be NULL if that information
is not important. Note that this function requires you to specify the length of the format.

The sv_set*() functions are not generic enough to operate on values that have "magic".
See Section 28.3.20 [Magic Virtual Tables], page 529 later in this document.

All SVs that contain strings should be terminated with a NUL character. If it is not NUL-
terminated there is a risk of core dumps and corruptions from code which passes the string
to C functions or system calls which expect a NUL-terminated string. Perl’s own functions
typically add a trailing NUL for this reason. Nevertheless, you should be very careful when
you pass a string stored in an SV to a C function or system call.

To access the actual value that an SV points to, you can use the macros:

SvIV(SV*)

SvUV(SV*)

SvNV(SV*)

SvPV(SV*, STRLEN len)

SvPV_nolen(SV*)

which will automatically coerce the actual scalar type into an IV, UV, double, or string.

In the SvPV macro, the length of the string returned is placed into the variable len (this
is a macro, so you do not use &len). If you do not care what the length of the data is,
use the SvPV_nolen macro. Historically the SvPV macro with the global variable PL_na has
been used in this case. But that can be quite inefficient because PL_na must be accessed
in thread-local storage in threaded Perl. In any case, remember that Perl allows arbitrary
strings of data that may both contain NULs and might not be terminated by a NUL.

Also remember that C doesn’t allow you to safely say foo(SvPV(s, len), len);. It
might work with your compiler, but it won’t work for everyone. Break this sort of statement
up into separate assignments:

SV *s;

STRLEN len;

char *ptr;

ptr = SvPV(s, len);

foo(ptr, len);

If you want to know if the scalar value is TRUE, you can use:

SvTRUE(SV*)

Although Perl will automatically grow strings for you, if you need to force Perl to allocate
more memory for your SV, you can use the macro

SvGROW(SV*, STRLEN newlen)

which will determine if more memory needs to be allocated. If so, it will call the function
sv_grow. Note that SvGROW can only increase, not decrease, the allocated memory of an
SV and that it does not automatically add space for the trailing NUL byte (perl’s own string
functions typically do SvGROW(sv, len + 1)).

If you want to write to an existing SV’s buffer and set its value to a string, use
SvPV force() or one of its variants to force the SV to be a PV. This will remove any
of various types of non-stringness from the SV while preserving the content of the SV in
the PV. This can be used, for example, to append data from an API function to a buffer
without extra copying:

(void)SvPVbyte_force(sv, len);

s = SvGROW(sv, len + needlen + 1);

/* something that modifies up to needlen bytes at s+len, but

modifies newlen bytes

eg. newlen = read(fd, s + len, needlen);

ignoring errors for these examples

*/

s[len + newlen] = ’\0’;

SvCUR_set(sv, len + newlen);

SvUTF8_off(sv);

SvSETMAGIC(sv);

If you already have the data in memory or if you want to keep your code simple, you
can use one of the sv cat*() variants, such as sv catpvn(). If you want to insert anywhere
in the string you can use sv insert() or sv insert flags().

If you don’t need the existing content of the SV, you can avoid some copying with:

sv_setpvn(sv, "", 0);

s = SvGROW(sv, needlen + 1);

/* something that modifies up to needlen bytes at s, but modifies

newlen bytes

eg. newlen = read(fd, s. needlen);

*/

s[newlen] = ’\0’;

SvCUR_set(sv, newlen);

SvPOK_only(sv); /* also clears SVf_UTF8 */

SvSETMAGIC(sv);

Again, if you already have the data in memory or want to avoid the complexity of the
above, you can use sv setpvn().

If you have a buffer allocated with Newx() and want to set that as the SV’s value, you can
use sv usepvn flags(). That has some requirements if you want to avoid perl re-allocating
the buffer to fit the trailing NUL:

Newx(buf, somesize+1, char);

/* ... fill in buf ... */

buf[somesize] = ’\0’;

sv_usepvn_flags(sv, buf, somesize, SV_SMAGIC | SV_HAS_TRAILING_NUL);

/* buf now belongs to perl, don’t release it */

If you have an SV and want to know what kind of data Perl thinks is stored in it, you
can use the following macros to check the type of SV you have.

SvIOK(SV*)

SvNOK(SV*)

SvPOK(SV*)

You can get and set the current length of the string stored in an SV with the following
macros:

SvCUR(SV*)

SvCUR_set(SV*, I32 val)

You can also get a pointer to the end of the string stored in the SV with the macro:

SvEND(SV*)

But note that these last three macros are valid only if SvPOK() is true.

If you want to append something to the end of string stored in an SV*, you can use the
following functions:

void sv_catpv(SV*, const char*);

void sv_catpvn(SV*, const char*, STRLEN);

void sv_catpvf(SV*, const char*, ...);

void sv_vcatpvfn(SV*, const char*, STRLEN, va_list *, SV **,

I32, bool);

void sv_catsv(SV*, SV*);

The first function calculates the length of the string to be appended by using strlen.
In the second, you specify the length of the string yourself. The third function processes its
arguments like sprintf and appends the formatted output. The fourth function works like

vsprintf. You can specify the address and length of an array of SVs instead of the va list
argument. The fifth function extends the string stored in the first SV with the string stored
in the second SV. It also forces the second SV to be interpreted as a string.

The sv_cat*() functions are not generic enough to operate on values that have "magic".
See Section 28.3.20 [Magic Virtual Tables], page 529 later in this document.

If you know the name of a scalar variable, you can get a pointer to its SV by using the
following:

SV* get_sv("package::varname", 0);

This returns NULL if the variable does not exist.

If you want to know if this variable (or any other SV) is actually defined, you can call:

SvOK(SV*)

The scalar undef value is stored in an SV instance called PL_sv_undef.

Its address can be used whenever an SV* is needed. Make sure that you don’t try to
compare a random sv with &PL_sv_undef. For example when interfacing Perl code, it’ll
work correctly for:

foo(undef);

But won’t work when called as:

$x = undef;

foo($x);

So to repeat always use SvOK() to check whether an sv is defined.

Also you have to be careful when using &PL_sv_undef as a value in AVs or HVs (see
Section 28.3.9 [AVs, HVs and undefined values], page 521).

There are also the two values PL_sv_yes and PL_sv_no, which contain boolean TRUE
and FALSE values, respectively. Like PL_sv_undef, their addresses can be used whenever
an SV* is needed.

Do not be fooled into thinking that (SV *) 0 is the same as &PL_sv_undef. Take this
code:

SV* sv = (SV*) 0;

if (I-am-to-return-a-real-value) {

sv = sv_2mortal(newSViv(42));

}

sv_setsv(ST(0), sv);

This code tries to return a new SV (which contains the value 42) if it should return a
real value, or undef otherwise. Instead it has returned a NULL pointer which, somewhere
down the line, will cause a segmentation violation, bus error, or just weird results. Change
the zero to &PL_sv_undef in the first line and all will be well.

To free an SV that you’ve created, call SvREFCNT_dec(SV*). Normally this call is not
necessary (see Section 28.3.13 [Reference Counts and Mortality], page 524).

28.3.4 Offsets

Perl provides the function sv_chop to efficiently remove characters from the beginning of
a string; you give it an SV and a pointer to somewhere inside the PV, and it discards
everything before the pointer. The efficiency comes by means of a little hack: instead of

actually removing the characters, sv_chop sets the flag OOK (offset OK) to signal to other
functions that the offset hack is in effect, and it moves the PV pointer (called SvPVX) forward
by the number of bytes chopped off, and adjusts SvCUR and SvLEN accordingly. (A portion
of the space between the old and new PV pointers is used to store the count of chopped
bytes.)

Hence, at this point, the start of the buffer that we allocated lives at SvPVX(sv) -

SvIV(sv) in memory and the PV pointer is pointing into the middle of this allocated
storage.

This is best demonstrated by example. Normally copy-on-write will prevent the substitu-
tion from operator from using this hack, but if you can craft a string for which copy-on-write
is not possible, you can see it in play. In the current implementation, the final byte of a
string buffer is used as a copy-on-write reference count. If the buffer is not big enough, then
copy-on-write is skipped. First have a look at an empty string:

% ./perl -Ilib -MDevel::Peek -le ’$a=""; $a .= ""; Dump $a’

SV = PV(0x7ffb7c008a70) at 0x7ffb7c030390

REFCNT = 1

FLAGS = (POK,pPOK)

PV = 0x7ffb7bc05b50 ""\0

CUR = 0

LEN = 10

Notice here the LEN is 10. (It may differ on your platform.) Extend the length of the
string to one less than 10, and do a substitution:

% ./perl -Ilib -MDevel::Peek -le ’$a=""; $a.="123456789"; $a=~s/.//; Dump($a)’

SV = PV(0x7ffa04008a70) at 0x7ffa04030390

REFCNT = 1

FLAGS = (POK,OOK,pPOK)

OFFSET = 1

PV = 0x7ffa03c05b61 ("\1" .) "23456789"\0

CUR = 8

LEN = 9

Here the number of bytes chopped off (1) is shown next as the OFFSET. The portion of
the string between the "real" and the "fake" beginnings is shown in parentheses, and the
values of SvCUR and SvLEN reflect the fake beginning, not the real one. (The first character
of the string buffer happens to have changed to "\1" here, not "1", because the current
implementation stores the offset count in the string buffer. This is subject to change.)

Something similar to the offset hack is performed on AVs to enable efficient shifting and
splicing off the beginning of the array; while AvARRAY points to the first element in the
array that is visible from Perl, AvALLOC points to the real start of the C array. These are
usually the same, but a shift operation can be carried out by increasing AvARRAY by one
and decreasing AvFILL and AvMAX. Again, the location of the real start of the C array only
comes into play when freeing the array. See av_shift in av.c.

28.3.5 What’s Really Stored in an SV?

Recall that the usual method of determining the type of scalar you have is to use Sv*OK

macros. Because a scalar can be both a number and a string, usually these macros will

always return TRUE and calling the Sv*V macros will do the appropriate conversion of
string to integer/double or integer/double to string.

If you really need to know if you have an integer, double, or string pointer in an SV, you
can use the following three macros instead:

SvIOKp(SV*)

SvNOKp(SV*)

SvPOKp(SV*)

These will tell you if you truly have an integer, double, or string pointer stored in your
SV. The "p" stands for private.

There are various ways in which the private and public flags may differ. For example, in
perl 5.16 and earlier a tied SV may have a valid underlying value in the IV slot (so SvIOKp
is true), but the data should be accessed via the FETCH routine rather than directly, so
SvIOK is false. (In perl 5.18 onwards, tied scalars use the flags the same way as untied
scalars.) Another is when numeric conversion has occurred and precision has been lost:
only the private flag is set on ’lossy’ values. So when an NV is converted to an IV with loss,
SvIOKp, SvNOKp and SvNOK will be set, while SvIOK wont be.

In general, though, it’s best to use the Sv*V macros.

28.3.6 Working with AVs

There are two ways to create and load an AV. The first method creates an empty AV:

AV* newAV();

The second method both creates the AV and initially populates it with SVs:

AV* av_make(SSize_t num, SV **ptr);

The second argument points to an array containing num SV*’s. Once the AV has been
created, the SVs can be destroyed, if so desired.

Once the AV has been created, the following operations are possible on it:

void av_push(AV*, SV*);

SV* av_pop(AV*);

SV* av_shift(AV*);

void av_unshift(AV*, SSize_t num);

These should be familiar operations, with the exception of av_unshift. This routine
adds num elements at the front of the array with the undef value. You must then use
av_store (described below) to assign values to these new elements.

Here are some other functions:

SSize_t av_top_index(AV*);

SV** av_fetch(AV*, SSize_t key, I32 lval);

SV** av_store(AV*, SSize_t key, SV* val);

The av_top_index function returns the highest index value in an array (just like $#array
in Perl). If the array is empty, -1 is returned. The av_fetch function returns the value
at index key, but if lval is non-zero, then av_fetch will store an undef value at that
index. The av_store function stores the value val at index key, and does not increment
the reference count of val. Thus the caller is responsible for taking care of that, and if
av_store returns NULL, the caller will have to decrement the reference count to avoid a

memory leak. Note that av_fetch and av_store both return SV**’s, not SV*’s as their
return value.

A few more:

void av_clear(AV*);

void av_undef(AV*);

void av_extend(AV*, SSize_t key);

The av_clear function deletes all the elements in the AV* array, but does not actually
delete the array itself. The av_undef function will delete all the elements in the array plus
the array itself. The av_extend function extends the array so that it contains at least key+1
elements. If key+1 is less than the currently allocated length of the array, then nothing is
done.

If you know the name of an array variable, you can get a pointer to its AV by using the
following:

AV* get_av("package::varname", 0);

This returns NULL if the variable does not exist.

See Section 28.3.22 [Understanding the Magic of Tied Hashes and Arrays], page 533 for
more information on how to use the array access functions on tied arrays.

28.3.7 Working with HVs

To create an HV, you use the following routine:

HV* newHV();

Once the HV has been created, the following operations are possible on it:

SV** hv_store(HV*, const char* key, U32 klen, SV* val, U32 hash);

SV** hv_fetch(HV*, const char* key, U32 klen, I32 lval);

The klen parameter is the length of the key being passed in (Note that you cannot pass
0 in as a value of klen to tell Perl to measure the length of the key). The val argument
contains the SV pointer to the scalar being stored, and hash is the precomputed hash value
(zero if you want hv_store to calculate it for you). The lval parameter indicates whether
this fetch is actually a part of a store operation, in which case a new undefined value will
be added to the HV with the supplied key and hv_fetch will return as if the value had
already existed.

Remember that hv_store and hv_fetch return SV**’s and not just SV*. To access the
scalar value, you must first dereference the return value. However, you should check to
make sure that the return value is not NULL before dereferencing it.

The first of these two functions checks if a hash table entry exists, and the second deletes
it.

bool hv_exists(HV*, const char* key, U32 klen);

SV* hv_delete(HV*, const char* key, U32 klen, I32 flags);

If flags does not include the G_DISCARD flag then hv_delete will create and return a
mortal copy of the deleted value.

And more miscellaneous functions:

void hv_clear(HV*);

void hv_undef(HV*);

Like their AV counterparts, hv_clear deletes all the entries in the hash table but does
not actually delete the hash table. The hv_undef deletes both the entries and the hash
table itself.

Perl keeps the actual data in a linked list of structures with a typedef of HE. These
contain the actual key and value pointers (plus extra administrative overhead). The key is
a string pointer; the value is an SV*. However, once you have an HE*, to get the actual key
and value, use the routines specified below.

I32 hv_iterinit(HV*);

/* Prepares starting point to traverse hash table */

HE* hv_iternext(HV*);

/* Get the next entry, and return a pointer to a

structure that has both the key and value */

char* hv_iterkey(HE* entry, I32* retlen);

/* Get the key from an HE structure and also return

the length of the key string */

SV* hv_iterval(HV*, HE* entry);

/* Return an SV pointer to the value of the HE

structure */

SV* hv_iternextsv(HV*, char** key, I32* retlen);

/* This convenience routine combines hv_iternext,

hv_iterkey, and hv_iterval. The key and retlen

arguments are return values for the key and its

length. The value is returned in the SV* argument */

If you know the name of a hash variable, you can get a pointer to its HV by using the
following:

HV* get_hv("package::varname", 0);

This returns NULL if the variable does not exist.

The hash algorithm is defined in the PERL_HASH macro:

PERL_HASH(hash, key, klen)

The exact implementation of this macro varies by architecture and version of perl, and
the return value may change per invocation, so the value is only valid for the duration of a
single perl process.

See Section 28.3.22 [Understanding the Magic of Tied Hashes and Arrays], page 533 for
more information on how to use the hash access functions on tied hashes.

28.3.8 Hash API Extensions

Beginning with version 5.004, the following functions are also supported:

HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash);

HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash);

bool hv_exists_ent (HV* tb, SV* key, U32 hash);

SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash);

SV* hv_iterkeysv (HE* entry);

Note that these functions take SV* keys, which simplifies writing of extension code that
deals with hash structures. These functions also allow passing of SV* keys to tie functions
without forcing you to stringify the keys (unlike the previous set of functions).

They also return and accept whole hash entries (HE*), making their use more efficient
(since the hash number for a particular string doesn’t have to be recomputed every time).
See perlapi for detailed descriptions.

The following macros must always be used to access the contents of hash entries. Note
that the arguments to these macros must be simple variables, since they may get evaluated
more than once. See perlapi for detailed descriptions of these macros.

HePV(HE* he, STRLEN len)

HeVAL(HE* he)

HeHASH(HE* he)

HeSVKEY(HE* he)

HeSVKEY_force(HE* he)

HeSVKEY_set(HE* he, SV* sv)

These two lower level macros are defined, but must only be used when dealing with keys
that are not SV*s:

HeKEY(HE* he)

HeKLEN(HE* he)

Note that both hv_store and hv_store_ent do not increment the reference count of
the stored val, which is the caller’s responsibility. If these functions return a NULL value,
the caller will usually have to decrement the reference count of val to avoid a memory leak.

28.3.9 AVs, HVs and undefined values

Sometimes you have to store undefined values in AVs or HVs. Although this may be a rare
case, it can be tricky. That’s because you’re used to using &PL_sv_undef if you need an
undefined SV.

For example, intuition tells you that this XS code:

AV *av = newAV();

av_store(av, 0, &PL_sv_undef);

is equivalent to this Perl code:

my @av;

$av[0] = undef;

Unfortunately, this isn’t true. In perl 5.18 and earlier, AVs use &PL_sv_undef as a
marker for indicating that an array element has not yet been initialized. Thus, exists
$av[0] would be true for the above Perl code, but false for the array generated by the XS
code. In perl 5.20, storing &PL sv undef will create a read-only element, because the scalar
&PL sv undef itself is stored, not a copy.

Similar problems can occur when storing &PL_sv_undef in HVs:

hv_store(hv, "key", 3, &PL_sv_undef, 0);

This will indeed make the value undef, but if you try to modify the value of key, you’ll
get the following error:

Modification of non-creatable hash value attempted

In perl 5.8.0, &PL_sv_undef was also used to mark placeholders in restricted hashes.
This caused such hash entries not to appear when iterating over the hash or when checking
for the keys with the hv_exists function.

You can run into similar problems when you store &PL_sv_yes or &PL_sv_no into AVs
or HVs. Trying to modify such elements will give you the following error:

Modification of a read-only value attempted

To make a long story short, you can use the special variables &PL_sv_undef, &PL_sv_yes
and &PL_sv_no with AVs and HVs, but you have to make sure you know what you’re doing.

Generally, if you want to store an undefined value in an AV or HV, you should not
use &PL_sv_undef, but rather create a new undefined value using the newSV function, for
example:

av_store(av, 42, newSV(0));

hv_store(hv, "foo", 3, newSV(0), 0);

28.3.10 References

References are a special type of scalar that point to other data types (including other
references).

To create a reference, use either of the following functions:

SV* newRV_inc((SV*) thing);

SV* newRV_noinc((SV*) thing);

The thing argument can be any of an SV*, AV*, or HV*. The functions are identical
except that newRV_inc increments the reference count of the thing, while newRV_noinc

does not. For historical reasons, newRV is a synonym for newRV_inc.

Once you have a reference, you can use the following macro to dereference the reference:

SvRV(SV*)

then call the appropriate routines, casting the returned SV* to either an AV* or HV*, if
required.

To determine if an SV is a reference, you can use the following macro:

SvROK(SV*)

To discover what type of value the reference refers to, use the following macro and then
check the return value.

SvTYPE(SvRV(SV*))

The most useful types that will be returned are:

< SVt_PVAV Scalar

SVt_PVAV Array

SVt_PVHV Hash

SVt_PVCV Code

SVt_PVGV Glob (possibly a file handle)

See Section “svtype” in perlapi for more details.

28.3.11 Blessed References and Class Objects

References are also used to support object-oriented programming. In perl’s OO lexicon, an
object is simply a reference that has been blessed into a package (or class). Once blessed,
the programmer may now use the reference to access the various methods in the class.

A reference can be blessed into a package with the following function:

SV* sv_bless(SV* sv, HV* stash);

The sv argument must be a reference value. The stash argument specifies which class
the reference will belong to. See Section 28.3.14 [Stashes and Globs], page 525 for informa-
tion on converting class names into stashes.

/* Still under construction */

The following function upgrades rv to reference if not already one. Creates a new SV
for rv to point to. If classname is non-null, the SV is blessed into the specified class. SV
is returned.

SV* newSVrv(SV* rv, const char* classname);

The following three functions copy integer, unsigned integer or double into an SV whose
reference is rv. SV is blessed if classname is non-null.

SV* sv_setref_iv(SV* rv, const char* classname, IV iv);

SV* sv_setref_uv(SV* rv, const char* classname, UV uv);

SV* sv_setref_nv(SV* rv, const char* classname, NV iv);

The following function copies the pointer value (the address, not the string!) into an SV
whose reference is rv. SV is blessed if classname is non-null.

SV* sv_setref_pv(SV* rv, const char* classname, void* pv);

The following function copies a string into an SV whose reference is rv. Set length to 0
to let Perl calculate the string length. SV is blessed if classname is non-null.

SV* sv_setref_pvn(SV* rv, const char* classname, char* pv,

STRLEN length);

The following function tests whether the SV is blessed into the specified class. It does
not check inheritance relationships.

int sv_isa(SV* sv, const char* name);

The following function tests whether the SV is a reference to a blessed object.

int sv_isobject(SV* sv);

The following function tests whether the SV is derived from the specified class. SV can
be either a reference to a blessed object or a string containing a class name. This is the
function implementing the UNIVERSAL::isa functionality.

bool sv_derived_from(SV* sv, const char* name);

To check if you’ve got an object derived from a specific class you have to write:

if (sv_isobject(sv) && sv_derived_from(sv, class)) { ... }

28.3.12 Creating New Variables

To create a new Perl variable with an undef value which can be accessed from your Perl
script, use the following routines, depending on the variable type.

SV* get_sv("package::varname", GV_ADD);

AV* get_av("package::varname", GV_ADD);

HV* get_hv("package::varname", GV_ADD);

Notice the use of GV ADD as the second parameter. The new variable can now be set,
using the routines appropriate to the data type.

There are additional macros whose values may be bitwise OR’ed with the GV_ADD argu-
ment to enable certain extra features. Those bits are:

GV ADDMULTI
Marks the variable as multiply defined, thus preventing the:

Name <varname> used only once: possible typo

warning.

GV ADDWARN
Issues the warning:

Had to create <varname> unexpectedly

if the variable did not exist before the function was called.

If you do not specify a package name, the variable is created in the current package.

28.3.13 Reference Counts and Mortality

Perl uses a reference count-driven garbage collection mechanism. SVs, AVs, or HVs (xV for
short in the following) start their life with a reference count of 1. If the reference count of
an xV ever drops to 0, then it will be destroyed and its memory made available for reuse.

This normally doesn’t happen at the Perl level unless a variable is undef’ed or the last
variable holding a reference to it is changed or overwritten. At the internal level, however,
reference counts can be manipulated with the following macros:

int SvREFCNT(SV* sv);

SV* SvREFCNT_inc(SV* sv);

void SvREFCNT_dec(SV* sv);

However, there is one other function which manipulates the reference count of its argu-
ment. The newRV_inc function, you will recall, creates a reference to the specified argument.
As a side effect, it increments the argument’s reference count. If this is not what you want,
use newRV_noinc instead.

For example, imagine you want to return a reference from an XSUB function. Inside
the XSUB routine, you create an SV which initially has a reference count of one. Then
you call newRV_inc, passing it the just-created SV. This returns the reference as a new SV,
but the reference count of the SV you passed to newRV_inc has been incremented to two.
Now you return the reference from the XSUB routine and forget about the SV. But Perl
hasn’t! Whenever the returned reference is destroyed, the reference count of the original
SV is decreased to one and nothing happens. The SV will hang around without any way to
access it until Perl itself terminates. This is a memory leak.

The correct procedure, then, is to use newRV_noinc instead of newRV_inc. Then, if and
when the last reference is destroyed, the reference count of the SV will go to zero and it
will be destroyed, stopping any memory leak.

There are some convenience functions available that can help with the destruction of
xVs. These functions introduce the concept of "mortality". An xV that is mortal has had
its reference count marked to be decremented, but not actually decremented, until "a short
time later". Generally the term "short time later" means a single Perl statement, such as a
call to an XSUB function. The actual determinant for when mortal xVs have their reference
count decremented depends on two macros, SAVETMPS and FREETMPS. See Section 7.1
[perlcall NAME], page 28 and perlxs for more details on these macros.

"Mortalization" then is at its simplest a deferred SvREFCNT_dec. However, if you mor-
talize a variable twice, the reference count will later be decremented twice.

"Mortal" SVs are mainly used for SVs that are placed on perl’s stack. For example an
SV which is created just to pass a number to a called sub is made mortal to have it cleaned
up automatically when it’s popped off the stack. Similarly, results returned by XSUBs
(which are pushed on the stack) are often made mortal.

To create a mortal variable, use the functions:

SV* sv_newmortal()

SV* sv_2mortal(SV*)

SV* sv_mortalcopy(SV*)

The first call creates a mortal SV (with no value), the second converts an existing SV to
a mortal SV (and thus defers a call to SvREFCNT_dec), and the third creates a mortal copy
of an existing SV. Because sv_newmortal gives the new SV no value, it must normally be
given one via sv_setpv, sv_setiv, etc. :

SV *tmp = sv_newmortal();

sv_setiv(tmp, an_integer);

As that is multiple C statements it is quite common so see this idiom instead:

SV *tmp = sv_2mortal(newSViv(an_integer));

You should be careful about creating mortal variables. Strange things can happen if
you make the same value mortal within multiple contexts, or if you make a variable mortal
multiple times. Thinking of "Mortalization" as deferred SvREFCNT_dec should help to
minimize such problems. For example if you are passing an SV which you know has a high
enough REFCNT to survive its use on the stack you need not do any mortalization. If you
are not sure then doing an SvREFCNT_inc and sv_2mortal, or making a sv_mortalcopy is
safer.

The mortal routines are not just for SVs; AVs and HVs can be made mortal by passing
their address (type-casted to SV*) to the sv_2mortal or sv_mortalcopy routines.

28.3.14 Stashes and Globs

A stash is a hash that contains all variables that are defined within a package. Each key of
the stash is a symbol name (shared by all the different types of objects that have the same
name), and each value in the hash table is a GV (Glob Value). This GV in turn contains
references to the various objects of that name, including (but not limited to) the following:

Scalar Value

Array Value

Hash Value

I/O Handle

Format

Subroutine

There is a single stash called PL_defstash that holds the items that exist in the main

package. To get at the items in other packages, append the string "::" to the package name.
The items in the Foo package are in the stash Foo:: in PL defstash. The items in the
Bar::Baz package are in the stash Baz:: in Bar::’s stash.

To get the stash pointer for a particular package, use the function:

HV* gv_stashpv(const char* name, I32 flags)

HV* gv_stashsv(SV*, I32 flags)

The first function takes a literal string, the second uses the string stored in the SV.
Remember that a stash is just a hash table, so you get back an HV*. The flags flag will
create a new package if it is set to GV ADD.

The name that gv_stash*v wants is the name of the package whose symbol table you
want. The default package is called main. If you have multiply nested packages, pass their
names to gv_stash*v, separated by :: as in the Perl language itself.

Alternately, if you have an SV that is a blessed reference, you can find out the stash
pointer by using:

HV* SvSTASH(SvRV(SV*));

then use the following to get the package name itself:

char* HvNAME(HV* stash);

If you need to bless or re-bless an object you can use the following function:

SV* sv_bless(SV*, HV* stash)

where the first argument, an SV*, must be a reference, and the second argument is a
stash. The returned SV* can now be used in the same way as any other SV.

For more information on references and blessings, consult Section 62.1 [perlref NAME],
page 1077.

28.3.15 Double-Typed SVs

Scalar variables normally contain only one type of value, an integer, double, pointer, or
reference. Perl will automatically convert the actual scalar data from the stored type into
the requested type.

Some scalar variables contain more than one type of scalar data. For example, the
variable $! contains either the numeric value of errno or its string equivalent from either
strerror or sys_errlist[].

To force multiple data values into an SV, you must do two things: use the sv_set*v

routines to add the additional scalar type, then set a flag so that Perl will believe it contains
more than one type of data. The four macros to set the flags are:

SvIOK_on

SvNOK_on

SvPOK_on

SvROK_on

The particular macro you must use depends on which sv_set*v routine you called first.
This is because every sv_set*v routine turns on only the bit for the particular type of data
being set, and turns off all the rest.

For example, to create a new Perl variable called "dberror" that contains both the
numeric and descriptive string error values, you could use the following code:

extern int dberror;

extern char *dberror_list;

SV* sv = get_sv("dberror", GV_ADD);

sv_setiv(sv, (IV) dberror);

sv_setpv(sv, dberror_list[dberror]);

SvIOK_on(sv);

If the order of sv_setiv and sv_setpv had been reversed, then the macro SvPOK_on

would need to be called instead of SvIOK_on.

28.3.16 Read-Only Values

In Perl 5.16 and earlier, copy-on-write (see the next section) shared a flag bit with read-
only scalars. So the only way to test whether sv_setsv, etc., will raise a "Modification of
a read-only value" error in those versions is:

SvREADONLY(sv) && !SvIsCOW(sv)

Under Perl 5.18 and later, SvREADONLY only applies to read-only variables, and, under
5.20, copy-on-write scalars can also be read-only, so the above check is incorrect. You just
want:

SvREADONLY(sv)

If you need to do this check often, define your own macro like this:

#if PERL_VERSION >= 18

define SvTRULYREADONLY(sv) SvREADONLY(sv)

#else

define SvTRULYREADONLY(sv) (SvREADONLY(sv) && !SvIsCOW(sv))

#endif

28.3.17 Copy on Write

Perl implements a copy-on-write (COW) mechanism for scalars, in which string copies are
not immediately made when requested, but are deferred until made necessary by one or the
other scalar changing. This is mostly transparent, but one must take care not to modify
string buffers that are shared by multiple SVs.

You can test whether an SV is using copy-on-write with SvIsCOW(sv).

You can force an SV to make its own copy of its string buffer by calling sv_force_

normal(sv) or SvPV force nolen(sv).

If you want to make the SV drop its string buffer, use sv_force_normal_flags(sv,

SV_COW_DROP_PV) or simply sv_setsv(sv, NULL).

All of these functions will croak on read-only scalars (see the previous section for more
on those).

To test that your code is behaving correctly and not modifying COW buffers, on sys-
tems that support mmap(2) (i.e., Unix) you can configure perl with -Accflags=-DPERL_

DEBUG_READONLY_COW and it will turn buffer violations into crashes. You will find it to be
marvellously slow, so you may want to skip perl’s own tests.

http://man.he.net/man2/mmap

28.3.18 Magic Variables

[This section still under construction. Ignore everything here. Post no bills. Everything
not permitted is forbidden.]

Any SV may be magical, that is, it has special features that a normal SV does not have.
These features are stored in the SV structure in a linked list of struct magic’s, typedef’ed
to MAGIC.

struct magic {

MAGIC* mg_moremagic;

MGVTBL* mg_virtual;

U16 mg_private;

char mg_type;

U8 mg_flags;

I32 mg_len;

SV* mg_obj;

char* mg_ptr;

};

Note this is current as of patchlevel 0, and could change at any time.

28.3.19 Assigning Magic

Perl adds magic to an SV using the sv magic function:

void sv_magic(SV* sv, SV* obj, int how, const char* name, I32 namlen);

The sv argument is a pointer to the SV that is to acquire a new magical feature.

If sv is not already magical, Perl uses the SvUPGRADE macro to convert sv to type
SVt_PVMG. Perl then continues by adding new magic to the beginning of the linked list of
magical features. Any prior entry of the same type of magic is deleted. Note that this can
be overridden, and multiple instances of the same type of magic can be associated with an
SV.

The name and namlen arguments are used to associate a string with the magic, typically
the name of a variable. namlen is stored in the mg_len field and if name is non-null then
either a savepvn copy of name or name itself is stored in the mg_ptr field, depending on
whether namlen is greater than zero or equal to zero respectively. As a special case, if (name
&& namlen == HEf_SVKEY) then name is assumed to contain an SV* and is stored as-is with
its REFCNT incremented.

The sv magic function uses how to determine which, if any, predefined "Magic Virtual
Table" should be assigned to the mg_virtual field. See the Section 28.3.20 [Magic Virtual
Tables], page 529 section below. The how argument is also stored in the mg_type field. The
value of how should be chosen from the set of macros PERL_MAGIC_foo found in perl.h.
Note that before these macros were added, Perl internals used to directly use character
literals, so you may occasionally come across old code or documentation referring to ’U’
magic rather than PERL_MAGIC_uvar for example.

The obj argument is stored in the mg_obj field of the MAGIC structure. If it is not the
same as the sv argument, the reference count of the obj object is incremented. If it is the
same, or if the how argument is PERL_MAGIC_arylen, or if it is a NULL pointer, then obj

is merely stored, without the reference count being incremented.

See also sv_magicext in perlapi for a more flexible way to add magic to an SV.

There is also a function to add magic to an HV:

void hv_magic(HV *hv, GV *gv, int how);

This simply calls sv_magic and coerces the gv argument into an SV.

To remove the magic from an SV, call the function sv unmagic:

int sv_unmagic(SV *sv, int type);

The type argument should be equal to the how value when the SV was initially made
magical.

However, note that sv_unmagic removes all magic of a certain type from the SV. If
you want to remove only certain magic of a type based on the magic virtual table, use
sv_unmagicext instead:

int sv_unmagicext(SV *sv, int type, MGVTBL *vtbl);

28.3.20 Magic Virtual Tables

The mg_virtual field in the MAGIC structure is a pointer to an MGVTBL, which is a structure
of function pointers and stands for "Magic Virtual Table" to handle the various operations
that might be applied to that variable.

The MGVTBL has five (or sometimes eight) pointers to the following routine types:

int (*svt_get)(SV* sv, MAGIC* mg);

int (*svt_set)(SV* sv, MAGIC* mg);

U32 (*svt_len)(SV* sv, MAGIC* mg);

int (*svt_clear)(SV* sv, MAGIC* mg);

int (*svt_free)(SV* sv, MAGIC* mg);

int (*svt_copy)(SV *sv, MAGIC* mg, SV *nsv,

const char *name, I32 namlen);

int (*svt_dup)(MAGIC *mg, CLONE_PARAMS *param);

int (*svt_local)(SV *nsv, MAGIC *mg);

This MGVTBL structure is set at compile-time in perl.h and there are currently 32
types. These different structures contain pointers to various routines that perform addi-
tional actions depending on which function is being called.

Function pointer Action taken

---------------- ------------

svt_get Do something before the value of the SV is

retrieved.

svt_set Do something after the SV is assigned a value.

svt_len Report on the SV’s length.

svt_clear Clear something the SV represents.

svt_free Free any extra storage associated with the SV.

svt_copy copy tied variable magic to a tied element

svt_dup duplicate a magic structure during thread cloning

svt_local copy magic to local value during ’local’

For instance, the MGVTBL structure called vtbl_sv (which corresponds to an mg_type

of PERL_MAGIC_sv) contains:

{ magic_get, magic_set, magic_len, 0, 0 }

Thus, when an SV is determined to be magical and of type PERL_MAGIC_sv, if a get
operation is being performed, the routine magic_get is called. All the various routines for
the various magical types begin with magic_. NOTE: the magic routines are not considered
part of the Perl API, and may not be exported by the Perl library.

The last three slots are a recent addition, and for source code compatibility they are
only checked for if one of the three flags MGf COPY, MGf DUP or MGf LOCAL is set in
mg flags. This means that most code can continue declaring a vtable as a 5-element value.
These three are currently used exclusively by the threading code, and are highly subject to
change.

The current kinds of Magic Virtual Tables are:

mg_type

(old-style char and macro) MGVTBL Type of magic

-------------------------- ------ -------------

\0 PERL_MAGIC_sv vtbl_sv Special scalar variable

PERL_MAGIC_arylen vtbl_arylen Array length ($#ary)

% PERL_MAGIC_rhash (none) Extra data for restricted

hashes

* PERL_MAGIC_debugvar vtbl_debugvar $DB::single, signal, trace

vars

. PERL_MAGIC_pos vtbl_pos pos() lvalue

: PERL_MAGIC_symtab (none) Extra data for symbol

tables

< PERL_MAGIC_backref vtbl_backref For weak ref data

@ PERL_MAGIC_arylen_p (none) To move arylen out of XPVAV

B PERL_MAGIC_bm vtbl_regexp Boyer-Moore

(fast string search)

c PERL_MAGIC_overload_table vtbl_ovrld Holds overload table

(AMT) on stash

D PERL_MAGIC_regdata vtbl_regdata Regex match position data

(@+ and @- vars)

d PERL_MAGIC_regdatum vtbl_regdatum Regex match position data

element

E PERL_MAGIC_env vtbl_env %ENV hash

e PERL_MAGIC_envelem vtbl_envelem %ENV hash element

f PERL_MAGIC_fm vtbl_regexp Formline

(’compiled’ format)

g PERL_MAGIC_regex_global vtbl_mglob m//g target

H PERL_MAGIC_hints vtbl_hints %^H hash

h PERL_MAGIC_hintselem vtbl_hintselem %^H hash element

I PERL_MAGIC_isa vtbl_isa @ISA array

i PERL_MAGIC_isaelem vtbl_isaelem @ISA array element

k PERL_MAGIC_nkeys vtbl_nkeys scalar(keys()) lvalue

L PERL_MAGIC_dbfile (none) Debugger %_<filename

l PERL_MAGIC_dbline vtbl_dbline Debugger %_<filename

element

N PERL_MAGIC_shared (none) Shared between threads

n PERL_MAGIC_shared_scalar (none) Shared between threads

o PERL_MAGIC_collxfrm vtbl_collxfrm Locale transformation

P PERL_MAGIC_tied vtbl_pack Tied array or hash

p PERL_MAGIC_tiedelem vtbl_packelem Tied array or hash element

q PERL_MAGIC_tiedscalar vtbl_packelem Tied scalar or handle

r PERL_MAGIC_qr vtbl_regexp Precompiled qr// regex

S PERL_MAGIC_sig (none) %SIG hash

s PERL_MAGIC_sigelem vtbl_sigelem %SIG hash element

t PERL_MAGIC_taint vtbl_taint Taintedness

U PERL_MAGIC_uvar vtbl_uvar Available for use by

extensions

u PERL_MAGIC_uvar_elem (none) Reserved for use by

extensions

V PERL_MAGIC_vstring (none) SV was vstring literal

v PERL_MAGIC_vec vtbl_vec vec() lvalue

w PERL_MAGIC_utf8 vtbl_utf8 Cached UTF-8 information

x PERL_MAGIC_substr vtbl_substr substr() lvalue

y PERL_MAGIC_defelem vtbl_defelem Shadow "foreach" iterator

variable / smart parameter

vivification

\ PERL_MAGIC_lvref vtbl_lvref Lvalue reference

constructor

] PERL_MAGIC_checkcall vtbl_checkcall Inlining/mutation of call

to this CV

~ PERL_MAGIC_ext (none) Available for use by

extensions

When an uppercase and lowercase letter both exist in the table, then the uppercase
letter is typically used to represent some kind of composite type (a list or a hash), and the
lowercase letter is used to represent an element of that composite type. Some internals code
makes use of this case relationship. However, ’v’ and ’V’ (vec and v-string) are in no way
related.

The PERL_MAGIC_ext and PERL_MAGIC_uvar magic types are defined specifically for use
by extensions and will not be used by perl itself. Extensions can use PERL_MAGIC_ext

magic to ’attach’ private information to variables (typically objects). This is especially
useful because there is no way for normal perl code to corrupt this private information
(unlike using extra elements of a hash object).

Similarly, PERL_MAGIC_uvar magic can be used much like tie() to call a C function any
time a scalar’s value is used or changed. The MAGIC’s mg_ptr field points to a ufuncs

structure:

struct ufuncs {

I32 (*uf_val)(pTHX_ IV, SV*);

I32 (*uf_set)(pTHX_ IV, SV*);

IV uf_index;

};

When the SV is read from or written to, the uf_val or uf_set function will be called
with uf_index as the first arg and a pointer to the SV as the second. A simple example
of how to add PERL_MAGIC_uvar magic is shown below. Note that the ufuncs structure is
copied by sv magic, so you can safely allocate it on the stack.

void

Umagic(sv)

SV *sv;

PREINIT:

struct ufuncs uf;

CODE:

uf.uf_val = &my_get_fn;

uf.uf_set = &my_set_fn;

uf.uf_index = 0;

sv_magic(sv, 0, PERL_MAGIC_uvar, (char*)&uf, sizeof(uf));

Attaching PERL_MAGIC_uvar to arrays is permissible but has no effect.

For hashes there is a specialized hook that gives control over hash keys (but not values).
This hook calls PERL_MAGIC_uvar ’get’ magic if the "set" function in the ufuncs structure
is NULL. The hook is activated whenever the hash is accessed with a key specified as an SV

through the functions hv_store_ent, hv_fetch_ent, hv_delete_ent, and hv_exists_ent.
Accessing the key as a string through the functions without the ..._ent suffix circumvents
the hook. See Section “GUTS” in Hash-Util-FieldHash for a detailed description.

Note that because multiple extensions may be using PERL_MAGIC_ext or PERL_MAGIC_
uvar magic, it is important for extensions to take extra care to avoid conflict. Typically
only using the magic on objects blessed into the same class as the extension is sufficient.
For PERL_MAGIC_ext magic, it is usually a good idea to define an MGVTBL, even if all its
fields will be 0, so that individual MAGIC pointers can be identified as a particular kind of
magic using their magic virtual table. mg_findext provides an easy way to do that:

STATIC MGVTBL my_vtbl = { 0, 0, 0, 0, 0, 0, 0, 0 };

MAGIC *mg;

if ((mg = mg_findext(sv, PERL_MAGIC_ext, &my_vtbl))) {

/* this is really ours, not another module’s PERL_MAGIC_ext */

my_priv_data_t *priv = (my_priv_data_t *)mg->mg_ptr;

...

}

Also note that the sv_set*() and sv_cat*() functions described earlier do not in-
voke ’set’ magic on their targets. This must be done by the user either by calling the
SvSETMAGIC() macro after calling these functions, or by using one of the sv_set*_mg() or
sv_cat*_mg() functions. Similarly, generic C code must call the SvGETMAGIC() macro to
invoke any ’get’ magic if they use an SV obtained from external sources in functions that
don’t handle magic. See perlapi for a description of these functions. For example, calls
to the sv_cat*() functions typically need to be followed by SvSETMAGIC(), but they don’t
need a prior SvGETMAGIC() since their implementation handles ’get’ magic.

28.3.21 Finding Magic

MAGIC *mg_find(SV *sv, int type); /* Finds the magic pointer of that

* type */

This routine returns a pointer to a MAGIC structure stored in the SV. If the SV does not
have that magical feature, NULL is returned. If the SV has multiple instances of that magical
feature, the first one will be returned. mg_findext can be used to find a MAGIC structure
of an SV based on both its magic type and its magic virtual table:

MAGIC *mg_findext(SV *sv, int type, MGVTBL *vtbl);

Also, if the SV passed to mg_find or mg_findext is not of type SVt PVMG, Perl may
core dump.

int mg_copy(SV* sv, SV* nsv, const char* key, STRLEN klen);

This routine checks to see what types of magic sv has. If the mg type field is an
uppercase letter, then the mg obj is copied to nsv, but the mg type field is changed to be
the lowercase letter.

28.3.22 Understanding the Magic of Tied Hashes and Arrays

Tied hashes and arrays are magical beasts of the PERL_MAGIC_tied magic type.

WARNING: As of the 5.004 release, proper usage of the array and hash access functions
requires understanding a few caveats. Some of these caveats are actually considered bugs
in the API, to be fixed in later releases, and are bracketed with [MAYCHANGE] below.
If you find yourself actually applying such information in this section, be aware that the
behavior may change in the future, umm, without warning.

The perl tie function associates a variable with an object that implements the various
GET, SET, etc methods. To perform the equivalent of the perl tie function from an XSUB,
you must mimic this behaviour. The code below carries out the necessary steps – firstly it
creates a new hash, and then creates a second hash which it blesses into the class which will
implement the tie methods. Lastly it ties the two hashes together, and returns a reference
to the new tied hash. Note that the code below does NOT call the TIEHASH method in the
MyTie class - see Section 28.4.3 [Calling Perl Routines from within C Programs], page 538
for details on how to do this.

SV*

mytie()

PREINIT:

HV *hash;

HV *stash;

SV *tie;

CODE:

hash = newHV();

tie = newRV_noinc((SV*)newHV());

stash = gv_stashpv("MyTie", GV_ADD);

sv_bless(tie, stash);

hv_magic(hash, (GV*)tie, PERL_MAGIC_tied);

RETVAL = newRV_noinc(hash);

OUTPUT:

RETVAL

The av_store function, when given a tied array argument, merely copies the magic of
the array onto the value to be "stored", using mg_copy. It may also return NULL, indicating
that the value did not actually need to be stored in the array. [MAYCHANGE] After a call
to av_store on a tied array, the caller will usually need to call mg_set(val) to actually
invoke the perl level "STORE" method on the TIEARRAY object. If av_store did return
NULL, a call to SvREFCNT_dec(val) will also be usually necessary to avoid a memory leak.
[/MAYCHANGE]

The previous paragraph is applicable verbatim to tied hash access using the hv_store

and hv_store_ent functions as well.

av_fetch and the corresponding hash functions hv_fetch and hv_fetch_ent actually
return an undefined mortal value whose magic has been initialized using mg_copy. Note the
value so returned does not need to be deallocated, as it is already mortal. [MAYCHANGE]
But you will need to call mg_get() on the returned value in order to actually invoke the
perl level "FETCH" method on the underlying TIE object. Similarly, you may also call
mg_set() on the return value after possibly assigning a suitable value to it using sv_setsv,
which will invoke the "STORE" method on the TIE object. [/MAYCHANGE]

[MAYCHANGE] In other words, the array or hash fetch/store functions don’t really
fetch and store actual values in the case of tied arrays and hashes. They merely call mg_
copy to attach magic to the values that were meant to be "stored" or "fetched". Later calls
to mg_get and mg_set actually do the job of invoking the TIE methods on the underlying
objects. Thus the magic mechanism currently implements a kind of lazy access to arrays
and hashes.

Currently (as of perl version 5.004), use of the hash and array access functions requires
the user to be aware of whether they are operating on "normal" hashes and arrays, or on
their tied variants. The API may be changed to provide more transparent access to both
tied and normal data types in future versions. [/MAYCHANGE]

You would do well to understand that the TIEARRAY and TIEHASH interfaces are mere
sugar to invoke some perl method calls while using the uniform hash and array syntax. The
use of this sugar imposes some overhead (typically about two to four extra opcodes per
FETCH/STORE operation, in addition to the creation of all the mortal variables required
to invoke the methods). This overhead will be comparatively small if the TIE methods are
themselves substantial, but if they are only a few statements long, the overhead will not be
insignificant.

28.3.23 Localizing changes

Perl has a very handy construction

{

local $var = 2;

...

}

This construction is approximately equivalent to

{

my $oldvar = $var;

$var = 2;

...

$var = $oldvar;

}

The biggest difference is that the first construction would reinstate the initial value of
$var, irrespective of how control exits the block: goto, return, die/eval, etc. It is a little
bit more efficient as well.

There is a way to achieve a similar task from C via Perl API: create a pseudo-block, and
arrange for some changes to be automatically undone at the end of it, either explicit, or
via a non-local exit (via die()). A block-like construct is created by a pair of ENTER/LEAVE
macros (see Section 7.5.3 [perlcall Returning a Scalar], page 35). Such a construct may be
created specially for some important localized task, or an existing one (like boundaries of
enclosing Perl subroutine/block, or an existing pair for freeing TMPs) may be used. (In the
second case the overhead of additional localization must be almost negligible.) Note that
any XSUB is automatically enclosed in an ENTER/LEAVE pair.

Inside such a pseudo-block the following service is available:

SAVEINT(int i)

SAVEIV(IV i)

SAVEI32(I32 i)

SAVELONG(long i)

These macros arrange things to restore the value of integer variable i at the
end of enclosing pseudo-block.

SAVESPTR(s)

SAVEPPTR(p)

These macros arrange things to restore the value of pointers s and p. s must
be a pointer of a type which survives conversion to SV* and back, p should be
able to survive conversion to char* and back.

SAVEFREESV(SV *sv)

The refcount of sv would be decremented at the end of pseudo-block. This
is similar to sv_2mortal in that it is also a mechanism for doing a delayed
SvREFCNT_dec. However, while sv_2mortal extends the lifetime of sv until the
beginning of the next statement, SAVEFREESV extends it until the end of the
enclosing scope. These lifetimes can be wildly different.

Also compare SAVEMORTALIZESV.

SAVEMORTALIZESV(SV *sv)

Just like SAVEFREESV, but mortalizes sv at the end of the current scope instead
of decrementing its reference count. This usually has the effect of keeping
sv alive until the statement that called the currently live scope has finished
executing.

SAVEFREEOP(OP *op)

The OP * is op free()ed at the end of pseudo-block.

SAVEFREEPV(p)

The chunk of memory which is pointed to by p is Safefree()ed at the end of
pseudo-block.

SAVECLEARSV(SV *sv)

Clears a slot in the current scratchpad which corresponds to sv at the end of
pseudo-block.

SAVEDELETE(HV *hv, char *key, I32 length)

The key key of hv is deleted at the end of pseudo-block. The string pointed to
by key is Safefree()ed. If one has a key in short-lived storage, the corresponding
string may be reallocated like this:

SAVEDELETE(PL_defstash, savepv(tmpbuf), strlen(tmpbuf));

SAVEDESTRUCTOR(DESTRUCTORFUNC_NOCONTEXT_t f, void *p)

At the end of pseudo-block the function f is called with the only argument p.

SAVEDESTRUCTOR_X(DESTRUCTORFUNC_t f, void *p)

At the end of pseudo-block the function f is called with the implicit context
argument (if any), and p.

SAVESTACK_POS()

The current offset on the Perl internal stack (cf. SP) is restored at the end of
pseudo-block.

The following API list contains functions, thus one needs to provide pointers to the
modifiable data explicitly (either C pointers, or Perlish GV *s). Where the above macros
take int, a similar function takes int *.

SV* save_scalar(GV *gv)

Equivalent to Perl code local $gv.

AV* save_ary(GV *gv)

HV* save_hash(GV *gv)

Similar to save_scalar, but localize @gv and %gv.

void save_item(SV *item)

Duplicates the current value of SV, on the exit from the current ENTER/LEAVE
pseudo-block will restore the value of SV using the stored value. It doesn’t
handle magic. Use save_scalar if magic is affected.

void save_list(SV **sarg, I32 maxsarg)

A variant of save_item which takes multiple arguments via an array sarg of
SV* of length maxsarg.

SV* save_svref(SV **sptr)

Similar to save_scalar, but will reinstate an SV *.

void save_aptr(AV **aptr)

void save_hptr(HV **hptr)

Similar to save_svref, but localize AV * and HV *.

The Alias module implements localization of the basic types within the caller’s scope.
People who are interested in how to localize things in the containing scope should take a
look there too.

28.4 Subroutines

28.4.1 XSUBs and the Argument Stack

The XSUB mechanism is a simple way for Perl programs to access C subroutines. An XSUB
routine will have a stack that contains the arguments from the Perl program, and a way to
map from the Perl data structures to a C equivalent.

The stack arguments are accessible through the ST(n) macro, which returns the n’th
stack argument. Argument 0 is the first argument passed in the Perl subroutine call. These
arguments are SV*, and can be used anywhere an SV* is used.

Most of the time, output from the C routine can be handled through use of the RETVAL
and OUTPUT directives. However, there are some cases where the argument stack is not
already long enough to handle all the return values. An example is the POSIX tzname()
call, which takes no arguments, but returns two, the local time zone’s standard and summer
time abbreviations.

To handle this situation, the PPCODE directive is used and the stack is extended using
the macro:

EXTEND(SP, num);

where SP is the macro that represents the local copy of the stack pointer, and num is the
number of elements the stack should be extended by.

Now that there is room on the stack, values can be pushed on it using PUSHs macro.
The pushed values will often need to be "mortal" (See Section 28.3.13 [Reference Counts
and Mortality], page 524):

PUSHs(sv_2mortal(newSViv(an_integer)))

PUSHs(sv_2mortal(newSVuv(an_unsigned_integer)))

PUSHs(sv_2mortal(newSVnv(a_double)))

PUSHs(sv_2mortal(newSVpv("Some String",0)))

/* Although the last example is better written as the more

* efficient: */

PUSHs(newSVpvs_flags("Some String", SVs_TEMP))

And now the Perl program calling tzname, the two values will be assigned as in:

($standard_abbrev, $summer_abbrev) = POSIX::tzname;

An alternate (and possibly simpler) method to pushing values on the stack is to use the
macro:

XPUSHs(SV*)

This macro automatically adjusts the stack for you, if needed. Thus, you do not need
to call EXTEND to extend the stack.

Despite their suggestions in earlier versions of this document the macros (X)PUSH[iunp]
are not suited to XSUBs which return multiple results. For that, either stick to the (X)PUSHs
macros shown above, or use the new m(X)PUSH[iunp] macros instead; see Section 28.4.4
[Putting a C value on Perl stack], page 539.

For more information, consult perlxs and perlxstut.

28.4.2 Autoloading with XSUBs

If an AUTOLOAD routine is an XSUB, as with Perl subroutines, Perl puts the fully-qualified
name of the autoloaded subroutine in the $AUTOLOAD variable of the XSUB’s package.

But it also puts the same information in certain fields of the XSUB itself:

HV *stash = CvSTASH(cv);

const char *subname = SvPVX(cv);

STRLEN name_length = SvCUR(cv); /* in bytes */

U32 is_utf8 = SvUTF8(cv);

SvPVX(cv) contains just the sub name itself, not including the package. For an AU-
TOLOAD routine in UNIVERSAL or one of its superclasses, CvSTASH(cv) returns NULL
during a method call on a nonexistent package.

Note: Setting $AUTOLOAD stopped working in 5.6.1, which did not support XS AU-
TOLOAD subs at all. Perl 5.8.0 introduced the use of fields in the XSUB itself. Perl 5.16.0
restored the setting of $AUTOLOAD. If you need to support 5.8-5.14, use the XSUB’s
fields.

28.4.3 Calling Perl Routines from within C Programs

There are four routines that can be used to call a Perl subroutine from within a C program.
These four are:

I32 call_sv(SV*, I32);

I32 call_pv(const char*, I32);

I32 call_method(const char*, I32);

I32 call_argv(const char*, I32, char**);

The routine most often used is call_sv. The SV* argument contains either the name
of the Perl subroutine to be called, or a reference to the subroutine. The second argument
consists of flags that control the context in which the subroutine is called, whether or not
the subroutine is being passed arguments, how errors should be trapped, and how to treat
return values.

All four routines return the number of arguments that the subroutine returned on the
Perl stack.

These routines used to be called perl_call_sv, etc., before Perl v5.6.0, but those names
are now deprecated; macros of the same name are provided for compatibility.

When using any of these routines (except call_argv), the programmer must manipulate
the Perl stack. These include the following macros and functions:

dSP

SP

PUSHMARK()

PUTBACK

SPAGAIN

ENTER

SAVETMPS

FREETMPS

LEAVE

XPUSH*()

POP*()

For a detailed description of calling conventions from C to Perl, consult Section 7.1
[perlcall NAME], page 28.

28.4.4 Putting a C value on Perl stack

A lot of opcodes (this is an elementary operation in the internal perl stack machine) put
an SV* on the stack. However, as an optimization the corresponding SV is (usually) not
recreated each time. The opcodes reuse specially assigned SVs (targets) which are (as a
corollary) not constantly freed/created.

Each of the targets is created only once (but see Section 28.4.6 [Scratchpads and recur-
sion], page 540 below), and when an opcode needs to put an integer, a double, or a string
on stack, it just sets the corresponding parts of its target and puts the target on stack.

The macro to put this target on stack is PUSHTARG, and it is directly used in some
opcodes, as well as indirectly in zillions of others, which use it via (X)PUSH[iunp].

Because the target is reused, you must be careful when pushing multiple values on the
stack. The following code will not do what you think:

XPUSHi(10);

XPUSHi(20);

This translates as "set TARG to 10, push a pointer to TARG onto the stack; set TARG to
20, push a pointer to TARG onto the stack". At the end of the operation, the stack does not
contain the values 10 and 20, but actually contains two pointers to TARG, which we have set
to 20.

If you need to push multiple different values then you should either use the (X)PUSHs

macros, or else use the new m(X)PUSH[iunp] macros, none of which make use of TARG. The
(X)PUSHs macros simply push an SV* on the stack, which, as noted under Section 28.4.1
[XSUBs and the Argument Stack], page 537, will often need to be "mortal". The new
m(X)PUSH[iunp] macros make this a little easier to achieve by creating a new mortal for
you (via (X)PUSHmortal), pushing that onto the stack (extending it if necessary in the case
of the mXPUSH[iunp] macros), and then setting its value. Thus, instead of writing this to
"fix" the example above:

XPUSHs(sv_2mortal(newSViv(10)))

XPUSHs(sv_2mortal(newSViv(20)))

you can simply write:

mXPUSHi(10)

mXPUSHi(20)

On a related note, if you do use (X)PUSH[iunp], then you’re going to need a dTARG in
your variable declarations so that the *PUSH* macros can make use of the local variable
TARG. See also dTARGET and dXSTARG.

28.4.5 Scratchpads

The question remains on when the SVs which are targets for opcodes are created. The
answer is that they are created when the current unit–a subroutine or a file (for opcodes
for statements outside of subroutines)–is compiled. During this time a special anonymous
Perl array is created, which is called a scratchpad for the current unit.

A scratchpad keeps SVs which are lexicals for the current unit and are targets for opcodes.
A previous version of this document stated that one can deduce that an SV lives on a
scratchpad by looking on its flags: lexicals have SVs_PADMY set, and targets have SVs_

PADTMP set. But this has never been fully true. SVs_PADMY could be set on a variable that
no longer resides in any pad. While targets do have SVs_PADTMP set, it can also be set
on variables that have never resided in a pad, but nonetheless act like targets. As of perl
5.21.5, the SVs_PADMY flag is no longer used and is defined as 0. SvPADMY() now returns
true for anything without SVs_PADTMP.

The correspondence between OPs and targets is not 1-to-1. Different OPs in the compile
tree of the unit can use the same target, if this would not conflict with the expected life of
the temporary.

28.4.6 Scratchpads and recursion

In fact it is not 100% true that a compiled unit contains a pointer to the scratchpad AV.
In fact it contains a pointer to an AV of (initially) one element, and this element is the
scratchpad AV. Why do we need an extra level of indirection?

The answer is recursion, and maybe threads. Both these can create several execution
pointers going into the same subroutine. For the subroutine-child not write over the tem-
poraries for the subroutine-parent (lifespan of which covers the call to the child), the parent
and the child should have different scratchpads. (And the lexicals should be separate any-
way!)

So each subroutine is born with an array of scratchpads (of length 1). On each entry to
the subroutine it is checked that the current depth of the recursion is not more than the
length of this array, and if it is, new scratchpad is created and pushed into the array.

The targets on this scratchpad are undefs, but they are already marked with correct
flags.

28.5 Memory Allocation

28.5.1 Allocation

All memory meant to be used with the Perl API functions should be manipulated using the
macros described in this section. The macros provide the necessary transparency between
differences in the actual malloc implementation that is used within perl.

It is suggested that you enable the version of malloc that is distributed with Perl. It
keeps pools of various sizes of unallocated memory in order to satisfy allocation requests
more quickly. However, on some platforms, it may cause spurious malloc or free errors.

The following three macros are used to initially allocate memory :

Newx(pointer, number, type);

Newxc(pointer, number, type, cast);

Newxz(pointer, number, type);

The first argument pointer should be the name of a variable that will point to the newly
allocated memory.

The second and third arguments number and type specify how many of the specified
type of data structure should be allocated. The argument type is passed to sizeof. The

final argument to Newxc, cast, should be used if the pointer argument is different from
the type argument.

Unlike the Newx and Newxc macros, the Newxz macro calls memzero to zero out all the
newly allocated memory.

28.5.2 Reallocation

Renew(pointer, number, type);

Renewc(pointer, number, type, cast);

Safefree(pointer)

These three macros are used to change a memory buffer size or to free a piece of memory
no longer needed. The arguments to Renew and Renewc match those of New and Newc with
the exception of not needing the "magic cookie" argument.

28.5.3 Moving

Move(source, dest, number, type);

Copy(source, dest, number, type);

Zero(dest, number, type);

These three macros are used to move, copy, or zero out previously allocated memory. The
source and dest arguments point to the source and destination starting points. Perl will
move, copy, or zero out number instances of the size of the type data structure (using the
sizeof function).

28.6 PerlIO

The most recent development releases of Perl have been experimenting with removing Perl’s
dependency on the "normal" standard I/O suite and allowing other stdio implementations
to be used. This involves creating a new abstraction layer that then calls whichever imple-
mentation of stdio Perl was compiled with. All XSUBs should now use the functions in the
PerlIO abstraction layer and not make any assumptions about what kind of stdio is being
used.

For a complete description of the PerlIO abstraction, consult Section 2.1 [perlapio
NAME], page 9.

28.7 Compiled code

28.7.1 Code tree

Here we describe the internal form your code is converted to by Perl. Start with a simple
example:

$a = $b + $c;

This is converted to a tree similar to this one:

assign-to

/ \

+ $a

/ \

$b $c

(but slightly more complicated). This tree reflects the way Perl parsed your code, but
has nothing to do with the execution order. There is an additional "thread" going through
the nodes of the tree which shows the order of execution of the nodes. In our simplified
example above it looks like:

$b ---> $c ---> + ---> $a ---> assign-to

But with the actual compile tree for $a = $b + $c it is different: some nodes optimized
away. As a corollary, though the actual tree contains more nodes than our simplified
example, the execution order is the same as in our example.

28.7.2 Examining the tree

If you have your perl compiled for debugging (usually done with -DDEBUGGING on the
Configure command line), you may examine the compiled tree by specifying -Dx on the
Perl command line. The output takes several lines per node, and for $b+$c it looks like
this:

5 TYPE = add ===> 6

TARG = 1

FLAGS = (SCALAR,KIDS)

{

TYPE = null ===> (4)

(was rv2sv)

FLAGS = (SCALAR,KIDS)

{

3 TYPE = gvsv ===> 4

FLAGS = (SCALAR)

GV = main::b

}

}

{

TYPE = null ===> (5)

(was rv2sv)

FLAGS = (SCALAR,KIDS)

{

4 TYPE = gvsv ===> 5

FLAGS = (SCALAR)

GV = main::c

}

}

This tree has 5 nodes (one per TYPE specifier), only 3 of them are not optimized away
(one per number in the left column). The immediate children of the given node correspond
to {} pairs on the same level of indentation, thus this listing corresponds to the tree:

add

/ \

null null

| |

gvsv gvsv

The execution order is indicated by ===> marks, thus it is 3 4 5 6 (node 6 is not included
into above listing), i.e., gvsv gvsv add whatever.

Each of these nodes represents an op, a fundamental operation inside the Perl core. The
code which implements each operation can be found in the pp*.c files; the function which
implements the op with type gvsv is pp_gvsv, and so on. As the tree above shows, different
ops have different numbers of children: add is a binary operator, as one would expect, and
so has two children. To accommodate the various different numbers of children, there are
various types of op data structure, and they link together in different ways.

The simplest type of op structure is OP: this has no children. Unary operators, UNOPs,
have one child, and this is pointed to by the op_first field. Binary operators (BINOPs)
have not only an op_first field but also an op_last field. The most complex type of
op is a LISTOP, which has any number of children. In this case, the first child is pointed
to by op_first and the last child by op_last. The children in between can be found by
iteratively following the OpSIBLING pointer from the first child to the last (but see below).

There are also some other op types: a PMOP holds a regular expression, and has no
children, and a LOOP may or may not have children. If the op_children field is non-zero,
it behaves like a LISTOP. To complicate matters, if a UNOP is actually a null op after
optimization (see Section 28.7.5 [Compile pass 2: context propagation], page 544) it will
still have children in accordance with its former type.

Finally, there is a LOGOP, or logic op. Like a LISTOP, this has one or more children, but
it doesn’t have an op_last field: so you have to follow op_first and then the OpSIBLING

chain itself to find the last child. Instead it has an op_other field, which is comparable to
the op_next field described below, and represents an alternate execution path. Operators
like and, or and ? are LOGOPs. Note that in general, op_other may not point to any of the
direct children of the LOGOP.

Starting in version 5.21.2, perls built with the experimental define -DPERL_OP_PARENT

add an extra boolean flag for each op, op_moresib. When not set, this indicates that this
is the last op in an OpSIBLING chain. This frees up the op_sibling field on the last sibling
to point back to the parent op. Under this build, that field is also renamed op_sibparent

to reflect its joint role. The macro OpSIBLING(o) wraps this special behaviour, and always
returns NULL on the last sibling. With this build the op_parent(o) function can be used
to find the parent of any op. Thus for forward compatibility, you should always use the
OpSIBLING(o) macro rather than accessing op_sibling directly.

Another way to examine the tree is to use a compiler back-end module, such as
B-Concise.

28.7.3 Compile pass 1: check routines

The tree is created by the compiler while yacc code feeds it the constructions it recognizes.
Since yacc works bottom-up, so does the first pass of perl compilation.

What makes this pass interesting for perl developers is that some optimization may be
performed on this pass. This is optimization by so-called "check routines". The correspon-
dence between node names and corresponding check routines is described in opcode.pl (do
not forget to run make regen_headers if you modify this file).

A check routine is called when the node is fully constructed except for the execution-
order thread. Since at this time there are no back-links to the currently constructed node,

one can do most any operation to the top-level node, including freeing it and/or creating
new nodes above/below it.

The check routine returns the node which should be inserted into the tree (if the top-level
node was not modified, check routine returns its argument).

By convention, check routines have names ck_*. They are usually called from new*OP

subroutines (or convert) (which in turn are called from perly.y).

28.7.4 Compile pass 1a: constant folding

Immediately after the check routine is called the returned node is checked for being compile-
time executable. If it is (the value is judged to be constant) it is immediately executed,
and a constant node with the "return value" of the corresponding subtree is substituted
instead. The subtree is deleted.

If constant folding was not performed, the execution-order thread is created.

28.7.5 Compile pass 2: context propagation

When a context for a part of compile tree is known, it is propagated down through the
tree. At this time the context can have 5 values (instead of 2 for runtime context): void,
boolean, scalar, list, and lvalue. In contrast with the pass 1 this pass is processed from top
to bottom: a node’s context determines the context for its children.

Additional context-dependent optimizations are performed at this time. Since at this
moment the compile tree contains back-references (via "thread" pointers), nodes cannot be
free()d now. To allow optimized-away nodes at this stage, such nodes are null()ified instead
of free()ing (i.e. their type is changed to OP NULL).

28.7.6 Compile pass 3: peephole optimization

After the compile tree for a subroutine (or for an eval or a file) is created, an additional
pass over the code is performed. This pass is neither top-down or bottom-up, but in the
execution order (with additional complications for conditionals). Optimizations performed
at this stage are subject to the same restrictions as in the pass 2.

Peephole optimizations are done by calling the function pointed to by the global variable
PL_peepp. By default, PL_peepp just calls the function pointed to by the global variable
PL_rpeepp. By default, that performs some basic op fixups and optimisations along the
execution-order op chain, and recursively calls PL_rpeepp for each side chain of ops (result-
ing from conditionals). Extensions may provide additional optimisations or fixups, hooking
into either the per-subroutine or recursive stage, like this:

static peep_t prev_peepp;

static void my_peep(pTHX_ OP *o)

{

/* custom per-subroutine optimisation goes here */

prev_peepp(aTHX_ o);

/* custom per-subroutine optimisation may also go here */

}

BOOT:

prev_peepp = PL_peepp;

PL_peepp = my_peep;

static peep_t prev_rpeepp;

static void my_rpeep(pTHX_ OP *o)

{

OP *orig_o = o;

for(; o; o = o->op_next) {

/* custom per-op optimisation goes here */

}

prev_rpeepp(aTHX_ orig_o);

}

BOOT:

prev_rpeepp = PL_rpeepp;

PL_rpeepp = my_rpeep;

28.7.7 Pluggable runops

The compile tree is executed in a runops function. There are two runops functions, in
run.c and in dump.c. Perl_runops_debug is used with DEBUGGING and Perl_runops_

standard is used otherwise. For fine control over the execution of the compile tree it is
possible to provide your own runops function.

It’s probably best to copy one of the existing runops functions and change it to suit your
needs. Then, in the BOOT section of your XS file, add the line:

PL_runops = my_runops;

This function should be as efficient as possible to keep your programs running as fast as
possible.

28.7.8 Compile-time scope hooks

As of perl 5.14 it is possible to hook into the compile-time lexical scope mechanism using
Perl_blockhook_register. This is used like this:

STATIC void my_start_hook(pTHX_ int full);

STATIC BHK my_hooks;

BOOT:

BhkENTRY_set(&my_hooks, bhk_start, my_start_hook);

Perl_blockhook_register(aTHX_ &my_hooks);

This will arrange to have my_start_hook called at the start of compiling every lexical
scope. The available hooks are:

void bhk_start(pTHX_ int full)

This is called just after starting a new lexical scope. Note that Perl code like

if ($x) { ... }

creates two scopes: the first starts at the (and has full == 1, the second
starts at the { and has full == 0. Both end at the }, so calls to start and
pre/post_end will match. Anything pushed onto the save stack by this hook
will be popped just before the scope ends (between the pre_ and post_end

hooks, in fact).

void bhk_pre_end(pTHX_ OP **o)

This is called at the end of a lexical scope, just before unwinding the stack. o
is the root of the optree representing the scope; it is a double pointer so you
can replace the OP if you need to.

void bhk_post_end(pTHX_ OP **o)

This is called at the end of a lexical scope, just after unwinding the stack. o
is as above. Note that it is possible for calls to pre_ and post_end to nest, if
there is something on the save stack that calls string eval.

void bhk_eval(pTHX_ OP *const o)

This is called just before starting to compile an eval STRING, do FILE, require
or use, after the eval has been set up. o is the OP that requested the eval, and
will normally be an OP_ENTEREVAL, OP_DOFILE or OP_REQUIRE.

Once you have your hook functions, you need a BHK structure to put them in. It’s best to
allocate it statically, since there is no way to free it once it’s registered. The function pointers
should be inserted into this structure using the BhkENTRY_set macro, which will also set
flags indicating which entries are valid. If you do need to allocate your BHK dynamically for
some reason, be sure to zero it before you start.

Once registered, there is no mechanism to switch these hooks off, so if that is necessary
you will need to do this yourself. An entry in %^H is probably the best way, so the effect is
lexically scoped; however it is also possible to use the BhkDISABLE and BhkENABLE macros
to temporarily switch entries on and off. You should also be aware that generally speaking
at least one scope will have opened before your extension is loaded, so you will see some
pre/post_end pairs that didn’t have a matching start.

28.8 Examining internal data structures with the dump

functions

To aid debugging, the source file dump.c contains a number of functions which produce
formatted output of internal data structures.

The most commonly used of these functions is Perl_sv_dump; it’s used for dumping
SVs, AVs, HVs, and CVs. The Devel::Peek module calls sv_dump to produce debugging
output from Perl-space, so users of that module should already be familiar with its format.

Perl_op_dump can be used to dump an OP structure or any of its derivatives, and pro-
duces output similar to perl -Dx; in fact, Perl_dump_eval will dump the main root of the
code being evaluated, exactly like -Dx.

Other useful functions are Perl_dump_sub, which turns a GV into an op tree, Perl_
dump_packsubs which calls Perl_dump_sub on all the subroutines in a package like so:
(Thankfully, these are all xsubs, so there is no op tree)

(gdb) print Perl_dump_packsubs(PL_defstash)

SUB attributes::bootstrap = (xsub 0x811fedc 0)

SUB UNIVERSAL::can = (xsub 0x811f50c 0)

SUB UNIVERSAL::isa = (xsub 0x811f304 0)

SUB UNIVERSAL::VERSION = (xsub 0x811f7ac 0)

SUB DynaLoader::boot_DynaLoader = (xsub 0x805b188 0)

and Perl_dump_all, which dumps all the subroutines in the stash and the op tree of
the main root.

28.9 How multiple interpreters and concurrency are
supported

28.9.1 Background and PERL IMPLICIT CONTEXT

The Perl interpreter can be regarded as a closed box: it has an API for feeding it code
or otherwise making it do things, but it also has functions for its own use. This smells a
lot like an object, and there are ways for you to build Perl so that you can have multiple
interpreters, with one interpreter represented either as a C structure, or inside a thread-
specific structure. These structures contain all the context, the state of that interpreter.

One macro controls the major Perl build flavor: MULTIPLICITY. The MULTIPLICITY
build has a C structure that packages all the interpreter state. With multiplicity-enabled
perls, PERL IMPLICIT CONTEXT is also normally defined, and enables the support for
passing in a "hidden" first argument that represents all three data structures. MULTI-
PLICITY makes multi-threaded perls possible (with the ithreads threading model, related
to the macro USE ITHREADS.)

Two other "encapsulation" macros are the PERL GLOBAL STRUCT and
PERL GLOBAL STRUCT PRIVATE (the latter turns on the former, and the
former turns on MULTIPLICITY.) The PERL GLOBAL STRUCT causes all the
internal variables of Perl to be wrapped inside a single global struct, struct perl vars,
accessible as (globals) &PL Vars or PL VarsPtr or the function Perl GetVars(). The
PERL GLOBAL STRUCT PRIVATE goes one step further, there is still a single struct
(allocated in main() either from heap or from stack) but there are no global data symbols
pointing to it. In either case the global struct should be initialized as the very first thing
in main() using Perl init global struct() and correspondingly tear it down after perl free()
using Perl free global struct(), please see miniperlmain.c for usage details. You may
also need to use dVAR in your coding to "declare the global variables" when you are using
them. dTHX does this for you automatically.

To see whether you have non-const data you can use a BSD (or GNU) compatible nm:

nm libperl.a | grep -v ’ [TURtr] ’

If this displays any D or d symbols (or possibly C or c), you have non-const data. The
symbols the grep removed are as follows: Tt are text, or code, the Rr are read-only (const)
data, and the U is <undefined>, external symbols referred to.

The test t/porting/libperl.t does this kind of symbol sanity checking on libperl.a.

For backward compatibility reasons defining just PERL GLOBAL STRUCT doesn’t
actually hide all symbols inside a big global struct: some PerlIO xxx vtables are left visi-
ble. The PERL GLOBAL STRUCT PRIVATE then hides everything (see how the PER-
LIO FUNCS DECL is used).

All this obviously requires a way for the Perl internal functions to be either subroutines
taking some kind of structure as the first argument, or subroutines taking nothing as the
first argument. To enable these two very different ways of building the interpreter, the Perl
source (as it does in so many other situations) makes heavy use of macros and subroutine
naming conventions.

First problem: deciding which functions will be public API functions and which will be
private. All functions whose names begin S_ are private (think "S" for "secret" or "static").
All other functions begin with "Perl ", but just because a function begins with "Perl " does
not mean it is part of the API. (See Section 28.10 [Internal Functions], page 552.) The easiest
way to be sure a function is part of the API is to find its entry in perlapi. If it exists in
perlapi, it’s part of the API. If it doesn’t, and you think it should be (i.e., you need it for
your extension), send mail via perlbug explaining why you think it should be.

Second problem: there must be a syntax so that the same subroutine declarations and
calls can pass a structure as their first argument, or pass nothing. To solve this, the
subroutines are named and declared in a particular way. Here’s a typical start of a static
function used within the Perl guts:

STATIC void

S_incline(pTHX_ char *s)

STATIC becomes "static" in C, and may be #define’d to nothing in some configurations
in the future.

A public function (i.e. part of the internal API, but not necessarily sanctioned for use
in extensions) begins like this:

void

Perl_sv_setiv(pTHX_ SV* dsv, IV num)

pTHX_ is one of a number of macros (in perl.h) that hide the details of the interpreter’s
context. THX stands for "thread", "this", or "thingy", as the case may be. (And no,
George Lucas is not involved. :-) The first character could be ’p’ for a prototype, ’a’ for
argument, or ’d’ for declaration, so we have pTHX, aTHX and dTHX, and their variants.

When Perl is built without options that set PERL IMPLICIT CONTEXT, there is no
first argument containing the interpreter’s context. The trailing underscore in the pTHX
macro indicates that the macro expansion needs a comma after the context argument be-
cause other arguments follow it. If PERL IMPLICIT CONTEXT is not defined, pTHX
will be ignored, and the subroutine is not prototyped to take the extra argument. The form
of the macro without the trailing underscore is used when there are no additional explicit
arguments.

When a core function calls another, it must pass the context. This is normally hidden
via macros. Consider sv_setiv. It expands into something like this:

#ifdef PERL_IMPLICIT_CONTEXT

#define sv_setiv(a,b) Perl_sv_setiv(aTHX_ a, b)

/* can’t do this for vararg functions, see below */

#else

#define sv_setiv Perl_sv_setiv

#endif

This works well, and means that XS authors can gleefully write:

sv_setiv(foo, bar);

and still have it work under all the modes Perl could have been compiled with.

This doesn’t work so cleanly for varargs functions, though, as macros imply that the
number of arguments is known in advance. Instead we either need to spell them out fully,
passing aTHX_ as the first argument (the Perl core tends to do this with functions like
Perl warner), or use a context-free version.

The context-free version of Perl warner is called Perl warner nocontext, and does not
take the extra argument. Instead it does dTHX; to get the context from thread-local storage.
We #define warner Perl_warner_nocontext so that extensions get source compatibility
at the expense of performance. (Passing an arg is cheaper than grabbing it from thread-local
storage.)

You can ignore [pad]THXx when browsing the Perl headers/sources. Those are strictly
for use within the core. Extensions and embedders need only be aware of [pad]THX.

28.9.2 So what happened to dTHR?

dTHR was introduced in perl 5.005 to support the older thread model. The older thread
model now uses the THX mechanism to pass context pointers around, so dTHR is not useful
any more. Perl 5.6.0 and later still have it for backward source compatibility, but it is
defined to be a no-op.

28.9.3 How do I use all this in extensions?

When Perl is built with PERL IMPLICIT CONTEXT, extensions that call any functions
in the Perl API will need to pass the initial context argument somehow. The kicker is that
you will need to write it in such a way that the extension still compiles when Perl hasn’t
been built with PERL IMPLICIT CONTEXT enabled.

There are three ways to do this. First, the easy but inefficient way, which is also the
default, in order to maintain source compatibility with extensions: whenever XSUB.h is
#included, it redefines the aTHX and aTHX macros to call a function that will return the
context. Thus, something like:

sv_setiv(sv, num);

in your extension will translate to this when PERL IMPLICIT CONTEXT is in effect:

Perl_sv_setiv(Perl_get_context(), sv, num);

or to this otherwise:

Perl_sv_setiv(sv, num);

You don’t have to do anything new in your extension to get this; since the Perl library
provides Perl get context(), it will all just work.

The second, more efficient way is to use the following template for your Foo.xs:

#define PERL_NO_GET_CONTEXT /* we want efficiency */

#include "EXTERN.h"

#include "perl.h"

#include "XSUB.h"

STATIC void my_private_function(int arg1, int arg2);

STATIC void

my_private_function(int arg1, int arg2)

{

dTHX; /* fetch context */

... call many Perl API functions ...

}

[... etc ...]

MODULE = Foo PACKAGE = Foo

/* typical XSUB */

void

my_xsub(arg)

int arg

CODE:

my_private_function(arg, 10);

Note that the only two changes from the normal way of writing an extension is the
addition of a #define PERL_NO_GET_CONTEXT before including the Perl headers, followed
by a dTHX; declaration at the start of every function that will call the Perl API. (You’ll
know which functions need this, because the C compiler will complain that there’s an
undeclared identifier in those functions.) No changes are needed for the XSUBs themselves,
because the XS() macro is correctly defined to pass in the implicit context if needed.

The third, even more efficient way is to ape how it is done within the Perl guts:

#define PERL_NO_GET_CONTEXT /* we want efficiency */

#include "EXTERN.h"

#include "perl.h"

#include "XSUB.h"

/* pTHX_ only needed for functions that call Perl API */

STATIC void my_private_function(pTHX_ int arg1, int arg2);

STATIC void

my_private_function(pTHX_ int arg1, int arg2)

{

/* dTHX; not needed here, because THX is an argument */

... call Perl API functions ...

}

[... etc ...]

MODULE = Foo PACKAGE = Foo

/* typical XSUB */

void

my_xsub(arg)

int arg

CODE:

my_private_function(aTHX_ arg, 10);

This implementation never has to fetch the context using a function call, since it is
always passed as an extra argument. Depending on your needs for simplicity or efficiency,
you may mix the previous two approaches freely.

Never add a comma after pTHX yourself–always use the form of the macro with the
underscore for functions that take explicit arguments, or the form without the argument
for functions with no explicit arguments.

If one is compiling Perl with the -DPERL_GLOBAL_STRUCT the dVAR definition is needed
if the Perl global variables (see perlvars.h or globvar.sym) are accessed in the function
and dTHX is not used (the dTHX includes the dVAR if necessary). One notices the need for
dVAR only with the said compile-time define, because otherwise the Perl global variables are
visible as-is.

28.9.4 Should I do anything special if I call perl from multiple
threads?

If you create interpreters in one thread and then proceed to call them in another, you need
to make sure perl’s own Thread Local Storage (TLS) slot is initialized correctly in each of
those threads.

The perl_alloc and perl_clone API functions will automatically set the TLS slot to
the interpreter they created, so that there is no need to do anything special if the interpreter
is always accessed in the same thread that created it, and that thread did not create or call
any other interpreters afterwards. If that is not the case, you have to set the TLS slot of
the thread before calling any functions in the Perl API on that particular interpreter. This
is done by calling the PERL_SET_CONTEXT macro in that thread as the first thing you do:

/* do this before doing anything else with some_perl */

PERL_SET_CONTEXT(some_perl);

... other Perl API calls on some_perl go here ...

28.9.5 Future Plans and PERL IMPLICIT SYS

Just as PERL IMPLICIT CONTEXT provides a way to bundle up everything that the in-
terpreter knows about itself and pass it around, so too are there plans to allow the interpreter
to bundle up everything it knows about the environment it’s running on. This is enabled
with the PERL IMPLICIT SYS macro. Currently it only works with USE ITHREADS on
Windows.

This allows the ability to provide an extra pointer (called the "host" environment) for all
the system calls. This makes it possible for all the system stuff to maintain their own state,
broken down into seven C structures. These are thin wrappers around the usual system
calls (see win32/perllib.c) for the default perl executable, but for a more ambitious host
(like the one that would do fork() emulation) all the extra work needed to pretend that
different interpreters are actually different "processes", would be done here.

The Perl engine/interpreter and the host are orthogonal entities. There could be one
or more interpreters in a process, and one or more "hosts", with free association between
them.

28.10 Internal Functions

All of Perl’s internal functions which will be exposed to the outside world are prefixed by
Perl_ so that they will not conflict with XS functions or functions used in a program in
which Perl is embedded. Similarly, all global variables begin with PL_. (By convention,
static functions start with S_.)

Inside the Perl core (PERL_CORE defined), you can get at the functions either with or
without the Perl_ prefix, thanks to a bunch of defines that live in embed.h. Note that
extension code should not set PERL_CORE; this exposes the full perl internals, and is likely
to cause breakage of the XS in each new perl release.

The file embed.h is generated automatically from embed.pl and embed.fnc. embed.pl
also creates the prototyping header files for the internal functions, generates the documen-
tation and a lot of other bits and pieces. It’s important that when you add a new function
to the core or change an existing one, you change the data in the table in embed.fnc as
well. Here’s a sample entry from that table:

Apd |SV** |av_fetch |AV* ar|I32 key|I32 lval

The second column is the return type, the third column the name. Columns after that
are the arguments. The first column is a set of flags:

A

This function is a part of the public API. All such functions should also have
’d’, very few do not.

p

This function has a Perl_ prefix; i.e. it is defined as Perl_av_fetch.

d

This function has documentation using the apidoc feature which we’ll look at
in a second. Some functions have ’d’ but not ’A’; docs are good.

Other available flags are:

s

This is a static function and is defined as STATIC S_whatever, and usually
called within the sources as whatever(...).

n

This does not need an interpreter context, so the definition has no pTHX, and
it follows that callers don’t use aTHX. (See Section 28.9.1 [Background and
PERL IMPLICIT CONTEXT], page 547.)

r

This function never returns; croak, exit and friends.

f

This function takes a variable number of arguments, printf style. The argu-
ment list should end with ..., like this:

Afprd |void |croak |const char* pat|...

M

This function is part of the experimental development API, and may change or
disappear without notice.

o

This function should not have a compatibility macro to define, say, Perl_parse
to parse. It must be called as Perl_parse.

x

This function isn’t exported out of the Perl core.

m

This is implemented as a macro.

X

This function is explicitly exported.

E

This function is visible to extensions included in the Perl core.

b

Binary backward compatibility; this function is a macro but also has a Perl_

implementation (which is exported).

others

See the comments at the top of embed.fnc for others.

If you edit embed.pl or embed.fnc, you will need to run make regen_headers to force
a rebuild of embed.h and other auto-generated files.

28.10.1 Formatted Printing of IVs, UVs, and NVs

If you are printing IVs, UVs, or NVS instead of the stdio(3) style formatting codes like %d,
%ld, %f, you should use the following macros for portability

IVdf IV in decimal

UVuf UV in decimal

UVof UV in octal

UVxf UV in hexadecimal

NVef NV %e-like

NVff NV %f-like

NVgf NV %g-like

These will take care of 64-bit integers and long doubles. For example:

printf("IV is %"IVdf"\n", iv);

The IVdf will expand to whatever is the correct format for the IVs.

Note that there are different "long doubles": Perl will use whatever the compiler has.

If you are printing addresses of pointers, use UVxf combined with PTR2UV(), do not
use %lx or %p.

28.10.2 Pointer-To-Integer and Integer-To-Pointer

Because pointer size does not necessarily equal integer size, use the follow macros to do it
right.

PTR2UV(pointer)

PTR2IV(pointer)

PTR2NV(pointer)

INT2PTR(pointertotype, integer)

For example:

IV iv = ...;

SV *sv = INT2PTR(SV*, iv);

and

AV *av = ...;

UV uv = PTR2UV(av);

28.10.3 Exception Handling

There are a couple of macros to do very basic exception handling in XS modules. You have
to define NO_XSLOCKS before including XSUB.h to be able to use these macros:

#define NO_XSLOCKS

#include "XSUB.h"

You can use these macros if you call code that may croak, but you need to do some
cleanup before giving control back to Perl. For example:

dXCPT; /* set up necessary variables */

XCPT_TRY_START {

code_that_may_croak();

} XCPT_TRY_END

XCPT_CATCH

{

/* do cleanup here */

XCPT_RETHROW;

}

Note that you always have to rethrow an exception that has been caught. Using these
macros, it is not possible to just catch the exception and ignore it. If you have to ignore
the exception, you have to use the call_* function.

The advantage of using the above macros is that you don’t have to setup an extra
function for call_*, and that using these macros is faster than using call_*.

28.10.4 Source Documentation

There’s an effort going on to document the internal functions and automatically produce
reference manuals from them – perlapi is one such manual which details all the functions

which are available to XS writers. perlintern is the autogenerated manual for the functions
which are not part of the API and are supposedly for internal use only.

Source documentation is created by putting POD comments into the C source, like this:

/*

=for apidoc sv_setiv

Copies an integer into the given SV. Does not handle ’set’ magic. See

C<sv_setiv_mg>.

=cut

*/

Please try and supply some documentation if you add functions to the Perl core.

28.10.5 Backwards compatibility

The Perl API changes over time. New functions are added or the interfaces of existing
functions are changed. The Devel::PPPort module tries to provide compatibility code for
some of these changes, so XS writers don’t have to code it themselves when supporting
multiple versions of Perl.

Devel::PPPort generates a C header file ppport.h that can also be run as a Perl script.
To generate ppport.h, run:

perl -MDevel::PPPort -eDevel::PPPort::WriteFile

Besides checking existing XS code, the script can also be used to retrieve compatibility
information for various API calls using the --api-info command line switch. For example:

% perl ppport.h --api-info=sv_magicext

For details, see perldoc ppport.h.

28.11 Unicode Support

Perl 5.6.0 introduced Unicode support. It’s important for porters and XS writers to un-
derstand this support and make sure that the code they write does not corrupt Unicode
data.

28.11.1 What is Unicode, anyway?

In the olden, less enlightened times, we all used to use ASCII. Most of us did, anyway. The
big problem with ASCII is that it’s American. Well, no, that’s not actually the problem; the
problem is that it’s not particularly useful for people who don’t use the Roman alphabet.
What used to happen was that particular languages would stick their own alphabet in the
upper range of the sequence, between 128 and 255. Of course, we then ended up with plenty
of variants that weren’t quite ASCII, and the whole point of it being a standard was lost.

Worse still, if you’ve got a language like Chinese or Japanese that has hundreds or
thousands of characters, then you really can’t fit them into a mere 256, so they had to
forget about ASCII altogether, and build their own systems using pairs of numbers to refer
to one character.

To fix this, some people formed Unicode, Inc. and produced a new character set con-
taining all the characters you can possibly think of and more. There are several ways of

representing these characters, and the one Perl uses is called UTF-8. UTF-8 uses a variable
number of bytes to represent a character. You can learn more about Unicode and Perl’s
Unicode model in Section 81.1 [perlunicode NAME], page 1317.

(On EBCDIC platforms, Perl uses instead UTF-EBCDIC, which is a form of UTF-
8 adapted for EBCDIC platforms. Below, we just talk about UTF-8. UTF-EBCDIC is
like UTF-8, but the details are different. The macros hide the differences from you, just
remember that the particular numbers and bit patterns presented below will differ in UTF-
EBCDIC.)

28.11.2 How can I recognise a UTF-8 string?

You can’t. This is because UTF-8 data is stored in bytes just like non-UTF-8 data. The
Unicode character 200, (0xC8 for you hex types) capital E with a grave accent, is represented
by the two bytes v196.172. Unfortunately, the non-Unicode string chr(196).chr(172) has
that byte sequence as well. So you can’t tell just by looking – this is what makes Unicode
input an interesting problem.

In general, you either have to know what you’re dealing with, or you have to guess.
The API function is_utf8_string can help; it’ll tell you if a string contains only valid
UTF-8 characters, and the chances of a non-UTF-8 string looking like valid UTF-8 become
very small very quickly with increasing string length. On a character-by-character basis,
isUTF8_CHAR will tell you whether the current character in a string is valid UTF-8.

28.11.3 How does UTF-8 represent Unicode characters?

As mentioned above, UTF-8 uses a variable number of bytes to store a character. Characters
with values 0...127 are stored in one byte, just like good ol’ ASCII. Character 128 is stored
as v194.128; this continues up to character 191, which is v194.191. Now we’ve run out of
bits (191 is binary 10111111) so we move on; character 192 is v195.128. And so it goes on,
moving to three bytes at character 2048. Section 81.2.10 [perlunicode Unicode Encodings],
page 1334 has pictures of how this works.

Assuming you know you’re dealing with a UTF-8 string, you can find out how long the
first character in it is with the UTF8SKIP macro:

char *utf = "\305\233\340\240\201";

I32 len;

len = UTF8SKIP(utf); /* len is 2 here */

utf += len;

len = UTF8SKIP(utf); /* len is 3 here */

Another way to skip over characters in a UTF-8 string is to use utf8_hop, which takes a
string and a number of characters to skip over. You’re on your own about bounds checking,
though, so don’t use it lightly.

All bytes in a multi-byte UTF-8 character will have the high bit set, so you can test if
you need to do something special with this character like this (the UTF8_IS_INVARIANT()

is a macro that tests whether the byte is encoded as a single byte even in UTF-8):

U8 *utf;

U8 *utf_end; /* 1 beyond buffer pointed to by utf */

UV uv; /* Note: a UV, not a U8, not a char */

STRLEN len; /* length of character in bytes */

if (!UTF8_IS_INVARIANT(*utf))

/* Must treat this as UTF-8 */

uv = utf8_to_uvchr_buf(utf, utf_end, &len);

else

/* OK to treat this character as a byte */

uv = *utf;

You can also see in that example that we use utf8_to_uvchr_buf to get the value of the
character; the inverse function uvchr_to_utf8 is available for putting a UV into UTF-8:

if (!UVCHR_IS_INVARIANT(uv))

/* Must treat this as UTF8 */

utf8 = uvchr_to_utf8(utf8, uv);

else

/* OK to treat this character as a byte */

*utf8++ = uv;

Youmust convert characters to UVs using the above functions if you’re ever in a situation
where you have to match UTF-8 and non-UTF-8 characters. You may not skip over UTF-8
characters in this case. If you do this, you’ll lose the ability to match hi-bit non-UTF-
8 characters; for instance, if your UTF-8 string contains v196.172, and you skip that
character, you can never match a chr(200) in a non-UTF-8 string. So don’t do that!

(Note that we don’t have to test for invariant characters in the examples above. The
functions work on any well-formed UTF-8 input. It’s just that its faster to avoid the function
overhead when it’s not needed.)

28.11.4 How does Perl store UTF-8 strings?

Currently, Perl deals with UTF-8 strings and non-UTF-8 strings slightly differently. A flag
in the SV, SVf_UTF8, indicates that the string is internally encoded as UTF-8. Without it,
the byte value is the codepoint number and vice versa. This flag is only meaningful if the
SV is SvPOK or immediately after stringification via SvPV or a similar macro. You can check
and manipulate this flag with the following macros:

SvUTF8(sv)

SvUTF8_on(sv)

SvUTF8_off(sv)

This flag has an important effect on Perl’s treatment of the string: if UTF-8 data is
not properly distinguished, regular expressions, length, substr and other string handling
operations will have undesirable (wrong) results.

The problem comes when you have, for instance, a string that isn’t flagged as UTF-8,
and contains a byte sequence that could be UTF-8 – especially when combining non-UTF-8
and UTF-8 strings.

Never forget that the SVf_UTF8 flag is separate from the PV value; you need to be sure
you don’t accidentally knock it off while you’re manipulating SVs. More specifically, you
cannot expect to do this:

SV *sv;

SV *nsv;

STRLEN len;

char *p;

p = SvPV(sv, len);

frobnicate(p);

nsv = newSVpvn(p, len);

The char* string does not tell you the whole story, and you can’t copy or reconstruct
an SV just by copying the string value. Check if the old SV has the UTF8 flag set (after
the SvPV call), and act accordingly:

p = SvPV(sv, len);

is_utf8 = SvUTF8(sv);

frobnicate(p, is_utf8);

nsv = newSVpvn(p, len);

if (is_utf8)

SvUTF8_on(nsv);

In the above, your frobnicate function has been changed to be made aware of whether
or not it’s dealing with UTF-8 data, so that it can handle the string appropriately.

Since just passing an SV to an XS function and copying the data of the SV is not enough
to copy the UTF8 flags, even less right is just passing a char * to an XS function.

For full generality, use the Section “DO UTF8” in perlapi macro to see if the string in
an SV is to be treated as UTF-8. This takes into account if the call to the XS function is
being made from within the scope of bytes. If so, the underlying bytes that comprise the
UTF-8 string are to be exposed, rather than the character they represent. But this pragma
should only really be used for debugging and perhaps low-level testing at the byte level.
Hence most XS code need not concern itself with this, but various areas of the perl core do
need to support it.

And this isn’t the whole story. Starting in Perl v5.12, strings that aren’t encoded in UTF-
8 may also be treated as Unicode under various conditions (see Section 81.2.3 [perlunicode
ASCII Rules versus Unicode Rules], page 1319). This is only really a problem for characters
whose ordinals are between 128 and 255, and their behavior varies under ASCII versus
Unicode rules in ways that your code cares about (see Section 81.2.17 [perlunicode The
"Unicode Bug"], page 1340). There is no published API for dealing with this, as it is
subject to change, but you can look at the code for pp_lc in pp.c for an example as to how
it’s currently done.

28.11.5 How do I convert a string to UTF-8?

If you’re mixing UTF-8 and non-UTF-8 strings, it is necessary to upgrade the non-UTF-8
strings to UTF-8. If you’ve got an SV, the easiest way to do this is:

sv_utf8_upgrade(sv);

However, you must not do this, for example:

if (!SvUTF8(left))

sv_utf8_upgrade(left);

If you do this in a binary operator, you will actually change one of the strings that
came into the operator, and, while it shouldn’t be noticeable by the end user, it can cause
problems in deficient code.

Instead, bytes_to_utf8 will give you a UTF-8-encoded copy of its string argument.
This is useful for having the data available for comparisons and so on, without harming the
original SV. There’s also utf8_to_bytes to go the other way, but naturally, this will fail if
the string contains any characters above 255 that can’t be represented in a single byte.

28.11.6 How do I compare strings?

Section “sv cmp” in perlapi and Section “sv cmp flags” in perlapi do a lexigraphic com-
parison of two SV’s, and handle UTF-8ness properly. Note, however, that Unicode specifies
a much fancier mechanism for collation, available via the Unicode-Collate module.

To just compare two strings for equality/non-equality, you can just use Section “memEQ”
in perlapi and Section “memEQ” in perlapi as usual, except the strings must be both
UTF-8 or not UTF-8 encoded.

To compare two strings case-insensitively, use Section “foldEQ utf8” in perlapi (the
strings don’t have to have the same UTF-8ness).

28.11.7 Is there anything else I need to know?

Not really. Just remember these things:

• There’s no way to tell if a char * or U8 * string is UTF-8 or not. But you can tell if an
SV is to be treated as UTF-8 by calling DO_UTF8 on it, after stringifying it with SvPV

or a similar macro. And, you can tell if SV is actually UTF-8 (even if it is not to be
treated as such) by looking at its SvUTF8 flag (again after stringifying it). Don’t forget
to set the flag if something should be UTF-8. Treat the flag as part of the PV, even
though it’s not – if you pass on the PV to somewhere, pass on the flag too.

• If a string is UTF-8, always use utf8_to_uvchr_buf to get at the value, unless UTF8_
IS_INVARIANT(*s) in which case you can use *s.

• When writing a character UV to a UTF-8 string, always use uvchr_to_utf8, unless
UVCHR_IS_INVARIANT(uv)) in which case you can use *s = uv.

• Mixing UTF-8 and non-UTF-8 strings is tricky. Use bytes_to_utf8 to get a new string
which is UTF-8 encoded, and then combine them.

28.12 Custom Operators

Custom operator support is an experimental feature that allows you to define your own ops.
This is primarily to allow the building of interpreters for other languages in the Perl core,
but it also allows optimizations through the creation of "macro-ops" (ops which perform the
functions of multiple ops which are usually executed together, such as gvsv, gvsv, add.)

This feature is implemented as a new op type, OP_CUSTOM. The Perl core does not "know"
anything special about this op type, and so it will not be involved in any optimizations.
This also means that you can define your custom ops to be any op structure – unary, binary,
list and so on – you like.

It’s important to know what custom operators won’t do for you. They won’t let you add
new syntax to Perl, directly. They won’t even let you add new keywords, directly. In fact,
they won’t change the way Perl compiles a program at all. You have to do those changes
yourself, after Perl has compiled the program. You do this either by manipulating the op
tree using a CHECK block and the B::Generate module, or by adding a custom peephole
optimizer with the optimize module.

When you do this, you replace ordinary Perl ops with custom ops by creating ops with
the type OP_CUSTOM and the op_ppaddr of your own PP function. This should be defined in
XS code, and should look like the PP ops in pp_*.c. You are responsible for ensuring that
your op takes the appropriate number of values from the stack, and you are responsible for
adding stack marks if necessary.

You should also "register" your op with the Perl interpreter so that it can produce
sensible error and warning messages. Since it is possible to have multiple custom ops within
the one "logical" op type OP_CUSTOM, Perl uses the value of o->op_ppaddr to determine
which custom op it is dealing with. You should create an XOP structure for each ppaddr
you use, set the properties of the custom op with XopENTRY_set, and register the structure
against the ppaddr using Perl_custom_op_register. A trivial example might look like:

static XOP my_xop;

static OP *my_pp(pTHX);

BOOT:

XopENTRY_set(&my_xop, xop_name, "myxop");

XopENTRY_set(&my_xop, xop_desc, "Useless custom op");

Perl_custom_op_register(aTHX_ my_pp, &my_xop);

The available fields in the structure are:

xop name

A short name for your op. This will be included in some error messages, and
will also be returned as $op->name by the B module, so it will appear in the
output of module like B-Concise.

xop desc

A short description of the function of the op.

xop class

Which of the various *OP structures this op uses. This should be one of the
OA_* constants from op.h, namely

OA BASEOP
OA UNOP
OA BINOP
OA LOGOP
OA LISTOP
OA PMOP
OA SVOP
OA PADOP
OA PVOP OR SVOP

This should be interpreted as ’PVOP’ only. The _OR_SVOP is because
the only core PVOP, OP_TRANS, can sometimes be a SVOP instead.

OA LOOP
OA COP

The other OA_* constants should not be used.

xop peep

This member is of type Perl_cpeep_t, which expands to void (*Perl_cpeep_

t)(aTHX_ OP *o, OP *oldop). If it is set, this function will be called from
Perl_rpeep when ops of this type are encountered by the peephole optimizer.
o is the OP that needs optimizing; oldop is the previous OP optimized, whose
op_next points to o.

B::Generate directly supports the creation of custom ops by name.

28.13 AUTHORS

Until May 1997, this document was maintained by Jeff Okamoto <okamoto@corp.hp.com>.
It is now maintained as part of Perl itself by the Perl 5 Porters <perl5-porters@perl.org>.

With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, Andreas
Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil Bowers, Matthew Green,
Tim Bunce, Spider Boardman, Ulrich Pfeifer, Stephen McCamant, and Gurusamy Sarathy.

28.14 SEE ALSO

perlapi, perlintern, perlxs, Section 20.1 [perlembed NAME], page 301

29 perlhack

29.1 NAME

perlhack - How to hack on Perl

29.2 DESCRIPTION

This document explains how Perl development works. It includes details about the Perl
5 Porters email list, the Perl repository, the Perlbug bug tracker, patch guidelines, and
commentary on Perl development philosophy.

29.3 SUPER QUICK PATCH GUIDE

If you just want to submit a single small patch like a pod fix, a test for a bug, comment
fixes, etc., it’s easy! Here’s how:

• Check out the source repository

The perl source is in a git repository. You can clone the repository with the following
command:

% git clone git://perl5.git.perl.org/perl.git perl

• Ensure you’re following the latest advice

In case the advice in this guide has been updated recently, read the latest version
directly from the perl source:

% perldoc pod/perlhack.pod

• Make your change

Hack, hack, hack. Keep in mind that Perl runs on many different platforms, with
different operating systems that have different capabilities, different filesystem organi-
zations, and even different character sets. Section 30.1 [perlhacktips NAME], page 578
gives advice on this.

• Test your change

You can run all the tests with the following commands:

% ./Configure -des -Dusedevel

% make test

Keep hacking until the tests pass.

• Commit your change

Committing your work will save the change on your local system:

% git commit -a -m ’Commit message goes here’

Make sure the commit message describes your change in a single sentence. For example,
"Fixed spelling errors in perlhack.pod".

• Send your change to perlbug

The next step is to submit your patch to the Perl core ticket system via email.

If your changes are in a single git commit, run the following commands to generate the
patch file and attach it to your bug report:

% git format-patch -1

% ./perl -Ilib utils/perlbug -p 0001-*.patch

The perlbug program will ask you a few questions about your email address and the
patch you’re submitting. Once you’ve answered them it will submit your patch via
email.

If your changes are in multiple commits, generate a patch file for each one and provide
them to perlbug’s -p option separated by commas:

% git format-patch -3

% ./perl -Ilib utils/perlbug -p 0001-fix1.patch,0002-fix2.patch,\

> 0003-fix3.patch

When prompted, pick a subject that summarizes your changes.

• Thank you

The porters appreciate the time you spent helping to make Perl better. Thank you!

• Next time

The next time you wish to make a patch, you need to start from the latest perl in
a pristine state. Check you don’t have any local changes or added files in your perl
check-out which you wish to keep, then run these commands:

% git pull

% git reset --hard origin/blead

% git clean -dxf

29.4 BUG REPORTING

If you want to report a bug in Perl, you must use the perlbug command line tool. This
tool will ensure that your bug report includes all the relevant system and configuration
information.

To browse existing Perl bugs and patches, you can use the web interface at http://rt.
perl.org/.

Please check the archive of the perl5-porters list (see below) and/or the bug tracking
system before submitting a bug report. Often, you’ll find that the bug has been reported
already.

You can log in to the bug tracking system and comment on existing bug reports. If you
have additional information regarding an existing bug, please add it. This will help the
porters fix the bug.

29.5 PERL 5 PORTERS

The perl5-porters (p5p) mailing list is where the Perl standard distribution is maintained
and developed. The people who maintain Perl are also referred to as the "Perl 5 Porters",
"p5p" or just the "porters".

A searchable archive of the list is available at http: / / markmail . org / search / ?

q=perl5-porters. There is also an archive at http: / / archive . develooper . com /

perl5-porters@perl.org/.

http://rt.perl.org/
http://rt.perl.org/
http://markmail.org/search/?q=perl5-porters
http://markmail.org/search/?q=perl5-porters
http://archive.develooper.com/perl5-porters@perl.org/
http://archive.develooper.com/perl5-porters@perl.org/

29.5.1 perl-changes mailing list

The perl5-changes mailing list receives a copy of each patch that gets submitted to the
maintenance and development branches of the perl repository. See http://lists.perl.

org/list/perl5-changes.html for subscription and archive information.

29.5.2 #p5p on IRC

Many porters are also active on the irc://irc.perl.org/#p5p channel. Feel free to join
the channel and ask questions about hacking on the Perl core.

29.6 GETTING THE PERL SOURCE

All of Perl’s source code is kept centrally in a Git repository at perl5.git.perl.org. The
repository contains many Perl revisions from Perl 1 onwards and all the revisions from
Perforce, the previous version control system.

For much more detail on using git with the Perl repository, please see Section 26.1 [perlgit
NAME], page 492.

29.6.1 Read access via Git

You will need a copy of Git for your computer. You can fetch a copy of the repository using
the git protocol:

% git clone git://perl5.git.perl.org/perl.git perl

This clones the repository and makes a local copy in the perl directory.

If you cannot use the git protocol for firewall reasons, you can also clone via http, though
this is much slower:

% git clone http://perl5.git.perl.org/perl.git perl

29.6.2 Read access via the web

You may access the repository over the web. This allows you to browse the tree, see recent
commits, subscribe to RSS feeds for the changes, search for particular commits and more.
You may access it at http://perl5.git.perl.org/perl.git. A mirror of the repository
is found at https://github.com/Perl/perl5.

29.6.3 Read access via rsync

You can also choose to use rsync to get a copy of the current source tree for the bleadperl
branch and all maintenance branches:

% rsync -avz rsync://perl5.git.perl.org/perl-current .

% rsync -avz rsync://perl5.git.perl.org/perl-5.12.x .

% rsync -avz rsync://perl5.git.perl.org/perl-5.10.x .

% rsync -avz rsync://perl5.git.perl.org/perl-5.8.x .

% rsync -avz rsync://perl5.git.perl.org/perl-5.6.x .

% rsync -avz rsync://perl5.git.perl.org/perl-5.005xx .

(Add the --delete option to remove leftover files.)

To get a full list of the available sync points:

% rsync perl5.git.perl.org::

http://lists.perl.org/list/perl5-changes.html
http://lists.perl.org/list/perl5-changes.html
irc://irc.perl.org/#p5p
http://perl5.git.perl.org/perl.git
https://github.com/Perl/perl5

29.6.4 Write access via git

If you have a commit bit, please see Section 26.1 [perlgit NAME], page 492 for more details
on using git.

29.7 PATCHING PERL

If you’re planning to do more extensive work than a single small fix, we encourage you to
read the documentation below. This will help you focus your work and make your patches
easier to incorporate into the Perl source.

29.7.1 Submitting patches

If you have a small patch to submit, please submit it via perlbug. You can also send email
directly to perlbug@perl.org. Please note that messages sent to perlbug may be held in a
moderation queue, so you won’t receive a response immediately.

You’ll know your submission has been processed when you receive an email from our
ticket tracking system. This email will give you a ticket number. Once your patch has
made it to the ticket tracking system, it will also be sent to the perl5-porters@perl.org list.

Patches are reviewed and discussed on the p5p list. Simple, uncontroversial patches will
usually be applied without any discussion. When the patch is applied, the ticket will be
updated and you will receive email. In addition, an email will be sent to the p5p list.

In other cases, the patch will need more work or discussion. That will happen on the
p5p list.

You are encouraged to participate in the discussion and advocate for your patch. Some-
times your patch may get lost in the shuffle. It’s appropriate to send a reminder email to
p5p if no action has been taken in a month. Please remember that the Perl 5 developers
are all volunteers, and be polite.

Changes are always applied directly to the main development branch, called "blead".
Some patches may be backported to a maintenance branch. If you think your patch is
appropriate for the maintenance branch (see Section 55.6 [perlpolicy MAINTENANCE
BRANCHES], page 946), please explain why when you submit it.

29.7.2 Getting your patch accepted

If you are submitting a code patch there are several things that you can do to help the Perl
5 Porters accept your patch.

29.7.2.1 Patch style

If you used git to check out the Perl source, then using git format-patch will produce a
patch in a style suitable for Perl. The format-patch command produces one patch file for
each commit you made. If you prefer to send a single patch for all commits, you can use
git diff.

% git checkout blead

% git pull

% git diff blead my-branch-name

This produces a patch based on the difference between blead and your current branch.
It’s important to make sure that blead is up to date before producing the diff, that’s why
we call git pull first.

We strongly recommend that you use git if possible. It will make your life easier, and
ours as well.

However, if you’re not using git, you can still produce a suitable patch. You’ll need a
pristine copy of the Perl source to diff against. The porters prefer unified diffs. Using GNU
diff, you can produce a diff like this:

% diff -Npurd perl.pristine perl.mine

Make sure that you make realclean in your copy of Perl to remove any build artifacts,
or you may get a confusing result.

29.7.2.2 Commit message

As you craft each patch you intend to submit to the Perl core, it’s important to write a good
commit message. This is especially important if your submission will consist of a series of
commits.

The first line of the commit message should be a short description without a period. It
should be no longer than the subject line of an email, 50 characters being a good rule of
thumb.

A lot of Git tools (Gitweb, GitHub, git log –pretty=oneline, ...) will only display the
first line (cut off at 50 characters) when presenting commit summaries.

The commit message should include a description of the problem that the patch corrects
or new functionality that the patch adds.

As a general rule of thumb, your commit message should help a programmer who knows
the Perl core quickly understand what you were trying to do, how you were trying to do it,
and why the change matters to Perl.

• Why

Your commit message should describe why the change you are making is important.
When someone looks at your change in six months or six years, your intent should be
clear.

If you’re deprecating a feature with the intent of later simplifying another bit of code,
say so. If you’re fixing a performance problem or adding a new feature to support some
other bit of the core, mention that.

• What

Your commit message should describe what part of the Perl core you’re changing and
what you expect your patch to do.

• How

While it’s not necessary for documentation changes, new tests or trivial patches, it’s
often worth explaining how your change works. Even if it’s clear to you today, it may
not be clear to a porter next month or next year.

A commit message isn’t intended to take the place of comments in your code. Commit
messages should describe the change you made, while code comments should describe the
current state of the code.

If you’ve just implemented a new feature, complete with doc, tests and well-commented
code, a brief commit message will often suffice. If, however, you’ve just changed a single
character deep in the parser or lexer, you might need to write a small novel to ensure that
future readers understand what you did and why you did it.

29.7.2.3 Comments, Comments, Comments

Be sure to adequately comment your code. While commenting every line is unnecessary,
anything that takes advantage of side effects of operators, that creates changes that will
be felt outside of the function being patched, or that others may find confusing should be
documented. If you are going to err, it is better to err on the side of adding too many
comments than too few.

The best comments explain why the code does what it does, not what it does.

29.7.2.4 Style

In general, please follow the particular style of the code you are patching.

In particular, follow these general guidelines for patching Perl sources:

• 8-wide tabs (no exceptions!)

• 4-wide indents for code, 2-wide indents for nested CPP #defines

• Try hard not to exceed 79-columns

• ANSI C prototypes

• Uncuddled elses and "K&R" style for indenting control constructs

• No C++ style (//) comments

• Mark places that need to be revisited with XXX (and revisit often!)

• Opening brace lines up with "if" when conditional spans multiple lines; should be at
end-of-line otherwise

• In function definitions, name starts in column 0 (return value-type is on previous line)

• Single space after keywords that are followed by parens, no space between function
name and following paren

• Avoid assignments in conditionals, but if they’re unavoidable, use extra paren, e.g. "if
(a && (b = c)) ..."

• "return foo;" rather than "return(foo);"

• "if (!foo) ..." rather than "if (foo == FALSE) ..." etc.

• Do not declare variables using "register". It may be counterproductive with modern
compilers, and is deprecated in C++, under which the Perl source is regularly compiled.

• In-line functions that are in headers that are accessible to XS code need to be able to
compile without warnings with commonly used extra compilation flags, such as gcc’s
-Wswitch-default which warns whenever a switch statement does not have a "default"
case. The use of these extra flags is to catch potential problems in legal C code, and is
often used by Perl aggregators, such as Linux distributors.

29.7.2.5 Test suite

If your patch changes code (rather than just changing documentation), you should also
include one or more test cases which illustrate the bug you’re fixing or validate the new
functionality you’re adding. In general, you should update an existing test file rather than
create a new one.

Your test suite additions should generally follow these guidelines (courtesy of Gurusamy
Sarathy <gsar@activestate.com>):

• Know what you’re testing. Read the docs, and the source.

• Tend to fail, not succeed.

• Interpret results strictly.

• Use unrelated features (this will flush out bizarre interactions).

• Use non-standard idioms (otherwise you are not testing TIMTOWTDI).

• Avoid using hardcoded test numbers whenever possible (the EXPECTED/GOT found
in t/op/tie.t is much more maintainable, and gives better failure reports).

• Give meaningful error messages when a test fails.

• Avoid using qx// and system() unless you are testing for them. If you do use them,
make sure that you cover all perl platforms.

• Unlink any temporary files you create.

• Promote unforeseen warnings to errors with $SIG{ WARN }.
• Be sure to use the libraries and modules shipped with the version being tested, not

those that were already installed.

• Add comments to the code explaining what you are testing for.

• Make updating the ’1..42’ string unnecessary. Or make sure that you update it.

• Test all behaviors of a given operator, library, or function.

Test all optional arguments.

Test return values in various contexts (boolean, scalar, list, lvalue).

Use both global and lexical variables.

Don’t forget the exceptional, pathological cases.

29.7.3 Patching a core module

This works just like patching anything else, with one extra consideration.

Modules in the cpan/ directory of the source tree are maintained outside of the Perl
core. When the author updates the module, the updates are simply copied into the core.
See that module’s documentation or its listing on http://search.cpan.org/ for more
information on reporting bugs and submitting patches.

In most cases, patches to modules in cpan/ should be sent upstream and should not be
applied to the Perl core individually. If a patch to a file in cpan/ absolutely cannot wait
for the fix to be made upstream, released to CPAN and copied to blead, you must add
(or update) a CUSTOMIZED entry in the "Porting/Maintainers.pl" file to flag that a local
modification has been made. See "Porting/Maintainers.pl" for more details.

In contrast, modules in the dist/ directory are maintained in the core.

29.7.4 Updating perldelta

For changes significant enough to warrant a pod/perldelta.pod entry, the porters will
greatly appreciate it if you submit a delta entry along with your actual change. Significant
changes include, but are not limited to:

• Adding, deprecating, or removing core features

• Adding, deprecating, removing, or upgrading core or dual-life modules

• Adding new core tests

http://search.cpan.org/

• Fixing security issues and user-visible bugs in the core

• Changes that might break existing code, either on the perl or C level

• Significant performance improvements

• Adding, removing, or significantly changing documentation in the pod/ directory

• Important platform-specific changes

Please make sure you add the perldelta entry to the right section within
pod/perldelta.pod. More information on how to write good perldelta entries is available
in the Style section of Porting/how_to_write_a_perldelta.pod.

29.7.5 What makes for a good patch?

New features and extensions to the language can be contentious. There is no specific set of
criteria which determine what features get added, but here are some questions to consider
when developing a patch:

29.7.5.1 Does the concept match the general goals of Perl?

Our goals include, but are not limited to:

1. Keep it fast, simple, and useful.

2. Keep features/concepts as orthogonal as possible.

3. No arbitrary limits (platforms, data sizes, cultures).

4. Keep it open and exciting to use/patch/advocate Perl everywhere.

5. Either assimilate new technologies, or build bridges to them.

29.7.5.2 Where is the implementation?

All the talk in the world is useless without an implementation. In almost every case, the
person or people who argue for a new feature will be expected to be the ones who implement
it. Porters capable of coding new features have their own agendas, and are not available to
implement your (possibly good) idea.

29.7.5.3 Backwards compatibility

It’s a cardinal sin to break existing Perl programs. New warnings can be contentious–
some say that a program that emits warnings is not broken, while others say it is. Adding
keywords has the potential to break programs, changing the meaning of existing token
sequences or functions might break programs.

The Perl 5 core includes mechanisms to help porters make backwards incompatible
changes more compatible such as the feature and deprecate modules. Please use them
when appropriate.

29.7.5.4 Could it be a module instead?

Perl 5 has extension mechanisms, modules and XS, specifically to avoid the need to keep
changing the Perl interpreter. You can write modules that export functions, you can give
those functions prototypes so they can be called like built-in functions, you can even write
XS code to mess with the runtime data structures of the Perl interpreter if you want to
implement really complicated things.

Whenever possible, new features should be prototyped in a CPAN module before they
will be considered for the core.

29.7.5.5 Is the feature generic enough?

Is this something that only the submitter wants added to the language, or is it broadly
useful? Sometimes, instead of adding a feature with a tight focus, the porters might decide
to wait until someone implements the more generalized feature.

29.7.5.6 Does it potentially introduce new bugs?

Radical rewrites of large chunks of the Perl interpreter have the potential to introduce new
bugs.

29.7.5.7 How big is it?

The smaller and more localized the change, the better. Similarly, a series of small patches
is greatly preferred over a single large patch.

29.7.5.8 Does it preclude other desirable features?

A patch is likely to be rejected if it closes off future avenues of development. For instance,
a patch that placed a true and final interpretation on prototypes is likely to be rejected
because there are still options for the future of prototypes that haven’t been addressed.

29.7.5.9 Is the implementation robust?

Good patches (tight code, complete, correct) stand more chance of going in. Sloppy or
incorrect patches might be placed on the back burner until the pumpking has time to fix,
or might be discarded altogether without further notice.

29.7.5.10 Is the implementation generic enough to be portable?

The worst patches make use of system-specific features. It’s highly unlikely that non-
portable additions to the Perl language will be accepted.

29.7.5.11 Is the implementation tested?

Patches which change behaviour (fixing bugs or introducing new features) must include
regression tests to verify that everything works as expected.

Without tests provided by the original author, how can anyone else changing perl in the
future be sure that they haven’t unwittingly broken the behaviour the patch implements?
And without tests, how can the patch’s author be confident that his/her hard work put into
the patch won’t be accidentally thrown away by someone in the future?

29.7.5.12 Is there enough documentation?

Patches without documentation are probably ill-thought out or incomplete. No features
can be added or changed without documentation, so submitting a patch for the appropriate
pod docs as well as the source code is important.

29.7.5.13 Is there another way to do it?

Larry said "Although the Perl Slogan is There’s More Than One Way to Do It, I hesitate
to make 10 ways to do something". This is a tricky heuristic to navigate, though–one man’s
essential addition is another man’s pointless cruft.

29.7.5.14 Does it create too much work?

Work for the pumpking, work for Perl programmers, work for module authors, ... Perl is
supposed to be easy.

29.7.5.15 Patches speak louder than words

Working code is always preferred to pie-in-the-sky ideas. A patch to add a feature stands
a much higher chance of making it to the language than does a random feature request, no
matter how fervently argued the request might be. This ties into "Will it be useful?", as
the fact that someone took the time to make the patch demonstrates a strong desire for the
feature.

29.8 TESTING

The core uses the same testing style as the rest of Perl, a simple "ok/not ok" run through
Test::Harness, but there are a few special considerations.

There are three ways to write a test in the core: Test-More, t/test.pl and ad hoc
print $test ? "ok 42\n" : "not ok 42\n". The decision of which to use depends on what
part of the test suite you’re working on. This is a measure to prevent a high-level failure
(such as Config.pm breaking) from causing basic functionality tests to fail.

The t/test.pl library provides some of the features of Test-More, but avoids loading
most modules and uses as few core features as possible.

If you write your own test, use the Test Anything Protocol (http://testanything.
org).

• t/base, t/comp and t/opbasic

Since we don’t know if require works, or even subroutines, use ad hoc tests for these
three. Step carefully to avoid using the feature being tested. Tests in t/opbasic, for
instance, have been placed there rather than in t/op because they test functionality
which t/test.pl presumes has already been demonstrated to work.

• t/cmd, t/run, t/io and t/op

Now that basic require() and subroutines are tested, you can use the t/test.pl library.

You can also use certain libraries like Config conditionally, but be sure to skip the test
gracefully if it’s not there.

• Everything else

Now that the core of Perl is tested, Test-More can and should be used. You can also
use the full suite of core modules in the tests.

When you say "make test", Perl uses the t/TEST program to run the test suite (except
under Win32 where it uses t/harness instead). All tests are run from the t/ directory, not
the directory which contains the test. This causes some problems with the tests in lib/,
so here’s some opportunity for some patching.

http://testanything.org
http://testanything.org

You must be triply conscious of cross-platform concerns. This usually boils down to
using File-Spec, avoiding things like fork() and system() unless absolutely necessary,
and not assuming that a given character has a particular ordinal value (code point) or that
its UTF-8 representation is composed of particular bytes.

There are several functions available to specify characters and code points portably
in tests. The always-preloaded functions utf8::unicode_to_native() and its inverse
utf8::native_to_unicode() take code points and translate appropriately. The file
t/charset_tools.pl has several functions that can be useful. It has versions of the
previous two functions that take strings as inputs – not single numeric code points:
uni_to_native() and native_to_uni(). If you must look at the individual bytes
comprising a UTF-8 encoded string, byte_utf8a_to_utf8n() takes as input a string of
those bytes encoded for an ASCII platform, and returns the equivalent string in the native
platform. For example, byte_utf8a_to_utf8n("\xC2\xA0") returns the byte sequence on
the current platform that form the UTF-8 for U+00A0, since "\xC2\xA0" are the UTF-8
bytes on an ASCII platform for that code point. This function returns "\xC2\xA0" on an
ASCII platform, and "\x80\x41" on an EBCDIC 1047 one.

But easiest is, if the character is specifiable as a literal, like "A" or "%", to use that; if
not so specificable, you can use use \N{} , if the side effects aren’t troublesome. Simply
specify all your characters in hex, using \N{U+ZZ} instead of \xZZ. \N{} is the Unicode
name, and so it always gives you the Unicode character. \N{U+41} is the character whose
Unicode code point is 0x41, hence is ’A’ on all platforms. The side effects are:

1)

These select Unicode rules. That means that in double-quotish strings, the
string is always converted to UTF-8 to force a Unicode interpretation (you can
utf8::downgrade() afterwards to convert back to non-UTF8, if possible). In
regular expression patterns, the conversion isn’t done, but if the character set
modifier would otherwise be /d, it is changed to /u.

2)

If you use the form \N{character name}, the charnames module gets automat-
ically loaded. This may not be suitable for the test level you are doing.

If you are testing locales (see Section 38.1 [perllocale NAME], page 701), there are
helper functions in t/loc_tools.pl to enable you to see what locales there are on the
current platform.

29.8.1 Special make test targets

There are various special make targets that can be used to test Perl slightly differently than
the standard "test" target. Not all them are expected to give a 100% success rate. Many of
them have several aliases, and many of them are not available on certain operating systems.

• test porting

This runs some basic sanity tests on the source tree and helps catch basic errors before
you submit a patch.

• minitest

Run miniperl on t/base, t/comp, t/cmd, t/run, t/io, t/op, t/uni and t/mro tests.

• test.valgrind check.valgrind

(Only in Linux) Run all the tests using the memory leak + naughty memory access tool
"valgrind". The log files will be named testname.valgrind.

• test harness

Run the test suite with the t/harness controlling program, instead of t/TEST.
t/harness is more sophisticated, and uses the Test-Harness module, thus using this
test target supposes that perl mostly works. The main advantage for our purposes is
that it prints a detailed summary of failed tests at the end. Also, unlike t/TEST, it
doesn’t redirect stderr to stdout.

Note that under Win32 t/harness is always used instead of t/TEST, so there is no
special "test harness" target.

Under Win32’s "test" target you may use the TEST SWITCHES and TEST FILES
environment variables to control the behaviour of t/harness. This means you can say

nmake test TEST_FILES="op/*.t"

nmake test TEST_SWITCHES="-torture" TEST_FILES="op/*.t"

• test-notty test notty

Sets PERL SKIP TTY TEST to true before running normal test.

29.8.2 Parallel tests

The core distribution can now run its regression tests in parallel on Unix-like platforms.
Instead of running make test, set TEST_JOBS in your environment to the number of tests
to run in parallel, and run make test_harness. On a Bourne-like shell, this can be done as

TEST_JOBS=3 make test_harness # Run 3 tests in parallel

An environment variable is used, rather than parallel make itself, because TAP-Harness
needs to be able to schedule individual non-conflicting test scripts itself, and there is no
standard interface to make utilities to interact with their job schedulers.

Note that currently some test scripts may fail when run in parallel (most notably
ext/IO/t/io_dir.t). If necessary, run just the failing scripts again sequentially and see if
the failures go away.

29.8.3 Running tests by hand

You can run part of the test suite by hand by using one of the following commands from
the t/ directory:

./perl -I../lib TEST list-of-.t-files

or

./perl -I../lib harness list-of-.t-files

(If you don’t specify test scripts, the whole test suite will be run.)

29.8.4 Using t/harness for testing

If you use harness for testing, you have several command line options available to you.
The arguments are as follows, and are in the order that they must appear if used together.

harness -v -torture -re=pattern LIST OF FILES TO TEST

harness -v -torture -re LIST OF PATTERNS TO MATCH

If LIST OF FILES TO TEST is omitted, the file list is obtained from the manifest. The file
list may include shell wildcards which will be expanded out.

• -v

Run the tests under verbose mode so you can see what tests were run, and debug
output.

• -torture

Run the torture tests as well as the normal set.

• -re=PATTERN

Filter the file list so that all the test files run match PATTERN. Note that this form
is distinct from the -re LIST OF PATTERNS form below in that it allows the file list
to be provided as well.

• -re LIST OF PATTERNS

Filter the file list so that all the test files run match /(LIST|OF|PATTERNS)/. Note
that with this form the patterns are joined by ’|’ and you cannot supply a list of files,
instead the test files are obtained from the MANIFEST.

You can run an individual test by a command similar to

./perl -I../lib path/to/foo.t

except that the harnesses set up some environment variables that may affect the execu-
tion of the test:

• PERL CORE=1

indicates that we’re running this test as part of the perl core test suite. This is useful
for modules that have a dual life on CPAN.

• PERL DESTRUCT LEVEL=2

is set to 2 if it isn’t set already (see Section 30.8.1 [perlhacktips
PERL DESTRUCT LEVEL], page 596).

• PERL

(used only by t/TEST) if set, overrides the path to the perl executable that should be
used to run the tests (the default being ./perl).

• PERL SKIP TTY TEST

if set, tells to skip the tests that need a terminal. It’s actually set automatically by the
Makefile, but can also be forced artificially by running ’make test notty’.

29.8.4.1 Other environment variables that may influence tests

• PERL TEST Net Ping

Setting this variable runs all the Net::Ping modules tests, otherwise some tests that
interact with the outside world are skipped. See perl58delta.

• PERL TEST NOVREXX

Setting this variable skips the vrexx.t tests for OS2::REXX.

• PERL TEST NUMCONVERTS

This sets a variable in op/numconvert.t.

• PERL TEST MEMORY

Setting this variable includes the tests in t/bigmem/. This should be set to the number
of gigabytes of memory available for testing, eg. PERL_TEST_MEMORY=4 indicates that
tests that require 4GiB of available memory can be run safely.

See also the documentation for the Test and Test::Harness modules, for more environ-
ment variables that affect testing.

29.8.5 Performance testing

The file t/perf/benchmarks contains snippets of perl code which are intended to be bench-
marked across a range of perls by the Porting/bench.pl tool. If you fix or enhance a
performance issue, you may want to add a representative code sample to the file, then run
bench.pl against the previous and current perls to see what difference it has made, and
whether anything else has slowed down as a consequence.

The file t/perf/opcount.t is designed to test whether a particular code snippet has
been compiled into an optree containing specified numbers of particular op types. This is
good for testing whether optimisations which alter ops, such as converting an aelem op into
an aelemfast op, are really doing that.

The files t/perf/speed.t and t/re/speed.t are designed to test things that run thou-
sands of times slower if a particular optimisation is broken (for example, the utf8 length
cache on long utf8 strings). Add a test that will take a fraction of a second normally, and
minutes otherwise, causing the test file to time out on failure.

29.9 MORE READING FOR GUTS HACKERS

To hack on the Perl guts, you’ll need to read the following things:

• Section 71.1 [perlsource NAME], page 1208

An overview of the Perl source tree. This will help you find the files you’re looking for.

• Section 33.1 [perlinterp NAME], page 627

An overview of the Perl interpreter source code and some details on how Perl does
what it does.

• Section 31.1 [perlhacktut NAME], page 601

This document walks through the creation of a small patch to Perl’s C code. If you’re
just getting started with Perl core hacking, this will help you understand how it works.

• Section 30.1 [perlhacktips NAME], page 578

More details on hacking the Perl core. This document focuses on lower level details
such as how to write tests, compilation issues, portability, debugging, etc.

If you plan on doing serious C hacking, make sure to read this.

• Section 28.1 [perlguts NAME], page 512

This is of paramount importance, since it’s the documentation of what goes where in
the Perl source. Read it over a couple of times and it might start to make sense - don’t
worry if it doesn’t yet, because the best way to study it is to read it in conjunction
with poking at Perl source, and we’ll do that later on.

Gisle Aas’s "illustrated perlguts", also known as illguts, has very helpful pictures:

http://search.cpan.org/dist/illguts/

http://search.cpan.org/dist/illguts/

• perlxstut and perlxs

A working knowledge of XSUB programming is incredibly useful for core hacking;
XSUBs use techniques drawn from the PP code, the portion of the guts that actu-
ally executes a Perl program. It’s a lot gentler to learn those techniques from simple
examples and explanation than from the core itself.

• perlapi

The documentation for the Perl API explains what some of the internal functions do,
as well as the many macros used in the source.

• Porting/pumpkin.pod

This is a collection of words of wisdom for a Perl porter; some of it is only useful
to the pumpkin holder, but most of it applies to anyone wanting to go about Perl
development.

29.10 CPAN TESTERS AND PERL SMOKERS

The CPAN testers (http://testers.cpan.org/) are a group of volunteers who test CPAN
modules on a variety of platforms.

Perl Smokers (http://www.nntp.perl.org/group/perl.daily-build/ and
http://www.nntp.perl.org/group/perl.daily-build.reports/) automatically test
Perl source releases on platforms with various configurations.

Both efforts welcome volunteers. In order to get involved in smoke testing of the perl itself
visit http://search.cpan.org/dist/Test-Smoke/. In order to start smoke testing CPAN
modules visit http://search.cpan.org/dist/CPANPLUS-YACSmoke/ or http://search.
cpan.org/dist/minismokebox/ or http://search.cpan.org/dist/CPAN-Reporter/.

29.11 WHAT NEXT?

If you’ve read all the documentation in the document and the ones listed above, you’re
more than ready to hack on Perl.

Here’s some more recommendations

• Subscribe to perl5-porters, follow the patches and try and understand them; don’t be
afraid to ask if there’s a portion you’re not clear on - who knows, you may unearth a
bug in the patch...

• Do read the README associated with your operating system, e.g. README.aix
on the IBM AIX OS. Don’t hesitate to supply patches to that README if you find
anything missing or changed over a new OS release.

• Find an area of Perl that seems interesting to you, and see if you can work out how
it works. Scan through the source, and step over it in the debugger. Play, poke,
investigate, fiddle! You’ll probably get to understand not just your chosen area but a
much wider range of perl’s activity as well, and probably sooner than you’d think.

29.11.1 "The Road goes ever on and on, down from the door
where it began."

If you can do these things, you’ve started on the long road to Perl porting. Thanks for
wanting to help make Perl better - and happy hacking!

http://search.cpan.org/dist/Test-Smoke/
http://search.cpan.org/dist/CPANPLUS-YACSmoke/
http://search.cpan.org/dist/minismokebox/
http://search.cpan.org/dist/minismokebox/
http://search.cpan.org/dist/CPAN-Reporter/

29.11.2 Metaphoric Quotations

If you recognized the quote about the Road above, you’re in luck.

Most software projects begin each file with a literal description of each file’s purpose.
Perl instead begins each with a literary allusion to that file’s purpose.

Like chapters in many books, all top-level Perl source files (along with a few others here
and there) begin with an epigrammatic inscription that alludes, indirectly and metaphori-
cally, to the material you’re about to read.

Quotations are taken from writings of J.R.R. Tolkien pertaining to his Legendarium,
almost always from The Lord of the Rings. Chapters and page numbers are given using the
following editions:

• The Hobbit, by J.R.R. Tolkien. The hardcover, 70th-anniversary edition of 2007 was
used, published in the UK by Harper Collins Publishers and in the US by the Houghton
Mifflin Company.

• The Lord of the Rings, by J.R.R. Tolkien. The hardcover, 50th-anniversary edition of
2004 was used, published in the UK by Harper Collins Publishers and in the US by the
Houghton Mifflin Company.

• The Lays of Beleriand, by J.R.R. Tolkien and published posthumously by his son and
literary executor, C.J.R. Tolkien, being the 3rd of the 12 volumes in Christopher’s
mammoth History of Middle Earth. Page numbers derive from the hardcover edition,
first published in 1983 by George Allen & Unwin; no page numbers changed for the
special 3-volume omnibus edition of 2002 or the various trade-paper editions, all again
now by Harper Collins or Houghton Mifflin.

Other JRRT books fair game for quotes would thus include The Adventures of Tom
Bombadil, The Silmarillion, Unfinished Tales, and The Tale of the Children of Hurin, all
but the first posthumously assembled by CJRT. But The Lord of the Rings itself is perfectly
fine and probably best to quote from, provided you can find a suitable quote there.

So if you were to supply a new, complete, top-level source file to add to Perl, you
should conform to this peculiar practice by yourself selecting an appropriate quotation
from Tolkien, retaining the original spelling and punctuation and using the same format
the rest of the quotes are in. Indirect and oblique is just fine; remember, it’s a metaphor,
so being meta is, after all, what it’s for.

29.12 AUTHOR

This document was originally written by Nathan Torkington, and is maintained by the
perl5-porters mailing list.

30 perlhacktips

30.1 NAME

perlhacktips - Tips for Perl core C code hacking

30.2 DESCRIPTION

This document will help you learn the best way to go about hacking on the Perl core C
code. It covers common problems, debugging, profiling, and more.

If you haven’t read Section 29.1 [perlhack NAME], page 562 and Section 31.1 [perlhacktut
NAME], page 601 yet, you might want to do that first.

30.3 COMMON PROBLEMS

Perl source plays by ANSI C89 rules: no C99 (or C++) extensions. In some cases we have
to take pre-ANSI requirements into consideration. You don’t care about some particular
platform having broken Perl? I hear there is still a strong demand for J2EE programmers.

30.3.1 Perl environment problems

• Not compiling with threading

Compiling with threading (-Duseithreads) completely rewrites the function prototypes
of Perl. You better try your changes with that. Related to this is the difference between
"Perl -less" and "Perl -ly" APIs, for example:

Perl_sv_setiv(aTHX_ ...);

sv_setiv(...);

The first one explicitly passes in the context, which is needed for e.g. threaded builds.
The second one does that implicitly; do not get them mixed. If you are not passing in
a aTHX , you will need to do a dTHX (or a dVAR) as the first thing in the function.

See Section 28.9 [perlguts How multiple interpreters and concurrency are supported],
page 547 for further discussion about context.

• Not compiling with -DDEBUGGING

The DEBUGGING define exposes more code to the compiler, therefore more ways for
things to go wrong. You should try it.

• Introducing (non-read-only) globals

Do not introduce any modifiable globals, truly global or file static. They are bad form
and complicate multithreading and other forms of concurrency. The right way is to
introduce them as new interpreter variables, see intrpvar.h (at the very end for binary
compatibility).

Introducing read-only (const) globals is okay, as long as you verify with e.g. nm

libperl.a|egrep -v ’ [TURtr] ’ (if your nm has BSD-style output) that the data
you added really is read-only. (If it is, it shouldn’t show up in the output of that
command.)

If you want to have static strings, make them constant:

static const char etc[] = "...";

If you want to have arrays of constant strings, note carefully the right combination of
consts:

static const char * const yippee[] =

{"hi", "ho", "silver"};

There is a way to completely hide any modifiable globals (they are all moved to heap),
the compilation setting -DPERL_GLOBAL_STRUCT_PRIVATE. It is not normally used, but
can be used for testing, read more about it in Section 28.9.1 [perlguts Background and
PERL IMPLICIT CONTEXT], page 547.

• Not exporting your new function

Some platforms (Win32, AIX, VMS, OS/2, to name a few) require any function that
is part of the public API (the shared Perl library) to be explicitly marked as exported.
See the discussion about embed.pl in Section 28.1 [perlguts NAME], page 512.

• Exporting your new function

The new shiny result of either genuine new functionality or your arduous refactoring is
now ready and correctly exported. So what could possibly go wrong?

Maybe simply that your function did not need to be exported in the first place. Perl
has a long and not so glorious history of exporting functions that it should not have.

If the function is used only inside one source code file, make it static. See the discussion
about embed.pl in Section 28.1 [perlguts NAME], page 512.

If the function is used across several files, but intended only for Perl’s internal use (and
this should be the common case), do not export it to the public API. See the discussion
about embed.pl in Section 28.1 [perlguts NAME], page 512.

30.3.2 Portability problems

The following are common causes of compilation and/or execution failures, not common to
Perl as such. The C FAQ is good bedtime reading. Please test your changes with as many
C compilers and platforms as possible; we will, anyway, and it’s nice to save oneself from
public embarrassment.

If using gcc, you can add the -std=c89 option which will hopefully catch most of these
unportabilities. (However it might also catch incompatibilities in your system’s header
files.)

Use the Configure -Dgccansipedantic flag to enable the gcc -ansi -pedantic flags
which enforce stricter ANSI rules.

If using the gcc -Wall note that not all the possible warnings (like -Wunitialized) are
given unless you also compile with -O.

Note that if using gcc, starting from Perl 5.9.5 the Perl core source code files (the ones
at the top level of the source code distribution, but not e.g. the extensions under ext/) are
automatically compiled with as many as possible of the -std=c89, -ansi, -pedantic, and
a selection of -W flags (see cflags.SH).

Also study Section 56.1 [perlport NAME], page 951 carefully to avoid any bad assump-
tions about the operating system, filesystems, character set, and so forth.

You may once in a while try a "make microperl" to see whether we can still compile Perl
with just the bare minimum of interfaces. (See README.micro.)

Do not assume an operating system indicates a certain compiler.

• Casting pointers to integers or casting integers to pointers

void castaway(U8* p)

{

IV i = p;

or

void castaway(U8* p)

{

IV i = (IV)p;

Both are bad, and broken, and unportable. Use the PTR2IV() macro that does it
right. (Likewise, there are PTR2UV(), PTR2NV(), INT2PTR(), and NUM2PTR().)

• Casting between function pointers and data pointers

Technically speaking casting between function pointers and data pointers is unportable
and undefined, but practically speaking it seems to work, but you should use the
FPTR2DPTR() and DPTR2FPTR() macros. Sometimes you can also play games
with unions.

• Assuming sizeof(int) == sizeof(long)

There are platforms where longs are 64 bits, and platforms where ints are 64 bits, and
while we are out to shock you, even platforms where shorts are 64 bits. This is all legal
according to the C standard. (In other words, "long long" is not a portable way to
specify 64 bits, and "long long" is not even guaranteed to be any wider than "long".)

Instead, use the definitions IV, UV, IVSIZE, I32SIZE, and so forth. Avoid things like
I32 because they are not guaranteed to be exactly 32 bits, they are at least 32 bits, nor
are they guaranteed to be int or long. If you really explicitly need 64-bit variables, use
I64 and U64, but only if guarded by HAS QUAD.

• Assuming one can dereference any type of pointer for any type of data

char *p = ...;

long pony = *p; /* BAD */

Many platforms, quite rightly so, will give you a core dump instead of a pony if the p
happens not to be correctly aligned.

• Lvalue casts

(int)*p = ...; /* BAD */

Simply not portable. Get your lvalue to be of the right type, or maybe use temporary
variables, or dirty tricks with unions.

• Assume anything about structs (especially the ones you don’t control, like the ones
coming from the system headers)

• That a certain field exists in a struct

• That no other fields exist besides the ones you know of

• That a field is of certain signedness, sizeof, or type

• That the fields are in a certain order

• While C guarantees the ordering specified in the struct definition, between
different platforms the definitions might differ

• That the sizeof(struct) or the alignments are the same everywhere

• There might be padding bytes between the fields to align the fields - the bytes
can be anything

• Structs are required to be aligned to the maximum alignment required by the
fields - which for native types is for usually equivalent to sizeof() of the field

• Assuming the character set is ASCIIish

Perl can compile and run under EBCDIC platforms. See Section 19.1 [perlebcdic
NAME], page 266. This is transparent for the most part, but because the character
sets differ, you shouldn’t use numeric (decimal, octal, nor hex) constants to refer to
characters. You can safely say ’A’, but not 0x41. You can safely say ’\n’, but
not \012. However, you can use macros defined in utf8.h to specify any code point
portably. LATIN1_TO_NATIVE(0xDF) is going to be the code point that means LATIN
SMALL LETTER SHARP S on whatever platform you are running on (on ASCII
platforms it compiles without adding any extra code, so there is zero performance hit
on those). The acceptable inputs to LATIN1_TO_NATIVE are from 0x00 through 0xFF.
If your input isn’t guaranteed to be in that range, use UNICODE_TO_NATIVE instead.
NATIVE_TO_LATIN1 and NATIVE_TO_UNICODE translate the opposite direction.

If you need the string representation of a character that doesn’t have a mnemonic name
in C, you should add it to the list in regen/unicode_constants.pl, and have Perl
create #define’s for you, based on the current platform.

Note that the isFOO and toFOO macros in handy.h work properly on native code points
and strings.

Also, the range ’A’ - ’Z’ in ASCII is an unbroken sequence of 26 upper case alphabetic
characters. That is not true in EBCDIC. Nor for ’a’ to ’z’. But ’0’ - ’9’ is an unbroken
range in both systems. Don’t assume anything about other ranges. (Note that special
handling of ranges in regular expression patterns makes it appear to Perl code that the
aforementioned ranges are all unbroken.)

Many of the comments in the existing code ignore the possibility of EBCDIC, and
may be wrong therefore, even if the code works. This is actually a tribute to the
successful transparent insertion of being able to handle EBCDIC without having to
change pre-existing code.

UTF-8 and UTF-EBCDIC are two different encodings used to represent Unicode code
points as sequences of bytes. Macros with the same names (but different definitions)
in utf8.h and utfebcdic.h are used to allow the calling code to think that there is
only one such encoding. This is almost always referred to as utf8, but it means the
EBCDIC version as well. Again, comments in the code may well be wrong even if
the code itself is right. For example, the concept of UTF-8 invariant characters

differs between ASCII and EBCDIC. On ASCII platforms, only characters that do
not have the high-order bit set (i.e. whose ordinals are strict ASCII, 0 - 127) are
invariant, and the documentation and comments in the code may assume that, often
referring to something like, say, hibit. The situation differs and is not so simple on
EBCDIC machines, but as long as the code itself uses the NATIVE_IS_INVARIANT()

macro appropriately, it works, even if the comments are wrong.

As noted in Section 29.8 [perlhack TESTING], page 571, when writing test scripts,
the file t/charset_tools.pl contains some helpful functions for writing tests valid on

both ASCII and EBCDIC platforms. Sometimes, though, a test can’t use a function
and it’s inconvenient to have different test versions depending on the platform. There
are 20 code points that are the same in all 4 character sets currently recognized by
Perl (the 3 EBCDIC code pages plus ISO 8859-1 (ASCII/Latin1)). These can be used
in such tests, though there is a small possibility that Perl will become available in yet
another character set, breaking your test. All but one of these code points are C0
control characters. The most significant controls that are the same are \0, \r, and
\N{VT} (also specifiable as \cK, \x0B, \N{U+0B}, or \013). The single non-control is
U+00B6 PILCROW SIGN. The controls that are the same have the same bit pattern in
all 4 character sets, regardless of the UTF8ness of the string containing them. The bit
pattern for U+B6 is the same in all 4 for non-UTF8 strings, but differs in each when its
containing string is UTF-8 encoded. The only other code points that have some sort
of sameness across all 4 character sets are the pair 0xDC and 0xFC. Together these
represent upper- and lowercase LATIN LETTER U WITH DIAERESIS, but which is
upper and which is lower may be reversed: 0xDC is the capital in Latin1 and 0xFC
is the small letter, while 0xFC is the capital in EBCDIC and 0xDC is the small one.
This factoid may be exploited in writing case insensitive tests that are the same across
all 4 character sets.

• Assuming the character set is just ASCII

ASCII is a 7 bit encoding, but bytes have 8 bits in them. The 128 extra characters
have different meanings depending on the locale. Absent a locale, currently these extra
characters are generally considered to be unassigned, and this has presented some
problems. This has being changed starting in 5.12 so that these characters can be
considered to be Latin-1 (ISO-8859-1).

• Mixing #define and #ifdef

#define BURGLE(x) ... \

#ifdef BURGLE_OLD_STYLE /* BAD */

... do it the old way ... \

#else

... do it the new way ... \

#endif

You cannot portably "stack" cpp directives. For example in the above you need two
separate BURGLE() #defines, one for each #ifdef branch.

• Adding non-comment stuff after #endif or #else

#ifdef SNOSH

...

#else !SNOSH /* BAD */

...

#endif SNOSH /* BAD */

The #endif and #else cannot portably have anything non-comment after them. If you
want to document what is going (which is a good idea especially if the branches are
long), use (C) comments:

#ifdef SNOSH

...

#else /* !SNOSH */

...

#endif /* SNOSH */

The gcc option -Wendif-labels warns about the bad variant (by default on starting
from Perl 5.9.4).

• Having a comma after the last element of an enum list

enum color {

CERULEAN,

CHARTREUSE,

CINNABAR, /* BAD */

};

is not portable. Leave out the last comma.

Also note that whether enums are implicitly morphable to ints varies between compilers,
you might need to (int).

• Using //-comments

// This function bamfoodles the zorklator. /* BAD */

That is C99 or C++. Perl is C89. Using the //-comments is silently allowed by many
C compilers but cranking up the ANSI C89 strictness (which we like to do) causes the
compilation to fail.

• Mixing declarations and code

void zorklator()

{

int n = 3;

set_zorkmids(n); /* BAD */

int q = 4;

That is C99 or C++. Some C compilers allow that, but you shouldn’t.

The gcc option -Wdeclaration-after-statements scans for such problems (by default
on starting from Perl 5.9.4).

• Introducing variables inside for()

for(int i = ...; ...; ...) { /* BAD */

That is C99 or C++. While it would indeed be awfully nice to have that also in C89,
to limit the scope of the loop variable, alas, we cannot.

• Mixing signed char pointers with unsigned char pointers

int foo(char *s) { ... }

...

unsigned char *t = ...; /* Or U8* t = ... */

foo(t); /* BAD */

While this is legal practice, it is certainly dubious, and downright fatal in at least one
platform: for example VMS cc considers this a fatal error. One cause for people often
making this mistake is that a "naked char" and therefore dereferencing a "naked char
pointer" have an undefined signedness: it depends on the compiler and the flags of the
compiler and the underlying platform whether the result is signed or unsigned. For
this very same reason using a ’char’ as an array index is bad.

• Macros that have string constants and their arguments as substrings of the string
constants

#define FOO(n) printf("number = %d\n", n) /* BAD */

FOO(10);

Pre-ANSI semantics for that was equivalent to

printf("10umber = %d\10");

which is probably not what you were expecting. Unfortunately at least one reasonably
common and modern C compiler does "real backward compatibility" here, in AIX that
is what still happens even though the rest of the AIX compiler is very happily C89.

• Using printf formats for non-basic C types

IV i = ...;

printf("i = %d\n", i); /* BAD */

While this might by accident work in some platform (where IV happens to be an int),
in general it cannot. IV might be something larger. Even worse the situation is with
more specific types (defined by Perl’s configuration step in config.h):

Uid_t who = ...;

printf("who = %d\n", who); /* BAD */

The problem here is that Uid t might be not only not int-wide but it might also be
unsigned, in which case large uids would be printed as negative values.

There is no simple solution to this because of printf()’s limited intelligence, but for
many types the right format is available as with either ’f’ or ’ f’ suffix, for example:

IVdf /* IV in decimal */

UVxf /* UV is hexadecimal */

printf("i = %"IVdf"\n", i); /* The IVdf is a string constant. */

Uid_t_f /* Uid_t in decimal */

printf("who = %"Uid_t_f"\n", who);

Or you can try casting to a "wide enough" type:

printf("i = %"IVdf"\n", (IV)something_very_small_and_signed);

Also remember that the %p format really does require a void pointer:

U8* p = ...;

printf("p = %p\n", (void*)p);

The gcc option -Wformat scans for such problems.

• Blindly using variadic macros

gcc has had them for a while with its own syntax, and C99 brought them with
a standardized syntax. Don’t use the former, and use the latter only if the
HAS C99 VARIADIC MACROS is defined.

• Blindly passing va list

Not all platforms support passing va list to further varargs (stdarg) functions. The
right thing to do is to copy the va list using the Perl va copy() if the NEED VA COPY
is defined.

• Using gcc statement expressions

val = ({...;...;...}); /* BAD */

While a nice extension, it’s not portable. The Perl code does admittedly use them if
available to gain some extra speed (essentially as a funky form of inlining), but you
shouldn’t.

• Binding together several statements in a macro

Use the macros STMT START and STMT END.

STMT_START {

...

} STMT_END

• Testing for operating systems or versions when should be testing for features

#ifdef __FOONIX__ /* BAD */

foo = quux();

#endif

Unless you know with 100% certainty that quux() is only ever available for the "Foonix"
operating system and that is available and correctly working for all past, present, and
future versions of "Foonix", the above is very wrong. This is more correct (though still
not perfect, because the below is a compile-time check):

#ifdef HAS_QUUX

foo = quux();

#endif

How does the HAS QUUX become defined where it needs to be? Well, if Foonix
happens to be Unixy enough to be able to run the Configure script, and Configure
has been taught about detecting and testing quux(), the HAS QUUX will be correctly
defined. In other platforms, the corresponding configuration step will hopefully do the
same.

In a pinch, if you cannot wait for Configure to be educated, or if you have a good hunch
of where quux() might be available, you can temporarily try the following:

#if (defined(__FOONIX__) || defined(__BARNIX__))

define HAS_QUUX

#endif

...

#ifdef HAS_QUUX

foo = quux();

#endif

But in any case, try to keep the features and operating systems separate.

• Assuming the contents of static memory pointed to by the return values of Perl wrap-
pers for C library functions doesn’t change. Many C library functions return pointers
to static storage that can be overwritten by subsequent calls to the same or related
functions. Perl has light-weight wrappers for some of these functions, and which don’t
make copies of the static memory. A good example is the interface to the environment
variables that are in effect for the program. Perl has PerlEnv_getenv to get values

from the environment. But the return is a pointer to static memory in the C library.
If you are using the value to immediately test for something, that’s fine, but if you
save the value and expect it to be unchanged by later processing, you would be wrong,
but perhaps you wouldn’t know it because different C library implementations behave
differently, and the one on the platform you’re testing on might work for your situation.
But on some platforms, a subsequent call to PerlEnv_getenv or related function WILL
overwrite the memory that your first call points to. This has led to some hard-to-debug
problems. Do a Section “savepv” in perlapi to make a copy, thus avoiding these prob-
lems. You will have to free the copy when you’re done to avoid memory leaks. If you
don’t have control over when it gets freed, you’ll need to make the copy in a mortal
scalar, like so:

if ((s = PerlEnv_getenv("foo") == NULL) {

... /* handle NULL case */

}

else {

s = SvPVX(sv_2mortal(newSVpv(s, 0)));

}

The above example works only if "s" is NUL-terminated; otherwise you have to pass its
length to newSVpv.

30.3.3 Problematic System Interfaces

• malloc(0), realloc(0), calloc(0, 0) are non-portable. To be portable allocate at least one
byte. (In general you should rarely need to work at this low level, but instead use the
various malloc wrappers.)

• snprintf() - the return type is unportable. Use my snprintf() instead.

30.3.4 Security problems

Last but not least, here are various tips for safer coding. See also Section 9.1 [perlclib
NAME], page 62 for libc/stdio replacements one should use.

• Do not use gets()

Or we will publicly ridicule you. Seriously.

• Do not use tmpfile()

Use mkstemp() instead.

• Do not use strcpy() or strcat() or strncpy() or strncat()

Use my strlcpy() and my strlcat() instead: they either use the native implementation,
or Perl’s own implementation (borrowed from the public domain implementation of
INN).

• Do not use sprintf() or vsprintf()

If you really want just plain byte strings, use my snprintf() and my vsnprintf() instead,
which will try to use snprintf() and vsnprintf() if those safer APIs are available. If you
want something fancier than a plain byte string, use Section “form” in perlapi or SVs
and Section “sv catpvf” in perlapi.

Note that glibc printf(), sprintf(), etc. are buggy before glibc version 2.17. They
won’t allow a %.s format with a precision to create a string that isn’t valid UTF-8 if

the current underlying locale of the program is UTF-8. What happens is that the %s

and its operand are simply skipped without any notice. https://sourceware.org/

bugzilla/show_bug.cgi?id=6530.

• Do not use atoi()

Use grok atoUV() instead. atoi() has ill-defined behavior on overflows, and cannot be
used for incremental parsing. It is also affected by locale, which is bad.

• Do not use strtol() or strtoul()

Use grok atoUV() instead. strtol() or strtoul() (or their IV/UV-friendly macro dis-
guises, Strtol() and Strtoul(), or Atol() and Atoul() are affected by locale, which is
bad.

30.4 DEBUGGING

You can compile a special debugging version of Perl, which allows you to use the -D option
of Perl to tell more about what Perl is doing. But sometimes there is no alternative than
to dive in with a debugger, either to see the stack trace of a core dump (very useful in a
bug report), or trying to figure out what went wrong before the core dump happened, or
how did we end up having wrong or unexpected results.

30.4.1 Poking at Perl

To really poke around with Perl, you’ll probably want to build Perl for debugging, like this:

./Configure -d -D optimize=-g

make

-g is a flag to the C compiler to have it produce debugging information which will allow
us to step through a running program, and to see in which C function we are at (without the
debugging information we might see only the numerical addresses of the functions, which
is not very helpful).

Configure will also turn on the DEBUGGING compilation symbol which enables all the
internal debugging code in Perl. There are a whole bunch of things you can debug with
this: Section 69.1 [perlrun NAME], page 1176 lists them all, and the best way to find out
about them is to play about with them. The most useful options are probably

l Context (loop) stack processing

t Trace execution

o Method and overloading resolution

c String/numeric conversions

Some of the functionality of the debugging code can be achieved using XS modules.

-Dr => use re ’debug’

-Dx => use O ’Debug’

30.4.2 Using a source-level debugger

If the debugging output of -D doesn’t help you, it’s time to step through perl’s execution
with a source-level debugger.

• We’ll use gdb for our examples here; the principles will apply to any debugger (many
vendors call their debugger dbx), but check the manual of the one you’re using.

https://sourceware.org/bugzilla/show_bug.cgi?id=6530
https://sourceware.org/bugzilla/show_bug.cgi?id=6530

To fire up the debugger, type

gdb ./perl

Or if you have a core dump:

gdb ./perl core

You’ll want to do that in your Perl source tree so the debugger can read the source code.
You should see the copyright message, followed by the prompt.

(gdb)

help will get you into the documentation, but here are the most useful commands:

• run [args]

Run the program with the given arguments.

• break function name

• break source.c:xxx

Tells the debugger that we’ll want to pause execution when we reach either the named
function (but see Section 28.10 [perlguts Internal Functions], page 552!) or the given
line in the named source file.

• step

Steps through the program a line at a time.

• next

Steps through the program a line at a time, without descending into functions.

• continue

Run until the next breakpoint.

• finish

Run until the end of the current function, then stop again.

• ’enter’

Just pressing Enter will do the most recent operation again - it’s a blessing when
stepping through miles of source code.

• ptype

Prints the C definition of the argument given.

(gdb) ptype PL_op

type = struct op {

OP *op_next;

OP *op_sibparent;

OP *(*op_ppaddr)(void);

PADOFFSET op_targ;

unsigned int op_type : 9;

unsigned int op_opt : 1;

unsigned int op_slabbed : 1;

unsigned int op_savefree : 1;

unsigned int op_static : 1;

unsigned int op_folded : 1;

unsigned int op_spare : 2;

U8 op_flags;

U8 op_private;

} *

• print

Execute the given C code and print its results. WARNING: Perl makes heavy use
of macros, and gdb does not necessarily support macros (see later Section 30.4.3 [gdb
macro support], page 589). You’ll have to substitute them yourself, or to invoke cpp
on the source code files (see Section 30.8.8 [The .i Targets], page 600) So, for instance,
you can’t say

print SvPV_nolen(sv)

but you have to say

print Perl_sv_2pv_nolen(sv)

You may find it helpful to have a "macro dictionary", which you can produce by saying
cpp -dM perl.c | sort. Even then, cpp won’t recursively apply those macros for you.

30.4.3 gdb macro support

Recent versions of gdb have fairly good macro support, but in order to use it you’ll need
to compile perl with macro definitions included in the debugging information. Using gcc

version 3.1, this means configuring with -Doptimize=-g3. Other compilers might use a
different switch (if they support debugging macros at all).

30.4.4 Dumping Perl Data Structures

One way to get around this macro hell is to use the dumping functions in dump.c; these
work a little like an internal Devel-Peek, but they also cover OPs and other structures
that you can’t get at from Perl. Let’s take an example. We’ll use the $a = $b + $c we used
before, but give it a bit of context: $b = "6XXXX"; $c = 2.3;. Where’s a good place to stop
and poke around?

What about pp_add, the function we examined earlier to implement the + operator:

(gdb) break Perl_pp_add

Breakpoint 1 at 0x46249f: file pp_hot.c, line 309.

Notice we use Perl_pp_add and not pp_add - see Section 28.10 [perlguts Internal Func-
tions], page 552. With the breakpoint in place, we can run our program:

(gdb) run -e ’$b = "6XXXX"; $c = 2.3; $a = $b + $c’

Lots of junk will go past as gdb reads in the relevant source files and libraries, and then:

Breakpoint 1, Perl_pp_add () at pp_hot.c:309

309 dSP; dATARGET; tryAMAGICbin(add,opASSIGN);

(gdb) step

311 dPOPTOPnnrl_ul;

(gdb)

We looked at this bit of code before, and we said that dPOPTOPnnrl_ul arranges for two
NVs to be placed into left and right - let’s slightly expand it:

#define dPOPTOPnnrl_ul NV right = POPn; \

SV *leftsv = TOPs; \

NV left = USE_LEFT(leftsv) ? SvNV(leftsv) : 0.0

POPn takes the SV from the top of the stack and obtains its NV either directly (if SvNOK
is set) or by calling the sv_2nv function. TOPs takes the next SV from the top of the stack -
yes, POPn uses TOPs - but doesn’t remove it. We then use SvNV to get the NV from leftsv

in the same way as before - yes, POPn uses SvNV.

Since we don’t have an NV for $b, we’ll have to use sv_2nv to convert it. If we step
again, we’ll find ourselves there:

(gdb) step

Perl_sv_2nv (sv=0xa0675d0) at sv.c:1669

1669 if (!sv)

(gdb)

We can now use Perl_sv_dump to investigate the SV:

(gdb) print Perl_sv_dump(sv)

SV = PV(0xa057cc0) at 0xa0675d0

REFCNT = 1

FLAGS = (POK,pPOK)

PV = 0xa06a510 "6XXXX"\0

CUR = 5

LEN = 6

$1 = void

We know we’re going to get 6 from this, so let’s finish the subroutine:

(gdb) finish

Run till exit from #0 Perl_sv_2nv (sv=0xa0675d0) at sv.c:1671

0x462669 in Perl_pp_add () at pp_hot.c:311

311 dPOPTOPnnrl_ul;

We can also dump out this op: the current op is always stored in PL_op, and we can
dump it with Perl_op_dump. This’ll give us similar output to B-Debug.

(gdb) print Perl_op_dump(PL_op)

{

13 TYPE = add ===> 14

TARG = 1

FLAGS = (SCALAR,KIDS)

{

TYPE = null ===> (12)

(was rv2sv)

FLAGS = (SCALAR,KIDS)

{

11 TYPE = gvsv ===> 12

FLAGS = (SCALAR)

GV = main::b

}

}

finish this later

30.4.5 Using gdb to look at specific parts of a program

With the example above, you knew to look for Perl_pp_add, but what if there were multiple
calls to it all over the place, or you didn’t know what the op was you were looking for?

One way to do this is to inject a rare call somewhere near what you’re looking for. For
example, you could add study before your method:

study;

And in gdb do:

(gdb) break Perl_pp_study

And then step until you hit what you’re looking for. This works well in a loop if you
want to only break at certain iterations:

for my $c (1..100) {

study if $c == 50;

}

30.4.6 Using gdb to look at what the parser/lexer are doing

If you want to see what perl is doing when parsing/lexing your code, you can use BEGIN {}:

print "Before\n";

BEGIN { study; }

print "After\n";

And in gdb:

(gdb) break Perl_pp_study

If you want to see what the parser/lexer is doing inside of if blocks and the like you
need to be a little trickier:

if ($a && $b && do { BEGIN { study } 1 } && $c) { ... }

30.5 SOURCE CODE STATIC ANALYSIS

Various tools exist for analysing C source code statically, as opposed to dynamically, that is,
without executing the code. It is possible to detect resource leaks, undefined behaviour, type
mismatches, portability problems, code paths that would cause illegal memory accesses, and
other similar problems by just parsing the C code and looking at the resulting graph, what
does it tell about the execution and data flows. As a matter of fact, this is exactly how C
compilers know to give warnings about dubious code.

30.5.1 lint, splint

The good old C code quality inspector, lint, is available in several platforms, but please
be aware that there are several different implementations of it by different vendors, which
means that the flags are not identical across different platforms.

There is a lint variant called splint (Secure Programming Lint) available from
http://www.splint.org/ that should compile on any Unix-like platform.

There are lint and <splint> targets in Makefile, but you may have to diddle with the
flags (see above).

30.5.2 Coverity

Coverity (http://www.coverity.com/) is a product similar to lint and as a testbed for their
product they periodically check several open source projects, and they give out accounts to
open source developers to the defect databases.

30.5.3 cpd (cut-and-paste detector)

The cpd tool detects cut-and-paste coding. If one instance of the cut-and-pasted code
changes, all the other spots should probably be changed, too. Therefore such code should
probably be turned into a subroutine or a macro.

cpd (http://pmd.sourceforge.net/cpd.html) is part of the pmd project
(http://pmd.sourceforge.net/). pmd was originally written for static analysis of
Java code, but later the cpd part of it was extended to parse also C and C++.

Download the pmd-bin-X.Y.zip () from the SourceForge site, extract the pmd-X.Y.jar
from it, and then run that on source code thusly:

java -cp pmd-X.Y.jar net.sourceforge.pmd.cpd.CPD \

--minimum-tokens 100 --files /some/where/src --language c > cpd.txt

You may run into memory limits, in which case you should use the -Xmx option:

java -Xmx512M ...

30.5.4 gcc warnings

Though much can be written about the inconsistency and coverage problems of gcc warnings
(like -Wall not meaning "all the warnings", or some common portability problems not
being covered by -Wall, or -ansi and -pedantic both being a poorly defined collection of
warnings, and so forth), gcc is still a useful tool in keeping our coding nose clean.

The -Wall is by default on.

The -ansi (and its sidekick, -pedantic) would be nice to be on always, but unfortu-
nately they are not safe on all platforms, they can for example cause fatal conflicts with the
system headers (Solaris being a prime example). If Configure -Dgccansipedantic is used,
the cflags frontend selects -ansi -pedantic for the platforms where they are known to
be safe.

Starting from Perl 5.9.4 the following extra flags are added:

• -Wendif-labels

• -Wextra

• -Wdeclaration-after-statement

The following flags would be nice to have but they would first need their own Augean
stablemaster:

• -Wpointer-arith

• -Wshadow

• -Wstrict-prototypes

The -Wtraditional is another example of the annoying tendency of gcc to bundle a
lot of warnings under one switch (it would be impossible to deploy in practice because it
would complain a lot) but it does contain some warnings that would be beneficial to have

available on their own, such as the warning about string constants inside macros containing
the macro arguments: this behaved differently pre-ANSI than it does in ANSI, and some C
compilers are still in transition, AIX being an example.

30.5.5 Warnings of other C compilers

Other C compilers (yes, there are other C compilers than gcc) often have their "strict
ANSI" or "strict ANSI with some portability extensions" modes on, like for example the
Sun Workshop has its -Xa mode on (though implicitly), or the DEC (these days, HP...) has
its -std1 mode on.

30.6 MEMORY DEBUGGERS

NOTE 1: Running under older memory debuggers such as Purify, valgrind or Third Degree
greatly slows down the execution: seconds become minutes, minutes become hours. For
example as of Perl 5.8.1, the ext/Encode/t/Unicode.t takes extraordinarily long to complete
under e.g. Purify, Third Degree, and valgrind. Under valgrind it takes more than six hours,
even on a snappy computer. The said test must be doing something that is quite unfriendly
for memory debuggers. If you don’t feel like waiting, that you can simply kill away the perl
process. Roughly valgrind slows down execution by factor 10, AddressSanitizer by factor 2.

NOTE 2: To minimize the number of memory leak false alarms (see Section 30.8.1
[PERL DESTRUCT LEVEL], page 596 for more information), you have to set the envi-
ronment variable PERL DESTRUCT LEVEL to 2. For example, like this:

env PERL_DESTRUCT_LEVEL=2 valgrind ./perl -Ilib ...

NOTE 3: There are known memory leaks when there are compile-time errors within eval
or require, seeing S_doeval in the call stack is a good sign of these. Fixing these leaks is
non-trivial, unfortunately, but they must be fixed eventually.

NOTE 4: DynaLoader will not clean up after itself completely unless Perl is built with
the Configure option -Accflags=-DDL_UNLOAD_ALL_AT_EXIT.

30.6.1 valgrind

The valgrind tool can be used to find out both memory leaks and illegal heap memory
accesses. As of version 3.3.0, Valgrind only supports Linux on x86, x86-64 and PowerPC
and Darwin (OS X) on x86 and x86-64). The special "test.valgrind" target can be used
to run the tests under valgrind. Found errors and memory leaks are logged in files named
testfile.valgrind and by default output is displayed inline.

Example usage:

make test.valgrind

Since valgrind adds significant overhead, tests will take much longer to run. The valgrind
tests support being run in parallel to help with this:

TEST_JOBS=9 make test.valgrind

Note that the above two invocations will be very verbose as reachable memory and
leak-checking is enabled by default. If you want to just see pure errors, try:

VG_OPTS=’-q --leak-check=no --show-reachable=no’ TEST_JOBS=9 \

make test.valgrind

Valgrind also provides a cachegrind tool, invoked on perl as:

VG_OPTS=--tool=cachegrind make test.valgrind

As system libraries (most notably glibc) are also triggering errors, valgrind allows
to suppress such errors using suppression files. The default suppression file that comes
with valgrind already catches a lot of them. Some additional suppressions are defined in
t/perl.supp.

To get valgrind and for more information see

http://valgrind.org/

30.6.2 AddressSanitizer

AddressSanitizer is a clang and gcc extension, included in clang since v3.1 and gcc since
v4.8. It checks illegal heap pointers, global pointers, stack pointers and use after free errors,
and is fast enough that you can easily compile your debugging or optimized perl with it. It
does not check memory leaks though. AddressSanitizer is available for Linux, Mac OS X
and soon on Windows.

To build perl with AddressSanitizer, your Configure invocation should look like:

sh Configure -des -Dcc=clang \

-Accflags=-faddress-sanitizer -Aldflags=-faddress-sanitizer \

-Alddlflags=-shared\ -faddress-sanitizer

where these arguments mean:

• -Dcc=clang

This should be replaced by the full path to your clang executable if it is not in your
path.

• -Accflags=-faddress-sanitizer

Compile perl and extensions sources with AddressSanitizer.

• -Aldflags=-faddress-sanitizer

Link the perl executable with AddressSanitizer.

• -Alddlflags=-shared\ -faddress-sanitizer

Link dynamic extensions with AddressSanitizer. You must manually specify -shared

because using -Alddlflags=-shared will prevent Configure from setting a default
value for lddlflags, which usually contains -shared (at least on Linux).

See also http://code.google.com/p/address-sanitizer/wiki/AddressSanitizer.

30.7 PROFILING

Depending on your platform there are various ways of profiling Perl.

There are two commonly used techniques of profiling executables: statistical time-
sampling and basic-block counting.

The first method takes periodically samples of the CPU program counter, and since
the program counter can be correlated with the code generated for functions, we get a
statistical view of in which functions the program is spending its time. The caveats are
that very small/fast functions have lower probability of showing up in the profile, and that
periodically interrupting the program (this is usually done rather frequently, in the scale of
milliseconds) imposes an additional overhead that may skew the results. The first problem

http://code.google.com/p/address-sanitizer/wiki/AddressSanitizer

can be alleviated by running the code for longer (in general this is a good idea for profiling),
the second problem is usually kept in guard by the profiling tools themselves.

The second method divides up the generated code into basic blocks. Basic blocks are
sections of code that are entered only in the beginning and exited only at the end. For
example, a conditional jump starts a basic block. Basic block profiling usually works by
instrumenting the code by adding enter basic block #nnnn book-keeping code to the gen-
erated code. During the execution of the code the basic block counters are then updated
appropriately. The caveat is that the added extra code can skew the results: again, the
profiling tools usually try to factor their own effects out of the results.

30.7.1 Gprof Profiling

gprof is a profiling tool available in many Unix platforms which uses statistical time-
sampling. You can build a profiled version of perl by compiling using gcc with the flag
-pg. Either edit config.sh or re-run Configure. Running the profiled version of Perl will
create an output file called gmon.out which contains the profiling data collected during the
execution.

quick hint:

$ sh Configure -des -Dusedevel -Accflags=’-pg’ \

-Aldflags=’-pg’ -Alddlflags=’-pg -shared’ \

&& make perl

$./perl ... # creates gmon.out in current directory

$ gprof ./perl > out

$ less out

(you probably need to add -shared to the <-Alddlflags> line until RT #118199 is re-
solved)

The gprof tool can then display the collected data in various ways. Usually gprof

understands the following options:

• -a

Suppress statically defined functions from the profile.

• -b

Suppress the verbose descriptions in the profile.

• -e routine

Exclude the given routine and its descendants from the profile.

• -f routine

Display only the given routine and its descendants in the profile.

• -s

Generate a summary file called gmon.sum which then may be given to subsequent gprof
runs to accumulate data over several runs.

• -z

Display routines that have zero usage.

For more detailed explanation of the available commands and output formats, see your
own local documentation of gprof.

30.7.2 GCC gcov Profiling

basic block profiling is officially available in gcc 3.0 and later. You can build a profiled
version of perl by compiling using gcc with the flags -fprofile-arcs -ftest-coverage.
Either edit config.sh or re-run Configure.

quick hint:

$ sh Configure -des -Dusedevel -Doptimize=’-g’ \

-Accflags=’-fprofile-arcs -ftest-coverage’ \

-Aldflags=’-fprofile-arcs -ftest-coverage’ \

-Alddlflags=’-fprofile-arcs -ftest-coverage -shared’ \

&& make perl

$ rm -f regexec.c.gcov regexec.gcda

$./perl ...

$ gcov regexec.c

$ less regexec.c.gcov

(you probably need to add -shared to the <-Alddlflags> line until RT #118199 is re-
solved)

Running the profiled version of Perl will cause profile output to be generated. For each
source file an accompanying .gcda file will be created.

To display the results you use the gcov utility (which should be installed if you have gcc
3.0 or newer installed). gcov is run on source code files, like this

gcov sv.c

which will cause sv.c.gcov to be created. The .gcov files contain the source code
annotated with relative frequencies of execution indicated by "#" markers. If you want to
generate .gcov files for all profiled object files, you can run something like this:

for file in ‘find . -name *.gcno‘

do sh -c "cd ‘dirname $file‘ && gcov ‘basename $file .gcno‘"

done

Useful options of gcov include -b which will summarise the basic block, branch, and
function call coverage, and -c which instead of relative frequencies will use the actual
counts. For more information on the use of gcov and basic block profiling with gcc, see the
latest GNU CC manual. As of gcc 4.8, this is at http://gcc.gnu.org/onlinedocs/gcc/
Gcov-Intro.html#Gcov-Intro

30.8 MISCELLANEOUS TRICKS

30.8.1 PERL DESTRUCT LEVEL

If you want to run any of the tests yourself manually using e.g. valgrind, please note
that by default perl does not explicitly cleanup all the memory it has allocated (such as
global memory arenas) but instead lets the exit() of the whole program "take care" of such
allocations, also known as "global destruction of objects".

There is a way to tell perl to do complete cleanup: set the environment variable
PERL DESTRUCT LEVEL to a non-zero value. The t/TEST wrapper does set this to
2, and this is what you need to do too, if you don’t want to see the "global leaks": For
example, for running under valgrind

http://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro
http://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro

env PERL_DESTRUCT_LEVEL=2 valgrind ./perl -Ilib t/foo/bar.t

(Note: the mod perl apache module uses also this environment variable for its own
purposes and extended its semantics. Refer to the mod perl documentation for more in-
formation. Also, spawned threads do the equivalent of setting this variable to the value
1.)

If, at the end of a run you get the message N scalars leaked, you can recompile with
-DDEBUG_LEAKING_SCALARS, which will cause the addresses of all those leaked SVs to be
dumped along with details as to where each SV was originally allocated. This information is
also displayed by Devel::Peek. Note that the extra details recorded with each SV increases
memory usage, so it shouldn’t be used in production environments. It also converts new_
SV() from a macro into a real function, so you can use your favourite debugger to discover
where those pesky SVs were allocated.

If you see that you’re leaking memory at runtime, but neither valgrind nor -DDEBUG_

LEAKING_SCALARS will find anything, you’re probably leaking SVs that are still reachable
and will be properly cleaned up during destruction of the interpreter. In such cases, using the
-Dm switch can point you to the source of the leak. If the executable was built with -DDEBUG_

LEAKING_SCALARS, -Dm will output SV allocations in addition to memory allocations. Each
SV allocation has a distinct serial number that will be written on creation and destruction
of the SV. So if you’re executing the leaking code in a loop, you need to look for SVs that are
created, but never destroyed between each cycle. If such an SV is found, set a conditional
breakpoint within new_SV() and make it break only when PL_sv_serial is equal to the
serial number of the leaking SV. Then you will catch the interpreter in exactly the state
where the leaking SV is allocated, which is sufficient in many cases to find the source of the
leak.

As -Dm is using the PerlIO layer for output, it will by itself allocate quite a bunch of
SVs, which are hidden to avoid recursion. You can bypass the PerlIO layer if you use the
SV logging provided by -DPERL_MEM_LOG instead.

30.8.2 PERL MEM LOG

If compiled with -DPERL_MEM_LOG, both memory and SV allocations go through logging
functions, which is handy for breakpoint setting.

Unless -DPERL_MEM_LOG_NOIMPL is also compiled, the logging functions read
$ENV{PERL MEM LOG} to determine whether to log the event, and if so how:

$ENV{PERL_MEM_LOG} =~ /m/ Log all memory ops

$ENV{PERL_MEM_LOG} =~ /s/ Log all SV ops

$ENV{PERL_MEM_LOG} =~ /t/ include timestamp in Log

$ENV{PERL_MEM_LOG} =~ /^(\d+)/ write to FD given (default is 2)

Memory logging is somewhat similar to -Dm but is independent of -DDEBUGGING, and
at a higher level; all uses of Newx(), Renew(), and Safefree() are logged with the caller’s
source code file and line number (and C function name, if supported by the C compiler).
In contrast, -Dm is directly at the point of malloc(). SV logging is similar.

Since the logging doesn’t use PerlIO, all SV allocations are logged and no extra SV
allocations are introduced by enabling the logging. If compiled with -DDEBUG_LEAKING_

SCALARS, the serial number for each SV allocation is also logged.

30.8.3 DDD over gdb

Those debugging perl with the DDD frontend over gdb may find the following useful:

You can extend the data conversion shortcuts menu, so for example you can display an
SV’s IV value with one click, without doing any typing. To do that simply edit ~/.ddd/init
file and add after:

! Display shortcuts.

Ddd*gdbDisplayShortcuts: \

/t () // Convert to Bin\n\

/d () // Convert to Dec\n\

/x () // Convert to Hex\n\

/o () // Convert to Oct(\n\

the following two lines:

((XPV*) (())->sv_any)->xpv_pv // 2pvx\n\

((XPVIV*) (())->sv_any)->xiv_iv // 2ivx

so now you can do ivx and pvx lookups or you can plug there the sv peek "conversion":

Perl_sv_peek(my_perl, (SV*)()) // sv_peek

(The my perl is for threaded builds.) Just remember that every line, but the last one,
should end with \n\

Alternatively edit the init file interactively via: 3rd mouse button -> New Display ->
Edit Menu

Note: you can define up to 20 conversion shortcuts in the gdb section.

30.8.4 C backtrace

On some platforms Perl supports retrieving the C level backtrace (similar to what symbolic
debuggers like gdb do).

The backtrace returns the stack trace of the C call frames, with the symbol names
(function names), the object names (like "perl"), and if it can, also the source code locations
(file:line).

The supported platforms are Linux, and OS X (some *BSD might work at least partly,
but they have not yet been tested).

This feature hasn’t been tested with multiple threads, but it will only show the backtrace
of the thread doing the backtracing.

The feature needs to be enabled with Configure -Dusecbacktrace.

The -Dusecbacktrace also enables keeping the debug information when compil-
ing/linking (often: -g). Many compilers/linkers do support having both optimization and
keeping the debug information. The debug information is needed for the symbol names
and the source locations.

Static functions might not be visible for the backtrace.

Source code locations, even if available, can often be missing or misleading if the compiler
has e.g. inlined code. Optimizer can make matching the source code and the object code
quite challenging.

Linux

You must have the BFD (-lbfd) library installed, otherwise perl will fail to
link. The BFD is usually distributed as part of the GNU binutils.

Summary: Configure ... -Dusecbacktrace and you need -lbfd.

OS X

The source code locations are supported only if you have the Developer Tools
installed. (BFD is not needed.)

Summary: Configure ... -Dusecbacktrace and installing the Developer
Tools would be good.

Optionally, for trying out the feature, you may want to enable automatic dumping of the
backtrace just before a warning or croak (die) message is emitted, by adding -Accflags=-

DUSE_C_BACKTRACE_ON_ERROR for Configure.

Unless the above additional feature is enabled, nothing about the backtrace functionality
is visible, except for the Perl/XS level.

Furthermore, even if you have enabled this feature to be compiled, you need to enable
it in runtime with an environment variable: PERL_C_BACKTRACE_ON_ERROR=10. It must be
an integer higher than zero, telling the desired frame count.

Retrieving the backtrace from Perl level (using for example an XS extension) would be
much less exciting than one would hope: normally you would see runops, entersub, and
not much else. This API is intended to be called from within the Perl implementation, not
from Perl level execution.

The C API for the backtrace is as follows:

get c backtrace
free c backtrace
get c backtrace dump
dump c backtrace

30.8.5 Poison

If you see in a debugger a memory area mysteriously full of 0xABABABAB or 0xEFEFE-
FEF, you may be seeing the effect of the Poison() macros, see Section 9.1 [perlclib NAME],
page 62.

30.8.6 Read-only optrees

Under ithreads the optree is read only. If you want to enforce this, to check for write accesses
from buggy code, compile with -Accflags=-DPERL_DEBUG_READONLY_OPS to enable code
that allocates op memory via mmap, and sets it read-only when it is attached to a subroutine.
Any write access to an op results in a SIGBUS and abort.

This code is intended for development only, and may not be portable even to all Unix
variants. Also, it is an 80% solution, in that it isn’t able to make all ops read only. Specif-
ically it does not apply to op slabs belonging to BEGIN blocks.

However, as an 80% solution it is still effective, as it has caught bugs in the past.

30.8.7 When is a bool not a bool?

On pre-C99 compilers, bool is defined as equivalent to char. Consequently assignment of
any larger type to a bool is unsafe and may be truncated. The cBOOL macro exists to cast
it correctly.

On those platforms and compilers where bool really is a boolean (C++, C99), it is easy
to forget the cast. You can force bool to be a char by compiling with -Accflags=-DPERL_

BOOL_AS_CHAR. You may also wish to run Configure with something like

-Accflags=’-Wconversion -Wno-sign-conversion -Wno-shorten-64-to-32’

or your compiler’s equivalent to make it easier to spot any unsafe truncations that show
up.

30.8.8 The .i Targets

You can expand the macros in a foo.c file by saying

make foo.i

which will expand the macros using cpp. Don’t be scared by the results.

30.9 AUTHOR

This document was originally written by Nathan Torkington, and is maintained by the
perl5-porters mailing list.

31 perlhacktut

31.1 NAME

perlhacktut - Walk through the creation of a simple C code patch

31.2 DESCRIPTION

This document takes you through a simple patch example.

If you haven’t read Section 29.1 [perlhack NAME], page 562 yet, go do that first! You
might also want to read through Section 71.1 [perlsource NAME], page 1208 too.

Once you’re done here, check out Section 30.1 [perlhacktips NAME], page 578 next.

31.3 EXAMPLE OF A SIMPLE PATCH

Let’s take a simple patch from start to finish.

Here’s something Larry suggested: if a U is the first active format during a pack, (for
example, pack "U3C8", @stuff) then the resulting string should be treated as UTF-8 en-
coded.

If you are working with a git clone of the Perl repository, you will want to create a
branch for your changes. This will make creating a proper patch much simpler. See the
Section 26.1 [perlgit NAME], page 492 for details on how to do this.

31.3.1 Writing the patch

How do we prepare to fix this up? First we locate the code in question - the pack happens
at runtime, so it’s going to be in one of the pp files. Sure enough, pp_pack is in pp.c. Since
we’re going to be altering this file, let’s copy it to pp.c~.

[Well, it was in pp.c when this tutorial was written. It has now been split off with
pp_unpack to its own file, pp_pack.c]

Now let’s look over pp_pack: we take a pattern into pat, and then loop over the pattern,
taking each format character in turn into datum_type. Then for each possible format
character, we swallow up the other arguments in the pattern (a field width, an asterisk,
and so on) and convert the next chunk input into the specified format, adding it onto the
output SV cat.

How do we know if the U is the first format in the pat? Well, if we have a pointer to the
start of pat then, if we see a U we can test whether we’re still at the start of the string. So,
here’s where pat is set up:

STRLEN fromlen;

char *pat = SvPVx(*++MARK, fromlen);

char *patend = pat + fromlen;

I32 len;

I32 datumtype;

SV *fromstr;

We’ll have another string pointer in there:

STRLEN fromlen;

char *pat = SvPVx(*++MARK, fromlen);

char *patend = pat + fromlen;

+ char *patcopy;

I32 len;

I32 datumtype;

SV *fromstr;

And just before we start the loop, we’ll set patcopy to be the start of pat:

items = SP - MARK;

MARK++;

sv_setpvn(cat, "", 0);

+ patcopy = pat;

while (pat < patend) {

Now if we see a U which was at the start of the string, we turn on the UTF8 flag for the
output SV, cat:

+ if (datumtype == ’U’ && pat==patcopy+1)

+ SvUTF8_on(cat);

if (datumtype == ’#’) {

while (pat < patend && *pat != ’\n’)

pat++;

Remember that it has to be patcopy+1 because the first character of the string is the U
which has been swallowed into datumtype!

Oops, we forgot one thing: what if there are spaces at the start of the pattern? pack("

U*", @stuff) will have U as the first active character, even though it’s not the first thing in
the pattern. In this case, we have to advance patcopy along with pat when we see spaces:

if (isSPACE(datumtype))

continue;

needs to become

if (isSPACE(datumtype)) {

patcopy++;

continue;

}

OK. That’s the C part done. Now we must do two additional things before this patch is
ready to go: we’ve changed the behaviour of Perl, and so we must document that change.
We must also provide some more regression tests to make sure our patch works and doesn’t
create a bug somewhere else along the line.

31.3.2 Testing the patch

The regression tests for each operator live in t/op/, and so we make a copy of t/op/pack.t
to t/op/pack.t~. Now we can add our tests to the end. First, we’ll test that the U does
indeed create Unicode strings.

t/op/pack.t has a sensible ok() function, but if it didn’t we could use the one from
t/test.pl.

require ’./test.pl’;

plan(tests => 159);

so instead of this:

print ’not ’ unless "1.20.300.4000" eq sprintf "%vd",

pack("U*",1,20,300,4000);

print "ok $test\n"; $test++;

we can write the more sensible (see Test-More for a full explanation of is() and other
testing functions).

is("1.20.300.4000", sprintf "%vd", pack("U*",1,20,300,4000),

"U* produces Unicode");

Now we’ll test that we got that space-at-the-beginning business right:

is("1.20.300.4000", sprintf "%vd", pack(" U*",1,20,300,4000),

" with spaces at the beginning");

And finally we’ll test that we don’t make Unicode strings if U is not the first active
format:

isnt(v1.20.300.4000, sprintf "%vd", pack("C0U*",1,20,300,4000),

"U* not first isn’t Unicode");

Mustn’t forget to change the number of tests which appears at the top, or else the
automated tester will get confused. This will either look like this:

print "1..156\n";

or this:

plan(tests => 156);

We now compile up Perl, and run it through the test suite. Our new tests pass, hooray!

31.3.3 Documenting the patch

Finally, the documentation. The job is never done until the paperwork is over, so let’s
describe the change we’ve just made. The relevant place is pod/perlfunc.pod; again, we
make a copy, and then we’ll insert this text in the description of pack:

=item *

If the pattern begins with a C<U>, the resulting string will be treated

as UTF-8-encoded Unicode. You can force UTF-8 encoding on in a string

with an initial C<U0>, and the bytes that follow will be interpreted as

Unicode characters. If you don’t want this to happen, you can begin

your pattern with C<C0> (or anything else) to force Perl not to UTF-8

encode your string, and then follow this with a C<U*> somewhere in your

pattern.

31.3.4 Submit

See Section 29.1 [perlhack NAME], page 562 for details on how to submit this patch.

31.4 AUTHOR

This document was originally written by Nathan Torkington, and is maintained by the
perl5-porters mailing list.

32 perlhist

32.1 NAME

perlhist - the Perl history records

32.2 DESCRIPTION

This document aims to record the Perl source code releases.

32.3 INTRODUCTION

Perl history in brief, by Larry Wall:

Perl 0 introduced Perl to my officemates.

Perl 1 introduced Perl to the world, and changed /\(...\|...\)/ to

/(...|...)/. \(Dan Faigin still hasn’t forgiven me. :-\)

Perl 2 introduced Henry Spencer’s regular expression package.

Perl 3 introduced the ability to handle binary data (embedded nulls).

Perl 4 introduced the first Camel book. Really. We mostly just

switched version numbers so the book could refer to 4.000.

Perl 5 introduced everything else, including the ability to

introduce everything else.

32.4 THE KEEPERS OF THE PUMPKIN

Larry Wall, Andy Dougherty, Tom Christiansen, Charles Bailey, Nick Ing-Simmons, Chip
Salzenberg, Tim Bunce, Malcolm Beattie, Gurusamy Sarathy, Graham Barr, Jarkko
Hietaniemi, Hugo van der Sanden, Michael Schwern, Rafael Garcia-Suarez, Nicholas
Clark, Richard Clamp, Leon Brocard, Dave Mitchell, Jesse Vincent, Ricardo Signes, Steve
Hay, Matt S Trout, David Golden, Florian Ragwitz, Tatsuhiko Miyagawa, Chris BinGOs

Williams, Zefram, Ævar Arnfjörð Bjarmason, Stevan Little, Dave Rolsky, Max Maischein,
Abigail, Jesse Luehrs, Tony Cook, Dominic Hargreaves, Aaron Crane, Aristotle Pagaltzis,
Matthew Horsfall, Peter Martini, and Sawyer X.

32.4.1 PUMPKIN?

[from Porting/pumpkin.pod in the Perl source code distribution]

Chip Salzenberg gets credit for that, with a nod to his cow orker, David Croy. We had
passed around various names (baton, token, hot potato) but none caught on. Then, Chip
asked:

[begin quote]

Who has the patch pumpkin?

To explain: David Croy once told me that at a previous job, there was one tape drive
and multiple systems that used it for backups. But instead of some high-tech exclusion
software, they used a low-tech method to prevent multiple simultaneous backups: a stuffed
pumpkin. No one was allowed to make backups unless they had the "backup pumpkin".

[end quote]

The name has stuck. The holder of the pumpkin is sometimes called the pumpking
(keeping the source afloat?) or the pumpkineer (pulling the strings?).

32.5 THE RECORDS

Pump- Release Date Notes

king (by no means

comprehensive,

see Changes*

for details)

==

Larry 0 Classified. Don’t ask.

Larry 1.000 1987-Dec-18

1.001..10 1988-Jan-30

1.011..14 1988-Feb-02

Schwern 1.0.15 2002-Dec-18 Modernization

Richard 1.0_16 2003-Dec-18

Larry 2.000 1988-Jun-05

2.001 1988-Jun-28

Larry 3.000 1989-Oct-18

3.001 1989-Oct-26

3.002..4 1989-Nov-11

3.005 1989-Nov-18

3.006..8 1989-Dec-22

3.009..13 1990-Mar-02

3.014 1990-Mar-13

3.015 1990-Mar-14

3.016..18 1990-Mar-28

3.019..27 1990-Aug-10 User subs.

3.028 1990-Aug-14

3.029..36 1990-Oct-17

3.037 1990-Oct-20

3.040 1990-Nov-10

3.041 1990-Nov-13

3.042..43 1991-Jan-??

3.044 1991-Jan-12

Larry 4.000 1991-Mar-21

4.001..3 1991-Apr-12

4.004..9 1991-Jun-07

4.010 1991-Jun-10

4.011..18 1991-Nov-05

4.019 1991-Nov-11 Stable.

4.020..33 1992-Jun-08

4.034 1992-Jun-11

4.035 1992-Jun-23

Larry 4.036 1993-Feb-05 Very stable.

5.000alpha1 1993-Jul-31

5.000alpha2 1993-Aug-16

5.000alpha3 1993-Oct-10

5.000alpha4 1993-???-??

5.000alpha5 1993-???-??

5.000alpha6 1994-Mar-18

5.000alpha7 1994-Mar-25

Andy 5.000alpha8 1994-Apr-04

Larry 5.000alpha9 1994-May-05 ext appears.

5.000alpha10 1994-Jun-11

5.000alpha11 1994-Jul-01

Andy 5.000a11a 1994-Jul-07 To fit 14.

5.000a11b 1994-Jul-14

5.000a11c 1994-Jul-19

5.000a11d 1994-Jul-22

Larry 5.000alpha12 1994-Aug-04

Andy 5.000a12a 1994-Aug-08

5.000a12b 1994-Aug-15

5.000a12c 1994-Aug-22

5.000a12d 1994-Aug-22

5.000a12e 1994-Aug-22

5.000a12f 1994-Aug-24

5.000a12g 1994-Aug-24

5.000a12h 1994-Aug-24

Larry 5.000beta1 1994-Aug-30

Andy 5.000b1a 1994-Sep-06

Larry 5.000beta2 1994-Sep-14 Core slushified.

Andy 5.000b2a 1994-Sep-14

5.000b2b 1994-Sep-17

5.000b2c 1994-Sep-17

Larry 5.000beta3 1994-Sep-??

Andy 5.000b3a 1994-Sep-18

5.000b3b 1994-Sep-22

5.000b3c 1994-Sep-23

5.000b3d 1994-Sep-27

5.000b3e 1994-Sep-28

5.000b3f 1994-Sep-30

5.000b3g 1994-Oct-04

Andy 5.000b3h 1994-Oct-07

Larry? 5.000gamma 1994-Oct-13?

Larry 5.000 1994-Oct-17

Andy 5.000a 1994-Dec-19

5.000b 1995-Jan-18

5.000c 1995-Jan-18

5.000d 1995-Jan-18

5.000e 1995-Jan-18

5.000f 1995-Jan-18

5.000g 1995-Jan-18

5.000h 1995-Jan-18

5.000i 1995-Jan-26

5.000j 1995-Feb-07

5.000k 1995-Feb-11

5.000l 1995-Feb-21

5.000m 1995-Feb-28

5.000n 1995-Mar-07

5.000o 1995-Mar-13?

Larry 5.001 1995-Mar-13

Andy 5.001a 1995-Mar-15

5.001b 1995-Mar-31

5.001c 1995-Apr-07

5.001d 1995-Apr-14

5.001e 1995-Apr-18 Stable.

5.001f 1995-May-31

5.001g 1995-May-25

5.001h 1995-May-25

5.001i 1995-May-30

5.001j 1995-Jun-05

5.001k 1995-Jun-06

5.001l 1995-Jun-06 Stable.

5.001m 1995-Jul-02 Very stable.

5.001n 1995-Oct-31 Very unstable.

5.002beta1 1995-Nov-21

5.002b1a 1995-Dec-04

5.002b1b 1995-Dec-04

5.002b1c 1995-Dec-04

5.002b1d 1995-Dec-04

5.002b1e 1995-Dec-08

5.002b1f 1995-Dec-08

Tom 5.002b1g 1995-Dec-21 Doc release.

Andy 5.002b1h 1996-Jan-05

5.002b2 1996-Jan-14

Larry 5.002b3 1996-Feb-02

Andy 5.002gamma 1996-Feb-11

Larry 5.002delta 1996-Feb-27

Larry 5.002 1996-Feb-29 Prototypes.

Charles 5.002_01 1996-Mar-25

5.003 1996-Jun-25 Security release.

5.003_01 1996-Jul-31

Nick 5.003_02 1996-Aug-10

Andy 5.003_03 1996-Aug-28

5.003_04 1996-Sep-02

5.003_05 1996-Sep-12

5.003_06 1996-Oct-07

5.003_07 1996-Oct-10

Chip 5.003_08 1996-Nov-19

5.003_09 1996-Nov-26

5.003_10 1996-Nov-29

5.003_11 1996-Dec-06

5.003_12 1996-Dec-19

5.003_13 1996-Dec-20

5.003_14 1996-Dec-23

5.003_15 1996-Dec-23

5.003_16 1996-Dec-24

5.003_17 1996-Dec-27

5.003_18 1996-Dec-31

5.003_19 1997-Jan-04

5.003_20 1997-Jan-07

5.003_21 1997-Jan-15

5.003_22 1997-Jan-16

5.003_23 1997-Jan-25

5.003_24 1997-Jan-29

5.003_25 1997-Feb-04

5.003_26 1997-Feb-10

5.003_27 1997-Feb-18

5.003_28 1997-Feb-21

5.003_90 1997-Feb-25 Ramping up to the 5.004 release.

5.003_91 1997-Mar-01

5.003_92 1997-Mar-06

5.003_93 1997-Mar-10

5.003_94 1997-Mar-22

5.003_95 1997-Mar-25

5.003_96 1997-Apr-01

5.003_97 1997-Apr-03 Fairly widely used.

5.003_97a 1997-Apr-05

5.003_97b 1997-Apr-08

5.003_97c 1997-Apr-10

5.003_97d 1997-Apr-13

5.003_97e 1997-Apr-15

5.003_97f 1997-Apr-17

5.003_97g 1997-Apr-18

5.003_97h 1997-Apr-24

5.003_97i 1997-Apr-25

5.003_97j 1997-Apr-28

5.003_98 1997-Apr-30

5.003_99 1997-May-01

5.003_99a 1997-May-09

p54rc1 1997-May-12 Release Candidates.

p54rc2 1997-May-14

Chip 5.004 1997-May-15 A major maintenance release.

Tim 5.004_01-t1 1997-???-?? The 5.004 maintenance track.

5.004_01-t2 1997-Jun-11 aka perl5.004m1t2

5.004_01 1997-Jun-13

5.004_01_01 1997-Jul-29 aka perl5.004m2t1

5.004_01_02 1997-Aug-01 aka perl5.004m2t2

5.004_01_03 1997-Aug-05 aka perl5.004m2t3

5.004_02 1997-Aug-07

5.004_02_01 1997-Aug-12 aka perl5.004m3t1

5.004_03-t2 1997-Aug-13 aka perl5.004m3t2

5.004_03 1997-Sep-05

5.004_04-t1 1997-Sep-19 aka perl5.004m4t1

5.004_04-t2 1997-Sep-23 aka perl5.004m4t2

5.004_04-t3 1997-Oct-10 aka perl5.004m4t3

5.004_04-t4 1997-Oct-14 aka perl5.004m4t4

5.004_04 1997-Oct-15

5.004_04-m1 1998-Mar-04 (5.004m5t1) Maint. trials for 5.004_05.

5.004_04-m2 1998-May-01

5.004_04-m3 1998-May-15

5.004_04-m4 1998-May-19

5.004_05-MT5 1998-Jul-21

5.004_05-MT6 1998-Oct-09

5.004_05-MT7 1998-Nov-22

5.004_05-MT8 1998-Dec-03

Chip 5.004_05-MT9 1999-Apr-26

5.004_05 1999-Apr-29

Malcolm 5.004_50 1997-Sep-09 The 5.005 development track.

5.004_51 1997-Oct-02

5.004_52 1997-Oct-15

5.004_53 1997-Oct-16

5.004_54 1997-Nov-14

5.004_55 1997-Nov-25

5.004_56 1997-Dec-18

5.004_57 1998-Feb-03

5.004_58 1998-Feb-06

5.004_59 1998-Feb-13

5.004_60 1998-Feb-20

5.004_61 1998-Feb-27

5.004_62 1998-Mar-06

5.004_63 1998-Mar-17

5.004_64 1998-Apr-03

5.004_65 1998-May-15

5.004_66 1998-May-29

Sarathy 5.004_67 1998-Jun-15

5.004_68 1998-Jun-23

5.004_69 1998-Jun-29

5.004_70 1998-Jul-06

5.004_71 1998-Jul-09

5.004_72 1998-Jul-12

5.004_73 1998-Jul-13

5.004_74 1998-Jul-14 5.005 beta candidate.

5.004_75 1998-Jul-15 5.005 beta1.

5.004_76 1998-Jul-21 5.005 beta2.

Sarathy 5.005 1998-Jul-22 Oneperl.

Sarathy 5.005_01 1998-Jul-27 The 5.005 maintenance track.

5.005_02-T1 1998-Aug-02

5.005_02-T2 1998-Aug-05

5.005_02 1998-Aug-08

Graham 5.005_03-MT1 1998-Nov-30

5.005_03-MT2 1999-Jan-04

5.005_03-MT3 1999-Jan-17

5.005_03-MT4 1999-Jan-26

5.005_03-MT5 1999-Jan-28

5.005_03-MT6 1999-Mar-05

5.005_03 1999-Mar-28

Leon 5.005_04-RC1 2004-Feb-05

5.005_04-RC2 2004-Feb-18

5.005_04 2004-Feb-23

5.005_05-RC1 2009-Feb-16

Sarathy 5.005_50 1998-Jul-26 The 5.6 development track.

5.005_51 1998-Aug-10

5.005_52 1998-Sep-25

5.005_53 1998-Oct-31

5.005_54 1998-Nov-30

5.005_55 1999-Feb-16

5.005_56 1999-Mar-01

5.005_57 1999-May-25

5.005_58 1999-Jul-27

5.005_59 1999-Aug-02

5.005_60 1999-Aug-02

5.005_61 1999-Aug-20

5.005_62 1999-Oct-15

5.005_63 1999-Dec-09

5.5.640 2000-Feb-02

5.5.650 2000-Feb-08 beta1

5.5.660 2000-Feb-22 beta2

5.5.670 2000-Feb-29 beta3

5.6.0-RC1 2000-Mar-09 Release candidate 1.

5.6.0-RC2 2000-Mar-14 Release candidate 2.

5.6.0-RC3 2000-Mar-21 Release candidate 3.

Sarathy 5.6.0 2000-Mar-22

Sarathy 5.6.1-TRIAL1 2000-Dec-18 The 5.6 maintenance track.

5.6.1-TRIAL2 2001-Jan-31

5.6.1-TRIAL3 2001-Mar-19

5.6.1-foolish 2001-Apr-01 The "fools-gold" release.

5.6.1 2001-Apr-08

Rafael 5.6.2-RC1 2003-Nov-08

5.6.2 2003-Nov-15 Fix new build issues

Jarkko 5.7.0 2000-Sep-02 The 5.7 track: Development.

5.7.1 2001-Apr-09

5.7.2 2001-Jul-13 Virtual release candidate 0.

5.7.3 2002-Mar-05

5.8.0-RC1 2002-Jun-01

5.8.0-RC2 2002-Jun-21

5.8.0-RC3 2002-Jul-13

Jarkko 5.8.0 2002-Jul-18

Jarkko 5.8.1-RC1 2003-Jul-10 The 5.8 maintenance track

5.8.1-RC2 2003-Jul-11

5.8.1-RC3 2003-Jul-30

5.8.1-RC4 2003-Aug-01

5.8.1-RC5 2003-Sep-22

5.8.1 2003-Sep-25

Nicholas 5.8.2-RC1 2003-Oct-27

5.8.2-RC2 2003-Nov-03

5.8.2 2003-Nov-05

5.8.3-RC1 2004-Jan-07

5.8.3 2004-Jan-14

5.8.4-RC1 2004-Apr-05

5.8.4-RC2 2004-Apr-15

5.8.4 2004-Apr-21

5.8.5-RC1 2004-Jul-06

5.8.5-RC2 2004-Jul-08

5.8.5 2004-Jul-19

5.8.6-RC1 2004-Nov-11

5.8.6 2004-Nov-27

5.8.7-RC1 2005-May-18

5.8.7 2005-May-30

5.8.8-RC1 2006-Jan-20

5.8.8 2006-Jan-31

5.8.9-RC1 2008-Nov-10

5.8.9-RC2 2008-Dec-06

5.8.9 2008-Dec-14

Hugo 5.9.0 2003-Oct-27 The 5.9 development track

Rafael 5.9.1 2004-Mar-16

5.9.2 2005-Apr-01

5.9.3 2006-Jan-28

5.9.4 2006-Aug-15

5.9.5 2007-Jul-07

5.10.0-RC1 2007-Nov-17

5.10.0-RC2 2007-Nov-25

Rafael 5.10.0 2007-Dec-18

David M 5.10.1-RC1 2009-Aug-06 The 5.10 maintenance track

5.10.1-RC2 2009-Aug-18

5.10.1 2009-Aug-22

Jesse 5.11.0 2009-Oct-02 The 5.11 development track

5.11.1 2009-Oct-20

Leon 5.11.2 2009-Nov-20

Jesse 5.11.3 2009-Dec-20

Ricardo 5.11.4 2010-Jan-20

Steve 5.11.5 2010-Feb-20

Jesse 5.12.0-RC0 2010-Mar-21

5.12.0-RC1 2010-Mar-29

5.12.0-RC2 2010-Apr-01

5.12.0-RC3 2010-Apr-02

5.12.0-RC4 2010-Apr-06

5.12.0-RC5 2010-Apr-09

Jesse 5.12.0 2010-Apr-12

Jesse 5.12.1-RC2 2010-May-13 The 5.12 maintenance track

5.12.1-RC1 2010-May-09

5.12.1 2010-May-16

5.12.2-RC2 2010-Aug-31

5.12.2 2010-Sep-06

Ricardo 5.12.3-RC1 2011-Jan-09

Ricardo 5.12.3-RC2 2011-Jan-14

Ricardo 5.12.3-RC3 2011-Jan-17

Ricardo 5.12.3 2011-Jan-21

Leon 5.12.4-RC1 2011-Jun-08

Leon 5.12.4 2011-Jun-20

Dominic 5.12.5 2012-Nov-10

Leon 5.13.0 2010-Apr-20 The 5.13 development track

Ricardo 5.13.1 2010-May-20

Matt 5.13.2 2010-Jun-22

David G 5.13.3 2010-Jul-20

Florian 5.13.4 2010-Aug-20

Steve 5.13.5 2010-Sep-19

Miyagawa 5.13.6 2010-Oct-20

BinGOs 5.13.7 2010-Nov-20

Zefram 5.13.8 2010-Dec-20

Jesse 5.13.9 2011-Jan-20

Ævar 5.13.10 2011-Feb-20

Florian 5.13.11 2011-Mar-20

Jesse 5.14.0RC1 2011-Apr-20

Jesse 5.14.0RC2 2011-May-04

Jesse 5.14.0RC3 2011-May-11

Jesse 5.14.0 2011-May-14 The 5.14 maintenance track

Jesse 5.14.1 2011-Jun-16

Florian 5.14.2-RC1 2011-Sep-19

5.14.2 2011-Sep-26

Dominic 5.14.3 2012-Oct-12

David M 5.14.4-RC1 2013-Mar-05

David M 5.14.4-RC2 2013-Mar-07

David M 5.14.4 2013-Mar-10

David G 5.15.0 2011-Jun-20 The 5.15 development track

Zefram 5.15.1 2011-Jul-20

Ricardo 5.15.2 2011-Aug-20

Stevan 5.15.3 2011-Sep-20

Florian 5.15.4 2011-Oct-20

Steve 5.15.5 2011-Nov-20

Dave R 5.15.6 2011-Dec-20

BinGOs 5.15.7 2012-Jan-20

Max M 5.15.8 2012-Feb-20

Abigail 5.15.9 2012-Mar-20

Ricardo 5.16.0-RC0 2012-May-10

Ricardo 5.16.0-RC1 2012-May-14

Ricardo 5.16.0-RC2 2012-May-15

Ricardo 5.16.0 2012-May-20 The 5.16 maintenance track

Ricardo 5.16.1 2012-Aug-08

Ricardo 5.16.2 2012-Nov-01

Ricardo 5.16.3-RC1 2013-Mar-06

Ricardo 5.16.3 2013-Mar-11

Zefram 5.17.0 2012-May-26 The 5.17 development track

Jesse L 5.17.1 2012-Jun-20

TonyC 5.17.2 2012-Jul-20

Steve 5.17.3 2012-Aug-20

Florian 5.17.4 2012-Sep-20

Florian 5.17.5 2012-Oct-20

Ricardo 5.17.6 2012-Nov-20

Dave R 5.17.7 2012-Dec-18

Aaron 5.17.8 2013-Jan-20

BinGOs 5.17.9 2013-Feb-20

Max M 5.17.10 2013-Mar-21

Ricardo 5.17.11 2013-Apr-20

Ricardo 5.18.0-RC1 2013-May-11 The 5.18 maintenance track

Ricardo 5.18.0-RC2 2013-May-12

Ricardo 5.18.0-RC3 2013-May-13

Ricardo 5.18.0-RC4 2013-May-15

Ricardo 5.18.0 2013-May-18

Ricardo 5.18.1-RC1 2013-Aug-01

Ricardo 5.18.1-RC2 2013-Aug-03

Ricardo 5.18.1-RC3 2013-Aug-08

Ricardo 5.18.1 2013-Aug-12

Ricardo 5.18.2 2014-Jan-06

Ricardo 5.18.3-RC1 2014-Sep-17

Ricardo 5.18.3-RC2 2014-Sep-27

Ricardo 5.18.3 2014-Oct-01

Ricardo 5.18.4 2014-Oct-01

Ricardo 5.19.0 2013-May-20 The 5.19 development track

David G 5.19.1 2013-Jun-21

Aristotle 5.19.2 2013-Jul-22

Steve 5.19.3 2013-Aug-20

Steve 5.19.4 2013-Sep-20

Steve 5.19.5 2013-Oct-20

BinGOs 5.19.6 2013-Nov-20

Abigail 5.19.7 2013-Dec-20

Ricardo 5.19.8 2014-Jan-20

TonyC 5.19.9 2014-Feb-20

Aaron 5.19.10 2014-Mar-20

Steve 5.19.11 2014-Apr-20

Ricardo 5.20.0-RC1 2014-May-16 The 5.20 maintenance track

Ricardo 5.20.0 2014-May-27

Steve 5.20.1-RC1 2014-Aug-25

Steve 5.20.1-RC2 2014-Sep-07

Steve 5.20.1 2014-Sep-14

Steve 5.20.2-RC1 2015-Jan-31

Steve 5.20.2 2015-Feb-14

Ricardo 5.21.0 2014-May-27 The 5.21 development track

Matthew H 5.21.1 2014-Jun-20

Abigail 5.21.2 2014-Jul-20

Peter 5.21.3 2014-Aug-20

Steve 5.21.4 2014-Sep-20

Abigail 5.21.5 2014-Oct-20

BinGOs 5.21.6 2014-Nov-20

Max M 5.21.7 2014-Dec-20

Matthew H 5.21.8 2015-Jan-20

Sawyer X 5.21.9 2015-Feb-20

Steve 5.21.10 2015-Mar-20

Steve 5.21.11 2015-Apr-20

Ricardo 5.22.0-RC1 2015-May-19 The 5.22 maintenance track

Ricardo 5.22.0-RC2 2015-May-21

Ricardo 5.22.0 2015-Jun-01

32.5.1 SELECTED RELEASE SIZES

For example the notation "core: 212 29" in the release 1.000 means that it had in the core
212 kilobytes, in 29 files. The "core".."doc" are explained below.

release core lib ext t doc

==

1.000 212 29 - - - - 38 51 62 3

1.014 219 29 - - - - 39 52 68 4

2.000 309 31 2 3 - - 55 57 92 4

2.001 312 31 2 3 - - 55 57 94 4

3.000 508 36 24 11 - - 79 73 156 5

3.044 645 37 61 20 - - 90 74 190 6

4.000 635 37 59 20 - - 91 75 198 4

4.019 680 37 85 29 - - 98 76 199 4

4.036 709 37 89 30 - - 98 76 208 5

5.000alpha2 785 50 114 32 - - 112 86 209 5

5.000alpha3 801 50 117 33 - - 121 87 209 5

5.000alpha9 1022 56 149 43 116 29 125 90 217 6

5.000a12h 978 49 140 49 205 46 152 97 228 9

5.000b3h 1035 53 232 70 216 38 162 94 218 21

5.000 1038 53 250 76 216 38 154 92 536 62

5.001m 1071 54 388 82 240 38 159 95 544 29

5.002 1121 54 661 101 287 43 155 94 847 35

5.003 1129 54 680 102 291 43 166 100 853 35

5.003_07 1231 60 748 106 396 53 213 137 976 39

5.004 1351 60 1230 136 408 51 355 161 1587 55

5.004_01 1356 60 1258 138 410 51 358 161 1587 55

5.004_04 1375 60 1294 139 413 51 394 162 1629 55

5.004_05 1463 60 1435 150 394 50 445 175 1855 59

5.004_51 1401 61 1260 140 413 53 358 162 1594 56

5.004_53 1422 62 1295 141 438 70 394 162 1637 56

5.004_56 1501 66 1301 140 447 74 408 165 1648 57

5.004_59 1555 72 1317 142 448 74 424 171 1678 58

5.004_62 1602 77 1327 144 629 92 428 173 1674 58

5.004_65 1626 77 1358 146 615 92 446 179 1698 60

5.004_68 1856 74 1382 152 619 92 463 187 1784 60

5.004_70 1863 75 1456 154 675 92 494 194 1809 60

5.004_73 1874 76 1467 152 762 102 506 196 1883 61

5.004_75 1877 76 1467 152 770 103 508 196 1896 62

5.005 1896 76 1469 152 795 103 509 197 1945 63

5.005_03 1936 77 1541 153 813 104 551 201 2176 72

5.005_50 1969 78 1842 301 795 103 514 198 1948 63

5.005_53 1999 79 1885 303 806 104 602 224 2002 67

5.005_56 2086 79 1970 307 866 113 672 238 2221 75

5.6.0 2820 79 2626 364 1096 129 863 280 2840 93

5.6.1 2946 78 2921 430 1171 132 1024 304 3330 102

5.6.2 2947 78 3143 451 1247 127 1303 387 3406 102

5.7.0 2977 80 2801 425 1250 132 975 307 3206 100

5.7.1 3351 84 3442 455 1944 167 1334 357 3698 124

5.7.2 3491 87 4858 618 3290 298 1598 449 3910 139

5.7.3 3299 85 4295 537 2196 300 2176 626 4171 120

5.8.0 3489 87 4533 585 2437 331 2588 726 4368 125

5.8.1 3674 90 5104 623 2604 353 2983 836 4625 134

5.8.2 3633 90 5111 623 2623 357 3019 848 4634 135

5.8.3 3625 90 5141 624 2660 363 3083 869 4669 136

5.8.4 3653 90 5170 634 2684 368 3148 885 4689 137

5.8.5 3664 90 4260 303 2707 369 3208 898 4689 138

5.8.6 3690 90 4271 303 3141 396 3411 925 4709 139

5.8.7 3788 90 4322 307 3297 401 3485 964 4744 141

5.8.8 3895 90 4357 314 3409 431 3622 1017 4979 144

5.8.9 4132 93 5508 330 3826 529 4364 1234 5348 152

5.9.0 3657 90 4951 626 2603 354 3011 841 4609 135

5.9.1 3580 90 5196 634 2665 367 3186 889 4725 138

5.9.2 3863 90 4654 312 3283 403 3551 973 4800 142

5.9.3 4096 91 5318 381 4806 597 4272 1214 5139 147

5.9.4 4393 94 5718 415 4578 642 4646 1310 5335 153

5.9.5 4681 96 6849 479 4827 671 5155 1490 5572 159

5.10.0 4710 97 7050 486 4899 673 5275 1503 5673 160

5.10.1 4858 98 7440 519 6195 921 6147 1751 5151 163

5.12.0 4999 100 1146 121 15227 2176 6400 1843 5342 168

5.12.1 5000 100 1146 121 15283 2178 6407 1846 5354 169

5.12.2 5003 100 1146 121 15404 2178 6413 1846 5376 170

5.12.3 5004 100 1146 121 15529 2180 6417 1848 5391 171

5.14.0 5328 104 1100 114 17779 2479 7697 2130 5871 188

5.16.0 5562 109 1077 80 20504 2702 8750 2375 4815 152

5.18.0 5892 113 1088 79 20077 2760 9365 2439 4943 154

5.20.0 6243 115 1187 75 19499 2701 9620 2457 5145 159

5.22.0 7819 115 1284 77 19121 2635 9772 2434 5615 176

The "core"..."doc" mean the following files from the Perl source code distribution. The
glob notation ** means recursively, (.) means regular files.

core *.[hcy]

lib lib/**/*.p[ml]

ext ext/**/*.{[hcyt],xs,pm} (for -5.10.1) or

{dist,ext,cpan}/**/*.{[hcyt],xs,pm} (for 5.12.0-)

t t/**/*(.) (for 1-5.005_56) or **/*.t (for 5.6.0-5.7.3)

doc {README*,INSTALL,*[_.]man{,.?},pod/**/*.pod}

Here are some statistics for the other subdirectories and one file in the Perl source
distribution for somewhat more selected releases.

==

Legend: kB #

1.014 2.001 3.044

Configure 31 1 37 1 62 1

eg - - 34 28 47 39

h2pl - - - - 12 12

msdos - - - - 41 13

os2 - - - - 63 22

usub - - - - 21 16

x2p 103 17 104 17 137 17

==

4.000 4.019 4.036

atarist - - - - 113 31

Configure 73 1 83 1 86 1

eg 47 39 47 39 47 39

emacs 67 4 67 4 67 4

h2pl 12 12 12 12 12 12

hints - - 5 42 11 56

msdos 57 15 58 15 60 15

os2 81 29 81 29 113 31

usub 25 7 43 8 43 8

x2p 147 18 152 19 154 19

==

5.000a2 5.000a12h 5.000b3h 5.000 5.001m

apollo 8 3 8 3 8 3 8 3 8 3

atarist 113 31 113 31 - - - - - -

bench - - 0 1 - - - - - -

Bugs 2 5 26 1 - - - - - -

dlperl 40 5 - - - - - - - -

do 127 71 - - - - - - - -

Configure - - 153 1 159 1 160 1 180 1

Doc - - 26 1 75 7 11 1 11 1

eg 79 58 53 44 51 43 54 44 54 44

emacs 67 4 104 6 104 6 104 1 104 6

h2pl 12 12 12 12 12 12 12 12 12 12

hints 11 56 12 46 18 48 18 48 44 56

msdos 60 15 60 15 - - - - - -

os2 113 31 113 31 - - - - - -

U - - 62 8 112 42 - - - -

usub 43 8 - - - - - - - -

vms - - 80 7 123 9 184 15 304 20

x2p 171 22 171 21 162 20 162 20 279 20

==

5.002 5.003 5.003_07

Configure 201 1 201 1 217 1

eg 54 44 54 44 54 44

emacs 108 1 108 1 143 1

h2pl 12 12 12 12 12 12

hints 73 59 77 60 90 62

os2 84 17 56 10 117 42

plan9 - - - - 79 15

Porting - - - - 51 1

utils 87 7 88 7 97 7

vms 500 24 475 26 505 27

x2p 280 20 280 20 280 19

==

5.004 5.004_04 5.004_62 5.004_65 5.004_68

beos - - - - - - 1 1 1 1

Configure 225 1 225 1 240 1 248 1 256 1

cygwin32 23 5 23 5 23 5 24 5 24 5

djgpp - - - - 14 5 14 5 14 5

eg 81 62 81 62 81 62 81 62 81 62

emacs 194 1 204 1 212 2 212 2 212 2

h2pl 12 12 12 12 12 12 12 12 12 12

hints 129 69 132 71 144 72 151 74 155 74

os2 121 42 127 42 127 44 129 44 129 44

plan9 82 15 82 15 82 15 82 15 82 15

Porting 94 2 109 4 203 6 234 8 241 9

qnx 1 2 1 2 1 2 1 2 1 2

utils 112 8 118 8 124 8 156 9 159 9

vms 518 34 524 34 538 34 569 34 569 34

win32 285 33 378 36 470 39 493 39 575 41

x2p 281 19 281 19 281 19 282 19 281 19

==

5.004_70 5.004_73 5.004_75 5.005 5.005_03

apollo - - - - - - - - 0 1

beos 1 1 1 1 1 1 1 1 1 1

Configure 256 1 256 1 264 1 264 1 270 1

cygwin32 24 5 24 5 24 5 24 5 24 5

djgpp 14 5 14 5 14 5 14 5 15 5

eg 86 65 86 65 86 65 86 65 86 65

emacs 262 2 262 2 262 2 262 2 274 2

h2pl 12 12 12 12 12 12 12 12 12 12

hints 157 74 157 74 159 74 160 74 179 77

mint - - - - - - - - 4 7

mpeix - - - - 5 3 5 3 5 3

os2 129 44 139 44 142 44 143 44 148 44

plan9 82 15 82 15 82 15 82 15 82 15

Porting 241 9 253 9 259 10 264 12 272 13

qnx 1 2 1 2 1 2 1 2 1 2

utils 160 9 160 9 160 9 160 9 164 9

vms 570 34 572 34 573 34 575 34 583 34

vos - - - - - - - - 156 10

win32 577 41 585 41 585 41 587 41 600 42

x2p 281 19 281 19 281 19 281 19 281 19

==

5.6.0 5.6.1 5.6.2 5.7.3

apollo 8 3 8 3 8 3 8 3

beos 5 2 5 2 5 2 6 4

Configure 346 1 361 1 363 1 394 1

Cross - - - - - - 4 2

djgpp 19 6 19 6 19 6 21 7

eg 112 71 112 71 112 71 - -

emacs 303 4 319 4 319 4 319 4

epoc 29 8 35 8 35 8 36 8

h2pl 24 15 24 15 24 15 24 15

hints 242 83 250 84 321 89 272 87

mint 11 9 11 9 11 9 11 9

mpeix 9 4 9 4 9 4 9 4

NetWare - - - - - - 423 57

os2 214 59 224 60 224 60 357 66

plan9 92 17 92 17 92 17 85 15

Porting 361 15 390 16 390 16 425 21

qnx 5 3 5 3 5 3 5 3

utils 228 12 221 11 222 11 267 13

uts - - - - - - 12 3

vmesa 25 4 25 4 25 4 25 4

vms 686 38 627 38 627 38 649 36

vos 227 12 249 15 248 15 281 17

win32 755 41 782 42 801 42 1006 50

x2p 307 20 307 20 307 20 345 20

==

5.8.0 5.8.1 5.8.2 5.8.3 5.8.4

apollo 8 3 8 3 8 3 8 3 8 3

beos 6 4 6 4 6 4 6 4 6 4

Configure 472 1 493 1 493 1 493 1 494 1

Cross 4 2 45 10 45 10 45 10 45 10

djgpp 21 7 21 7 21 7 21 7 21 7

emacs 319 4 329 4 329 4 329 4 329 4

epoc 33 8 33 8 33 8 33 8 33 8

h2pl 24 15 24 15 24 15 24 15 24 15

hints 294 88 321 89 321 89 321 89 348 91

mint 11 9 11 9 11 9 11 9 11 9

mpeix 24 5 25 5 25 5 25 5 25 5

NetWare 488 61 490 61 490 61 490 61 488 61

os2 361 66 445 67 450 67 488 67 488 67

plan9 85 15 325 17 325 17 325 17 321 17

Porting 479 22 537 32 538 32 539 32 538 33

qnx 5 3 5 3 5 3 5 3 5 3

utils 275 15 258 16 258 16 263 19 263 19

uts 12 3 12 3 12 3 12 3 12 3

vmesa 25 4 25 4 25 4 25 4 25 4

vms 648 36 654 36 654 36 656 36 656 36

vos 330 20 335 20 335 20 335 20 335 20

win32 1062 49 1125 49 1127 49 1126 49 1181 56

x2p 347 20 348 20 348 20 348 20 348 20

==

5.8.5 5.8.6 5.8.7 5.8.8 5.8.9

apollo 8 3 8 3 8 3 8 3 8 3

beos 6 4 6 4 8 4 8 4 8 4

Configure 494 1 494 1 495 1 506 1 520 1

Cross 45 10 45 10 45 10 45 10 46 10

djgpp 21 7 21 7 21 7 21 7 21 7

emacs 329 4 329 4 329 4 329 4 406 4

epoc 33 8 33 8 33 8 34 8 35 8

h2pl 24 15 24 15 24 15 24 15 24 15

hints 350 91 352 91 355 94 360 94 387 99

mint 11 9 11 9 11 9 11 9 11 9

mpeix 25 5 25 5 25 5 49 6 49 6

NetWare 488 61 488 61 488 61 490 61 491 61

os2 488 67 488 67 488 67 488 67 552 70

plan9 321 17 321 17 321 17 322 17 324 17

Porting 538 34 548 35 549 35 564 37 625 41

qnx 5 3 5 3 5 3 5 3 5 3

utils 265 19 265 19 266 19 267 19 281 21

uts 12 3 12 3 12 3 12 3 12 3

vmesa 25 4 25 4 25 4 25 4 25 4

vms 657 36 658 36 662 36 664 36 716 35

vos 335 20 335 20 335 20 336 21 345 22

win32 1183 56 1190 56 1199 56 1219 56 1484 68

x2p 349 20 349 20 349 20 349 19 350 19

==

5.9.0 5.9.1 5.9.2 5.9.3 5.9.4

apollo 8 3 8 3 8 3 8 3 8 3

beos 6 4 6 4 8 4 8 4 8 4

Configure 493 1 493 1 495 1 508 1 512 1

Cross 45 10 45 10 45 10 45 10 46 10

djgpp 21 7 21 7 21 7 21 7 21 7

emacs 329 4 329 4 329 4 329 4 329 4

epoc 33 8 33 8 33 8 34 8 34 8

h2pl 24 15 24 15 24 15 24 15 24 15

hints 321 89 346 91 355 94 359 94 366 96

mad - - - - - - - - 174 6

mint 11 9 11 9 11 9 11 9 11 9

mpeix 25 5 25 5 25 5 49 6 49 6

NetWare 489 61 487 61 487 61 489 61 489 61

os2 444 67 488 67 488 67 488 67 488 67

plan9 325 17 321 17 321 17 322 17 323 17

Porting 537 32 536 33 549 36 564 38 576 38

qnx 5 3 5 3 5 3 5 3 5 3

symbian - - - - - - 293 53 293 53

utils 258 16 263 19 268 20 273 23 275 24

uts 12 3 12 3 12 3 12 3 12 3

vmesa 25 4 25 4 25 4 25 4 25 4

vms 660 36 547 33 553 33 661 33 696 33

vos 11 7 11 7 11 7 11 7 11 7

win32 1120 49 1124 51 1191 56 1209 56 1719 90

x2p 348 20 348 20 349 20 349 19 349 19

==

5.9.5 5.10.0 5.10.1 5.12.0 5.12.1

apollo 8 3 8 3 0 3 0 3 0 3

beos 8 4 8 4 4 4 4 4 4 4

Configure 518 1 518 1 533 1 536 1 536 1

Cross 122 15 122 15 119 15 118 15 118 15

djgpp 21 7 21 7 17 7 17 7 17 7

emacs 329 4 406 4 402 4 402 4 402 4

epoc 34 8 35 8 31 8 31 8 31 8

h2pl 24 15 24 15 12 15 12 15 12 15

hints 377 98 381 98 385 100 368 97 368 97

mad 182 8 182 8 174 8 174 8 174 8

mint 11 9 11 9 3 9 - - - -

mpeix 49 6 49 6 45 6 45 6 45 6

NetWare 489 61 489 61 465 61 466 61 466 61

os2 552 70 552 70 507 70 507 70 507 70

plan9 324 17 324 17 316 17 316 17 316 17

Porting 627 40 632 40 933 53 749 54 749 54

qnx 5 3 5 4 1 4 1 4 1 4

symbian 300 54 300 54 290 54 288 54 288 54

utils 260 26 264 27 268 27 269 27 269 27

uts 12 3 12 3 8 3 8 3 8 3

vmesa 25 4 25 4 21 4 21 4 21 4

vms 690 32 722 32 693 30 645 18 645 18

vos 19 8 19 8 16 8 16 8 16 8

win32 1482 68 1485 68 1497 70 1841 73 1841 73

x2p 349 19 349 19 345 19 345 19 345 19

==

5.12.2 5.12.3 5.14.0 5.16.0 5.18.0

apollo 0 3 0 3 - - - - - -

beos 4 4 4 4 5 4 5 4 - -

Configure 536 1 536 1 539 1 547 1 550 1

Cross 118 15 118 15 118 15 118 15 118 15

djgpp 17 7 17 7 18 7 18 7 18 7

emacs 402 4 402 4 - - - - - -

epoc 31 8 31 8 32 8 30 8 - -

h2pl 12 15 12 15 15 15 15 15 13 15

hints 368 97 368 97 370 96 371 96 354 91

mad 174 8 174 8 176 8 176 8 174 8

mpeix 45 6 45 6 46 6 46 6 - -

NetWare 466 61 466 61 473 61 472 61 469 61

os2 507 70 507 70 518 70 519 70 510 70

plan9 316 17 316 17 319 17 319 17 318 17

Porting 750 54 750 54 855 60 1093 69 1149 70

qnx 1 4 1 4 2 4 2 4 1 4

symbian 288 54 288 54 292 54 292 54 290 54

utils 269 27 269 27 249 29 245 30 246 31

uts 8 3 8 3 9 3 9 3 - -

vmesa 21 4 21 4 22 4 22 4 - -

vms 646 18 644 18 639 17 571 15 564 15

vos 16 8 16 8 17 8 9 7 8 7

win32 1841 73 1841 73 1833 72 1655 67 1157 62

x2p 345 19 345 19 346 19 345 19 344 20

==

5.20.0 5.22.0

Configure 552 1 570 1

Cross 118 15 118 15

djgpp 18 7 17 7

h2pl 13 15 13 15

hints 355 90 356 87

mad 174 8 - -

NetWare 467 61 466 61

os2 510 70 510 70

plan9 316 17 317 17

Porting 1204 68 1393 71

qnx 1 4 1 4

symbian 290 54 291 54

utils 241 27 242 27

vms 538 12 532 12

vos 8 7 8 7

win32 1183 64 1201 64

x2p 341 19 - -

32.5.2 SELECTED PATCH SIZES

The "diff lines kB" means that for example the patch 5.003 08, to be applied on top of the
5.003 07 (or whatever was before the 5.003 08) added lines for 110 kilobytes, it removed
lines for 19 kilobytes, and changed lines for 424 kilobytes. Just the lines themselves are
counted, not their context. The "+ - !" become from the diff(1) context diff output format.

Pump- Release Date diff lines kB

king -------------

+ - !

==

Chip 5.003_08 1996-Nov-19 110 19 424

5.003_09 1996-Nov-26 38 9 248

5.003_10 1996-Nov-29 29 2 27

5.003_11 1996-Dec-06 73 12 165

5.003_12 1996-Dec-19 275 6 436

5.003_13 1996-Dec-20 95 1 56

5.003_14 1996-Dec-23 23 7 333

5.003_15 1996-Dec-23 0 0 1

5.003_16 1996-Dec-24 12 3 50

5.003_17 1996-Dec-27 19 1 14

5.003_18 1996-Dec-31 21 1 32

5.003_19 1997-Jan-04 80 3 85

5.003_20 1997-Jan-07 18 1 146

5.003_21 1997-Jan-15 38 10 221

5.003_22 1997-Jan-16 4 0 18

5.003_23 1997-Jan-25 71 15 119

5.003_24 1997-Jan-29 426 1 20

5.003_25 1997-Feb-04 21 8 169

5.003_26 1997-Feb-10 16 1 15

5.003_27 1997-Feb-18 32 10 38

5.003_28 1997-Feb-21 58 4 66

5.003_90 1997-Feb-25 22 2 34

5.003_91 1997-Mar-01 37 1 39

5.003_92 1997-Mar-06 16 3 69

5.003_93 1997-Mar-10 12 3 15

5.003_94 1997-Mar-22 407 7 200

5.003_95 1997-Mar-25 41 1 37

5.003_96 1997-Apr-01 283 5 261

5.003_97 1997-Apr-03 13 2 34

5.003_97a 1997-Apr-05 57 1 27

5.003_97b 1997-Apr-08 14 1 20

5.003_97c 1997-Apr-10 20 1 16

5.003_97d 1997-Apr-13 8 0 16

5.003_97e 1997-Apr-15 15 4 46

5.003_97f 1997-Apr-17 7 1 33

5.003_97g 1997-Apr-18 6 1 42

5.003_97h 1997-Apr-24 23 3 68

5.003_97i 1997-Apr-25 23 1 31

5.003_97j 1997-Apr-28 36 1 49

5.003_98 1997-Apr-30 171 12 539

5.003_99 1997-May-01 6 0 7

5.003_99a 1997-May-09 36 2 61

p54rc1 1997-May-12 8 1 11

p54rc2 1997-May-14 6 0 40

5.004 1997-May-15 4 0 4

Tim 5.004_01 1997-Jun-13 222 14 57

5.004_02 1997-Aug-07 112 16 119

5.004_03 1997-Sep-05 109 0 17

5.004_04 1997-Oct-15 66 8 173

32.5.2.1 The patch-free era

In more modern times, named releases don’t come as often, and as progress can be followed
(nearly) instantly (with rsync, and since late 2008, git) patches between versions are no
longer provided. However, that doesn’t keep us from calculating how large a patch could
have been. Which is shown in the table below. Unless noted otherwise, the size mentioned
is the patch to bring version x.y.z to x.y.z+1.

Sarathy 5.6.1 2001-Apr-08 531 44 651

Rafael 5.6.2 2003-Nov-15 20 11 1819

Jarkko 5.8.0 2002-Jul-18 1205 31 471 From 5.7.3

5.8.1 2003-Sep-25 243 102 6162

Nicholas 5.8.2 2003-Nov-05 10 50 788

5.8.3 2004-Jan-14 31 13 360

5.8.4 2004-Apr-21 33 8 299

5.8.5 2004-Jul-19 11 19 255

5.8.6 2004-Nov-27 35 3 192

5.8.7 2005-May-30 75 34 778

5.8.8 2006-Jan-31 131 42 1251

5.8.9 2008-Dec-14 340 132 12988

Hugo 5.9.0 2003-Oct-27 281 168 7132 From 5.8.0

Rafael 5.9.1 2004-Mar-16 57 250 2107

5.9.2 2005-Apr-01 720 57 858

5.9.3 2006-Jan-28 1124 102 1906

5.9.4 2006-Aug-15 896 60 862

5.9.5 2007-Jul-07 1149 128 1062

5.10.0 2007-Dec-18 50 31 13111 From 5.9.5

32.6 THE KEEPERS OF THE RECORDS

Jarkko Hietaniemi <jhi@iki.fi>.

Thanks to the collective memory of the Perlfolk. In addition to the Keepers of the
Pumpkin also Alan Champion, Mark Dominus, Andreas König, John Macdonald, Matthias
Neeracher, Jeff Okamoto, Michael Peppler, Randal Schwartz, and Paul D. Smith sent cor-
rections and additions. Abigail added file and patch size data for the 5.6.0 - 5.10 era.

33 perlinterp

33.1 NAME

perlinterp - An overview of the Perl interpreter

33.2 DESCRIPTION

This document provides an overview of how the Perl interpreter works at the level of C
code, along with pointers to the relevant C source code files.

33.3 ELEMENTS OF THE INTERPRETER

The work of the interpreter has two main stages: compiling the code into the internal
representation, or bytecode, and then executing it. Section 28.7 [perlguts Compiled code],
page 541 explains exactly how the compilation stage happens.

Here is a short breakdown of perl’s operation:

33.3.1 Startup

The action begins in perlmain.c. (or miniperlmain.c for miniperl) This is very high-level
code, enough to fit on a single screen, and it resembles the code found in Section 20.1
[perlembed NAME], page 301; most of the real action takes place in perl.c

perlmain.c is generated by ExtUtils::Miniperl from miniperlmain.c at make time,
so you should make perl to follow this along.

First, perlmain.c allocates some memory and constructs a Perl interpreter, along these
lines:

1 PERL_SYS_INIT3(&argc,&argv,&env);

2

3 if (!PL_do_undump) {

4 my_perl = perl_alloc();

5 if (!my_perl)

6 exit(1);

7 perl_construct(my_perl);

8 PL_perl_destruct_level = 0;

9 }

Line 1 is a macro, and its definition is dependent on your operating system. Line 3
references PL_do_undump, a global variable - all global variables in Perl start with PL_.
This tells you whether the current running program was created with the -u flag to perl
and then undump, which means it’s going to be false in any sane context.

Line 4 calls a function in perl.c to allocate memory for a Perl interpreter. It’s quite a
simple function, and the guts of it looks like this:

my_perl = (PerlInterpreter*)PerlMem_malloc(sizeof(PerlInterpreter));

Here you see an example of Perl’s system abstraction, which we’ll see later: PerlMem_

malloc is either your system’s malloc, or Perl’s own malloc as defined in malloc.c if you
selected that option at configure time.

Next, in line 7, we construct the interpreter using perl construct, also in perl.c; this
sets up all the special variables that Perl needs, the stacks, and so on.

Now we pass Perl the command line options, and tell it to go:

exitstatus = perl_parse(my_perl, xs_init, argc, argv, (char **)NULL);

if (!exitstatus)

perl_run(my_perl);

exitstatus = perl_destruct(my_perl);

perl_free(my_perl);

perl_parse is actually a wrapper around S_parse_body, as defined in perl.c, which
processes the command line options, sets up any statically linked XS modules, opens the
program and calls yyparse to parse it.

33.3.2 Parsing

The aim of this stage is to take the Perl source, and turn it into an op tree. We’ll see what
one of those looks like later. Strictly speaking, there’s three things going on here.

yyparse, the parser, lives in perly.c, although you’re better off reading the original
YACC input in perly.y. (Yes, Virginia, there is a YACC grammar for Perl!) The job of
the parser is to take your code and "understand" it, splitting it into sentences, deciding
which operands go with which operators and so on.

The parser is nobly assisted by the lexer, which chunks up your input into tokens, and
decides what type of thing each token is: a variable name, an operator, a bareword, a
subroutine, a core function, and so on. The main point of entry to the lexer is yylex, and
that and its associated routines can be found in toke.c. Perl isn’t much like other computer
languages; it’s highly context sensitive at times, it can be tricky to work out what sort of
token something is, or where a token ends. As such, there’s a lot of interplay between the
tokeniser and the parser, which can get pretty frightening if you’re not used to it.

As the parser understands a Perl program, it builds up a tree of operations for the
interpreter to perform during execution. The routines which construct and link together
the various operations are to be found in op.c, and will be examined later.

33.3.3 Optimization

Now the parsing stage is complete, and the finished tree represents the operations that the
Perl interpreter needs to perform to execute our program. Next, Perl does a dry run over
the tree looking for optimisations: constant expressions such as 3 + 4 will be computed
now, and the optimizer will also see if any multiple operations can be replaced with a single
one. For instance, to fetch the variable $foo, instead of grabbing the glob *foo and looking
at the scalar component, the optimizer fiddles the op tree to use a function which directly
looks up the scalar in question. The main optimizer is peep in op.c, and many ops have
their own optimizing functions.

33.3.4 Running

Now we’re finally ready to go: we have compiled Perl byte code, and all that’s left to do
is run it. The actual execution is done by the runops_standard function in run.c; more
specifically, it’s done by these three innocent looking lines:

while ((PL_op = PL_op->op_ppaddr(aTHX))) {

PERL_ASYNC_CHECK();

}

You may be more comfortable with the Perl version of that:

PERL_ASYNC_CHECK() while $Perl::op = &{$Perl::op->{function}};

Well, maybe not. Anyway, each op contains a function pointer, which stipulates the
function which will actually carry out the operation. This function will return the next op
in the sequence - this allows for things like if which choose the next op dynamically at
run time. The PERL_ASYNC_CHECK makes sure that things like signals interrupt execution if
required.

The actual functions called are known as PP code, and they’re spread between four
files: pp_hot.c contains the "hot" code, which is most often used and highly optimized,
pp_sys.c contains all the system-specific functions, pp_ctl.c contains the functions which
implement control structures (if, while and the like) and pp.c contains everything else.
These are, if you like, the C code for Perl’s built-in functions and operators.

Note that each pp_ function is expected to return a pointer to the next op. Calls to perl
subs (and eval blocks) are handled within the same runops loop, and do not consume extra
space on the C stack. For example, pp_entersub and pp_entertry just push a CxSUB or
CxEVAL block struct onto the context stack which contain the address of the op following
the sub call or eval. They then return the first op of that sub or eval block, and so execution
continues of that sub or block. Later, a pp_leavesub or pp_leavetry op pops the CxSUB

or CxEVAL, retrieves the return op from it, and returns it.

33.3.5 Exception handing

Perl’s exception handing (i.e. die etc.) is built on top of the low-level setjmp()/longjmp()
C-library functions. These basically provide a way to capture the current PC and SP
registers and later restore them; i.e. a longjmp() continues at the point in code where a
previous setjmp() was done, with anything further up on the C stack being lost. This is
why code should always save values using SAVE_FOO rather than in auto variables.

The perl core wraps setjmp() etc in the macros JMPENV_PUSH and JMPENV_JUMP. The
basic rule of perl exceptions is that exit, and die (in the absence of eval) perform a
JMPENV_JUMP(2), while die within eval does a JMPENV_JUMP(3).

At entry points to perl, such as perl_parse(), perl_run() and call_sv(cv, G_EVAL)

each does a JMPENV_PUSH, then enter a runops loop or whatever, and handle possible excep-
tion returns. For a 2 return, final cleanup is performed, such as popping stacks and calling
CHECK or END blocks. Amongst other things, this is how scope cleanup still occurs during
an exit.

If a die can find a CxEVAL block on the context stack, then the stack is popped to that
level and the return op in that block is assigned to PL_restartop; then a JMPENV_JUMP(3)

is performed. This normally passes control back to the guard. In the case of perl_run and
call_sv, a non-null PL_restartop triggers re-entry to the runops loop. The is the normal
way that die or croak is handled within an eval.

Sometimes ops are executed within an inner runops loop, such as tie, sort or overload
code. In this case, something like

sub FETCH { eval { die } }

would cause a longjmp right back to the guard in perl_run, popping both runops loops,
which is clearly incorrect. One way to avoid this is for the tie code to do a JMPENV_PUSH

before executing FETCH in the inner runops loop, but for efficiency reasons, perl in fact just
sets a flag, using CATCH_SET(TRUE). The pp_require, pp_entereval and pp_entertry

ops check this flag, and if true, they call docatch, which does a JMPENV_PUSH and starts a
new runops level to execute the code, rather than doing it on the current loop.

As a further optimisation, on exit from the eval block in the FETCH, execution of the
code following the block is still carried on in the inner loop. When an exception is raised,
docatch compares the JMPENV level of the CxEVAL with PL_top_env and if they differ, just
re-throws the exception. In this way any inner loops get popped.

Here’s an example.

1: eval { tie @a, ’A’ };

2: sub A::TIEARRAY {

3: eval { die };

4: die;

5: }

To run this code, perl_run is called, which does a JMPENV_PUSH then enters a runops
loop. This loop executes the eval and tie ops on line 1, with the eval pushing a CxEVAL onto
the context stack.

The pp_tie does a CATCH_SET(TRUE), then starts a second runops loop to execute the
body of TIEARRAY. When it executes the entertry op on line 3, CATCH_GET is true, so pp_

entertry calls docatch which does a JMPENV_PUSH and starts a third runops loop, which
then executes the die op. At this point the C call stack looks like this:

Perl_pp_die

Perl_runops # third loop

S_docatch_body

S_docatch

Perl_pp_entertry

Perl_runops # second loop

S_call_body

Perl_call_sv

Perl_pp_tie

Perl_runops # first loop

S_run_body

perl_run

main

and the context and data stacks, as shown by -Dstv, look like:

STACK 0: MAIN

CX 0: BLOCK =>

CX 1: EVAL => AV() PV("A"\0)

retop=leave

STACK 1: MAGIC

CX 0: SUB =>

retop=(null)

CX 1: EVAL => *

retop=nextstate

The die pops the first CxEVAL off the context stack, sets PL_restartop from it, does a
JMPENV_JUMP(3), and control returns to the top docatch. This then starts another third-
level runops level, which executes the nextstate, pushmark and die ops on line 4. At the
point that the second pp_die is called, the C call stack looks exactly like that above, even
though we are no longer within an inner eval; this is because of the optimization mentioned
earlier. However, the context stack now looks like this, ie with the top CxEVAL popped:

STACK 0: MAIN

CX 0: BLOCK =>

CX 1: EVAL => AV() PV("A"\0)

retop=leave

STACK 1: MAGIC

CX 0: SUB =>

retop=(null)

The die on line 4 pops the context stack back down to the CxEVAL, leaving it as:

STACK 0: MAIN

CX 0: BLOCK =>

As usual, PL_restartop is extracted from the CxEVAL, and a JMPENV_JUMP(3) done,
which pops the C stack back to the docatch:

S_docatch

Perl_pp_entertry

Perl_runops # second loop

S_call_body

Perl_call_sv

Perl_pp_tie

Perl_runops # first loop

S_run_body

perl_run

main

In this case, because the JMPENV level recorded in the CxEVAL differs from the current
one, docatch just does a JMPENV_JUMP(3) and the C stack unwinds to:

perl_run

main

Because PL_restartop is non-null, run_body starts a new runops loop and execution
continues.

33.3.6 INTERNAL VARIABLE TYPES

You should by now have had a look at Section 28.1 [perlguts NAME], page 512, which tells
you about Perl’s internal variable types: SVs, HVs, AVs and the rest. If not, do that now.

These variables are used not only to represent Perl-space variables, but also any constants
in the code, as well as some structures completely internal to Perl. The symbol table, for
instance, is an ordinary Perl hash. Your code is represented by an SV as it’s read into the
parser; any program files you call are opened via ordinary Perl filehandles, and so on.

The core Devel-Peek module lets us examine SVs from a Perl program. Let’s see, for
instance, how Perl treats the constant "hello".

% perl -MDevel::Peek -e ’Dump("hello")’

1 SV = PV(0xa041450) at 0xa04ecbc

2 REFCNT = 1

3 FLAGS = (POK,READONLY,pPOK)

4 PV = 0xa0484e0 "hello"\0

5 CUR = 5

6 LEN = 6

Reading Devel::Peek output takes a bit of practise, so let’s go through it line by line.

Line 1 tells us we’re looking at an SV which lives at 0xa04ecbc in memory. SVs them-
selves are very simple structures, but they contain a pointer to a more complex structure.
In this case, it’s a PV, a structure which holds a string value, at location 0xa041450. Line
2 is the reference count; there are no other references to this data, so it’s 1.

Line 3 are the flags for this SV - it’s OK to use it as a PV, it’s a read-only SV (because
it’s a constant) and the data is a PV internally. Next we’ve got the contents of the string,
starting at location 0xa0484e0.

Line 5 gives us the current length of the string - note that this does not include the null
terminator. Line 6 is not the length of the string, but the length of the currently allocated
buffer; as the string grows, Perl automatically extends the available storage via a routine
called SvGROW.

You can get at any of these quantities from C very easily; just add Sv to the name
of the field shown in the snippet, and you’ve got a macro which will return the value:
SvCUR(sv) returns the current length of the string, SvREFCOUNT(sv) returns the reference
count, SvPV(sv, len) returns the string itself with its length, and so on. More macros to
manipulate these properties can be found in Section 28.1 [perlguts NAME], page 512.

Let’s take an example of manipulating a PV, from sv_catpvn, in sv.c

1 void

2 Perl_sv_catpvn(pTHX_ SV *sv, const char *ptr, STRLEN len)

3 {

4 STRLEN tlen;

5 char *junk;

6 junk = SvPV_force(sv, tlen);

7 SvGROW(sv, tlen + len + 1);

8 if (ptr == junk)

9 ptr = SvPVX(sv);

10 Move(ptr,SvPVX(sv)+tlen,len,char);

11 SvCUR(sv) += len;

12 *SvEND(sv) = ’\0’;

13 (void)SvPOK_only_UTF8(sv); /* validate pointer */

14 SvTAINT(sv);

15 }

This is a function which adds a string, ptr, of length len onto the end of the PV stored
in sv. The first thing we do in line 6 is make sure that the SV has a valid PV, by calling

the SvPV_force macro to force a PV. As a side effect, tlen gets set to the current value of
the PV, and the PV itself is returned to junk.

In line 7, we make sure that the SV will have enough room to accommodate the old string,
the new string and the null terminator. If LEN isn’t big enough, SvGROW will reallocate space
for us.

Now, if junk is the same as the string we’re trying to add, we can grab the string directly
from the SV; SvPVX is the address of the PV in the SV.

Line 10 does the actual catenation: the Move macro moves a chunk of memory around:
we move the string ptr to the end of the PV - that’s the start of the PV plus its current
length. We’re moving len bytes of type char. After doing so, we need to tell Perl we’ve
extended the string, by altering CUR to reflect the new length. SvEND is a macro which gives
us the end of the string, so that needs to be a "\0".

Line 13 manipulates the flags; since we’ve changed the PV, any IV or NV values will
no longer be valid: if we have $a=10; $a.="6"; we don’t want to use the old IV of 10.
SvPOK_only_utf8 is a special UTF-8-aware version of SvPOK_only, a macro which turns off
the IOK and NOK flags and turns on POK. The final SvTAINT is a macro which launders
tainted data if taint mode is turned on.

AVs and HVs are more complicated, but SVs are by far the most common variable type
being thrown around. Having seen something of how we manipulate these, let’s go on and
look at how the op tree is constructed.

33.4 OP TREES

First, what is the op tree, anyway? The op tree is the parsed representation of your
program, as we saw in our section on parsing, and it’s the sequence of operations that Perl
goes through to execute your program, as we saw in Section 33.3.4 [Running], page 628.

An op is a fundamental operation that Perl can perform: all the built-in functions and
operators are ops, and there are a series of ops which deal with concepts the interpreter
needs internally - entering and leaving a block, ending a statement, fetching a variable, and
so on.

The op tree is connected in two ways: you can imagine that there are two "routes"
through it, two orders in which you can traverse the tree. First, parse order reflects how the
parser understood the code, and secondly, execution order tells perl what order to perform
the operations in.

The easiest way to examine the op tree is to stop Perl after it has finished parsing,
and get it to dump out the tree. This is exactly what the compiler backends B-Terse,
B-Concise and B-Debug do.

Let’s have a look at how Perl sees $a = $b + $c:

% perl -MO=Terse -e ’$a=$b+$c’

1 LISTOP (0x8179888) leave

2 OP (0x81798b0) enter

3 COP (0x8179850) nextstate

4 BINOP (0x8179828) sassign

5 BINOP (0x8179800) add [1]

6 UNOP (0x81796e0) null [15]

7 SVOP (0x80fafe0) gvsv GV (0x80fa4cc) *b

8 UNOP (0x81797e0) null [15]

9 SVOP (0x8179700) gvsv GV (0x80efeb0) *c

10 UNOP (0x816b4f0) null [15]

11 SVOP (0x816dcf0) gvsv GV (0x80fa460) *a

Let’s start in the middle, at line 4. This is a BINOP, a binary operator, which is at
location 0x8179828. The specific operator in question is sassign - scalar assignment - and
you can find the code which implements it in the function pp_sassign in pp_hot.c. As
a binary operator, it has two children: the add operator, providing the result of $b+$c, is
uppermost on line 5, and the left hand side is on line 10.

Line 10 is the null op: this does exactly nothing. What is that doing there? If you
see the null op, it’s a sign that something has been optimized away after parsing. As we
mentioned in Section 33.3.3 [Optimization], page 628, the optimization stage sometimes
converts two operations into one, for example when fetching a scalar variable. When this
happens, instead of rewriting the op tree and cleaning up the dangling pointers, it’s easier
just to replace the redundant operation with the null op. Originally, the tree would have
looked like this:

10 SVOP (0x816b4f0) rv2sv [15]

11 SVOP (0x816dcf0) gv GV (0x80fa460) *a

That is, fetch the a entry from the main symbol table, and then look at the scalar
component of it: gvsv (pp_gvsv into pp_hot.c) happens to do both these things.

The right hand side, starting at line 5 is similar to what we’ve just seen: we have the
add op (pp_add also in pp_hot.c) add together two gvsvs.

Now, what’s this about?

1 LISTOP (0x8179888) leave

2 OP (0x81798b0) enter

3 COP (0x8179850) nextstate

enter and leave are scoping ops, and their job is to perform any housekeeping every
time you enter and leave a block: lexical variables are tidied up, unreferenced variables are
destroyed, and so on. Every program will have those first three lines: leave is a list, and
its children are all the statements in the block. Statements are delimited by nextstate, so
a block is a collection of nextstate ops, with the ops to be performed for each statement
being the children of nextstate. enter is a single op which functions as a marker.

That’s how Perl parsed the program, from top to bottom:

Program

|

Statement

|

=

/ \

/ \

$a +

/ \

$b $c

However, it’s impossible to perform the operations in this order: you have to find the
values of $b and $c before you add them together, for instance. So, the other thread that
runs through the op tree is the execution order: each op has a field op_next which points
to the next op to be run, so following these pointers tells us how perl executes the code.
We can traverse the tree in this order using the exec option to B::Terse:

% perl -MO=Terse,exec -e ’$a=$b+$c’

1 OP (0x8179928) enter

2 COP (0x81798c8) nextstate

3 SVOP (0x81796c8) gvsv GV (0x80fa4d4) *b

4 SVOP (0x8179798) gvsv GV (0x80efeb0) *c

5 BINOP (0x8179878) add [1]

6 SVOP (0x816dd38) gvsv GV (0x80fa468) *a

7 BINOP (0x81798a0) sassign

8 LISTOP (0x8179900) leave

This probably makes more sense for a human: enter a block, start a statement. Get the
values of $b and $c, and add them together. Find $a, and assign one to the other. Then
leave.

The way Perl builds up these op trees in the parsing process can be unravelled by
examining perly.y, the YACC grammar. Let’s take the piece we need to construct the tree
for $a = $b + $c

1 term : term ASSIGNOP term

2 { $$ = newASSIGNOP(OPf_STACKED, $1, $2, $3); }

3 | term ADDOP term

4 { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

If you’re not used to reading BNF grammars, this is how it works: You’re fed certain
things by the tokeniser, which generally end up in upper case. Here, ADDOP, is provided
when the tokeniser sees + in your code. ASSIGNOP is provided when = is used for assigning.
These are "terminal symbols", because you can’t get any simpler than them.

The grammar, lines one and three of the snippet above, tells you how to build up more
complex forms. These complex forms, "non-terminal symbols" are generally placed in lower
case. term here is a non-terminal symbol, representing a single expression.

The grammar gives you the following rule: you can make the thing on the left of the
colon if you see all the things on the right in sequence. This is called a "reduction", and the
aim of parsing is to completely reduce the input. There are several different ways you can
perform a reduction, separated by vertical bars: so, term followed by = followed by term

makes a term, and term followed by + followed by term can also make a term.

So, if you see two terms with an = or +, between them, you can turn them into a single
expression. When you do this, you execute the code in the block on the next line: if you
see =, you’ll do the code in line 2. If you see +, you’ll do the code in line 4. It’s this code
which contributes to the op tree.

| term ADDOP term

{ $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

What this does is creates a new binary op, and feeds it a number of variables. The
variables refer to the tokens: $1 is the first token in the input, $2 the second, and so on -
think regular expression backreferences. $$ is the op returned from this reduction. So, we

call newBINOP to create a new binary operator. The first parameter to newBINOP, a function
in op.c, is the op type. It’s an addition operator, so we want the type to be ADDOP. We
could specify this directly, but it’s right there as the second token in the input, so we use
$2. The second parameter is the op’s flags: 0 means "nothing special". Then the things to
add: the left and right hand side of our expression, in scalar context.

33.5 STACKS

When perl executes something like addop, how does it pass on its results to the next op?
The answer is, through the use of stacks. Perl has a number of stacks to store things it’s
currently working on, and we’ll look at the three most important ones here.

33.5.1 Argument stack

Arguments are passed to PP code and returned from PP code using the argument stack,
ST. The typical way to handle arguments is to pop them off the stack, deal with them how
you wish, and then push the result back onto the stack. This is how, for instance, the cosine
operator works:

NV value;

value = POPn;

value = Perl_cos(value);

XPUSHn(value);

We’ll see a more tricky example of this when we consider Perl’s macros below. POPn

gives you the NV (floating point value) of the top SV on the stack: the $x in cos($x).
Then we compute the cosine, and push the result back as an NV. The X in XPUSHn means
that the stack should be extended if necessary - it can’t be necessary here, because we know
there’s room for one more item on the stack, since we’ve just removed one! The XPUSH*

macros at least guarantee safety.

Alternatively, you can fiddle with the stack directly: SP gives you the first element in
your portion of the stack, and TOP* gives you the top SV/IV/NV/etc. on the stack. So, for
instance, to do unary negation of an integer:

SETi(-TOPi);

Just set the integer value of the top stack entry to its negation.

Argument stack manipulation in the core is exactly the same as it is in XSUBs - see
perlxstut, perlxs and Section 28.1 [perlguts NAME], page 512 for a longer description of
the macros used in stack manipulation.

33.5.2 Mark stack

I say "your portion of the stack" above because PP code doesn’t necessarily get the whole
stack to itself: if your function calls another function, you’ll only want to expose the argu-
ments aimed for the called function, and not (necessarily) let it get at your own data. The
way we do this is to have a "virtual" bottom-of-stack, exposed to each function. The mark
stack keeps bookmarks to locations in the argument stack usable by each function. For
instance, when dealing with a tied variable, (internally, something with "P" magic) Perl
has to call methods for accesses to the tied variables. However, we need to separate the
arguments exposed to the method to the argument exposed to the original function - the

store or fetch or whatever it may be. Here’s roughly how the tied push is implemented; see
av_push in av.c:

1 PUSHMARK(SP);

2 EXTEND(SP,2);

3 PUSHs(SvTIED_obj((SV*)av, mg));

4 PUSHs(val);

5 PUTBACK;

6 ENTER;

7 call_method("PUSH", G_SCALAR|G_DISCARD);

8 LEAVE;

Let’s examine the whole implementation, for practice:

1 PUSHMARK(SP);

Push the current state of the stack pointer onto the mark stack. This is so that when
we’ve finished adding items to the argument stack, Perl knows how many things we’ve added
recently.

2 EXTEND(SP,2);

3 PUSHs(SvTIED_obj((SV*)av, mg));

4 PUSHs(val);

We’re going to add two more items onto the argument stack: when you have a tied array,
the PUSH subroutine receives the object and the value to be pushed, and that’s exactly what
we have here - the tied object, retrieved with SvTIED_obj, and the value, the SV val.

5 PUTBACK;

Next we tell Perl to update the global stack pointer from our internal variable: dSP only
gave us a local copy, not a reference to the global.

6 ENTER;

7 call_method("PUSH", G_SCALAR|G_DISCARD);

8 LEAVE;

ENTER and LEAVE localise a block of code - they make sure that all variables are tidied
up, everything that has been localised gets its previous value returned, and so on. Think
of them as the { and } of a Perl block.

To actually do the magic method call, we have to call a subroutine in Perl space: call_
method takes care of that, and it’s described in Section 7.1 [perlcall NAME], page 28. We
call the PUSH method in scalar context, and we’re going to discard its return value. The
call method() function removes the top element of the mark stack, so there is nothing for
the caller to clean up.

33.5.3 Save stack

C doesn’t have a concept of local scope, so perl provides one. We’ve seen that ENTER

and LEAVE are used as scoping braces; the save stack implements the C equivalent of, for
example:

{

local $foo = 42;

...

}

See Section 28.3.23 [perlguts Localizing changes], page 534 for how to use the save stack.

33.6 MILLIONS OF MACROS

One thing you’ll notice about the Perl source is that it’s full of macros. Some have called
the pervasive use of macros the hardest thing to understand, others find it adds to clarity.
Let’s take an example, the code which implements the addition operator:

1 PP(pp_add)

2 {

3 dSP; dATARGET; tryAMAGICbin(add,opASSIGN);

4 {

5 dPOPTOPnnrl_ul;

6 SETn(left + right);

7 RETURN;

8 }

9 }

Every line here (apart from the braces, of course) contains a macro. The first line sets
up the function declaration as Perl expects for PP code; line 3 sets up variable declarations
for the argument stack and the target, the return value of the operation. Finally, it tries to
see if the addition operation is overloaded; if so, the appropriate subroutine is called.

Line 5 is another variable declaration - all variable declarations start with d - which pops
from the top of the argument stack two NVs (hence nn) and puts them into the variables
right and left, hence the rl. These are the two operands to the addition operator. Next,
we call SETn to set the NV of the return value to the result of adding the two values. This
done, we return - the RETURN macro makes sure that our return value is properly handled,
and we pass the next operator to run back to the main run loop.

Most of these macros are explained in perlapi, and some of the more important ones are
explained in perlxs as well. Pay special attention to Section 28.9.1 [perlguts Background
and PERL IMPLICIT CONTEXT], page 547 for information on the [pad]THX_? macros.

33.7 FURTHER READING

For more information on the Perl internals, please see the documents listed at Section 1.3.4
[perl Internals and C Language Interface], page 3.

34 perlintro

34.1 NAME

perlintro – a brief introduction and overview of Perl

34.2 DESCRIPTION

This document is intended to give you a quick overview of the Perl programming language,
along with pointers to further documentation. It is intended as a "bootstrap" guide for
those who are new to the language, and provides just enough information for you to be
able to read other peoples’ Perl and understand roughly what it’s doing, or write your own
simple scripts.

This introductory document does not aim to be complete. It does not even aim to
be entirely accurate. In some cases perfection has been sacrificed in the goal of getting
the general idea across. You are strongly advised to follow this introduction with more
information from the full Perl manual, the table of contents to which can be found in
perltoc.

Throughout this document you’ll see references to other parts of the Perl documentation.
You can read that documentation using the perldoc command or whatever method you’re
using to read this document.

Throughout Perl’s documentation, you’ll find numerous examples intended to help ex-
plain the discussed features. Please keep in mind that many of them are code fragments
rather than complete programs.

These examples often reflect the style and preference of the author of that piece of the
documentation, and may be briefer than a corresponding line of code in a real program.
Except where otherwise noted, you should assume that use strict and use warnings

statements appear earlier in the "program", and that any variables used have already been
declared, even if those declarations have been omitted to make the example easier to read.

Do note that the examples have been written by many different authors over a period of
several decades. Styles and techniques will therefore differ, although some effort has been
made to not vary styles too widely in the same sections. Do not consider one style to be
better than others - "There’s More Than One Way To Do It" is one of Perl’s mottos. After
all, in your journey as a programmer, you are likely to encounter different styles.

34.2.1 What is Perl?

Perl is a general-purpose programming language originally developed for text manipulation
and now used for a wide range of tasks including system administration, web development,
network programming, GUI development, and more.

The language is intended to be practical (easy to use, efficient, complete) rather than
beautiful (tiny, elegant, minimal). Its major features are that it’s easy to use, supports both
procedural and object-oriented (OO) programming, has powerful built-in support for text
processing, and has one of the world’s most impressive collections of third-party modules.

Different definitions of Perl are given in Section 1.1 [perl NAME], page 1, perlfaq1 and
no doubt other places. From this we can determine that Perl is different things to different
people, but that lots of people think it’s at least worth writing about.

34.2.2 Running Perl programs

To run a Perl program from the Unix command line:

perl progname.pl

Alternatively, put this as the first line of your script:

#!/usr/bin/env perl

... and run the script as /path/to/script.pl. Of course, it’ll need to be executable
first, so chmod 755 script.pl (under Unix).

(This start line assumes you have the env program. You can also put directly the path
to your perl executable, like in #!/usr/bin/perl).

For more information, including instructions for other platforms such as Windows and
Mac OS, read Section 69.1 [perlrun NAME], page 1176.

34.2.3 Safety net

Perl by default is very forgiving. In order to make it more robust it is recommended to
start every program with the following lines:

#!/usr/bin/perl

use strict;

use warnings;

The two additional lines request from perl to catch various common problems in your
code. They check different things so you need both. A potential problem caught by
use strict; will cause your code to stop immediately when it is encountered, while use

warnings; will merely give a warning (like the command-line switch -w) and let your code
run. To read more about them check their respective manual pages at strict and warnings.

34.2.4 Basic syntax overview

A Perl script or program consists of one or more statements. These statements are simply
written in the script in a straightforward fashion. There is no need to have a main()

function or anything of that kind.

Perl statements end in a semi-colon:

print "Hello, world";

Comments start with a hash symbol and run to the end of the line

This is a comment

Whitespace is irrelevant:

print

"Hello, world"

;

... except inside quoted strings:

this would print with a linebreak in the middle

print "Hello

world";

Double quotes or single quotes may be used around literal strings:

print "Hello, world";

print ’Hello, world’;

However, only double quotes "interpolate" variables and special characters such as new-
lines (\n):

print "Hello, $name\n"; # works fine

print ’Hello, $name\n’; # prints $name\n literally

Numbers don’t need quotes around them:

print 42;

You can use parentheses for functions’ arguments or omit them according to your per-
sonal taste. They are only required occasionally to clarify issues of precedence.

print("Hello, world\n");

print "Hello, world\n";

More detailed information about Perl syntax can be found in Section 74.1 [perlsyn
NAME], page 1249.

34.2.5 Perl variable types

Perl has three main variable types: scalars, arrays, and hashes.

Scalars

A scalar represents a single value:

my $animal = "camel";

my $answer = 42;

Scalar values can be strings, integers or floating point numbers, and Perl will
automatically convert between them as required. There is no need to pre-
declare your variable types, but you have to declare them using the my keyword
the first time you use them. (This is one of the requirements of use strict;.)

Scalar values can be used in various ways:

print $animal;

print "The animal is $animal\n";

print "The square of $answer is ", $answer * $answer, "\n";

There are a number of "magic" scalars with names that look like punctuation
or line noise. These special variables are used for all kinds of purposes, and
are documented in Section 86.1 [perlvar NAME], page 1375. The only one you
need to know about for now is $_ which is the "default variable". It’s used as
the default argument to a number of functions in Perl, and it’s set implicitly
by certain looping constructs.

print; # prints contents of $_ by default

Arrays

An array represents a list of values:

my @animals = ("camel", "llama", "owl");

my @numbers = (23, 42, 69);

my @mixed = ("camel", 42, 1.23);

Arrays are zero-indexed. Here’s how you get at elements in an array:

print $animals[0]; # prints "camel"

print $animals[1]; # prints "llama"

The special variable $#array tells you the index of the last element of an array:

print $mixed[$#mixed]; # last element, prints 1.23

You might be tempted to use $#array + 1 to tell you how many items there
are in an array. Don’t bother. As it happens, using @array where Perl expects
to find a scalar value ("in scalar context") will give you the number of elements
in the array:

if (@animals < 5) { ... }

The elements we’re getting from the array start with a $ because we’re getting
just a single value out of the array; you ask for a scalar, you get a scalar.

To get multiple values from an array:

@animals[0,1]; # gives ("camel", "llama");

@animals[0..2]; # gives ("camel", "llama", "owl");

@animals[1..$#animals]; # gives all except the first element

This is called an "array slice".

You can do various useful things to lists:

my @sorted = sort @animals;

my @backwards = reverse @numbers;

There are a couple of special arrays too, such as @ARGV (the command line
arguments to your script) and @_ (the arguments passed to a subroutine). These
are documented in Section 86.1 [perlvar NAME], page 1375.

Hashes

A hash represents a set of key/value pairs:

my %fruit_color = ("apple", "red", "banana", "yellow");

You can use whitespace and the => operator to lay them out more nicely:

my %fruit_color = (

apple => "red",

banana => "yellow",

);

To get at hash elements:

$fruit_color{"apple"}; # gives "red"

You can get at lists of keys and values with keys() and values().

my @fruits = keys %fruit_colors;

my @colors = values %fruit_colors;

Hashes have no particular internal order, though you can sort the keys and loop
through them.

Just like special scalars and arrays, there are also special hashes. The most well
known of these is %ENV which contains environment variables. Read all about
it (and other special variables) in Section 86.1 [perlvar NAME], page 1375.

Scalars, arrays and hashes are documented more fully in Section 11.1 [perldata NAME],
page 70.

More complex data types can be constructed using references, which allow you to build
lists and hashes within lists and hashes.

A reference is a scalar value and can refer to any other Perl data type. So by storing a
reference as the value of an array or hash element, you can easily create lists and hashes
within lists and hashes. The following example shows a 2 level hash of hash structure using
anonymous hash references.

my $variables = {

scalar => {

description => "single item",

sigil => ’$’,

},

array => {

description => "ordered list of items",

sigil => ’@’,

},

hash => {

description => "key/value pairs",

sigil => ’%’,

},

};

print "Scalars begin with a $variables->{’scalar’}->{’sigil’}\n";

Exhaustive information on the topic of references can be found in Section 63.1 [perlreftut
NAME], page 1092, Section 39.1 [perllol NAME], page 725, Section 62.1 [perlref NAME],
page 1077 and Section 17.1 [perldsc NAME], page 246.

34.2.6 Variable scoping

Throughout the previous section all the examples have used the syntax:

my $var = "value";

The my is actually not required; you could just use:

$var = "value";

However, the above usage will create global variables throughout your program, which
is bad programming practice. my creates lexically scoped variables instead. The variables
are scoped to the block (i.e. a bunch of statements surrounded by curly-braces) in which
they are defined.

my $x = "foo";

my $some_condition = 1;

if ($some_condition) {

my $y = "bar";

print $x; # prints "foo"

print $y; # prints "bar"

}

print $x; # prints "foo"

print $y; # prints nothing; $y has fallen out of scope

Using my in combination with a use strict; at the top of your Perl scripts means
that the interpreter will pick up certain common programming errors. For instance, in the
example above, the final print $y would cause a compile-time error and prevent you from
running the program. Using strict is highly recommended.

34.2.7 Conditional and looping constructs

Perl has most of the usual conditional and looping constructs. As of Perl 5.10, it even
has a case/switch statement (spelled given/when). See Section 74.2.11 [perlsyn Switch
Statements], page 1258 for more details.

The conditions can be any Perl expression. See the list of operators in the next section
for information on comparison and boolean logic operators, which are commonly used in
conditional statements.

if

if (condition) {

...

} elsif (other condition) {

...

} else {

...

}

There’s also a negated version of it:

unless (condition) {

...

}

This is provided as a more readable version of if (!condition).

Note that the braces are required in Perl, even if you’ve only got one line in
the block. However, there is a clever way of making your one-line conditional
blocks more English like:

the traditional way

if ($zippy) {

print "Yow!";

}

the Perlish post-condition way

print "Yow!" if $zippy;

print "We have no bananas" unless $bananas;

while

while (condition) {

...

}

There’s also a negated version, for the same reason we have unless:

until (condition) {

...

}

You can also use while in a post-condition:

print "LA LA LA\n" while 1; # loops forever

for

Exactly like C:

for ($i = 0; $i <= $max; $i++) {

...

}

The C style for loop is rarely needed in Perl since Perl provides the more friendly
list scanning foreach loop.

foreach

foreach (@array) {

print "This element is $_\n";

}

print $list[$_] foreach 0 .. $max;

you don’t have to use the default $_ either...

foreach my $key (keys %hash) {

print "The value of $key is $hash{$key}\n";

}

The foreach keyword is actually a synonym for the for keyword. See
Section 74.2.9 [perlsyn Foreach Loops], page 1256.

For more detail on looping constructs (and some that weren’t mentioned in this overview)
see Section 74.1 [perlsyn NAME], page 1249.

34.2.8 Builtin operators and functions

Perl comes with a wide selection of builtin functions. Some of the ones we’ve already seen
include print, sort and reverse. A list of them is given at the start of Section 25.1
[perlfunc NAME], page 351 and you can easily read about any given function by using
perldoc -f functionname.

Perl operators are documented in full in Section 48.1 [perlop NAME], page 798, but here
are a few of the most common ones:

Arithmetic
+ addition

- subtraction

* multiplication

/ division

Numeric comparison
== equality

!= inequality

< less than

> greater than

<= less than or equal

>= greater than or equal

String comparison
eq equality

ne inequality

lt less than

gt greater than

le less than or equal

ge greater than or equal

(Why do we have separate numeric and string comparisons? Because we don’t
have special variable types, and Perl needs to know whether to sort numerically
(where 99 is less than 100) or alphabetically (where 100 comes before 99).

Boolean logic
&& and

|| or

! not

(and, or and not aren’t just in the above table as descriptions of the operators.
They’re also supported as operators in their own right. They’re more readable
than the C-style operators, but have different precedence to && and friends.
Check Section 48.1 [perlop NAME], page 798 for more detail.)

Miscellaneous
= assignment

. string concatenation

x string multiplication

.. range operator (creates a list of numbers or strings)

Many operators can be combined with a = as follows:

$a += 1; # same as $a = $a + 1

$a -= 1; # same as $a = $a - 1

$a .= "\n"; # same as $a = $a . "\n";

34.2.9 Files and I/O

You can open a file for input or output using the open() function. It’s documented in
extravagant detail in Section 25.1 [perlfunc NAME], page 351 and Section 49.1 [perlopentut
NAME], page 852, but in short:

open(my $in, "<", "input.txt") or die "Can’t open input.txt: $!";

open(my $out, ">", "output.txt") or die "Can’t open output.txt: $!";

open(my $log, ">>", "my.log") or die "Can’t open my.log: $!";

You can read from an open filehandle using the <> operator. In scalar context it reads a
single line from the filehandle, and in list context it reads the whole file in, assigning each
line to an element of the list:

my $line = <$in>;

my @lines = <$in>;

Reading in the whole file at one time is called slurping. It can be useful but it may be
a memory hog. Most text file processing can be done a line at a time with Perl’s looping
constructs.

The <> operator is most often seen in a while loop:

while (<$in>) { # assigns each line in turn to $_

print "Just read in this line: $_";

}

We’ve already seen how to print to standard output using print(). However, print()
can also take an optional first argument specifying which filehandle to print to:

print STDERR "This is your final warning.\n";

print $out $record;

print $log $logmessage;

When you’re done with your filehandles, you should close() them (though to be honest,
Perl will clean up after you if you forget):

close $in or die "$in: $!";

34.2.10 Regular expressions

Perl’s regular expression support is both broad and deep, and is the subject of lengthy doc-
umentation in Section 66.1 [perlrequick NAME], page 1116, Section 68.1 [perlretut NAME],
page 1131, and elsewhere. However, in short:

Simple matching
if (/foo/) { ... } # true if $_ contains "foo"

if ($a =~ /foo/) { ... } # true if $a contains "foo"

The // matching operator is documented in Section 48.1 [perlop NAME],
page 798. It operates on $_ by default, or can be bound to another vari-
able using the =~ binding operator (also documented in Section 48.1 [perlop
NAME], page 798).

Simple substitution
s/foo/bar/; # replaces foo with bar in $_

$a =~ s/foo/bar/; # replaces foo with bar in $a

$a =~ s/foo/bar/g; # replaces ALL INSTANCES of foo with bar

in $a

The s/// substitution operator is documented in Section 48.1 [perlop NAME],
page 798.

More complex regular expressions
You don’t just have to match on fixed strings. In fact, you can match on just
about anything you could dream of by using more complex regular expressions.
These are documented at great length in Section 58.1 [perlre NAME], page 989,
but for the meantime, here’s a quick cheat sheet:

. a single character

\s a whitespace character (space, tab, newline,

...)

\S non-whitespace character

\d a digit (0-9)

\D a non-digit

\w a word character (a-z, A-Z, 0-9, _)

\W a non-word character

[aeiou] matches a single character in the given set

[^aeiou] matches a single character outside the given

set

(foo|bar|baz) matches any of the alternatives specified

^ start of string

$ end of string

Quantifiers can be used to specify how many of the previous thing you want to
match on, where "thing" means either a literal character, one of the metachar-
acters listed above, or a group of characters or metacharacters in parentheses.

* zero or more of the previous thing

+ one or more of the previous thing

? zero or one of the previous thing

{3} matches exactly 3 of the previous thing

{3,6} matches between 3 and 6 of the previous thing

{3,} matches 3 or more of the previous thing

Some brief examples:

/^\d+/ string starts with one or more digits

/^$/ nothing in the string (start and end are

adjacent)

/(\d\s){3}/ three digits, each followed by a whitespace

character (eg "3 4 5 ")

/(a.)+/ matches a string in which every odd-numbered

letter is a (eg "abacadaf")

This loop reads from STDIN, and prints non-blank lines:

while (<>) {

next if /^$/;

print;

}

Parentheses for capturing
As well as grouping, parentheses serve a second purpose. They can be used to
capture the results of parts of the regexp match for later use. The results end
up in $1, $2 and so on.

a cheap and nasty way to break an email address up into parts

if ($email =~ /([^@]+)@(.+)/) {

print "Username is $1\n";

print "Hostname is $2\n";

}

Other regexp features
Perl regexps also support backreferences, lookaheads, and all kinds of other
complex details. Read all about them in Section 66.1 [perlrequick NAME],
page 1116, Section 68.1 [perlretut NAME], page 1131, and Section 58.1 [perlre
NAME], page 989.

34.2.11 Writing subroutines

Writing subroutines is easy:

sub logger {

my $logmessage = shift;

open my $logfile, ">>", "my.log" or die "Could not open my.log: $!";

print $logfile $logmessage;

}

Now we can use the subroutine just as any other built-in function:

logger("We have a logger subroutine!");

What’s that shift? Well, the arguments to a subroutine are available to us as a special
array called @_ (see Section 86.1 [perlvar NAME], page 1375 for more on that). The default
argument to the shift function just happens to be @_. So my $logmessage = shift; shifts
the first item off the list of arguments and assigns it to $logmessage.

We can manipulate @_ in other ways too:

my ($logmessage, $priority) = @_; # common

my $logmessage = $_[0]; # uncommon, and ugly

Subroutines can also return values:

sub square {

my $num = shift;

my $result = $num * $num;

return $result;

}

Then use it like:

$sq = square(8);

For more information on writing subroutines, see Section 73.1 [perlsub NAME],
page 1216.

34.2.12 OO Perl

OO Perl is relatively simple and is implemented using references which know what sort of
object they are based on Perl’s concept of packages. However, OO Perl is largely beyond the
scope of this document. Read Section 47.1 [perlootut NAME], page 786 and Section 46.1
[perlobj NAME], page 769.

As a beginning Perl programmer, your most common use of OO Perl will be in using
third-party modules, which are documented below.

34.2.13 Using Perl modules

Perl modules provide a range of features to help you avoid reinventing the wheel, and can
be downloaded from CPAN (http://www.cpan.org/). A number of popular modules are
included with the Perl distribution itself.

Categories of modules range from text manipulation to network protocols to database
integration to graphics. A categorized list of modules is also available from CPAN.

To learn how to install modules you download from CPAN, read Section 41.1 [perlmodin-
stall NAME], page 742.

To learn how to use a particular module, use perldoc Module::Name. Typically you
will want to use Module::Name, which will then give you access to exported functions or
an OO interface to the module.

perlfaq contains questions and answers related to many common tasks, and often pro-
vides suggestions for good CPAN modules to use.

Section 40.1 [perlmod NAME], page 732 describes Perl modules in general. perlmodlib
lists the modules which came with your Perl installation.

If you feel the urge to write Perl modules, Section 44.1 [perlnewmod NAME], page 760
will give you good advice.

34.3 AUTHOR

Kirrily "Skud" Robert <skud@cpan.org>

35 perliol

35.1 NAME

perliol - C API for Perl’s implementation of IO in Layers.

35.2 SYNOPSIS

/* Defining a layer ... */

#include <perliol.h>

35.3 DESCRIPTION

This document describes the behavior and implementation of the PerlIO abstraction de-
scribed in Section 2.1 [perlapio NAME], page 9 when USE_PERLIO is defined.

35.3.1 History and Background

The PerlIO abstraction was introduced in perl5.003 02 but languished as just an abstraction
until perl5.7.0. However during that time a number of perl extensions switched to using it,
so the API is mostly fixed to maintain (source) compatibility.

The aim of the implementation is to provide the PerlIO API in a flexible and platform
neutral manner. It is also a trial of an "Object Oriented C, with vtables" approach which
may be applied to Perl 6.

35.3.2 Basic Structure

PerlIO is a stack of layers.

The low levels of the stack work with the low-level operating system calls (file descriptors
in C) getting bytes in and out, the higher layers of the stack buffer, filter, and otherwise
manipulate the I/O, and return characters (or bytes) to Perl. Terms above and below are
used to refer to the relative positioning of the stack layers.

A layer contains a "vtable", the table of I/O operations (at C level a table of function
pointers), and status flags. The functions in the vtable implement operations like "open",
"read", and "write".

When I/O, for example "read", is requested, the request goes from Perl first down
the stack using "read" functions of each layer, then at the bottom the input is requested
from the operating system services, then the result is returned up the stack, finally being
interpreted as Perl data.

The requests do not necessarily go always all the way down to the operating system:
that’s where PerlIO buffering comes into play.

When you do an open() and specify extra PerlIO layers to be deployed, the layers you
specify are "pushed" on top of the already existing default stack. One way to see it is that
"operating system is on the left" and "Perl is on the right".

What exact layers are in this default stack depends on a lot of things: your operating
system, Perl version, Perl compile time configuration, and Perl runtime configuration. See
PerlIO, [perlrun PERLIO], page 1191, and open for more information.

binmode() operates similarly to open(): by default the specified layers are pushed on
top of the existing stack.

However, note that even as the specified layers are "pushed on top" for open() and
binmode(), this doesn’t mean that the effects are limited to the "top": PerlIO layers can
be very ’active’ and inspect and affect layers also deeper in the stack. As an example there
is a layer called "raw" which repeatedly "pops" layers until it reaches the first layer that
has declared itself capable of handling binary data. The "pushed" layers are processed in
left-to-right order.

sysopen() operates (unsurprisingly) at a lower level in the stack than open(). For example
in Unix or Unix-like systems sysopen() operates directly at the level of file descriptors: in
the terms of PerlIO layers, it uses only the "unix" layer, which is a rather thin wrapper on
top of the Unix file descriptors.

35.3.3 Layers vs Disciplines

Initial discussion of the ability to modify IO streams behaviour used the term "discipline"
for the entities which were added. This came (I believe) from the use of the term in "sfio",
which in turn borrowed it from "line disciplines" on Unix terminals. However, this document
(and the C code) uses the term "layer".

This is, I hope, a natural term given the implementation, and should avoid connotations
that are inherent in earlier uses of "discipline" for things which are rather different.

35.3.4 Data Structures

The basic data structure is a PerlIOl:

typedef struct _PerlIO PerlIOl;

typedef struct _PerlIO_funcs PerlIO_funcs;

typedef PerlIOl *PerlIO;

struct _PerlIO

{

PerlIOl * next; /* Lower layer */

PerlIO_funcs * tab; /* Functions for this layer */

U32 flags; /* Various flags for state */

};

A PerlIOl * is a pointer to the struct, and the application level PerlIO * is a pointer to a
PerlIOl * - i.e. a pointer to a pointer to the struct. This allows the application level PerlIO
* to remain constant while the actual PerlIOl * underneath changes. (Compare perl’s SV
* which remains constant while its sv_any field changes as the scalar’s type changes.) An
IO stream is then in general represented as a pointer to this linked-list of "layers".

It should be noted that because of the double indirection in a PerlIO *, a
&(perlio->next) "is" a PerlIO *, and so to some degree at least one layer can use the
"standard" API on the next layer down.

A "layer" is composed of two parts:

1. The functions and attributes of the "layer class".

2. The per-instance data for a particular handle.

35.3.5 Functions and Attributes

The functions and attributes are accessed via the "tab" (for table) member of PerlIOl. The
functions (methods of the layer "class") are fixed, and are defined by the PerlIO_funcs

type. They are broadly the same as the public PerlIO_xxxxx functions:

struct _PerlIO_funcs

{

Size_t fsize;

char * name;

Size_t size;

IV kind;

IV (*Pushed)(pTHX_ PerlIO *f,const char *mode,SV *arg, PerlIO_funcs *tab);

IV (*Popped)(pTHX_ PerlIO *f);

PerlIO * (*Open)(pTHX_ PerlIO_funcs *tab,

PerlIO_list_t *layers, IV n,

const char *mode,

int fd, int imode, int perm,

PerlIO *old,

int narg, SV **args);

IV (*Binmode)(pTHX_ PerlIO *f);

SV * (*Getarg)(pTHX_ PerlIO *f, CLONE_PARAMS *param, int flags)

IV (*Fileno)(pTHX_ PerlIO *f);

PerlIO * (*Dup)(pTHX_ PerlIO *f, PerlIO *o, CLONE_PARAMS *param, int flags)

/* Unix-like functions - cf sfio line disciplines */

SSize_t (*Read)(pTHX_ PerlIO *f, void *vbuf, Size_t count);

SSize_t (*Unread)(pTHX_ PerlIO *f, const void *vbuf, Size_t count);

SSize_t (*Write)(pTHX_ PerlIO *f, const void *vbuf, Size_t count);

IV (*Seek)(pTHX_ PerlIO *f, Off_t offset, int whence);

Off_t (*Tell)(pTHX_ PerlIO *f);

IV (*Close)(pTHX_ PerlIO *f);

/* Stdio-like buffered IO functions */

IV (*Flush)(pTHX_ PerlIO *f);

IV (*Fill)(pTHX_ PerlIO *f);

IV (*Eof)(pTHX_ PerlIO *f);

IV (*Error)(pTHX_ PerlIO *f);

void (*Clearerr)(pTHX_ PerlIO *f);

void (*Setlinebuf)(pTHX_ PerlIO *f);

/* Perl’s snooping functions */

STDCHAR * (*Get_base)(pTHX_ PerlIO *f);

Size_t (*Get_bufsiz)(pTHX_ PerlIO *f);

STDCHAR * (*Get_ptr)(pTHX_ PerlIO *f);

SSize_t (*Get_cnt)(pTHX_ PerlIO *f);

void (*Set_ptrcnt)(pTHX_ PerlIO *f,STDCHAR *ptr,SSize_t cnt);

};

The first few members of the struct give a function table size for compatibility check
"name" for the layer, the size to malloc for the per-instance data, and some flags which

are attributes of the class as whole (such as whether it is a buffering layer), then follow the
functions which fall into four basic groups:

1. Opening and setup functions

2. Basic IO operations

3. Stdio class buffering options.

4. Functions to support Perl’s traditional "fast" access to the buffer.

A layer does not have to implement all the functions, but the whole table has to be
present. Unimplemented slots can be NULL (which will result in an error when called) or
can be filled in with stubs to "inherit" behaviour from a "base class". This "inheritance"
is fixed for all instances of the layer, but as the layer chooses which stubs to populate the
table, limited "multiple inheritance" is possible.

35.3.6 Per-instance Data

The per-instance data are held in memory beyond the basic PerlIOl struct, by making a
PerlIOl the first member of the layer’s struct thus:

typedef struct

{

struct _PerlIO base; /* Base "class" info */

STDCHAR * buf; /* Start of buffer */

STDCHAR * end; /* End of valid part of buffer */

STDCHAR * ptr; /* Current position in buffer */

Off_t posn; /* Offset of buf into the file */

Size_t bufsiz; /* Real size of buffer */

IV oneword; /* Emergency buffer */

} PerlIOBuf;

In this way (as for perl’s scalars) a pointer to a PerlIOBuf can be treated as a pointer
to a PerlIOl.

35.3.7 Layers in action.

table perlio unix

| |

+-----------+ +----------+ +--------+

PerlIO ->| |--->| next |--->| NULL |

+-----------+ +----------+ +--------+

| | | buffer | | fd |

+-----------+ | | +--------+

| | +----------+

The above attempts to show how the layer scheme works in a simple case. The application’s
PerlIO * points to an entry in the table(s) representing open (allocated) handles. For
example the first three slots in the table correspond to stdin,stdout and stderr. The
table in turn points to the current "top" layer for the handle - in this case an instance of
the generic buffering layer "perlio". That layer in turn points to the next layer down - in
this case the low-level "unix" layer.

The above is roughly equivalent to a "stdio" buffered stream, but with much more
flexibility:

• If Unix level read/write/lseek is not appropriate for (say) sockets then the "unix"
layer can be replaced (at open time or even dynamically) with a "socket" layer.

• Different handles can have different buffering schemes. The "top" layer could be the
"mmap" layer if reading disk files was quicker using mmap than read. An "unbuffered"
stream can be implemented simply by not having a buffer layer.

• Extra layers can be inserted to process the data as it flows through. This was the
driving need for including the scheme in perl 5.7.0+ - we needed a mechanism to allow
data to be translated between perl’s internal encoding (conceptually at least Unicode
as UTF-8), and the "native" format used by the system. This is provided by the
":encoding(xxxx)" layer which typically sits above the buffering layer.

• A layer can be added that does "\n" to CRLF translation. This layer can be used on
any platform, not just those that normally do such things.

35.3.8 Per-instance flag bits

The generic flag bits are a hybrid of O_XXXXX style flags deduced from the mode string
passed to PerlIO_open(), and state bits for typical buffer layers.

PERLIO F EOF
End of file.

PERLIO F CANWRITE
Writes are permitted, i.e. opened as "w" or "r+" or "a", etc.

PERLIO F CANREAD
Reads are permitted i.e. opened "r" or "w+" (or even "a+" - ick).

PERLIO F ERROR
An error has occurred (for PerlIO_error()).

PERLIO F TRUNCATE
Truncate file suggested by open mode.

PERLIO F APPEND
All writes should be appends.

PERLIO F CRLF
Layer is performing Win32-like "\n" mapped to CR,LF for output and CR,LF
mapped to "\n" for input. Normally the provided "crlf" layer is the only layer
that need bother about this. PerlIO_binmode() will mess with this flag rather
than add/remove layers if the PERLIO_K_CANCRLF bit is set for the layers class.

PERLIO F UTF8
Data written to this layer should be UTF-8 encoded; data provided by this
layer should be considered UTF-8 encoded. Can be set on any layer by ":utf8"
dummy layer. Also set on ":encoding" layer.

PERLIO F UNBUF
Layer is unbuffered - i.e. write to next layer down should occur for each write
to this layer.

PERLIO F WRBUF
The buffer for this layer currently holds data written to it but not sent to next
layer.

PERLIO F RDBUF
The buffer for this layer currently holds unconsumed data read from layer below.

PERLIO F LINEBUF
Layer is line buffered. Write data should be passed to next layer down whenever
a "\n" is seen. Any data beyond the "\n" should then be processed.

PERLIO F TEMP
File has been unlink()ed, or should be deleted on close().

PERLIO F OPEN
Handle is open.

PERLIO F FASTGETS
This instance of this layer supports the "fast gets" interface. Normally set
based on PERLIO_K_FASTGETS for the class and by the existence of the func-
tion(s) in the table. However a class that normally provides that interface may
need to avoid it on a particular instance. The "pending" layer needs to do this
when it is pushed above a layer which does not support the interface. (Perl’s
sv_gets() does not expect the streams fast gets behaviour to change during
one "get".)

35.3.9 Methods in Detail

fsize

Size_t fsize;

Size of the function table. This is compared against the value PerlIO code
"knows" as a compatibility check. Future versions may be able to tolerate
layers compiled against an old version of the headers.

name

char * name;

The name of the layer whose open() method Perl should invoke on open(). For
example if the layer is called APR, you will call:

open $fh, ">:APR", ...

and Perl knows that it has to invoke the PerlIOAPR open() method imple-
mented by the APR layer.

size

Size_t size;

The size of the per-instance data structure, e.g.:

sizeof(PerlIOAPR)

If this field is zero then PerlIO_pushed does not malloc anything and assumes
layer’s Pushed function will do any required layer stack manipulation - used to
avoid malloc/free overhead for dummy layers. If the field is non-zero it must
be at least the size of PerlIOl, PerlIO_pushed will allocate memory for the
layer’s data structures and link new layer onto the stream’s stack. (If the layer’s
Pushed method returns an error indication the layer is popped again.)

kind

IV kind;

• PERLIO K BUFFERED

The layer is buffered.

• PERLIO K RAW

The layer is acceptable to have in a binmode(FH) stack - i.e. it does not
(or will configure itself not to) transform bytes passing through it.

• PERLIO K CANCRLF

Layer can translate between "\n" and CRLF line ends.

• PERLIO K FASTGETS

Layer allows buffer snooping.

• PERLIO K MULTIARG

Used when the layer’s open() accepts more arguments than usual. The
extra arguments should come not before the MODE argument. When this
flag is used it’s up to the layer to validate the args.

Pushed

IV (*Pushed)(pTHX_ PerlIO *f,const char *mode, SV *arg);

The only absolutely mandatory method. Called when the layer is pushed onto
the stack. The mode argument may be NULL if this occurs post-open. The arg
will be non-NULL if an argument string was passed. In most cases this should call
PerlIOBase_pushed() to convert mode into the appropriate PERLIO_F_XXXXX

flags in addition to any actions the layer itself takes. If a layer is not expecting
an argument it need neither save the one passed to it, nor provide Getarg() (it
could perhaps Perl_warn that the argument was un-expected).

Returns 0 on success. On failure returns -1 and should set errno.

Popped

IV (*Popped)(pTHX_ PerlIO *f);

Called when the layer is popped from the stack. A layer will normally be popped
after Close() is called. But a layer can be popped without being closed if the
program is dynamically managing layers on the stream. In such cases Popped()
should free any resources (buffers, translation tables, ...) not held directly in
the layer’s struct. It should also Unread() any unconsumed data that has been
read and buffered from the layer below back to that layer, so that it can be
re-provided to what ever is now above.

Returns 0 on success and failure. If Popped() returns true then perlio.c assumes
that either the layer has popped itself, or the layer is super special and needs
to be retained for other reasons. In most cases it should return false.

Open

PerlIO * (*Open)(...);

The Open() method has lots of arguments because it combines the functions of
perl’s open, PerlIO_open, perl’s sysopen, PerlIO_fdopen and PerlIO_reopen.
The full prototype is as follows:

PerlIO * (*Open)(pTHX_ PerlIO_funcs *tab,

PerlIO_list_t *layers, IV n,

const char *mode,

int fd, int imode, int perm,

PerlIO *old,

int narg, SV **args);

Open should (perhaps indirectly) call PerlIO_allocate() to allocate a slot in
the table and associate it with the layers information for the opened file, by
calling PerlIO_push. The layers is an array of all the layers destined for the
PerlIO *, and any arguments passed to them, n is the index into that array of
the layer being called. The macro PerlIOArg will return a (possibly NULL) SV
* for the argument passed to the layer.

The mode string is an "fopen()-like" string which would match the regular
expression /^[I#]?[rwa]\+?[bt]?$/.

The ’I’ prefix is used during creation of stdin..stderr via special PerlIO_
fdopen calls; the ’#’ prefix means that this is sysopen and that imode and perm
should be passed to PerlLIO_open3; ’r’ means read, ’w’ means write and ’a’

means append. The ’+’ suffix means that both reading and writing/appending
are permitted. The ’b’ suffix means file should be binary, and ’t’ means it is
text. (Almost all layers should do the IO in binary mode, and ignore the b/t
bits. The :crlf layer should be pushed to handle the distinction.)

If old is not NULL then this is a PerlIO_reopen. Perl itself does not use this
(yet?) and semantics are a little vague.

If fd not negative then it is the numeric file descriptor fd, which will be open in
a manner compatible with the supplied mode string, the call is thus equivalent
to PerlIO_fdopen. In this case nargs will be zero.

If nargs is greater than zero then it gives the number of arguments passed to
open, otherwise it will be 1 if for example PerlIO_open was called. In simple
cases SvPV nolen(*args) is the pathname to open.

If a layer provides Open() it should normally call the Open() method of next
layer down (if any) and then push itself on top if that succeeds. PerlIOBase_
open is provided to do exactly that, so in most cases you don’t have to write
your own Open() method. If this method is not defined, other layers may have
difficulty pushing themselves on top of it during open.

If PerlIO_push was performed and open has failed, it must PerlIO_pop itself,
since if it’s not, the layer won’t be removed and may cause bad problems.

Returns NULL on failure.

Binmode

IV (*Binmode)(pTHX_ PerlIO *f);

Optional. Used when :raw layer is pushed (explicitly or as a result of bin-
mode(FH)). If not present layer will be popped. If present should configure
layer as binary (or pop itself) and return 0. If it returns -1 for error binmode
will fail with layer still on the stack.

Getarg

SV * (*Getarg)(pTHX_ PerlIO *f,

CLONE_PARAMS *param, int flags);

Optional. If present should return an SV * representing the string argument
passed to the layer when it was pushed. e.g. ":encoding(ascii)" would return
an SvPV with value "ascii". (param and flags arguments can be ignored in
most cases)

Dup uses Getarg to retrieve the argument originally passed to Pushed, so you
must implement this function if your layer has an extra argument to Pushed

and will ever be Duped.

Fileno

IV (*Fileno)(pTHX_ PerlIO *f);

Returns the Unix/Posix numeric file descriptor for the handle. Normally
PerlIOBase_fileno() (which just asks next layer down) will suffice for this.

Returns -1 on error, which is considered to include the case where the layer
cannot provide such a file descriptor.

Dup

PerlIO * (*Dup)(pTHX_ PerlIO *f, PerlIO *o,

CLONE_PARAMS *param, int flags);

XXX: Needs more docs.

Used as part of the "clone" process when a thread is spawned (in which case
param will be non-NULL) and when a stream is being duplicated via ’&’ in the
open.

Similar to Open, returns PerlIO* on success, NULL on failure.

Read

SSize_t (*Read)(pTHX_ PerlIO *f, void *vbuf, Size_t count);

Basic read operation.

Typically will call Fill and manipulate pointers (possibly via the API).
PerlIOBuf_read() may be suitable for derived classes which provide "fast
gets" methods.

Returns actual bytes read, or -1 on an error.

Unread

SSize_t (*Unread)(pTHX_ PerlIO *f,

const void *vbuf, Size_t count);

A superset of stdio’s ungetc(). Should arrange for future reads to see the
bytes in vbuf. If there is no obviously better implementation then PerlIOBase_

unread() provides the function by pushing a "fake" "pending" layer above the
calling layer.

Returns the number of unread chars.

Write

SSize_t (*Write)(PerlIO *f, const void *vbuf, Size_t count);

Basic write operation.

Returns bytes written or -1 on an error.

Seek

IV (*Seek)(pTHX_ PerlIO *f, Off_t offset, int whence);

Position the file pointer. Should normally call its own Flush method and then
the Seek method of next layer down.

Returns 0 on success, -1 on failure.

Tell

Off_t (*Tell)(pTHX_ PerlIO *f);

Return the file pointer. May be based on layers cached concept of position to
avoid overhead.

Returns -1 on failure to get the file pointer.

Close

IV (*Close)(pTHX_ PerlIO *f);

Close the stream. Should normally call PerlIOBase_close() to flush itself and
close layers below, and then deallocate any data structures (buffers, translation
tables, ...) not held directly in the data structure.

Returns 0 on success, -1 on failure.

Flush

IV (*Flush)(pTHX_ PerlIO *f);

Should make stream’s state consistent with layers below. That is, any buffered
write data should be written, and file position of lower layers adjusted for data
read from below but not actually consumed. (Should perhaps Unread() such
data to the lower layer.)

Returns 0 on success, -1 on failure.

Fill

IV (*Fill)(pTHX_ PerlIO *f);

The buffer for this layer should be filled (for read) from layer below. When you
"subclass" PerlIOBuf layer, you want to use its read method and to supply
your own fill method, which fills the PerlIOBuf’s buffer.

Returns 0 on success, -1 on failure.

Eof

IV (*Eof)(pTHX_ PerlIO *f);

Return end-of-file indicator. PerlIOBase_eof() is normally sufficient.

Returns 0 on end-of-file, 1 if not end-of-file, -1 on error.

Error

IV (*Error)(pTHX_ PerlIO *f);

Return error indicator. PerlIOBase_error() is normally sufficient.

Returns 1 if there is an error (usually when PERLIO_F_ERROR is set), 0 otherwise.

Clearerr

void (*Clearerr)(pTHX_ PerlIO *f);

Clear end-of-file and error indicators. Should call PerlIOBase_clearerr() to
set the PERLIO_F_XXXXX flags, which may suffice.

Setlinebuf

void (*Setlinebuf)(pTHX_ PerlIO *f);

Mark the stream as line buffered. PerlIOBase_setlinebuf() sets the PER-
LIO F LINEBUF flag and is normally sufficient.

Get base

STDCHAR * (*Get_base)(pTHX_ PerlIO *f);

Allocate (if not already done so) the read buffer for this layer and return pointer
to it. Return NULL on failure.

Get bufsiz

Size_t (*Get_bufsiz)(pTHX_ PerlIO *f);

Return the number of bytes that last Fill() put in the buffer.

Get ptr

STDCHAR * (*Get_ptr)(pTHX_ PerlIO *f);

Return the current read pointer relative to this layer’s buffer.

Get cnt

SSize_t (*Get_cnt)(pTHX_ PerlIO *f);

Return the number of bytes left to be read in the current buffer.

Set ptrcnt

void (*Set_ptrcnt)(pTHX_ PerlIO *f,

STDCHAR *ptr, SSize_t cnt);

Adjust the read pointer and count of bytes to match ptr and/or cnt. The
application (or layer above) must ensure they are consistent. (Checking is
allowed by the paranoid.)

35.3.10 Utilities

To ask for the next layer down use PerlIONext(PerlIO *f).

To check that a PerlIO* is valid use PerlIOValid(PerlIO *f). (All this does is really just
to check that the pointer is non-NULL and that the pointer behind that is non-NULL.)

PerlIOBase(PerlIO *f) returns the "Base" pointer, or in other words, the PerlIOl*

pointer.

PerlIOSelf(PerlIO* f, type) return the PerlIOBase cast to a type.

Perl PerlIO or Base(PerlIO* f, callback, base, failure, args) either calls the callback from
the functions of the layer f (just by the name of the IO function, like "Read") with the
args, or if there is no such callback, calls the base version of the callback with the same
args, or if the f is invalid, set errno to EBADF and return failure.

Perl PerlIO or fail(PerlIO* f, callback, failure, args) either calls the callback of the func-
tions of the layer f with the args, or if there is no such callback, set errno to EINVAL. Or
if the f is invalid, set errno to EBADF and return failure.

Perl PerlIO or Base void(PerlIO* f, callback, base, args) either calls the callback of the
functions of the layer f with the args, or if there is no such callback, calls the base version
of the callback with the same args, or if the f is invalid, set errno to EBADF.

Perl PerlIO or fail void(PerlIO* f, callback, args) either calls the callback of the func-
tions of the layer f with the args, or if there is no such callback, set errno to EINVAL. Or
if the f is invalid, set errno to EBADF.

35.3.11 Implementing PerlIO Layers

If you find the implementation document unclear or not sufficient, look at the existing
PerlIO layer implementations, which include:

• C implementations

The perlio.c and perliol.h in the Perl core implement the "unix", "perlio", "stdio",
"crlf", "utf8", "byte", "raw", "pending" layers, and also the "mmap" and "win32"
layers if applicable. (The "win32" is currently unfinished and unused, to see what is
used instead in Win32, see Section “Querying the layers of filehandles” in PerlIO .)

PerlIO::encoding, PerlIO::scalar, PerlIO::via in the Perl core.

PerlIO::gzip and APR::PerlIO (mod perl 2.0) on CPAN.

• Perl implementations

PerlIO::via::QuotedPrint in the Perl core and PerlIO::via::* on CPAN.

If you are creating a PerlIO layer, you may want to be lazy, in other words, implement
only the methods that interest you. The other methods you can either replace with the
"blank" methods

PerlIOBase_noop_ok

PerlIOBase_noop_fail

(which do nothing, and return zero and -1, respectively) or for certain methods you may
assume a default behaviour by using a NULL method. The Open method looks for help in
the ’parent’ layer. The following table summarizes the behaviour:

method behaviour with NULL

Clearerr PerlIOBase_clearerr

Close PerlIOBase_close

Dup PerlIOBase_dup

Eof PerlIOBase_eof

Error PerlIOBase_error

Fileno PerlIOBase_fileno

Fill FAILURE

Flush SUCCESS

Getarg SUCCESS

Get_base FAILURE

Get_bufsiz FAILURE

Get_cnt FAILURE

Get_ptr FAILURE

Open INHERITED

Popped SUCCESS

Pushed SUCCESS

Read PerlIOBase_read

Seek FAILURE

Set_cnt FAILURE

Set_ptrcnt FAILURE

Setlinebuf PerlIOBase_setlinebuf

Tell FAILURE

Unread PerlIOBase_unread

Write FAILURE

FAILURE Set errno (to EINVAL in Unixish, to LIB$_INVARG in VMS) and

return -1 (for numeric return values) or NULL (for pointers)

INHERITED Inherited from the layer below

SUCCESS Return 0 (for numeric return values) or a pointer

35.3.12 Core Layers

The file perlio.c provides the following layers:

"unix"

A basic non-buffered layer which calls Unix/POSIX read(), write(), lseek(),
close(). No buffering. Even on platforms that distinguish between O TEXT
and O BINARY this layer is always O BINARY.

"perlio"

A very complete generic buffering layer which provides the whole of PerlIO API.
It is also intended to be used as a "base class" for other layers. (For example
its Read() method is implemented in terms of the Get_cnt()/Get_ptr()/Set_
ptrcnt() methods).

"perlio" over "unix" provides a complete replacement for stdio as seen via
PerlIO API. This is the default for USE PERLIO when system’s stdio does not
permit perl’s "fast gets" access, and which do not distinguish between O_TEXT

and O_BINARY.

"stdio"

A layer which provides the PerlIO API via the layer scheme, but implements
it by calling system’s stdio. This is (currently) the default if system’s stdio
provides sufficient access to allow perl’s "fast gets" access and which do not
distinguish between O_TEXT and O_BINARY.

"crlf"

A layer derived using "perlio" as a base class. It provides Win32-like "\n" to
CR,LF translation. Can either be applied above "perlio" or serve as the buffer
layer itself. "crlf" over "unix" is the default if system distinguishes between
O_TEXT and O_BINARY opens. (At some point "unix" will be replaced by a
"native" Win32 IO layer on that platform, as Win32’s read/write layer has
various drawbacks.) The "crlf" layer is a reasonable model for a layer which
transforms data in some way.

"mmap"

If Configure detects mmap() functions this layer is provided (with "perlio" as
a "base") which does "read" operations by mmap()ing the file. Performance
improvement is marginal on modern systems, so it is mainly there as a proof of
concept. It is likely to be unbundled from the core at some point. The "mmap"
layer is a reasonable model for a minimalist "derived" layer.

"pending"

An "internal" derivative of "perlio" which can be used to provide Unread()
function for layers which have no buffer or cannot be bothered. (Basically this
layer’s Fill() pops itself off the stack and so resumes reading from layer below.)

"raw"

A dummy layer which never exists on the layer stack. Instead when "pushed"
it actually pops the stack removing itself, it then calls Binmode function table
entry on all the layers in the stack - normally this (via PerlIOBase binmode)
removes any layers which do not have PERLIO_K_RAW bit set. Layers can modify
that behaviour by defining their own Binmode entry.

"utf8"

Another dummy layer. When pushed it pops itself and sets the PERLIO_F_UTF8
flag on the layer which was (and now is once more) the top of the stack.

In addition perlio.c also provides a number of PerlIOBase_xxxx() functions which
are intended to be used in the table slots of classes which do not need to do anything special
for a particular method.

35.3.13 Extension Layers

Layers can be made available by extension modules. When an unknown layer is encountered
the PerlIO code will perform the equivalent of :

use PerlIO ’layer’;

Where layer is the unknown layer. PerlIO.pm will then attempt to:

require PerlIO::layer;

If after that process the layer is still not defined then the open will fail.

The following extension layers are bundled with perl:

":encoding"
use Encoding;

makes this layer available, although PerlIO.pm "knows" where to find it. It is
an example of a layer which takes an argument as it is called thus:

open($fh, "<:encoding(iso-8859-7)", $pathname);

":scalar"

Provides support for reading data from and writing data to a scalar.

open($fh, "+<:scalar", \$scalar);

When a handle is so opened, then reads get bytes from the string value of
$scalar, and writes change the value. In both cases the position in $scalar
starts as zero but can be altered via seek, and determined via tell.

Please note that this layer is implied when calling open() thus:

open($fh, "+<", \$scalar);

":via"

Provided to allow layers to be implemented as Perl code. For instance:

use PerlIO::via::StripHTML;

open(my $fh, "<:via(StripHTML)", "index.html");

See PerlIO-via for details.

35.4 TODO

Things that need to be done to improve this document.

• Explain how to make a valid fh without going through open()(i.e. apply a layer). For
example if the file is not opened through perl, but we want to get back a fh, like it was
opened by Perl.

How PerlIO apply layera fits in, where its docs, was it made public?

Currently the example could be something like this:

PerlIO *foo_to_PerlIO(pTHX_ char *mode, ...)

{

char *mode; /* "w", "r", etc */

const char *layers = ":APR"; /* the layer name */

PerlIO *f = PerlIO_allocate(aTHX);

if (!f) {

return NULL;

}

PerlIO_apply_layers(aTHX_ f, mode, layers);

if (f) {

PerlIOAPR *st = PerlIOSelf(f, PerlIOAPR);

/* fill in the st struct, as in _open() */

st->file = file;

PerlIOBase(f)->flags |= PERLIO_F_OPEN;

return f;

}

return NULL;

}

• fix/add the documentation in places marked as XXX.

• The handling of errors by the layer is not specified. e.g. when $! should be set explicitly,
when the error handling should be just delegated to the top layer.

Probably give some hints on using SETERRNO() or pointers to where they can be
found.

• I think it would help to give some concrete examples to make it easier to understand
the API. Of course I agree that the API has to be concise, but since there is no second

document that is more of a guide, I think that it’d make it easier to start with the doc
which is an API, but has examples in it in places where things are unclear, to a person
who is not a PerlIO guru (yet).

36 perlipc

36.1 NAME

perlipc - Perl interprocess communication (signals, fifos, pipes, safe subprocesses, sockets,
and semaphores)

36.2 DESCRIPTION

The basic IPC facilities of Perl are built out of the good old Unix signals, named pipes, pipe
opens, the Berkeley socket routines, and SysV IPC calls. Each is used in slightly different
situations.

36.3 Signals

Perl uses a simple signal handling model: the %SIG hash contains names or references of
user-installed signal handlers. These handlers will be called with an argument which is
the name of the signal that triggered it. A signal may be generated intentionally from a
particular keyboard sequence like control-C or control-Z, sent to you from another process,
or triggered automatically by the kernel when special events transpire, like a child process
exiting, your own process running out of stack space, or hitting a process file-size limit.

For example, to trap an interrupt signal, set up a handler like this:

our $shucks;

sub catch_zap {

my $signame = shift;

$shucks++;

die "Somebody sent me a SIG$signame";

}

$SIG{INT} = __PACKAGE__ . "::catch_zap";

$SIG{INT} = \&catch_zap; # best strategy

Prior to Perl 5.8.0 it was necessary to do as little as you possibly could in your handler;
notice how all we do is set a global variable and then raise an exception. That’s because on
most systems, libraries are not re-entrant; particularly, memory allocation and I/O routines
are not. That meant that doing nearly anything in your handler could in theory trigger
a memory fault and subsequent core dump - see Section 36.3.2 [Deferred Signals (Safe
Signals)], page 671 below.

The names of the signals are the ones listed out by kill -l on your system, or you can
retrieve them using the CPAN module IPC-Signal.

You may also choose to assign the strings "IGNORE" or "DEFAULT" as the handler, in
which case Perl will try to discard the signal or do the default thing.

On most Unix platforms, the CHLD (sometimes also known as CLD) signal has special
behavior with respect to a value of "IGNORE". Setting $SIG{CHLD} to "IGNORE" on such
a platform has the effect of not creating zombie processes when the parent process fails
to wait() on its child processes (i.e., child processes are automatically reaped). Calling
wait() with $SIG{CHLD} set to "IGNORE" usually returns -1 on such platforms.

Some signals can be neither trapped nor ignored, such as the KILL and STOP (but
not the TSTP) signals. Note that ignoring signals makes them disappear. If you only want
them blocked temporarily without them getting lost you’ll have to use POSIX’ sigprocmask.

Sending a signal to a negative process ID means that you send the signal to the entire
Unix process group. This code sends a hang-up signal to all processes in the current process
group, and also sets $SIG{HUP} to "IGNORE" so it doesn’t kill itself:

block scope for local

{

local $SIG{HUP} = "IGNORE";

kill HUP => -$$;

snazzy writing of: kill("HUP", -$$)

}

Another interesting signal to send is signal number zero. This doesn’t actually affect a
child process, but instead checks whether it’s alive or has changed its UIDs.

unless (kill 0 => $kid_pid) {

warn "something wicked happened to $kid_pid";

}

Signal number zero may fail because you lack permission to send the signal when directed
at a process whose real or saved UID is not identical to the real or effective UID of the
sending process, even though the process is alive. You may be able to determine the cause
of failure using $! or %!.

unless (kill(0 => $pid) || $!{EPERM}) {

warn "$pid looks dead";

}

You might also want to employ anonymous functions for simple signal handlers:

$SIG{INT} = sub { die "\nOutta here!\n" };

SIGCHLD handlers require some special care. If a second child dies while in the signal
handler caused by the first death, we won’t get another signal. So must loop here else
we will leave the unreaped child as a zombie. And the next time two children die we get
another zombie. And so on.

use POSIX ":sys_wait_h";

$SIG{CHLD} = sub {

while ((my $child = waitpid(-1, WNOHANG)) > 0) {

$Kid_Status{$child} = $?;

}

};

do something that forks...

Be careful: qx(), system(), and some modules for calling external commands do a fork(),
then wait() for the result. Thus, your signal handler will be called. Because wait() was
already called by system() or qx(), the wait() in the signal handler will see no more zombies
and will therefore block.

The best way to prevent this issue is to use waitpid(), as in the following example:

use POSIX ":sys_wait_h"; # for nonblocking read

my %children;

$SIG{CHLD} = sub {

don’t change $! and $? outside handler

local ($!, $?);

while ((my $pid = waitpid(-1, WNOHANG)) > 0) {

delete $children{$pid};

cleanup_child($pid, $?);

}

};

while (1) {

my $pid = fork();

die "cannot fork" unless defined $pid;

if ($pid == 0) {

...

exit 0;

} else {

$children{$pid}=1;

...

system($command);

...

}

}

Signal handling is also used for timeouts in Unix. While safely protected within an
eval{} block, you set a signal handler to trap alarm signals and then schedule to have one
delivered to you in some number of seconds. Then try your blocking operation, clearing the
alarm when it’s done but not before you’ve exited your eval{} block. If it goes off, you’ll
use die() to jump out of the block.

Here’s an example:

my $ALARM_EXCEPTION = "alarm clock restart";

eval {

local $SIG{ALRM} = sub { die $ALARM_EXCEPTION };

alarm 10;

flock(FH, 2) # blocking write lock

|| die "cannot flock: $!";

alarm 0;

};

if ($@ && $@ !~ quotemeta($ALARM_EXCEPTION)) { die }

If the operation being timed out is system() or qx(), this technique is liable to generate
zombies. If this matters to you, you’ll need to do your own fork() and exec(), and kill the
errant child process.

For more complex signal handling, you might see the standard POSIX module.
Lamentably, this is almost entirely undocumented, but the t/lib/posix.t file from the
Perl source distribution has some examples in it.

36.3.1 Handling the SIGHUP Signal in Daemons

A process that usually starts when the system boots and shuts down when the system is
shut down is called a daemon (Disk And Execution MONitor). If a daemon process has a
configuration file which is modified after the process has been started, there should be a
way to tell that process to reread its configuration file without stopping the process. Many
daemons provide this mechanism using a SIGHUP signal handler. When you want to tell the
daemon to reread the file, simply send it the SIGHUP signal.

The following example implements a simple daemon, which restarts itself every time the
SIGHUP signal is received. The actual code is located in the subroutine code(), which just
prints some debugging info to show that it works; it should be replaced with the real code.

#!/usr/bin/perl

use strict;

use warnings;

use POSIX ();

use FindBin ();

use File::Basename ();

use File::Spec::Functions qw(catfile);

$| = 1;

make the daemon cross-platform, so exec always calls the script

itself with the right path, no matter how the script was invoked.

my $script = File::Basename::basename($0);

my $SELF = catfile($FindBin::Bin, $script);

POSIX unmasks the sigprocmask properly

$SIG{HUP} = sub {

print "got SIGHUP\n";

exec($SELF, @ARGV) || die "$0: couldn’t restart: $!";

};

code();

sub code {

print "PID: $$\n";

print "ARGV: @ARGV\n";

my $count = 0;

while (1) {

sleep 2;

print ++$count, "\n";

}

}

36.3.2 Deferred Signals (Safe Signals)

Before Perl 5.8.0, installing Perl code to deal with signals exposed you to danger from two
things. First, few system library functions are re-entrant. If the signal interrupts while Perl
is executing one function (like malloc(3) or printf(3)), and your signal handler then calls
the same function again, you could get unpredictable behavior–often, a core dump. Second,
Perl isn’t itself re-entrant at the lowest levels. If the signal interrupts Perl while Perl is
changing its own internal data structures, similarly unpredictable behavior may result.

There were two things you could do, knowing this: be paranoid or be pragmatic. The
paranoid approach was to do as little as possible in your signal handler. Set an existing
integer variable that already has a value, and return. This doesn’t help you if you’re in a
slow system call, which will just restart. That means you have to die to longjmp(3) out of
the handler. Even this is a little cavalier for the true paranoiac, who avoids die in a handler
because the system is out to get you. The pragmatic approach was to say "I know the risks,
but prefer the convenience", and to do anything you wanted in your signal handler, and be
prepared to clean up core dumps now and again.

Perl 5.8.0 and later avoid these problems by "deferring" signals. That is, when the signal
is delivered to the process by the system (to the C code that implements Perl) a flag is set,
and the handler returns immediately. Then at strategic "safe" points in the Perl interpreter
(e.g. when it is about to execute a new opcode) the flags are checked and the Perl level
handler from %SIG is executed. The "deferred" scheme allows much more flexibility in the
coding of signal handlers as we know the Perl interpreter is in a safe state, and that we are
not in a system library function when the handler is called. However the implementation
does differ from previous Perls in the following ways:

Long-running opcodes
As the Perl interpreter looks at signal flags only when it is about to execute a
new opcode, a signal that arrives during a long-running opcode (e.g. a regular
expression operation on a very large string) will not be seen until the current
opcode completes.

If a signal of any given type fires multiple times during an opcode (such as
from a fine-grained timer), the handler for that signal will be called only once,
after the opcode completes; all other instances will be discarded. Furthermore,
if your system’s signal queue gets flooded to the point that there are signals
that have been raised but not yet caught (and thus not deferred) at the time
an opcode completes, those signals may well be caught and deferred during
subsequent opcodes, with sometimes surprising results. For example, you may
see alarms delivered even after calling alarm(0) as the latter stops the raising
of alarms but does not cancel the delivery of alarms raised but not yet caught.
Do not depend on the behaviors described in this paragraph as they are side
effects of the current implementation and may change in future versions of Perl.

Interrupting IO
When a signal is delivered (e.g., SIGINT from a control-C) the operating sys-
tem breaks into IO operations like read(2), which is used to implement Perl’s
readline() function, the <> operator. On older Perls the handler was called im-
mediately (and as read is not "unsafe", this worked well). With the "deferred"
scheme the handler is not called immediately, and if Perl is using the system’s

stdio library that library may restart the read without returning to Perl to
give it a chance to call the %SIG handler. If this happens on your system the
solution is to use the :perlio layer to do IO–at least on those handles that
you want to be able to break into with signals. (The :perlio layer checks the
signal flags and calls %SIG handlers before resuming IO operation.)

The default in Perl 5.8.0 and later is to automatically use the :perlio layer.

Note that it is not advisable to access a file handle within a signal handler where
that signal has interrupted an I/O operation on that same handle. While perl
will at least try hard not to crash, there are no guarantees of data integrity; for
example, some data might get dropped or written twice.

Some networking library functions like gethostbyname() are known to have their
own implementations of timeouts which may conflict with your timeouts. If you
have problems with such functions, try using the POSIX sigaction() function,
which bypasses Perl safe signals. Be warned that this does subject you to
possible memory corruption, as described above.

Instead of setting $SIG{ALRM}:

local $SIG{ALRM} = sub { die "alarm" };

try something like the following:

use POSIX qw(SIGALRM);

POSIX::sigaction(SIGALRM, POSIX::SigAction->new(sub { die "alarm" }))

|| die "Error setting SIGALRM handler: $!\n";

Another way to disable the safe signal behavior locally is to use the
Perl::Unsafe::Signals module from CPAN, which affects all signals.

Restartable system calls
On systems that supported it, older versions of Perl used the SA RESTART
flag when installing %SIG handlers. This meant that restartable system calls
would continue rather than returning when a signal arrived. In order to de-
liver deferred signals promptly, Perl 5.8.0 and later do not use SA RESTART.
Consequently, restartable system calls can fail (with $! set to EINTR) in places
where they previously would have succeeded.

The default :perlio layer retries read, write and close as described above;
interrupted wait and waitpid calls will always be retried.

Signals as "faults"
Certain signals like SEGV, ILL, and BUS are generated by virtual memory
addressing errors and similar "faults". These are normally fatal: there is little
a Perl-level handler can do with them. So Perl delivers them immediately rather
than attempting to defer them.

Signals triggered by operating system state
On some operating systems certain signal handlers are supposed to "do some-
thing" before returning. One example can be CHLD or CLD, which indicates a
child process has completed. On some operating systems the signal handler is
expected to wait for the completed child process. On such systems the deferred
signal scheme will not work for those signals: it does not do the wait. Again

the failure will look like a loop as the operating system will reissue the signal
because there are completed child processes that have not yet been waited for.

If you want the old signal behavior back despite possible memory corruption, set the
environment variable PERL_SIGNALS to "unsafe". This feature first appeared in Perl 5.8.1.

36.4 Named Pipes

A named pipe (often referred to as a FIFO) is an old Unix IPC mechanism for processes
communicating on the same machine. It works just like regular anonymous pipes, except
that the processes rendezvous using a filename and need not be related.

To create a named pipe, use the POSIX::mkfifo() function.

use POSIX qw(mkfifo);

mkfifo($path, 0700) || die "mkfifo $path failed: $!";

You can also use the Unix command mknod(1), or on some systems, mkfifo(1). These
may not be in your normal path, though.

system return val is backwards, so && not ||

#

$ENV{PATH} .= ":/etc:/usr/etc";

if (system("mknod", $path, "p")

&& system("mkfifo", $path))

{

die "mk{nod,fifo} $path failed";

}

A fifo is convenient when you want to connect a process to an unrelated one. When you
open a fifo, the program will block until there’s something on the other end.

For example, let’s say you’d like to have your .signature file be a named pipe that has
a Perl program on the other end. Now every time any program (like a mailer, news reader,
finger program, etc.) tries to read from that file, the reading program will read the new
signature from your program. We’ll use the pipe-checking file-test operator, -p, to find out
whether anyone (or anything) has accidentally removed our fifo.

chdir(); # go home

my $FIFO = ".signature";

while (1) {

unless (-p $FIFO) {

unlink $FIFO; # discard any failure, will catch later

require POSIX; # delayed loading of heavy module

POSIX::mkfifo($FIFO, 0700)

|| die "can’t mkfifo $FIFO: $!";

}

next line blocks till there’s a reader

open (FIFO, "> $FIFO") || die "can’t open $FIFO: $!";

print FIFO "John Smith (smith\@host.org)\n", ‘fortune -s‘;

close(FIFO) || die "can’t close $FIFO: $!";

sleep 2; # to avoid dup signals

}

36.5 Using open() for IPC

Perl’s basic open() statement can also be used for unidirectional interprocess communication
by either appending or prepending a pipe symbol to the second argument to open(). Here’s
how to start something up in a child process you intend to write to:

open(SPOOLER, "| cat -v | lpr -h 2>/dev/null")

|| die "can’t fork: $!";

local $SIG{PIPE} = sub { die "spooler pipe broke" };

print SPOOLER "stuff\n";

close SPOOLER || die "bad spool: $! $?";

And here’s how to start up a child process you intend to read from:

open(STATUS, "netstat -an 2>&1 |")

|| die "can’t fork: $!";

while (<STATUS>) {

next if /^(tcp|udp)/;

print;

}

close STATUS || die "bad netstat: $! $?";

If one can be sure that a particular program is a Perl script expecting filenames in
@ARGV, the clever programmer can write something like this:

% program f1 "cmd1|" - f2 "cmd2|" f3 < tmpfile

and no matter which sort of shell it’s called from, the Perl program will read from the file
f1, the process cmd1, standard input (tmpfile in this case), the f2 file, the cmd2 command,
and finally the f3 file. Pretty nifty, eh?

You might notice that you could use backticks for much the same effect as opening a
pipe for reading:

print grep { !/^(tcp|udp)/ } ‘netstat -an 2>&1‘;

die "bad netstatus ($?)" if $?;

While this is true on the surface, it’s much more efficient to process the file one line or
record at a time because then you don’t have to read the whole thing into memory at once.
It also gives you finer control of the whole process, letting you kill off the child process early
if you’d like.

Be careful to check the return values from both open() and close(). If you’re writing to
a pipe, you should also trap SIGPIPE. Otherwise, think of what happens when you start
up a pipe to a command that doesn’t exist: the open() will in all likelihood succeed (it only
reflects the fork()’s success), but then your output will fail–spectacularly. Perl can’t know
whether the command worked, because your command is actually running in a separate
process whose exec() might have failed. Therefore, while readers of bogus commands return
just a quick EOF, writers to bogus commands will get hit with a signal, which they’d best
be prepared to handle. Consider:

open(FH, "|bogus") || die "can’t fork: $!";

print FH "bang\n"; # neither necessary nor sufficient

to check print retval!

close(FH) || die "can’t close: $!";

The reason for not checking the return value from print() is because of pipe buffering;
physical writes are delayed. That won’t blow up until the close, and it will blow up with a
SIGPIPE. To catch it, you could use this:

$SIG{PIPE} = "IGNORE";

open(FH, "|bogus") || die "can’t fork: $!";

print FH "bang\n";

close(FH) || die "can’t close: status=$?";

36.5.1 Filehandles

Both the main process and any child processes it forks share the same STDIN, STDOUT,
and STDERR filehandles. If both processes try to access them at once, strange things can
happen. You may also want to close or reopen the filehandles for the child. You can get
around this by opening your pipe with open(), but on some systems this means that the
child process cannot outlive the parent.

36.5.2 Background Processes

You can run a command in the background with:

system("cmd &");

The command’s STDOUT and STDERR (and possibly STDIN, depending on your shell)
will be the same as the parent’s. You won’t need to catch SIGCHLD because of the double-
fork taking place; see below for details.

36.5.3 Complete Dissociation of Child from Parent

In some cases (starting server processes, for instance) you’ll want to completely dissociate
the child process from the parent. This is often called daemonization. A well-behaved
daemon will also chdir() to the root directory so it doesn’t prevent unmounting the filesystem
containing the directory from which it was launched, and redirect its standard file descriptors
from and to /dev/null so that random output doesn’t wind up on the user’s terminal.

use POSIX "setsid";

sub daemonize {

chdir("/") || die "can’t chdir to /: $!";

open(STDIN, "< /dev/null") || die "can’t read /dev/null: $!";

open(STDOUT, "> /dev/null") || die "can’t write to /dev/null: $!";

defined(my $pid = fork()) || die "can’t fork: $!";

exit if $pid; # non-zero now means I am the parent

(setsid() != -1) || die "Can’t start a new session: $!";

open(STDERR, ">&STDOUT") || die "can’t dup stdout: $!";

}

The fork() has to come before the setsid() to ensure you aren’t a process group leader;
the setsid() will fail if you are. If your system doesn’t have the setsid() function, open
/dev/tty and use the TIOCNOTTY ioctl() on it instead. See tty(4) for details.

Non-Unix users should check their Your_OS::Process module for other possible solu-
tions.

36.5.4 Safe Pipe Opens

Another interesting approach to IPC is making your single program go multiprocess and
communicate between–or even amongst–yourselves. The open() function will accept a file
argument of either "-|" or "|-" to do a very interesting thing: it forks a child connected to
the filehandle you’ve opened. The child is running the same program as the parent. This is
useful for safely opening a file when running under an assumed UID or GID, for example.
If you open a pipe to minus, you can write to the filehandle you opened and your kid will
find it in his STDIN. If you open a pipe from minus, you can read from the filehandle you
opened whatever your kid writes to his STDOUT.

use English;

my $PRECIOUS = "/path/to/some/safe/file";

my $sleep_count;

my $pid;

do {

$pid = open(KID_TO_WRITE, "|-");

unless (defined $pid) {

warn "cannot fork: $!";

die "bailing out" if $sleep_count++ > 6;

sleep 10;

}

} until defined $pid;

if ($pid) { # I am the parent

print KID_TO_WRITE @some_data;

close(KID_TO_WRITE) || warn "kid exited $?";

} else { # I am the child

drop permissions in setuid and/or setgid programs:

($EUID, $EGID) = ($UID, $GID);

open (OUTFILE, "> $PRECIOUS")

|| die "can’t open $PRECIOUS: $!";

while (<STDIN>) {

print OUTFILE; # child’s STDIN is parent’s KID_TO_WRITE

}

close(OUTFILE) || die "can’t close $PRECIOUS: $!";

exit(0); # don’t forget this!!

}

Another common use for this construct is when you need to execute something without
the shell’s interference. With system(), it’s straightforward, but you can’t use a pipe open
or backticks safely. That’s because there’s no way to stop the shell from getting its hands
on your arguments. Instead, use lower-level control to call exec() directly.

Here’s a safe backtick or pipe open for read:

my $pid = open(KID_TO_READ, "-|");

defined($pid) || die "can’t fork: $!";

if ($pid) { # parent

while (<KID_TO_READ>) {

do something interesting

}

close(KID_TO_READ) || warn "kid exited $?";

} else { # child

($EUID, $EGID) = ($UID, $GID); # suid only

exec($program, @options, @args)

|| die "can’t exec program: $!";

NOTREACHED

}

And here’s a safe pipe open for writing:

my $pid = open(KID_TO_WRITE, "|-");

defined($pid) || die "can’t fork: $!";

$SIG{PIPE} = sub { die "whoops, $program pipe broke" };

if ($pid) { # parent

print KID_TO_WRITE @data;

close(KID_TO_WRITE) || warn "kid exited $?";

} else { # child

($EUID, $EGID) = ($UID, $GID);

exec($program, @options, @args)

|| die "can’t exec program: $!";

NOTREACHED

}

It is very easy to dead-lock a process using this form of open(), or indeed with any use
of pipe() with multiple subprocesses. The example above is "safe" because it is simple
and calls exec(). See Section 36.5.5 [Avoiding Pipe Deadlocks], page 679 for general safety
principles, but there are extra gotchas with Safe Pipe Opens.

In particular, if you opened the pipe using open FH, "|-", then you cannot simply use
close() in the parent process to close an unwanted writer. Consider this code:

my $pid = open(WRITER, "|-"); # fork open a kid

defined($pid) || die "first fork failed: $!";

if ($pid) {

if (my $sub_pid = fork()) {

defined($sub_pid) || die "second fork failed: $!";

close(WRITER) || die "couldn’t close WRITER: $!";

now do something else...

}

else {

first write to WRITER

...

then when finished

close(WRITER) || die "couldn’t close WRITER: $!";

exit(0);

}

}

else {

first do something with STDIN, then

exit(0);

}

In the example above, the true parent does not want to write to the WRITER filehandle,
so it closes it. However, because WRITER was opened using open FH, "|-", it has a special
behavior: closing it calls waitpid() (see 〈undefined〉 [perlfunc waitpid], page 〈undefined〉),
which waits for the subprocess to exit. If the child process ends up waiting for something
happening in the section marked "do something else", you have deadlock.

This can also be a problem with intermediate subprocesses in more complicated code,
which will call waitpid() on all open filehandles during global destruction–in no predictable
order.

To solve this, you must manually use pipe(), fork(), and the form of open() which sets
one file descriptor to another, as shown below:

pipe(READER, WRITER) || die "pipe failed: $!";

$pid = fork();

defined($pid) || die "first fork failed: $!";

if ($pid) {

close READER;

if (my $sub_pid = fork()) {

defined($sub_pid) || die "first fork failed: $!";

close(WRITER) || die "can’t close WRITER: $!";

}

else {

write to WRITER...

...

then when finished

close(WRITER) || die "can’t close WRITER: $!";

exit(0);

}

write to WRITER...

}

else {

open(STDIN, "<&READER") || die "can’t reopen STDIN: $!";

close(WRITER) || die "can’t close WRITER: $!";

do something...

exit(0);

}

Since Perl 5.8.0, you can also use the list form of open for pipes. This is preferred when
you wish to avoid having the shell interpret metacharacters that may be in your command
string.

So for example, instead of using:

open(PS_PIPE, "ps aux|") || die "can’t open ps pipe: $!";

One would use either of these:

open(PS_PIPE, "-|", "ps", "aux")

|| die "can’t open ps pipe: $!";

@ps_args = qw[ps aux];

open(PS_PIPE, "-|", @ps_args)

|| die "can’t open @ps_args|: $!";

Because there are more than three arguments to open(), forks the ps(1) command without
spawning a shell, and reads its standard output via the PS_PIPE filehandle. The correspond-
ing syntax to write to command pipes is to use "|-" in place of "-|".

This was admittedly a rather silly example, because you’re using string literals whose
content is perfectly safe. There is therefore no cause to resort to the harder-to-read, multi-
argument form of pipe open(). However, whenever you cannot be assured that the program
arguments are free of shell metacharacters, the fancier form of open() should be used. For
example:

@grep_args = ("egrep", "-i", $some_pattern, @many_files);

open(GREP_PIPE, "-|", @grep_args)

|| die "can’t open @grep_args|: $!";

Here the multi-argument form of pipe open() is preferred because the pattern and indeed
even the filenames themselves might hold metacharacters.

Be aware that these operations are full Unix forks, which means they may not be correctly
implemented on all alien systems.

36.5.5 Avoiding Pipe Deadlocks

Whenever you have more than one subprocess, you must be careful that each closes which-
ever half of any pipes created for interprocess communication it is not using. This is because
any child process reading from the pipe and expecting an EOF will never receive it, and
therefore never exit. A single process closing a pipe is not enough to close it; the last process
with the pipe open must close it for it to read EOF.

Certain built-in Unix features help prevent this most of the time. For instance, filehan-
dles have a "close on exec" flag, which is set en masse under control of the $^F variable.
This is so any filehandles you didn’t explicitly route to the STDIN, STDOUT or STDERR
of a child program will be automatically closed.

Always explicitly and immediately call close() on the writable end of any pipe, unless
that process is actually writing to it. Even if you don’t explicitly call close(), Perl will still
close() all filehandles during global destruction. As previously discussed, if those filehandles
have been opened with Safe Pipe Open, this will result in calling waitpid(), which may again
deadlock.

36.5.6 Bidirectional Communication with Another Process

While this works reasonably well for unidirectional communication, what about bidirectional
communication? The most obvious approach doesn’t work:

THIS DOES NOT WORK!!

open(PROG_FOR_READING_AND_WRITING, "| some program |")

If you forget to use warnings, you’ll miss out entirely on the helpful diagnostic message:

Can’t do bidirectional pipe at -e line 1.

If you really want to, you can use the standard open2() from the IPC::Open2 module to
catch both ends. There’s also an open3() in IPC::Open3 for tridirectional I/O so you can
also catch your child’s STDERR, but doing so would then require an awkward select() loop
and wouldn’t allow you to use normal Perl input operations.

If you look at its source, you’ll see that open2() uses low-level primitives like the pipe()
and exec() syscalls to create all the connections. Although it might have been more efficient
by using socketpair(), this would have been even less portable than it already is. The
open2() and open3() functions are unlikely to work anywhere except on a Unix system, or
at least one purporting POSIX compliance.

Here’s an example of using open2():

use FileHandle;

use IPC::Open2;

$pid = open2(*Reader, *Writer, "cat -un");

print Writer "stuff\n";

$got = <Reader>;

The problem with this is that buffering is really going to ruin your day. Even though
your Writer filehandle is auto-flushed so the process on the other end gets your data in
a timely manner, you can’t usually do anything to force that process to give its data to
you in a similarly quick fashion. In this special case, we could actually so, because we gave
cat a -u flag to make it unbuffered. But very few commands are designed to operate over
pipes, so this seldom works unless you yourself wrote the program on the other end of the
double-ended pipe.

A solution to this is to use a library which uses pseudottys to make your program
behave more reasonably. This way you don’t have to have control over the source code
of the program you’re using. The Expect module from CPAN also addresses this kind of
thing. This module requires two other modules from CPAN, IO::Pty and IO::Stty. It
sets up a pseudo terminal to interact with programs that insist on talking to the terminal
device driver. If your system is supported, this may be your best bet.

36.5.7 Bidirectional Communication with Yourself

If you want, you may make low-level pipe() and fork() syscalls to stitch this together by
hand. This example only talks to itself, but you could reopen the appropriate handles to
STDIN and STDOUT and call other processes. (The following example lacks proper error
checking.)

#!/usr/bin/perl -w

pipe1 - bidirectional communication using two pipe pairs

designed for the socketpair-challenged

use IO::Handle; # thousands of lines just for autoflush :-(

pipe(PARENT_RDR, CHILD_WTR); # XXX: check failure?

pipe(CHILD_RDR, PARENT_WTR); # XXX: check failure?

CHILD_WTR->autoflush(1);

PARENT_WTR->autoflush(1);

if ($pid = fork()) {

close PARENT_RDR;

close PARENT_WTR;

print CHILD_WTR "Parent Pid $$ is sending this\n";

chomp($line = <CHILD_RDR>);

print "Parent Pid $$ just read this: ’$line’\n";

close CHILD_RDR; close CHILD_WTR;

waitpid($pid, 0);

} else {

die "cannot fork: $!" unless defined $pid;

close CHILD_RDR;

close CHILD_WTR;

chomp($line = <PARENT_RDR>);

print "Child Pid $$ just read this: ’$line’\n";

print PARENT_WTR "Child Pid $$ is sending this\n";

close PARENT_RDR;

close PARENT_WTR;

exit(0);

}

But you don’t actually have to make two pipe calls. If you have the socketpair() system
call, it will do this all for you.

#!/usr/bin/perl -w

pipe2 - bidirectional communication using socketpair

"the best ones always go both ways"

use Socket;

use IO::Handle; # thousands of lines just for autoflush :-(

We say AF_UNIX because although *_LOCAL is the

POSIX 1003.1g form of the constant, many machines

still don’t have it.

socketpair(CHILD, PARENT, AF_UNIX, SOCK_STREAM, PF_UNSPEC)

|| die "socketpair: $!";

CHILD->autoflush(1);

PARENT->autoflush(1);

if ($pid = fork()) {

close PARENT;

print CHILD "Parent Pid $$ is sending this\n";

chomp($line = <CHILD>);

print "Parent Pid $$ just read this: ’$line’\n";

close CHILD;

waitpid($pid, 0);

} else {

die "cannot fork: $!" unless defined $pid;

close CHILD;

chomp($line = <PARENT>);

print "Child Pid $$ just read this: ’$line’\n";

print PARENT "Child Pid $$ is sending this\n";

close PARENT;

exit(0);

}

36.6 Sockets: Client/Server Communication

While not entirely limited to Unix-derived operating systems (e.g., WinSock on PCs pro-
vides socket support, as do some VMS libraries), you might not have sockets on your system,
in which case this section probably isn’t going to do you much good. With sockets, you can
do both virtual circuits like TCP streams and datagrams like UDP packets. You may be
able to do even more depending on your system.

The Perl functions for dealing with sockets have the same names as the corresponding
system calls in C, but their arguments tend to differ for two reasons. First, Perl filehandles
work differently than C file descriptors. Second, Perl already knows the length of its strings,
so you don’t need to pass that information.

One of the major problems with ancient, antemillennial socket code in Perl was that it
used hard-coded values for some of the constants, which severely hurt portability. If you
ever see code that does anything like explicitly setting $AF_INET = 2, you know you’re in
for big trouble. An immeasurably superior approach is to use the Socket module, which
more reliably grants access to the various constants and functions you’ll need.

If you’re not writing a server/client for an existing protocol like NNTP or SMTP, you
should give some thought to how your server will know when the client has finished talking,
and vice-versa. Most protocols are based on one-line messages and responses (so one party
knows the other has finished when a "\n" is received) or multi-line messages and responses
that end with a period on an empty line ("\n.\n" terminates a message/response).

36.6.1 Internet Line Terminators

The Internet line terminator is "\015\012". Under ASCII variants of Unix, that could
usually be written as "\r\n", but under other systems, "\r\n" might at times be
"\015\015\012", "\012\012\015", or something completely different. The standards
specify writing "\015\012" to be conformant (be strict in what you provide), but they also
recommend accepting a lone "\012" on input (be lenient in what you require). We haven’t
always been very good about that in the code in this manpage, but unless you’re on a Mac
from way back in its pre-Unix dark ages, you’ll probably be ok.

36.6.2 Internet TCP Clients and Servers

Use Internet-domain sockets when you want to do client-server communication that might
extend to machines outside of your own system.

Here’s a sample TCP client using Internet-domain sockets:

#!/usr/bin/perl -w

use strict;

use Socket;

my ($remote, $port, $iaddr, $paddr, $proto, $line);

$remote = shift || "localhost";

$port = shift || 2345; # random port

if ($port =~ /\D/) { $port = getservbyname($port, "tcp") }

die "No port" unless $port;

$iaddr = inet_aton($remote) || die "no host: $remote";

$paddr = sockaddr_in($port, $iaddr);

$proto = getprotobyname("tcp");

socket(SOCK, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";

connect(SOCK, $paddr) || die "connect: $!";

while ($line = <SOCK>) {

print $line;

}

close (SOCK) || die "close: $!";

exit(0);

And here’s a corresponding server to go along with it. We’ll leave the address as INADDR_
ANY so that the kernel can choose the appropriate interface on multihomed hosts. If you
want sit on a particular interface (like the external side of a gateway or firewall machine),
fill this in with your real address instead.

#!/usr/bin/perl -Tw

use strict;

BEGIN { $ENV{PATH} = "/usr/bin:/bin" }

use Socket;

use Carp;

my $EOL = "\015\012";

sub logmsg { print "$0 $$: @_ at ", scalar localtime(), "\n" }

my $port = shift || 2345;

die "invalid port" unless if $port =~ /^ \d+ $/x;

my $proto = getprotobyname("tcp");

socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";

setsockopt(Server, SOL_SOCKET, SO_REUSEADDR, pack("l", 1))

|| die "setsockopt: $!";

bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";

listen(Server, SOMAXCONN) || die "listen: $!";

logmsg "server started on port $port";

my $paddr;

$SIG{CHLD} = \&REAPER;

for (; $paddr = accept(Client, Server); close Client) {

my($port, $iaddr) = sockaddr_in($paddr);

my $name = gethostbyaddr($iaddr, AF_INET);

logmsg "connection from $name [",

inet_ntoa($iaddr), "]

at port $port";

print Client "Hello there, $name, it’s now ",

scalar localtime(), $EOL;

}

And here’s a multitasking version. It’s multitasked in that like most typical servers, it
spawns (fork()s) a slave server to handle the client request so that the master server can
quickly go back to service a new client.

#!/usr/bin/perl -Tw

use strict;

BEGIN { $ENV{PATH} = "/usr/bin:/bin" }

use Socket;

use Carp;

my $EOL = "\015\012";

sub spawn; # forward declaration

sub logmsg { print "$0 $$: @_ at ", scalar localtime(), "\n" }

my $port = shift || 2345;

die "invalid port" unless $port =~ /^ \d+ $/x;

my $proto = getprotobyname("tcp");

socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";

setsockopt(Server, SOL_SOCKET, SO_REUSEADDR, pack("l", 1))

|| die "setsockopt: $!";

bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";

listen(Server, SOMAXCONN) || die "listen: $!";

logmsg "server started on port $port";

my $waitedpid = 0;

my $paddr;

use POSIX ":sys_wait_h";

use Errno;

sub REAPER {

local $!; # don’t let waitpid() overwrite current error

while ((my $pid = waitpid(-1, WNOHANG)) > 0 && WIFEXITED($?)) {

logmsg "reaped $waitedpid" . ($? ? " with exit $?" : "");

}

$SIG{CHLD} = \&REAPER; # loathe SysV

}

$SIG{CHLD} = \&REAPER;

while (1) {

$paddr = accept(Client, Server) || do {

try again if accept() returned because got a signal

next if $!{EINTR};

die "accept: $!";

};

my ($port, $iaddr) = sockaddr_in($paddr);

my $name = gethostbyaddr($iaddr, AF_INET);

logmsg "connection from $name [",

inet_ntoa($iaddr),

"] at port $port";

spawn sub {

$| = 1;

print "Hello there, $name, it’s now ", scalar localtime(), $EOL;

exec "/usr/games/fortune" # XXX: "wrong" line terminators

or confess "can’t exec fortune: $!";

};

close Client;

}

sub spawn {

my $coderef = shift;

unless (@_ == 0 && $coderef && ref($coderef) eq "CODE") {

confess "usage: spawn CODEREF";

}

my $pid;

unless (defined($pid = fork())) {

logmsg "cannot fork: $!";

return;

}

elsif ($pid) {

logmsg "begat $pid";

return; # I’m the parent

}

else I’m the child -- go spawn

open(STDIN, "<&Client") || die "can’t dup client to stdin";

open(STDOUT, ">&Client") || die "can’t dup client to stdout";

open(STDERR, ">&STDOUT") || die "can’t dup stdout to stderr";

exit($coderef->());

}

This server takes the trouble to clone off a child version via fork() for each incoming
request. That way it can handle many requests at once, which you might not always
want. Even if you don’t fork(), the listen() will allow that many pending connections.
Forking servers have to be particularly careful about cleaning up their dead children (called
"zombies" in Unix parlance), because otherwise you’ll quickly fill up your process table.
The REAPER subroutine is used here to call waitpid() for any child processes that have
finished, thereby ensuring that they terminate cleanly and don’t join the ranks of the living
dead.

Within the while loop we call accept() and check to see if it returns a false value. This
would normally indicate a system error needs to be reported. However, the introduction
of safe signals (see Section 36.3.2 [Deferred Signals (Safe Signals)], page 671 above) in Perl
5.8.0 means that accept() might also be interrupted when the process receives a signal. This
typically happens when one of the forked subprocesses exits and notifies the parent process
with a CHLD signal.

If accept() is interrupted by a signal, $! will be set to EINTR. If this happens, we can
safely continue to the next iteration of the loop and another call to accept(). It is important
that your signal handling code not modify the value of $!, or else this test will likely fail.
In the REAPER subroutine we create a local version of $! before calling waitpid(). When
waitpid() sets $! to ECHILD as it inevitably does when it has no more children waiting, it
updates the local copy and leaves the original unchanged.

You should use the -T flag to enable taint checking (see Section 70.1 [perlsec NAME],
page 1198) even if we aren’t running setuid or setgid. This is always a good idea for servers
or any program run on behalf of someone else (like CGI scripts), because it lessens the
chances that people from the outside will be able to compromise your system.

Let’s look at another TCP client. This one connects to the TCP "time" service on a
number of different machines and shows how far their clocks differ from the system on which
it’s being run:

#!/usr/bin/perl -w

use strict;

use Socket;

my $SECS_OF_70_YEARS = 2208988800;

sub ctime { scalar localtime(shift() || time()) }

my $iaddr = gethostbyname("localhost");

my $proto = getprotobyname("tcp");

my $port = getservbyname("time", "tcp");

my $paddr = sockaddr_in(0, $iaddr);

my($host);

$| = 1;

printf "%-24s %8s %s\n", "localhost", 0, ctime();

foreach $host (@ARGV) {

printf "%-24s ", $host;

my $hisiaddr = inet_aton($host) || die "unknown host";

my $hispaddr = sockaddr_in($port, $hisiaddr);

socket(SOCKET, PF_INET, SOCK_STREAM, $proto)

|| die "socket: $!";

connect(SOCKET, $hispaddr) || die "connect: $!";

my $rtime = pack("C4", ());

read(SOCKET, $rtime, 4);

close(SOCKET);

my $histime = unpack("N", $rtime) - $SECS_OF_70_YEARS;

printf "%8d %s\n", $histime - time(), ctime($histime);

}

36.6.3 Unix-Domain TCP Clients and Servers

That’s fine for Internet-domain clients and servers, but what about local communications?
While you can use the same setup, sometimes you don’t want to. Unix-domain sockets are
local to the current host, and are often used internally to implement pipes. Unlike Internet
domain sockets, Unix domain sockets can show up in the file system with an ls(1) listing.

% ls -l /dev/log

srw-rw-rw- 1 root 0 Oct 31 07:23 /dev/log

You can test for these with Perl’s -S file test:

unless (-S "/dev/log") {

die "something’s wicked with the log system";

}

Here’s a sample Unix-domain client:

#!/usr/bin/perl -w

use Socket;

use strict;

my ($rendezvous, $line);

$rendezvous = shift || "catsock";

socket(SOCK, PF_UNIX, SOCK_STREAM, 0) || die "socket: $!";

connect(SOCK, sockaddr_un($rendezvous)) || die "connect: $!";

while (defined($line = <SOCK>)) {

print $line;

}

exit(0);

And here’s a corresponding server. You don’t have to worry about silly network termi-
nators here because Unix domain sockets are guaranteed to be on the localhost, and thus
everything works right.

#!/usr/bin/perl -Tw

use strict;

use Socket;

use Carp;

BEGIN { $ENV{PATH} = "/usr/bin:/bin" }

sub spawn; # forward declaration

sub logmsg { print "$0 $$: @_ at ", scalar localtime(), "\n" }

my $NAME = "catsock";

my $uaddr = sockaddr_un($NAME);

my $proto = getprotobyname("tcp");

socket(Server, PF_UNIX, SOCK_STREAM, 0) || die "socket: $!";

unlink($NAME);

bind (Server, $uaddr) || die "bind: $!";

listen(Server, SOMAXCONN) || die "listen: $!";

logmsg "server started on $NAME";

my $waitedpid;

use POSIX ":sys_wait_h";

sub REAPER {

my $child;

while (($waitedpid = waitpid(-1, WNOHANG)) > 0) {

logmsg "reaped $waitedpid" . ($? ? " with exit $?" : "");

}

$SIG{CHLD} = \&REAPER; # loathe SysV

}

$SIG{CHLD} = \&REAPER;

for ($waitedpid = 0;

accept(Client, Server) || $waitedpid;

$waitedpid = 0, close Client)

{

next if $waitedpid;

logmsg "connection on $NAME";

spawn sub {

print "Hello there, it’s now ", scalar localtime(), "\n";

exec("/usr/games/fortune") || die "can’t exec fortune: $!";

};

}

sub spawn {

my $coderef = shift();

unless (@_ == 0 && $coderef && ref($coderef) eq "CODE") {

confess "usage: spawn CODEREF";

}

my $pid;

unless (defined($pid = fork())) {

logmsg "cannot fork: $!";

return;

}

elsif ($pid) {

logmsg "begat $pid";

return; # I’m the parent

}

else {

I’m the child -- go spawn

}

open(STDIN, "<&Client") || die "can’t dup client to stdin";

open(STDOUT, ">&Client") || die "can’t dup client to stdout";

open(STDERR, ">&STDOUT") || die "can’t dup stdout to stderr";

exit($coderef->());

}

As you see, it’s remarkably similar to the Internet domain TCP server, so much so,
in fact, that we’ve omitted several duplicate functions–spawn(), logmsg(), ctime(), and
REAPER()–which are the same as in the other server.

So why would you ever want to use a Unix domain socket instead of a simpler named
pipe? Because a named pipe doesn’t give you sessions. You can’t tell one process’s data
from another’s. With socket programming, you get a separate session for each client; that’s
why accept() takes two arguments.

For example, let’s say that you have a long-running database server daemon that you
want folks to be able to access from the Web, but only if they go through a CGI interface.
You’d have a small, simple CGI program that does whatever checks and logging you feel
like, and then acts as a Unix-domain client and connects to your private server.

36.7 TCP Clients with IO::Socket

For those preferring a higher-level interface to socket programming, the IO::Socket module
provides an object-oriented approach. If for some reason you lack this module, you can just
fetch IO::Socket from CPAN, where you’ll also find modules providing easy interfaces to the
following systems: DNS, FTP, Ident (RFC 931), NIS and NISPlus, NNTP, Ping, POP3,
SMTP, SNMP, SSLeay, Telnet, and Time–to name just a few.

36.7.1 A Simple Client

Here’s a client that creates a TCP connection to the "daytime" service at port 13 of the
host name "localhost" and prints out everything that the server there cares to provide.

#!/usr/bin/perl -w

use IO::Socket;

$remote = IO::Socket::INET->new(

Proto => "tcp",

PeerAddr => "localhost",

PeerPort => "daytime(13)",

)

|| die "can’t connect to daytime service on localhost";

while (<$remote>) { print }

When you run this program, you should get something back that looks like this:

Wed May 14 08:40:46 MDT 1997

Here are what those parameters to the new() constructor mean:

Proto

This is which protocol to use. In this case, the socket handle returned will
be connected to a TCP socket, because we want a stream-oriented connection,
that is, one that acts pretty much like a plain old file. Not all sockets are this
of this type. For example, the UDP protocol can be used to make a datagram
socket, used for message-passing.

PeerAddr

This is the name or Internet address of the remote host the server is running on.
We could have specified a longer name like "www.perl.com", or an address like
"207.171.7.72". For demonstration purposes, we’ve used the special hostname
"localhost", which should always mean the current machine you’re running
on. The corresponding Internet address for localhost is "127.0.0.1", if you’d
rather use that.

PeerPort

This is the service name or port number we’d like to connect to. We could have
gotten away with using just "daytime" on systems with a well-configured sys-
tem services file,[FOOTNOTE: The system services file is found in /etc/services
under Unixy systems.] but here we’ve specified the port number (13) in paren-
theses. Using just the number would have also worked, but numeric literals
make careful programmers nervous.

Notice how the return value from the new constructor is used as a filehandle in the while
loop? That’s what’s called an indirect filehandle, a scalar variable containing a filehandle.
You can use it the same way you would a normal filehandle. For example, you can read one
line from it this way:

$line = <$handle>;

all remaining lines from is this way:

@lines = <$handle>;

and send a line of data to it this way:

print $handle "some data\n";

36.7.2 A Webget Client

Here’s a simple client that takes a remote host to fetch a document from, and then a list of
files to get from that host. This is a more interesting client than the previous one because
it first sends something to the server before fetching the server’s response.

#!/usr/bin/perl -w

use IO::Socket;

unless (@ARGV > 1) { die "usage: $0 host url ..." }

$host = shift(@ARGV);

$EOL = "\015\012";

$BLANK = $EOL x 2;

for my $document (@ARGV) {

$remote = IO::Socket::INET->new(Proto => "tcp",

PeerAddr => $host,

PeerPort => "http(80)",

) || die "cannot connect to httpd on $host";

$remote->autoflush(1);

print $remote "GET $document HTTP/1.0" . $BLANK;

while (<$remote>) { print }

close $remote;

}

The web server handling the HTTP service is assumed to be at its standard port, number
80. If the server you’re trying to connect to is at a different port, like 1080 or 8080, you
should specify it as the named-parameter pair, PeerPort => 8080. The autoflush method
is used on the socket because otherwise the system would buffer up the output we sent it.
(If you’re on a prehistoric Mac, you’ll also need to change every "\n" in your code that
sends data over the network to be a "\015\012" instead.)

Connecting to the server is only the first part of the process: once you have the connec-
tion, you have to use the server’s language. Each server on the network has its own little
command language that it expects as input. The string that we send to the server starting
with "GET" is in HTTP syntax. In this case, we simply request each specified document.
Yes, we really are making a new connection for each document, even though it’s the same
host. That’s the way you always used to have to speak HTTP. Recent versions of web
browsers may request that the remote server leave the connection open a little while, but
the server doesn’t have to honor such a request.

Here’s an example of running that program, which we’ll call webget :

% webget www.perl.com /guanaco.html

HTTP/1.1 404 File Not Found

Date: Thu, 08 May 1997 18:02:32 GMT

Server: Apache/1.2b6

Connection: close

Content-type: text/html

<HEAD><TITLE>404 File Not Found</TITLE></HEAD>

<BODY><H1>File Not Found</H1>

The requested URL /guanaco.html was not found on this server.<P>

</BODY>

Ok, so that’s not very interesting, because it didn’t find that particular document. But
a long response wouldn’t have fit on this page.

For a more featureful version of this program, you should look to the lwp-request program
included with the LWP modules from CPAN.

36.7.3 Interactive Client with IO::Socket

Well, that’s all fine if you want to send one command and get one answer, but what about
setting up something fully interactive, somewhat like the way telnet works? That way you
can type a line, get the answer, type a line, get the answer, etc.

This client is more complicated than the two we’ve done so far, but if you’re on a system
that supports the powerful fork call, the solution isn’t that rough. Once you’ve made
the connection to whatever service you’d like to chat with, call fork to clone your process.
Each of these two identical process has a very simple job to do: the parent copies everything
from the socket to standard output, while the child simultaneously copies everything from
standard input to the socket. To accomplish the same thing using just one process would
be much harder, because it’s easier to code two processes to do one thing than it is to code
one process to do two things. (This keep-it-simple principle a cornerstones of the Unix
philosophy, and good software engineering as well, which is probably why it’s spread to
other systems.)

Here’s the code:

#!/usr/bin/perl -w

use strict;

use IO::Socket;

my ($host, $port, $kidpid, $handle, $line);

unless (@ARGV == 2) { die "usage: $0 host port" }

($host, $port) = @ARGV;

create a tcp connection to the specified host and port

$handle = IO::Socket::INET->new(Proto => "tcp",

PeerAddr => $host,

PeerPort => $port)

|| die "can’t connect to port $port on $host: $!";

$handle->autoflush(1); # so output gets there right away

print STDERR "[Connected to $host:$port]\n";

split the program into two processes, identical twins

die "can’t fork: $!" unless defined($kidpid = fork());

the if{} block runs only in the parent process

if ($kidpid) {

copy the socket to standard output

while (defined ($line = <$handle>)) {

print STDOUT $line;

}

kill("TERM", $kidpid); # send SIGTERM to child

}

the else{} block runs only in the child process

else {

copy standard input to the socket

while (defined ($line = <STDIN>)) {

print $handle $line;

}

exit(0); # just in case

}

The kill function in the parent’s if block is there to send a signal to our child process,
currently running in the else block, as soon as the remote server has closed its end of the
connection.

If the remote server sends data a byte at time, and you need that data immediately
without waiting for a newline (which might not happen), you may wish to replace the
while loop in the parent with the following:

my $byte;

while (sysread($handle, $byte, 1) == 1) {

print STDOUT $byte;

}

Making a system call for each byte you want to read is not very efficient (to put it mildly)
but is the simplest to explain and works reasonably well.

36.8 TCP Servers with IO::Socket

As always, setting up a server is little bit more involved than running a client. The model
is that the server creates a special kind of socket that does nothing but listen on a partic-
ular port for incoming connections. It does this by calling the IO::Socket::INET->new()

method with slightly different arguments than the client did.

Proto

This is which protocol to use. Like our clients, we’ll still specify "tcp" here.

LocalPort

We specify a local port in the LocalPort argument, which we didn’t do for the
client. This is service name or port number for which you want to be the server.

(Under Unix, ports under 1024 are restricted to the superuser.) In our sample,
we’ll use port 9000, but you can use any port that’s not currently in use on your
system. If you try to use one already in used, you’ll get an "Address already in
use" message. Under Unix, the netstat -a command will show which services
current have servers.

Listen

The Listen parameter is set to the maximum number of pending connections
we can accept until we turn away incoming clients. Think of it as a call-waiting
queue for your telephone. The low-level Socket module has a special symbol for
the system maximum, which is SOMAXCONN.

Reuse

The Reuse parameter is needed so that we restart our server manually without
waiting a few minutes to allow system buffers to clear out.

Once the generic server socket has been created using the parameters listed above, the
server then waits for a new client to connect to it. The server blocks in the accept method,
which eventually accepts a bidirectional connection from the remote client. (Make sure to
autoflush this handle to circumvent buffering.)

To add to user-friendliness, our server prompts the user for commands. Most servers
don’t do this. Because of the prompt without a newline, you’ll have to use the sysread

variant of the interactive client above.

This server accepts one of five different commands, sending output back to the client.
Unlike most network servers, this one handles only one incoming client at a time. Multi-
tasking servers are covered in Chapter 16 of the Camel.

Here’s the code. We’ll

#!/usr/bin/perl -w

use IO::Socket;

use Net::hostent; # for OOish version of gethostbyaddr

$PORT = 9000; # pick something not in use

$server = IO::Socket::INET->new(Proto => "tcp",

LocalPort => $PORT,

Listen => SOMAXCONN,

Reuse => 1);

die "can’t setup server" unless $server;

print "[Server $0 accepting clients]\n";

while ($client = $server->accept()) {

$client->autoflush(1);

print $client "Welcome to $0; type help for command list.\n";

$hostinfo = gethostbyaddr($client->peeraddr);

printf "[Connect from %s]\n", $hostinfo ? $hostinfo->name : $client->peerhost;

print $client "Command? ";

while (<$client>) {

next unless /\S/; # blank line

if (/quit|exit/i) { last }

elsif (/date|time/i) { printf $client "%s\n", scalar localtime() }

elsif (/who/i) { print $client ‘who 2>&1‘ }

elsif (/cookie/i) { print $client ‘/usr/games/fortune 2>&1‘ }

elsif (/motd/i) { print $client ‘cat /etc/motd 2>&1‘ }

else {

print $client "Commands: quit date who cookie motd\n";

}

} continue {

print $client "Command? ";

}

close $client;

}

36.9 UDP: Message Passing

Another kind of client-server setup is one that uses not connections, but messages. UDP
communications involve much lower overhead but also provide less reliability, as there are
no promises that messages will arrive at all, let alone in order and unmangled. Still, UDP
offers some advantages over TCP, including being able to "broadcast" or "multicast" to a
whole bunch of destination hosts at once (usually on your local subnet). If you find yourself
overly concerned about reliability and start building checks into your message system, then
you probably should use just TCP to start with.

UDP datagrams are not a bytestream and should not be treated as such. This makes
using I/O mechanisms with internal buffering like stdio (i.e. print() and friends) especially
cumbersome. Use syswrite(), or better send(), like in the example below.

Here’s a UDP program similar to the sample Internet TCP client given earlier. How-
ever, instead of checking one host at a time, the UDP version will check many of them
asynchronously by simulating a multicast and then using select() to do a timed-out wait
for I/O. To do something similar with TCP, you’d have to use a different socket handle for
each host.

#!/usr/bin/perl -w

use strict;

use Socket;

use Sys::Hostname;

my ($count, $hisiaddr, $hispaddr, $histime,

$host, $iaddr, $paddr, $port, $proto,

$rin, $rout, $rtime, $SECS_OF_70_YEARS);

$SECS_OF_70_YEARS = 2_208_988_800;

$iaddr = gethostbyname(hostname());

$proto = getprotobyname("udp");

$port = getservbyname("time", "udp");

$paddr = sockaddr_in(0, $iaddr); # 0 means let kernel pick

socket(SOCKET, PF_INET, SOCK_DGRAM, $proto) || die "socket: $!";

bind(SOCKET, $paddr) || die "bind: $!";

$| = 1;

printf "%-12s %8s %s\n", "localhost", 0, scalar localtime();

$count = 0;

for $host (@ARGV) {

$count++;

$hisiaddr = inet_aton($host) || die "unknown host";

$hispaddr = sockaddr_in($port, $hisiaddr);

defined(send(SOCKET, 0, 0, $hispaddr)) || die "send $host: $!";

}

$rin = "";

vec($rin, fileno(SOCKET), 1) = 1;

timeout after 10.0 seconds

while ($count && select($rout = $rin, undef, undef, 10.0)) {

$rtime = "";

$hispaddr = recv(SOCKET, $rtime, 4, 0) || die "recv: $!";

($port, $hisiaddr) = sockaddr_in($hispaddr);

$host = gethostbyaddr($hisiaddr, AF_INET);

$histime = unpack("N", $rtime) - $SECS_OF_70_YEARS;

printf "%-12s ", $host;

printf "%8d %s\n", $histime - time(), scalar localtime($histime);

$count--;

}

This example does not include any retries and may consequently fail to contact a reach-
able host. The most prominent reason for this is congestion of the queues on the sending
host if the number of hosts to contact is sufficiently large.

36.10 SysV IPC

While System V IPC isn’t so widely used as sockets, it still has some interesting uses.
However, you cannot use SysV IPC or Berkeley mmap() to have a variable shared amongst
several processes. That’s because Perl would reallocate your string when you weren’t want-
ing it to. You might look into the IPC::Shareable or threads::shared modules for that.

Here’s a small example showing shared memory usage.

use IPC::SysV qw(IPC_PRIVATE IPC_RMID S_IRUSR S_IWUSR);

$size = 2000;

$id = shmget(IPC_PRIVATE, $size, S_IRUSR | S_IWUSR);

defined($id) || die "shmget: $!";

print "shm key $id\n";

$message = "Message #1";

shmwrite($id, $message, 0, 60) || die "shmwrite: $!";

print "wrote: ’$message’\n";

shmread($id, $buff, 0, 60) || die "shmread: $!";

print "read : ’$buff’\n";

the buffer of shmread is zero-character end-padded.

substr($buff, index($buff, "\0")) = "";

print "un" unless $buff eq $message;

print "swell\n";

print "deleting shm $id\n";

shmctl($id, IPC_RMID, 0) || die "shmctl: $!";

Here’s an example of a semaphore:

use IPC::SysV qw(IPC_CREAT);

$IPC_KEY = 1234;

$id = semget($IPC_KEY, 10, 0666 | IPC_CREAT);

defined($id) || die "semget: $!";

print "sem id $id\n";

Put this code in a separate file to be run in more than one process. Call the file take:

create a semaphore

$IPC_KEY = 1234;

$id = semget($IPC_KEY, 0, 0);

defined($id) || die "semget: $!";

$semnum = 0;

$semflag = 0;

"take" semaphore

wait for semaphore to be zero

$semop = 0;

$opstring1 = pack("s!s!s!", $semnum, $semop, $semflag);

Increment the semaphore count

$semop = 1;

$opstring2 = pack("s!s!s!", $semnum, $semop, $semflag);

$opstring = $opstring1 . $opstring2;

semop($id, $opstring) || die "semop: $!";

Put this code in a separate file to be run in more than one process. Call this file give:

"give" the semaphore

run this in the original process and you will see

that the second process continues

$IPC_KEY = 1234;

$id = semget($IPC_KEY, 0, 0);

die unless defined($id);

$semnum = 0;

$semflag = 0;

Decrement the semaphore count

$semop = -1;

$opstring = pack("s!s!s!", $semnum, $semop, $semflag);

semop($id, $opstring) || die "semop: $!";

The SysV IPC code above was written long ago, and it’s definitely clunky looking. For
a more modern look, see the IPC::SysV module.

A small example demonstrating SysV message queues:

use IPC::SysV qw(IPC_PRIVATE IPC_RMID IPC_CREAT S_IRUSR S_IWUSR);

my $id = msgget(IPC_PRIVATE, IPC_CREAT | S_IRUSR | S_IWUSR);

defined($id) || die "msgget failed: $!";

my $sent = "message";

my $type_sent = 1234;

msgsnd($id, pack("l! a*", $type_sent, $sent), 0)

|| die "msgsnd failed: $!";

msgrcv($id, my $rcvd_buf, 60, 0, 0)

|| die "msgrcv failed: $!";

my($type_rcvd, $rcvd) = unpack("l! a*", $rcvd_buf);

if ($rcvd eq $sent) {

print "okay\n";

} else {

print "not okay\n";

}

msgctl($id, IPC_RMID, 0) || die "msgctl failed: $!\n";

36.11 NOTES

Most of these routines quietly but politely return undef when they fail instead of causing
your program to die right then and there due to an uncaught exception. (Actually, some of
the new Socket conversion functions do croak() on bad arguments.) It is therefore essential
to check return values from these functions. Always begin your socket programs this way

for optimal success, and don’t forget to add the -T taint-checking flag to the #! line for
servers:

#!/usr/bin/perl -Tw

use strict;

use sigtrap;

use Socket;

36.12 BUGS

These routines all create system-specific portability problems. As noted elsewhere, Perl is
at the mercy of your C libraries for much of its system behavior. It’s probably safest to
assume broken SysV semantics for signals and to stick with simple TCP and UDP socket
operations; e.g., don’t try to pass open file descriptors over a local UDP datagram socket if
you want your code to stand a chance of being portable.

36.13 AUTHOR

Tom Christiansen, with occasional vestiges of Larry Wall’s original version and suggestions
from the Perl Porters.

36.14 SEE ALSO

There’s a lot more to networking than this, but this should get you started.

For intrepid programmers, the indispensable textbook is Unix Network Programming,
2nd Edition, Volume 1 by W. Richard Stevens (published by Prentice-Hall). Most books
on networking address the subject from the perspective of a C programmer; translation to
Perl is left as an exercise for the reader.

The IO::Socket(3) manpage describes the object library, and the Socket(3) manpage de-
scribes the low-level interface to sockets. Besides the obvious functions in Section 25.1
[perlfunc NAME], page 351, you should also check out the modules file at your near-
est CPAN site, especially http://www.cpan.org/modules/00modlist.long.html#

ID5_Networking_. See perlmodlib or best yet, the Perl FAQ for a description of what
CPAN is and where to get it if the previous link doesn’t work for you.

Section 5 of CPAN’s modules file is devoted to "Networking, Device Control (modems),
and Interprocess Communication", and contains numerous unbundled modules numerous
networking modules, Chat and Expect operations, CGI programming, DCE, FTP, IPC,
NNTP, Proxy, Ptty, RPC, SNMP, SMTP, Telnet, Threads, and ToolTalk–to name just a
few.

http://www.cpan.org/modules/00modlist.long.html#ID5_Networking_
http://www.cpan.org/modules/00modlist.long.html#ID5_Networking_

37 perllexwarn

37.1 NAME

perllexwarn - Perl Lexical Warnings

37.2 DESCRIPTION

Perl v5.6.0 introduced lexical control over the handling of warnings by category. The
warnings pragma generally replaces the command line flag -w. Documentation on the
use of lexical warnings, once partly found in this document, is now found in the warnings

documentation.

38 perllocale

38.1 NAME

perllocale - Perl locale handling (internationalization and localization)

38.2 DESCRIPTION

In the beginning there was ASCII, the "American Standard Code for Information Inter-
change", which works quite well for Americans with their English alphabet and dollar-
denominated currency. But it doesn’t work so well even for other English speakers, who
may use different currencies, such as the pound sterling (as the symbol for that currency
is not in ASCII); and it’s hopelessly inadequate for many of the thousands of the world’s
other languages.

To address these deficiencies, the concept of locales was invented (formally the ISO C,
XPG4, POSIX 1.c "locale system"). And applications were and are being written that
use the locale mechanism. The process of making such an application take account of its
users’ preferences in these kinds of matters is called internationalization (often abbrevi-
ated as i18n); telling such an application about a particular set of preferences is known as
localization (l10n).

Perl has been extended to support the locale system. This is controlled per application
by using one pragma, one function call, and several environment variables.

Unfortunately, there are quite a few deficiencies with the design (and often, the im-
plementations) of locales. Unicode was invented (see Section 84.1 [perlunitut NAME],
page 1367 for an introduction to that) in part to address these design deficiencies, and
nowadays, there is a series of "UTF-8 locales", based on Unicode. These are locales whose
character set is Unicode, encoded in UTF-8. Starting in v5.20, Perl fully supports UTF-8
locales, except for sorting and string comparisons. (Use Unicode-Collate for these.) Perl
continues to support the old non UTF-8 locales as well. There are currently no UTF-8
locales for EBCDIC platforms.

(Unicode is also creating CLDR, the "Common Locale Data Repository", http://cldr.
unicode.org/ which includes more types of information than are available in the POSIX
locale system. At the time of this writing, there was no CPAN module that provides
access to this XML-encoded data. However, many of its locales have the POSIX-only data
extracted, and are available as UTF-8 locales at http://unicode.org/Public/cldr/

latest/.)

38.3 WHAT IS A LOCALE

A locale is a set of data that describes various aspects of how various communities in the
world categorize their world. These categories are broken down into the following types
(some of which include a brief note here):

Category LC_NUMERIC: Numeric formatting
This indicates how numbers should be formatted for human readability, for
example the character used as the decimal point.

http://cldr.unicode.org/
http://cldr.unicode.org/
http://unicode.org/Public/cldr/latest/
http://unicode.org/Public/cldr/latest/

Category LC_MONETARY: Formatting of monetary amounts

Category LC_TIME: Date/Time formatting

Category LC_MESSAGES: Error and other messages
This is used by Perl itself only for accessing operating system error messages
via [$!], page 1400 and [$^E], page 1399.

Category LC_COLLATE: Collation
This indicates the ordering of letters for comparison and sorting. In Latin
alphabets, for example, "b", generally follows "a".

Category LC_CTYPE: Character Types
This indicates, for example if a character is an uppercase letter.

Other categories
Some platforms have other categories, dealing with such things as measurement
units and paper sizes. None of these are used directly by Perl, but outside
operations that Perl interacts with may use these. See [Not within the scope of
"use locale"], page 703 below.

More details on the categories used by Perl are given below in Section 38.6 [LOCALE
CATEGORIES], page 711.

Together, these categories go a long way towards being able to customize a single program
to run in many different locations. But there are deficiencies, so keep reading.

38.4 PREPARING TO USE LOCALES

Perl itself (outside the POSIX module) will not use locales unless specifically requested to
(but again note that Perl may interact with code that does use them). Even if there is such
a request, all of the following must be true for it to work properly:

• Your operating system must support the locale system. If it does, you should find that
the setlocale() function is a documented part of its C library.

• Definitions for locales that you use must be installed. You, or your system administra-
tor, must make sure that this is the case. The available locales, the location in which
they are kept, and the manner in which they are installed all vary from system to sys-
tem. Some systems provide only a few, hard-wired locales and do not allow more to be
added. Others allow you to add "canned" locales provided by the system supplier. Still
others allow you or the system administrator to define and add arbitrary locales. (You
may have to ask your supplier to provide canned locales that are not delivered with
your operating system.) Read your system documentation for further illumination.

• Perl must believe that the locale system is supported. If it does, perl -V:d_setlocale

will say that the value for d_setlocale is define.

If you want a Perl application to process and present your data according to a particular
locale, the application code should include the use locale pragma (see Section 38.5.1 [The
"use locale" pragma], page 703) where appropriate, and at least one of the following must
be true:

1. The locale-determining environment variables (see Section 38.8 [ENVIRONMENT],
page 718) must be correctly set up at the time the application is started, either by
yourself or by whomever set up your system account; or

2. The application must set its own locale using the method described in Section 38.5.2
[The setlocale function], page 705.

38.5 USING LOCALES

38.5.1 The "use locale" pragma

By default, Perl itself (outside the POSIX module) ignores the current locale. The
use locale pragma tells Perl to use the current locale for some operations. Starting in
v5.16, there are optional parameters to this pragma, described below, which restrict which
operations are affected by it.

The current locale is set at execution time by Section 38.5.2 [setlocale()], page 705
described below. If that function hasn’t yet been called in the course of the program’s
execution, the current locale is that which was determined by the Section 38.8 [ENVIRON-
MENT], page 718 in effect at the start of the program. If there is no valid environment,
the current locale is whatever the system default has been set to. On POSIX systems, it is
likely, but not necessarily, the "C" locale. On Windows, the default is set via the computer’s
Control Panel->Regional and Language Options (or its current equivalent).

The operations that are affected by locale are:

Not within the scope of "use locale"

Only certain operations originating outside Perl should be affected, as follows:

• The current locale is used when going outside of Perl with operations like
[system()], page 471 or [qx//], page 832, if those operations are locale-
sensitive.

• Also Perl gives access to various C library functions through the POSIX

module. Some of those functions are always affected by the current locale.
For example, POSIX::strftime() uses LC_TIME; POSIX::strtod()

uses LC_NUMERIC; POSIX::strcoll() and POSIX::strxfrm() use
LC_COLLATE; and character classification functions like POSIX::isalnum()
use LC_CTYPE. All such functions will behave according to the current
underlying locale, even if that locale isn’t exposed to Perl space.

• XS modules for all categories but LC_NUMERIC get the underlying locale,
and hence any C library functions they call will use that underlying locale.
For more discussion, see Section “CAVEATS” in perlxs.

Note that all C programs (including the perl interpreter, which is written in C)
always have an underlying locale. That locale is the "C" locale unless changed
by a call to Section 38.5.2 [setlocale()], page 705. When Perl starts up, it
changes the underlying locale to the one which is indicated by the Section 38.8
[ENVIRONMENT], page 718. When using the POSIX module or writing XS
code, it is important to keep in mind that the underlying locale may be some-
thing other than "C", even if the program hasn’t explicitly changed it.

Lingering effects of use locale

Certain Perl operations that are set-up within the scope of a use locale retain
that effect even outside the scope. These include:

• The output format of a [write()], page 489 is determined by an earlier
format declaration ([perlfunc format], page 387), so whether or not the
output is affected by locale is determined by if the format() is within the
scope of a use locale, not whether the write() is.

• Regular expression patterns can be compiled using [qr//], page 823 with
actual matching deferred to later. Again, it is whether or not the compila-
tion was done within the scope of use locale that determines the match
behavior, not if the matches are done within such a scope or not.

Under "use locale";

• All the above operations

• Format declarations ([perlfunc format], page 387) and hence any subse-
quent write()s use LC_NUMERIC.

• stringification and output use LC_NUMERIC. These include the results of
print(), printf(), say(), and sprintf().

• The comparison operators (lt, le, cmp, ge, and gt) use LC_COLLATE.
sort() is also affected if used without an explicit comparison function,
because it uses cmp by default.

Note: eq and ne are unaffected by locale: they always perform a char-
by-char comparison of their scalar operands. What’s more, if cmp finds
that its operands are equal according to the collation sequence specified by
the current locale, it goes on to perform a char-by-char comparison, and
only returns 0 (equal) if the operands are char-for-char identical. If you
really want to know whether two strings–which eq and cmp may consider
different–are equal as far as collation in the locale is concerned, see the
discussion in [Category LC COLLATE: Collation], page 702.

• Regular expressions and case-modification functions (uc(), lc(),
ucfirst(), and lcfirst()) use LC_CTYPE

• The variables [$!], page 1400 (and its synonyms $ERRNO and $OS_ERROR)
and [$^E], page 1399 (and its synonym $EXTENDED_OS_ERROR) when used
as strings use LC_MESSAGES.

The default behavior is restored with the no locale pragma, or upon reaching the end
of the block enclosing use locale. Note that use locale calls may be nested, and that
what is in effect within an inner scope will revert to the outer scope’s rules at the end of
the inner scope.

The string result of any operation that uses locale information is tainted, as it is possible
for a locale to be untrustworthy. See Section 38.7 [SECURITY], page 716.

Starting in Perl v5.16 in a very limited way, and more generally in v5.22, you can restrict
which category or categories are enabled by this particular instance of the pragma by adding
parameters to it. For example,

use locale qw(:ctype :numeric);

enables locale awareness within its scope of only those operations (listed above) that are
affected by LC_CTYPE and LC_NUMERIC.

The possible categories are: :collate, :ctype, :messages, :monetary, :numeric,
:time, and the pseudo category :characters (described below).

Thus you can say

use locale ’:messages’;

and only [$!], page 1400 and [$^E], page 1399 will be locale aware. Everything else is
unaffected.

Since Perl doesn’t currently do anything with the LC_MONETARY category, specifying
:monetary does effectively nothing. Some systems have other categories, such as LC_PAPER_
SIZE, but Perl also doesn’t know anything about them, and there is no way to specify them
in this pragma’s arguments.

You can also easily say to use all categories but one, by either, for example,

use locale ’:!ctype’;

use locale ’:not_ctype’;

both of which mean to enable locale awarness of all categories but LC_CTYPE. Only one
category argument may be specified in a use locale if it is of the negated form.

Prior to v5.22 only one form of the pragma with arguments is available:

use locale ’:not_characters’;

(and you have to say not_; you can’t use the bang ! form). This pseudo category is
a shorthand for specifying both :collate and :ctype. Hence, in the negated form, it is
nearly the same thing as saying

use locale qw(:messages :monetary :numeric :time);

We use the term "nearly", because :not_characters also turns on
use feature ’unicode_strings’ within its scope. This form is less useful in
v5.20 and later, and is described fully in Section 38.10 [Unicode and UTF-8], page 721,
but briefly, it tells Perl to not use the character portions of the locale definition, that is
the LC_CTYPE and LC_COLLATE categories. Instead it will use the native character set
(extended by Unicode). When using this parameter, you are responsible for getting the
external character set translated into the native/Unicode one (which it already will be if it
is one of the increasingly popular UTF-8 locales). There are convenient ways of doing this,
as described in Section 38.10 [Unicode and UTF-8], page 721.

38.5.2 The setlocale function

You can switch locales as often as you wish at run time with the POSIX::setlocale()

function:

Import locale-handling tool set from POSIX module.

This example uses: setlocale -- the function call

LC_CTYPE -- explained below

(Showing the testing for success/failure of operations is

omitted in these examples to avoid distracting from the main

point)

use POSIX qw(locale_h);

use locale;

my $old_locale;

query and save the old locale

$old_locale = setlocale(LC_CTYPE);

setlocale(LC_CTYPE, "fr_CA.ISO8859-1");

LC_CTYPE now in locale "French, Canada, codeset ISO 8859-1"

setlocale(LC_CTYPE, "");

LC_CTYPE now reset to the default defined by the

LC_ALL/LC_CTYPE/LANG environment variables, or to the system

default. See below for documentation.

restore the old locale

setlocale(LC_CTYPE, $old_locale);

This simultaneously affects all threads of the program, so it may be problematic to
use locales in threaded applications except where there is a single locale applicable to all
threads.

The first argument of setlocale() gives the category, the second the locale. The cate-
gory tells in what aspect of data processing you want to apply locale-specific rules. Category
names are discussed in Section 38.6 [LOCALE CATEGORIES], page 711 and Section 38.8
[ENVIRONMENT], page 718. The locale is the name of a collection of customization in-
formation corresponding to a particular combination of language, country or territory, and
codeset. Read on for hints on the naming of locales: not all systems name locales as in the
example.

If no second argument is provided and the category is something other than LC_ALL,
the function returns a string naming the current locale for the category. You can use this
value as the second argument in a subsequent call to setlocale(), but on some platforms
the string is opaque, not something that most people would be able to decipher as to what
locale it means.

If no second argument is provided and the category is LC_ALL, the result is
implementation-dependent. It may be a string of concatenated locale names (separator
also implementation-dependent) or a single locale name. Please consult your setlocale(3)
man page for details.

If a second argument is given and it corresponds to a valid locale, the locale for the
category is set to that value, and the function returns the now-current locale value. You
can then use this in yet another call to setlocale(). (In some implementations, the return
value may sometimes differ from the value you gave as the second argument–think of it as
an alias for the value you gave.)

As the example shows, if the second argument is an empty string, the category’s locale
is returned to the default specified by the corresponding environment variables. Generally,
this results in a return to the default that was in force when Perl started up: changes to the

http://man.he.net/man3/setlocale

environment made by the application after startup may or may not be noticed, depending
on your system’s C library.

Note that when a form of use locale that doesn’t include all categories is specified, Perl
ignores the excluded categories.

If set_locale() fails for some reason (for example, an attempt to set to a locale unknown
to the system), the locale for the category is not changed, and the function returns undef.

For further information about the categories, consult setlocale(3).

38.5.3 Finding locales

For locales available in your system, consult also setlocale(3) to see whether it leads to the
list of available locales (search for the SEE ALSO section). If that fails, try the following
command lines:

locale -a

nlsinfo

ls /usr/lib/nls/loc

ls /usr/lib/locale

ls /usr/lib/nls

ls /usr/share/locale

and see whether they list something resembling these

en_US.ISO8859-1 de_DE.ISO8859-1 ru_RU.ISO8859-5

en_US.iso88591 de_DE.iso88591 ru_RU.iso88595

en_US de_DE ru_RU

en de ru

english german russian

english.iso88591 german.iso88591 russian.iso88595

english.roman8 russian.koi8r

Sadly, even though the calling interface for setlocale() has been standardized, names
of locales and the directories where the configuration resides have not been. The basic form
of the name is language territory .codeset, but the latter parts after language are not always
present. The language and country are usually from the standards ISO 3166 and ISO 639,
the two-letter abbreviations for the countries and the languages of the world, respectively.
The codeset part often mentions some ISO 8859 character set, the Latin codesets. For
example, ISO 8859-1 is the so-called "Western European codeset" that can be used to
encode most Western European languages adequately. Again, there are several ways to
write even the name of that one standard. Lamentably.

Two special locales are worth particular mention: "C" and "POSIX". Currently these
are effectively the same locale: the difference is mainly that the first one is defined by the C
standard, the second by the POSIX standard. They define the default locale in which every
program starts in the absence of locale information in its environment. (The default default
locale, if you will.) Its language is (American) English and its character codeset ASCII or,

http://man.he.net/man3/setlocale
http://man.he.net/man3/setlocale

rarely, a superset thereof (such as the "DEC Multinational Character Set (DEC-MCS)").
Warning. The C locale delivered by some vendors may not actually exactly match what
the C standard calls for. So beware.

NOTE: Not all systems have the "POSIX" locale (not all systems are POSIX-
conformant), so use "C" when you need explicitly to specify this default locale.

38.5.4 LOCALE PROBLEMS

You may encounter the following warning message at Perl startup:

perl: warning: Setting locale failed.

perl: warning: Please check that your locale settings:

LC_ALL = "En_US",

LANG = (unset)

are supported and installed on your system.

perl: warning: Falling back to the standard locale ("C").

This means that your locale settings had LC_ALL set to "En US" and LANG exists but
has no value. Perl tried to believe you but could not. Instead, Perl gave up and fell back to
the "C" locale, the default locale that is supposed to work no matter what. (On Windows, it
first tries falling back to the system default locale.) This usually means your locale settings
were wrong, they mention locales your system has never heard of, or the locale installation
in your system has problems (for example, some system files are broken or missing). There
are quick and temporary fixes to these problems, as well as more thorough and lasting fixes.

38.5.5 Testing for broken locales

If you are building Perl from source, the Perl test suite file lib/locale.t can be used to
test the locales on your system. Setting the environment variable PERL_DEBUG_FULL_TEST

to 1 will cause it to output detailed results. For example, on Linux, you could say

PERL_DEBUG_FULL_TEST=1 ./perl -T -Ilib lib/locale.t > locale.log 2>&1

Besides many other tests, it will test every locale it finds on your system to see if they
conform to the POSIX standard. If any have errors, it will include a summary near the end
of the output of which locales passed all its tests, and which failed, and why.

38.5.6 Temporarily fixing locale problems

The two quickest fixes are either to render Perl silent about any locale inconsistencies or to
run Perl under the default locale "C".

Perl’s moaning about locale problems can be silenced by setting the environment variable
PERL_BADLANG to "0" or "". This method really just sweeps the problem under the carpet:
you tell Perl to shut up even when Perl sees that something is wrong. Do not be surprised
if later something locale-dependent misbehaves.

Perl can be run under the "C" locale by setting the environment variable LC_ALL to "C".
This method is perhaps a bit more civilized than the PERL_BADLANG approach, but setting
LC_ALL (or other locale variables) may affect other programs as well, not just Perl. In par-
ticular, external programs run from within Perl will see these changes. If you make the new
settings permanent (read on), all programs you run see the changes. See Section 38.8 [EN-
VIRONMENT], page 718 for the full list of relevant environment variables and Section 38.5
[USING LOCALES], page 703 for their effects in Perl. Effects in other programs are easily

deducible. For example, the variable LC_COLLATE may well affect your sort program (or
whatever the program that arranges "records" alphabetically in your system is called).

You can test out changing these variables temporarily, and if the new settings seem to
help, put those settings into your shell startup files. Consult your local documentation for
the exact details. For Bourne-like shells (sh, ksh, bash, zsh):

LC_ALL=en_US.ISO8859-1

export LC_ALL

This assumes that we saw the locale "en US.ISO8859-1" using the commands discussed
above. We decided to try that instead of the above faulty locale "En US"–and in Cshish
shells (csh, tcsh)

setenv LC_ALL en_US.ISO8859-1

or if you have the "env" application you can do (in any shell)

env LC_ALL=en_US.ISO8859-1 perl ...

If you do not know what shell you have, consult your local helpdesk or the equivalent.

38.5.7 Permanently fixing locale problems

The slower but superior fixes are when you may be able to yourself fix the misconfiguration
of your own environment variables. The mis(sing)configuration of the whole system’s locales
usually requires the help of your friendly system administrator.

First, see earlier in this document about Section 38.5.3 [Finding locales], page 707. That
tells how to find which locales are really supported–and more importantly, installed–on
your system. In our example error message, environment variables affecting the locale are
listed in the order of decreasing importance (and unset variables do not matter). Therefore,
having LC ALL set to "En US" must have been the bad choice, as shown by the error
message. First try fixing locale settings listed first.

Second, if using the listed commands you see something exactly (prefix matches do not
count and case usually counts) like "En US" without the quotes, then you should be okay
because you are using a locale name that should be installed and available in your system.
In this case, see Section 38.5.8 [Permanently fixing your system’s locale configuration],
page 709.

38.5.8 Permanently fixing your system’s locale configuration

This is when you see something like:

perl: warning: Please check that your locale settings:

LC_ALL = "En_US",

LANG = (unset)

are supported and installed on your system.

but then cannot see that "En US" listed by the above-mentioned commands. You may
see things like "en US.ISO8859-1", but that isn’t the same. In this case, try running under a
locale that you can list and which somehow matches what you tried. The rules for matching
locale names are a bit vague because standardization is weak in this area. See again the
Section 38.5.3 [Finding locales], page 707 about general rules.

38.5.9 Fixing system locale configuration

Contact a system administrator (preferably your own) and report the exact error message
you get, and ask them to read this same documentation you are now reading. They should
be able to check whether there is something wrong with the locale configuration of the
system. The Section 38.5.3 [Finding locales], page 707 section is unfortunately a bit vague
about the exact commands and places because these things are not that standardized.

38.5.10 The localeconv function

The POSIX::localeconv() function allows you to get particulars of the locale-dependent
numeric formatting information specified by the current underlying LC_NUMERIC and LC_

MONETARY locales (regardless of whether called from within the scope of use locale or
not). (If you just want the name of the current locale for a particular category, use
POSIX::setlocale() with a single parameter–see Section 38.5.2 [The setlocale function],
page 705.)

use POSIX qw(locale_h);

Get a reference to a hash of locale-dependent info

$locale_values = localeconv();

Output sorted list of the values

for (sort keys %$locale_values) {

printf "%-20s = %s\n", $_, $locale_values->{$_}

}

localeconv() takes no arguments, and returns a reference to a hash. The keys of
this hash are variable names for formatting, such as decimal_point and thousands_sep.
The values are the corresponding, er, values. See Section “localeconv” in POSIX for a
longer example listing the categories an implementation might be expected to provide;
some provide more and others fewer. You don’t need an explicit use locale, because
localeconv() always observes the current locale.

Here’s a simple-minded example program that rewrites its command-line parameters as
integers correctly formatted in the current locale:

use POSIX qw(locale_h);

Get some of locale’s numeric formatting parameters

my ($thousands_sep, $grouping) =

@{localeconv()}{’thousands_sep’, ’grouping’};

Apply defaults if values are missing

$thousands_sep = ’,’ unless $thousands_sep;

grouping and mon_grouping are packed lists

of small integers (characters) telling the

grouping (thousand_seps and mon_thousand_seps

being the group dividers) of numbers and

monetary quantities. The integers’ meanings:

255 means no more grouping, 0 means repeat

the previous grouping, 1-254 means use that

as the current grouping. Grouping goes from

right to left (low to high digits). In the

below we cheat slightly by never using anything

else than the first grouping (whatever that is).

if ($grouping) {

@grouping = unpack("C*", $grouping);

} else {

@grouping = (3);

}

Format command line params for current locale

for (@ARGV) {

$_ = int; # Chop non-integer part

1 while

s/(\d)(\d{$grouping[0]}($|$thousands_sep))/$1$thousands_sep$2/;

print "$_";

}

print "\n";

Note that if the platform doesn’t have LC_NUMERIC and/or LC_MONETARY available or
enabled, the corresponding elements of the hash will be missing.

38.5.11 I18N::Langinfo

Another interface for querying locale-dependent information is the I18N::Langinfo::langinfo()
function, available at least in Unix-like systems and VMS.

The following example will import the langinfo() function itself and three constants to
be used as arguments to langinfo(): a constant for the abbreviated first day of the week
(the numbering starts from Sunday = 1) and two more constants for the affirmative and
negative answers for a yes/no question in the current locale.

use I18N::Langinfo qw(langinfo ABDAY_1 YESSTR NOSTR);

my ($abday_1, $yesstr, $nostr)

= map { langinfo } qw(ABDAY_1 YESSTR NOSTR);

print "$abday_1? [$yesstr/$nostr] ";

In other words, in the "C" (or English) locale the above will probably print something
like:

Sun? [yes/no]

See I18N-Langinfo for more information.

38.6 LOCALE CATEGORIES

The following subsections describe basic locale categories. Beyond these, some combination
categories allow manipulation of more than one basic category at a time. See Section 38.8
[ENVIRONMENT], page 718 for a discussion of these.

38.6.1 Category LC_COLLATE: Collation

In the scope of a use locale form that includes collation, Perl looks to the LC_COLLATE

environment variable to determine the application’s notions on collation (ordering) of char-
acters. For example, "b" follows "a" in Latin alphabets, but where do "á" and "̊a" belong?
And while "color" follows "chocolate" in English, what about in traditional Spanish?

The following collations all make sense and you may meet any of them if you "use

locale".

A B C D E a b c d e

A a B b C c D d E e

a A b B c C d D e E

a b c d e A B C D E

Here is a code snippet to tell what "word" characters are in the current locale, in that
locale’s order:

use locale;

print +(sort grep /\w/, map { chr } 0..255), "\n";

Compare this with the characters that you see and their order if you state explicitly that
the locale should be ignored:

no locale;

print +(sort grep /\w/, map { chr } 0..255), "\n";

This machine-native collation (which is what you get unless use locale has appeared
earlier in the same block) must be used for sorting raw binary data, whereas the locale-
dependent collation of the first example is useful for natural text.

As noted in Section 38.5 [USING LOCALES], page 703, cmp compares according to
the current collation locale when use locale is in effect, but falls back to a char-by-char
comparison for strings that the locale says are equal. You can use POSIX::strcoll() if
you don’t want this fall-back:

use POSIX qw(strcoll);

$equal_in_locale =

!strcoll("space and case ignored", "SpaceAndCaseIgnored");

$equal_in_locale will be true if the collation locale specifies a dictionary-like ordering
that ignores space characters completely and which folds case.

Perl currently only supports single-byte locales for LC_COLLATE. This means that a
UTF-8 locale likely will just give you machine-native ordering. Use Unicode-Collate for
the full implementation of the Unicode Collation Algorithm.

If you have a single string that you want to check for "equality in locale" against several
others, you might think you could gain a little efficiency by using POSIX::strxfrm() in
conjunction with eq:

use POSIX qw(strxfrm);

$xfrm_string = strxfrm("Mixed-case string");

print "locale collation ignores spaces\n"

if $xfrm_string eq strxfrm("Mixed-casestring");

print "locale collation ignores hyphens\n"

if $xfrm_string eq strxfrm("Mixedcase string");

print "locale collation ignores case\n"

if $xfrm_string eq strxfrm("mixed-case string");

strxfrm() takes a string and maps it into a transformed string for use in char-by-
char comparisons against other transformed strings during collation. "Under the hood",
locale-affected Perl comparison operators call strxfrm() for both operands, then do a char-
by-char comparison of the transformed strings. By calling strxfrm() explicitly and using a
non locale-affected comparison, the example attempts to save a couple of transformations.
But in fact, it doesn’t save anything: Perl magic (see Section 28.3.18 [perlguts Magic
Variables], page 528) creates the transformed version of a string the first time it’s needed in
a comparison, then keeps this version around in case it’s needed again. An example rewritten
the easy way with cmp runs just about as fast. It also copes with null characters embedded
in strings; if you call strxfrm() directly, it treats the first null it finds as a terminator.
don’t expect the transformed strings it produces to be portable across systems–or even from
one revision of your operating system to the next. In short, don’t call strxfrm() directly:
let Perl do it for you.

Note: use locale isn’t shown in some of these examples because it isn’t needed:
strcoll() and strxfrm() are POSIX functions which use the standard system-supplied
libc functions that always obey the current LC_COLLATE locale.

38.6.2 Category LC_CTYPE: Character Types

In the scope of a use locale form that includes LC_CTYPE, Perl obeys the LC_CTYPE locale
setting. This controls the application’s notion of which characters are alphabetic, numeric,
punctuation, etc. This affects Perl’s \w regular expression metanotation, which stands for
alphanumeric characters–that is, alphabetic, numeric, and the platform’s native underscore.
(Consult Section 58.1 [perlre NAME], page 989 for more information about regular expres-
sions.) Thanks to LC_CTYPE, depending on your locale setting, characters like "æ", "ð",
"ß", and "ø" may be understood as \w characters. It also affects things like \s, \D, and
the POSIX character classes, like [[:graph:]]. (See Section 61.1 [perlrecharclass NAME],
page 1059 for more information on all these.)

The LC_CTYPE locale also provides the map used in transliterating characters between
lower and uppercase. This affects the case-mapping functions–fc(), lc(), lcfirst(),
uc(), and ucfirst(); case-mapping interpolation with \F, \l, \L, \u, or \U in double-
quoted strings and s/// substitutions; and case-independent regular expression pattern
matching using the i modifier.

Finally, LC_CTYPE affects the (deprecated) POSIX character-class test functions–
POSIX::isalpha(), POSIX::islower(), and so on. For example, if you move from the
"C" locale to a 7-bit ISO 646 one, you may find–possibly to your surprise–that "|" moves
from the POSIX::ispunct() class to POSIX::isalpha(). Unfortunately, this creates big
problems for regular expressions. "|" still means alternation even though it matches \w.
Starting in v5.22, a warning will be raised when such a locale is switched into. More
details are given several paragraphs further down.

Starting in v5.20, Perl supports UTF-8 locales for LC_CTYPE, but otherwise Perl only
supports single-byte locales, such as the ISO 8859 series. This means that wide character
locales, for example for Asian languages, are not well-supported. (If the platform has
the capability for Perl to detect such a locale, starting in Perl v5.22, Section “Category
Hierarchy” in warnings, using the locale warning category, whenever such a locale is
switched into.) The UTF-8 locale support is actually a superset of POSIX locales, because

it is really full Unicode behavior as if no LC_CTYPE locale were in effect at all (except for
tainting; see Section 38.7 [SECURITY], page 716). POSIX locales, even UTF-8 ones, are
lacking certain concepts in Unicode, such as the idea that changing the case of a character
could expand to be more than one character. Perl in a UTF-8 locale, will give you that
expansion. Prior to v5.20, Perl treated a UTF-8 locale on some platforms like an ISO 8859-1
one, with some restrictions, and on other platforms more like the "C" locale. For releases
v5.16 and v5.18, use locale ’not_characters could be used as a workaround for this (see
Section 38.10 [Unicode and UTF-8], page 721).

Note that there are quite a few things that are unaffected by the current locale. Any lit-
eral character is the native character for the given platform. Hence ’A’ means the character
at code point 65 on ASCII platforms, and 193 on EBCDIC. That may or may not be an ’A’
in the current locale, if that locale even has an ’A’. Similarly, all the escape sequences for
particular characters, \n for example, always mean the platform’s native one. This means,
for example, that \N in regular expressions (every character but new-line) works on the
platform character set.

Starting in v5.22, Perl will by default warn when switching into a locale that redefines
any ASCII printable character (plus \t and \n) into a different class than expected. This
is likely to happen on modern locales only on EBCDIC platforms, where, for example,
a CCSID 0037 locale on a CCSID 1047 machine moves "[", but it can happen on ASCII
platforms with the ISO 646 and other 7-bit locales that are essentially obsolete. Things may
still work, depending on what features of Perl are used by the program. For example, in the
example from above where "|" becomes a \w, and there are no regular expressions where
this matters, the program may still work properly. The warning lists all the characters that
it can determine could be adversely affected.

Note: A broken or malicious LC_CTYPE locale definition may result in clearly ineligible
characters being considered to be alphanumeric by your application. For strict matching of
(mundane) ASCII letters and digits–for example, in command strings–locale-aware applica-
tions should use \w with the /a regular expression modifier. See Section 38.7 [SECURITY],
page 716.

38.6.3 Category LC_NUMERIC: Numeric Formatting

After a proper POSIX::setlocale() call, and within the scope of of a use locale form
that includes numerics, Perl obeys the LC_NUMERIC locale information, which controls an
application’s idea of how numbers should be formatted for human readability. In most
implementations the only effect is to change the character used for the decimal point–
perhaps from "." to ",". The functions aren’t aware of such niceties as thousands separation
and so on. (See Section 38.5.10 [The localeconv function], page 710 if you care about these
things.)

use POSIX qw(strtod setlocale LC_NUMERIC);

use locale;

setlocale LC_NUMERIC, "";

$n = 5/2; # Assign numeric 2.5 to $n

$a = " $n"; # Locale-dependent conversion to string

print "half five is $n\n"; # Locale-dependent output

printf "half five is %g\n", $n; # Locale-dependent output

print "DECIMAL POINT IS COMMA\n"

if $n == (strtod("2,5"))[0]; # Locale-dependent conversion

See also I18N-Langinfo and RADIXCHAR.

38.6.4 Category LC_MONETARY: Formatting of monetary amounts

The C standard defines the LC_MONETARY category, but not a function that is affected by its
contents. (Those with experience of standards committees will recognize that the working
group decided to punt on the issue.) Consequently, Perl essentially takes no notice of it. If
you really want to use LC_MONETARY, you can query its contents–see Section 38.5.10 [The
localeconv function], page 710–and use the information that it returns in your application’s
own formatting of currency amounts. However, you may well find that the information,
voluminous and complex though it may be, still does not quite meet your requirements:
currency formatting is a hard nut to crack.

See also I18N-Langinfo and CRNCYSTR.

38.6.5 LC_TIME

Output produced by POSIX::strftime(), which builds a formatted human-readable
date/time string, is affected by the current LC_TIME locale. Thus, in a French locale, the
output produced by the %B format element (full month name) for the first month of the
year would be "janvier". Here’s how to get a list of long month names in the current
locale:

use POSIX qw(strftime);

for (0..11) {

$long_month_name[$_] =

strftime("%B", 0, 0, 0, 1, $_, 96);

}

Note: use locale isn’t needed in this example: strftime() is a POSIX function which
uses the standard system-supplied libc function that always obeys the current LC_TIME

locale.

See also I18N-Langinfo and ABDAY_1..ABDAY_7, DAY_1..DAY_7, ABMON_1..ABMON_12, and
ABMON_1..ABMON_12.

38.6.6 Other categories

The remaining locale categories are not currently used by Perl itself. But again note that
things Perl interacts with may use these, including extensions outside the standard Perl
distribution, and by the operating system and its utilities. Note especially that the string
value of $! and the error messages given by external utilities may be changed by LC_

MESSAGES. If you want to have portable error codes, use %!. See Errno.

38.7 SECURITY

Although the main discussion of Perl security issues can be found in Section 70.1 [perlsec
NAME], page 1198, a discussion of Perl’s locale handling would be incomplete if it did not
draw your attention to locale-dependent security issues. Locales–particularly on systems
that allow unprivileged users to build their own locales–are untrustworthy. A malicious (or
just plain broken) locale can make a locale-aware application give unexpected results. Here
are a few possibilities:

• Regular expression checks for safe file names or mail addresses using \w may be spoofed
by an LC_CTYPE locale that claims that characters such as ">" and "|" are alphanu-
meric.

• String interpolation with case-mapping, as in, say, $dest = "C:\U$name.$ext", may
produce dangerous results if a bogus LC_CTYPE case-mapping table is in effect.

• A sneaky LC_COLLATE locale could result in the names of students with "D" grades
appearing ahead of those with "A"s.

• An application that takes the trouble to use information in LC_MONETARY may format
debits as if they were credits and vice versa if that locale has been subverted. Or it
might make payments in US dollars instead of Hong Kong dollars.

• The date and day names in dates formatted by strftime() could be manipulated to
advantage by a malicious user able to subvert the LC_DATE locale. ("Look–it says I
wasn’t in the building on Sunday.")

Such dangers are not peculiar to the locale system: any aspect of an application’s en-
vironment which may be modified maliciously presents similar challenges. Similarly, they
are not specific to Perl: any programming language that allows you to write programs that
take account of their environment exposes you to these issues.

Perl cannot protect you from all possibilities shown in the examples–there is no substitute
for your own vigilance–but, when use locale is in effect, Perl uses the tainting mechanism
(see Section 70.1 [perlsec NAME], page 1198) to mark string results that become locale-
dependent, and which may be untrustworthy in consequence. Here is a summary of the
tainting behavior of operators and functions that may be affected by the locale:

• Comparison operators (lt, le, ge, gt and cmp):

Scalar true/false (or less/equal/greater) result is never tainted.

• Case-mapping interpolation (with \l, \L, \u, \U, or \F)

The result string containing interpolated material is tainted if a use locale form that
includes LC_CTYPE is in effect.

• Matching operator (m//):

Scalar true/false result never tainted.

All subpatterns, either delivered as a list-context result or as $1 etc., are tainted if a
use locale form that includes LC_CTYPE is in effect, and the subpattern regular expres-
sion contains a locale-dependent construct. These constructs include \w (to match an
alphanumeric character), \W (non-alphanumeric character), \b and \B (word-boundary
and non-boundardy, which depend on what \w and \W match), \s (whitespace charac-
ter), \S (non whitespace character), \d and \D (digits and non-digits), and the POSIX
character classes, such as [:alpha:] (see Section 61.2.3.5 [perlrecharclass POSIX Char-
acter Classes], page 1069).

Tainting is also likely if the pattern is to be matched case-insensitively (via /i). The
exception is if all the code points to be matched this way are above 255 and do not have
folds under Unicode rules to below 256. Tainting is not done for these because Perl
only uses Unicode rules for such code points, and those rules are the same no matter
what the current locale.

The matched-pattern variables, $&, $‘ (pre-match), $’ (post-match), and $+ (last
match) also are tainted.

• Substitution operator (s///):

Has the same behavior as the match operator. Also, the left operand of =~ becomes
tainted when a use locale form that includes LC_CTYPE is in effect, if modified as a
result of a substitution based on a regular expression match involving any of the things
mentioned in the previous item, or of case-mapping, such as \l, \L,\u, \U, or \F.

• Output formatting functions (printf() and write()):

Results are never tainted because otherwise even output from print, for example
print(1/7), should be tainted if use locale is in effect.

• Case-mapping functions (lc(), lcfirst(), uc(), ucfirst()):

Results are tainted if a use locale form that includes LC_CTYPE is in effect.

• POSIX locale-dependent functions (localeconv(), strcoll(), strftime(),
strxfrm()):

Results are never tainted.

• POSIX character class tests (POSIX::isalnum(), POSIX::isalpha(),
POSIX::isdigit(), POSIX::isgraph(), POSIX::islower(), POSIX::isprint(),
POSIX::ispunct(), POSIX::isspace(), POSIX::isupper(), POSIX::isxdigit()):

True/false results are never tainted.

Three examples illustrate locale-dependent tainting. The first program, which ignores
its locale, won’t run: a value taken directly from the command line may not be used to
name an output file when taint checks are enabled.

#/usr/local/bin/perl -T

Run with taint checking

Command line sanity check omitted...

$tainted_output_file = shift;

open(F, ">$tainted_output_file")

or warn "Open of $tainted_output_file failed: $!\n";

The program can be made to run by "laundering" the tainted value through a regular
expression: the second example–which still ignores locale information–runs, creating the file
named on its command line if it can.

#/usr/local/bin/perl -T

$tainted_output_file = shift;

$tainted_output_file =~ m%[\w/]+%;

$untainted_output_file = $&;

open(F, ">$untainted_output_file")

or warn "Open of $untainted_output_file failed: $!\n";

Compare this with a similar but locale-aware program:

#/usr/local/bin/perl -T

$tainted_output_file = shift;

use locale;

$tainted_output_file =~ m%[\w/]+%;

$localized_output_file = $&;

open(F, ">$localized_output_file")

or warn "Open of $localized_output_file failed: $!\n";

This third program fails to run because $& is tainted: it is the result of a match involving
\w while use locale is in effect.

38.8 ENVIRONMENT

PERL SKIP LOCALE INIT
This environment variable, available starting in Perl v5.20, if set (to any value),
tells Perl to not use the rest of the environment variables to initialize with. In-
stead, Perl uses whatever the current locale settings are. This is particularly
useful in embedded environments, see Section 20.2.14 [perlembed Using embed-
ded Perl with POSIX locales], page 320.

PERL BADLANG
A string that can suppress Perl’s warning about failed locale settings at startup.
Failure can occur if the locale support in the operating system is lacking (bro-
ken) in some way–or if you mistyped the name of a locale when you set up your
environment. If this environment variable is absent, or has a value other than
"0" or "", Perl will complain about locale setting failures.

NOTE: PERL_BADLANG only gives you a way to hide the warning message. The
message tells about some problem in your system’s locale support, and you
should investigate what the problem is.

The following environment variables are not specific to Perl: They are part of the stan-
dardized (ISO C, XPG4, POSIX 1.c) setlocale() method for controlling an application’s
opinion on data. Windows is non-POSIX, but Perl arranges for the following to work as
described anyway. If the locale given by an environment variable is not valid, Perl tries the
next lower one in priority. If none are valid, on Windows, the system default locale is then
tried. If all else fails, the "C" locale is used. If even that doesn’t work, something is badly
broken, but Perl tries to forge ahead with whatever the locale settings might be.

LC_ALL

LC_ALL is the "override-all" locale environment variable. If set, it overrides all
the rest of the locale environment variables.

LANGUAGE

NOTE: LANGUAGE is a GNU extension, it affects you only if you are using the
GNU libc. This is the case if you are using e.g. Linux. If you are using
"commercial" Unixes you are most probably not using GNU libc and you can
ignore LANGUAGE.

However, in the case you are using LANGUAGE: it affects the language of infor-
mational, warning, and error messages output by commands (in other words,
it’s like LC_MESSAGES) but it has higher priority than LC_ALL. Moreover, it’s
not a single value but instead a "path" (":"-separated list) of languages (not
locales). See the GNU gettext library documentation for more information.

LC_CTYPE

In the absence of LC_ALL, LC_CTYPE chooses the character type locale. In the
absence of both LC_ALL and LC_CTYPE, LANG chooses the character type locale.

LC_COLLATE

In the absence of LC_ALL, LC_COLLATE chooses the collation (sorting) locale. In
the absence of both LC_ALL and LC_COLLATE, LANG chooses the collation locale.

LC_MONETARY

In the absence of LC_ALL, LC_MONETARY chooses the monetary formatting locale.
In the absence of both LC_ALL and LC_MONETARY, LANG chooses the monetary
formatting locale.

LC_NUMERIC

In the absence of LC_ALL, LC_NUMERIC chooses the numeric format locale. In
the absence of both LC_ALL and LC_NUMERIC, LANG chooses the numeric format.

LC_TIME

In the absence of LC_ALL, LC_TIME chooses the date and time formatting locale.
In the absence of both LC_ALL and LC_TIME, LANG chooses the date and time
formatting locale.

LANG

LANG is the "catch-all" locale environment variable. If it is set, it is used as the
last resort after the overall LC_ALL and the category-specific LC_foo.

38.8.1 Examples

The LC_NUMERIC controls the numeric output:

use locale;

use POSIX qw(locale_h); # Imports setlocale() and the LC_ constants.

setlocale(LC_NUMERIC, "fr_FR") or die "Pardon";

printf "%g\n", 1.23; # If the "fr_FR" succeeded, probably shows 1,23.

and also how strings are parsed by POSIX::strtod() as numbers:

use locale;

use POSIX qw(locale_h strtod);

setlocale(LC_NUMERIC, "de_DE") or die "Entschuldigung";

my $x = strtod("2,34") + 5;

print $x, "\n"; # Probably shows 7,34.

38.9 NOTES

38.9.1 String eval and LC_NUMERIC

A string [eval], page 377 parses its expression as standard Perl. It is therefore expecting
the decimal point to be a dot. If LC_NUMERIC is set to have this be a comma instead, the
parsing will be confused, perhaps silently.

use locale;

use POSIX qw(locale_h);

setlocale(LC_NUMERIC, "fr_FR") or die "Pardon";

my $a = 1.2;

print eval "$a + 1.5";

print "\n";

prints 13,5. This is because in that locale, the comma is the decimal point character.
The eval thus expands to:

eval "1,2 + 1.5"

and the result is not what you likely expected. No warnings are generated. If you do
string eval’s within the scope of use locale, you should instead change the eval line to
do something like:

print eval "no locale; $a + 1.5";

This prints 2.7.

You could also exclude LC_NUMERIC, if you don’t need it, by

use locale ’:!numeric’;

38.9.2 Backward compatibility

Versions of Perl prior to 5.004 mostly ignored locale information, generally behaving as if
something similar to the "C" locale were always in force, even if the program environment
suggested otherwise (see Section 38.5.2 [The setlocale function], page 705). By default, Perl
still behaves this way for backward compatibility. If you want a Perl application to pay
attention to locale information, you must use the use locale pragma (see Section 38.5.1
[The "use locale" pragma], page 703) or, in the unlikely event that you want to do so for just
pattern matching, the /l regular expression modifier (see Section 58.2.1.2 [perlre Character
set modifiers], page 992) to instruct it to do so.

Versions of Perl from 5.002 to 5.003 did use the LC_CTYPE information if available; that
is, \w did understand what were the letters according to the locale environment variables.
The problem was that the user had no control over the feature: if the C library supported
locales, Perl used them.

38.9.3 I18N:Collate obsolete

In versions of Perl prior to 5.004, per-locale collation was possible using the I18N::Collate
library module. This module is now mildly obsolete and should be avoided in new applica-
tions. The LC_COLLATE functionality is now integrated into the Perl core language: One can
use locale-specific scalar data completely normally with use locale, so there is no longer
any need to juggle with the scalar references of I18N::Collate.

38.9.4 Sort speed and memory use impacts

Comparing and sorting by locale is usually slower than the default sorting; slow-downs of
two to four times have been observed. It will also consume more memory: once a Perl scalar
variable has participated in any string comparison or sorting operation obeying the locale
collation rules, it will take 3-15 times more memory than before. (The exact multiplier
depends on the string’s contents, the operating system and the locale.) These downsides
are dictated more by the operating system’s implementation of the locale system than by
Perl.

38.9.5 Freely available locale definitions

The Unicode CLDR project extracts the POSIX portion of many of its locales, available at

http://unicode.org/Public/cldr/latest/

There is a large collection of locale definitions at:

http://std.dkuug.dk/i18n/WG15-collection/locales/

You should be aware that it is unsupported, and is not claimed to be fit for any purpose.
If your system allows installation of arbitrary locales, you may find the definitions useful as
they are, or as a basis for the development of your own locales.

38.9.6 I18n and l10n

"Internationalization" is often abbreviated as i18n because its first and last letters are
separated by eighteen others. (You may guess why the internalin ... internaliti ... i18n
tends to get abbreviated.) In the same way, "localization" is often abbreviated to l10n.

38.9.7 An imperfect standard

Internationalization, as defined in the C and POSIX standards, can be criticized as incom-
plete, ungainly, and having too large a granularity. (Locales apply to a whole process, when
it would arguably be more useful to have them apply to a single thread, window group,
or whatever.) They also have a tendency, like standards groups, to divide the world into
nations, when we all know that the world can equally well be divided into bankers, bikers,
gamers, and so on.

38.10 Unicode and UTF-8

The support of Unicode is new starting from Perl version v5.6, and more fully implemented
in versions v5.8 and later. See Section 83.1 [perluniintro NAME], page 1352.

Starting in Perl v5.20, UTF-8 locales are supported in Perl, except for LC_COLLATE (use
Unicode-Collate instead). If you have Perl v5.16 or v5.18 and can’t upgrade, you can use

use locale ’:not_characters’;

When this form of the pragma is used, only the non-character portions of locales are used
by Perl, for example LC_NUMERIC. Perl assumes that you have translated all the characters
it is to operate on into Unicode (actually the platform’s native character set (ASCII or
EBCDIC) plus Unicode). For data in files, this can conveniently be done by also specifying

use open ’:locale’;

This pragma arranges for all inputs from files to be translated into Unicode from the cur-
rent locale as specified in the environment (see Section 38.8 [ENVIRONMENT], page 718),

and all outputs to files to be translated back into the locale. (See open). On a per-filehandle
basis, you can instead use the PerlIO-locale module, or the Encode-Locale module, both
available from CPAN. The latter module also has methods to ease the handling of ARGV
and environment variables, and can be used on individual strings. If you know that all
your locales will be UTF-8, as many are these days, you can use the 〈undefined〉 [-C],
page 〈undefined〉 command line switch.

This form of the pragma allows essentially seamless handling of locales with Unicode.
The collation order will be by Unicode code point order. It is strongly recommended that
when you need to order and sort strings that you use the standard module Unicode-Collate
which gives much better results in many instances than you can get with the old-style locale
handling.

All the modules and switches just described can be used in v5.20 with just plain use

locale, and, should the input locales not be UTF-8, you’ll get the less than ideal behavior,
described below, that you get with pre-v5.16 Perls, or when you use the locale pragma
without the :not_characters parameter in v5.16 and v5.18. If you are using exclusively
UTF-8 locales in v5.20 and higher, the rest of this section does not apply to you.

There are two cases, multi-byte and single-byte locales. First multi-byte:

The only multi-byte (or wide character) locale that Perl is ever likely to support is UTF-8.
This is due to the difficulty of implementation, the fact that high quality UTF-8 locales are
now published for every area of the world (http://unicode.org/Public/cldr/latest/),
and that failing all that you can use the Encode module to translate to/from your locale. So,
you’ll have to do one of those things if you’re using one of these locales, such as Big5 or Shift
JIS. For UTF-8 locales, in Perls (pre v5.20) that don’t have full UTF-8 locale support, they
may work reasonably well (depending on your C library implementation) simply because
both they and Perl store characters that take up multiple bytes the same way. However,
some, if not most, C library implementations may not process the characters in the upper
half of the Latin-1 range (128 - 255) properly under LC_CTYPE. To see if a character is a
particular type under a locale, Perl uses the functions like isalnum(). Your C library may
not work for UTF-8 locales with those functions, instead only working under the newer wide
library functions like iswalnum(), which Perl does not use. These multi-byte locales are
treated like single-byte locales, and will have the restrictions described below. Starting in
Perl v5.22 a warning message is raised when Perl detects a multi-byte locale that it doesn’t
fully support.

For single-byte locales, Perl generally takes the tack to use locale rules on code points
that can fit in a single byte, and Unicode rules for those that can’t (though this isn’t
uniformly applied, see the note at the end of this section). This prevents many problems in
locales that aren’t UTF-8. Suppose the locale is ISO8859-7, Greek. The character at 0xD7
there is a capital Chi. But in the ISO8859-1 locale, Latin1, it is a multiplication sign. The
POSIX regular expression character class [[:alpha:]] will magically match 0xD7 in the
Greek locale but not in the Latin one.

However, there are places where this breaks down. Certain Perl constructs are for
Unicode only, such as \p{Alpha}. They assume that 0xD7 always has its Unicode meaning
(or the equivalent on EBCDIC platforms). Since Latin1 is a subset of Unicode and 0xD7
is the multiplication sign in both Latin1 and Unicode, \p{Alpha} will never match it,
regardless of locale. A similar issue occurs with \N{...}. Prior to v5.20, It is therefore a

http://unicode.org/Public/cldr/latest/

bad idea to use \p{} or \N{} under plain use locale–unless you can guarantee that the
locale will be ISO8859-1. Use POSIX character classes instead.

Another problem with this approach is that operations that cross the single byte/multiple
byte boundary are not well-defined, and so are disallowed. (This boundary is between
the codepoints at 255/256.) For example, lower casing LATIN CAPITAL LETTER Y
WITH DIAERESIS (U+0178) should return LATIN SMALL LETTER Y WITH DIAERE-
SIS (U+00FF). But in the Greek locale, for example, there is no character at 0xFF, and
Perl has no way of knowing what the character at 0xFF is really supposed to represent.
Thus it disallows the operation. In this mode, the lowercase of U+0178 is itself.

The same problems ensue if you enable automatic UTF-8-ification of your standard
file handles, default open() layer, and @ARGV on non-ISO8859-1, non-UTF-8 locales (by
using either the -C command line switch or the PERL_UNICODE environment variable; see
Section 69.1 [perlrun NAME], page 1176). Things are read in as UTF-8, which would
normally imply a Unicode interpretation, but the presence of a locale causes them to be
interpreted in that locale instead. For example, a 0xD7 code point in the Unicode input,
which should mean the multiplication sign, won’t be interpreted by Perl that way under the
Greek locale. This is not a problem provided you make certain that all locales will always
and only be either an ISO8859-1, or, if you don’t have a deficient C library, a UTF-8 locale.

Still another problem is that this approach can lead to two code points meaning the
same character. Thus in a Greek locale, both U+03A7 and U+00D7 are GREEK CAPITAL
LETTER CHI.

Because of all these problems, starting in v5.22, Perl will raise a warning if a multi-byte
(hence Unicode) code point is used when a single-byte locale is in effect. (Although it
doesn’t check for this if doing so would unreasonably slow execution down.)

Vendor locales are notoriously buggy, and it is difficult for Perl to test its locale-handling
code because this interacts with code that Perl has no control over; therefore the locale-
handling code in Perl may be buggy as well. (However, the Unicode-supplied locales should
be better, and there is a feed back mechanism to correct any problems. See Section 38.9.5
[Freely available locale definitions], page 721.)

If you have Perl v5.16, the problems mentioned above go away if you use the :not_

characters parameter to the locale pragma (except for vendor bugs in the non-character
portions). If you don’t have v5.16, and you do have locales that work, using them may be
worthwhile for certain specific purposes, as long as you keep in mind the gotchas already
mentioned. For example, if the collation for your locales works, it runs faster under locales
than under Unicode-Collate; and you gain access to such things as the local currency
symbol and the names of the months and days of the week. (But to hammer home the
point, in v5.16, you get this access without the downsides of locales by using the :not_

characters form of the pragma.)

Note: The policy of using locale rules for code points that can fit in a byte, and Unicode
rules for those that can’t is not uniformly applied. Pre-v5.12, it was somewhat haphazard; in
v5.12 it was applied fairly consistently to regular expression matching except for bracketed
character classes; in v5.14 it was extended to all regex matches; and in v5.16 to the casing
operations such as \L and uc(). For collation, in all releases so far, the system’s strxfrm()
function is called, and whatever it does is what you get.

38.11 BUGS

38.11.1 Broken systems

In certain systems, the operating system’s locale support is broken and cannot be fixed or
used by Perl. Such deficiencies can and will result in mysterious hangs and/or Perl core
dumps when use locale is in effect. When confronted with such a system, please report in
excruciating detail to <perlbug@perl.org>, and also contact your vendor: bug fixes may
exist for these problems in your operating system. Sometimes such bug fixes are called an
operating system upgrade. If you have the source for Perl, include in the perlbug email the
output of the test described above in Section 38.5.5 [Testing for broken locales], page 708.

38.12 SEE ALSO

I18N-Langinfo, Section 83.1 [perluniintro NAME], page 1352, Section 81.1 [perlunicode
NAME], page 1317, open, Section “isalnum” in POSIX, Section “isalpha” in POSIX, Section
“isdigit” in POSIX, Section “isgraph” in POSIX, Section “islower” in POSIX, Section “isprint”
in POSIX, Section “ispunct” in POSIX, Section “isspace” in POSIX, Section “isupper” in
POSIX, Section “isxdigit” in POSIX, Section “localeconv” in POSIX, Section “setlocale” in
POSIX, Section “strcoll” in POSIX, Section “strftime” in POSIX, Section “strtod” in POSIX,
Section “strxfrm” in POSIX.

For special considerations when Perl is embedded in a C program, see Section 20.2.14
[perlembed Using embedded Perl with POSIX locales], page 320.

38.13 HISTORY

Jarkko Hietaniemi’s original perli18n.pod heavily hacked by Dominic Dunlop, assisted by
the perl5-porters. Prose worked over a bit by Tom Christiansen, and updated by Perl 5
porters.

39 perllol

39.1 NAME

perllol - Manipulating Arrays of Arrays in Perl

39.2 DESCRIPTION

39.2.1 Declaration and Access of Arrays of Arrays

The simplest two-level data structure to build in Perl is an array of arrays, sometimes
casually called a list of lists. It’s reasonably easy to understand, and almost everything
that applies here will also be applicable later on with the fancier data structures.

An array of an array is just a regular old array @AoA that you can get at with two
subscripts, like $AoA[3][2]. Here’s a declaration of the array:

use 5.010; # so we can use say()

assign to our array, an array of array references

@AoA = (

["fred", "barney", "pebbles", "bambam", "dino",],

["george", "jane", "elroy", "judy",],

["homer", "bart", "marge", "maggie",],

);

say $AoA[2][1];

bart

Now you should be very careful that the outer bracket type is a round one, that is, a
parenthesis. That’s because you’re assigning to an @array, so you need parentheses. If you
wanted there not to be an @AoA, but rather just a reference to it, you could do something
more like this:

assign a reference to array of array references

$ref_to_AoA = [

["fred", "barney", "pebbles", "bambam", "dino",],

["george", "jane", "elroy", "judy",],

["homer", "bart", "marge", "maggie",],

];

say $ref_to_AoA->[2][1];

bart

Notice that the outer bracket type has changed, and so our access syntax has also
changed. That’s because unlike C, in perl you can’t freely interchange arrays and references
thereto. $ref to AoA is a reference to an array, whereas @AoA is an array proper. Likewise,
$AoA[2] is not an array, but an array ref. So how come you can write these:

$AoA[2][2]

$ref_to_AoA->[2][2]

instead of having to write these:

$AoA[2]->[2]

$ref_to_AoA->[2]->[2]

Well, that’s because the rule is that on adjacent brackets only (whether square or curly),
you are free to omit the pointer dereferencing arrow. But you cannot do so for the very
first one if it’s a scalar containing a reference, which means that $ref to AoA always needs
it.

39.2.2 Growing Your Own

That’s all well and good for declaration of a fixed data structure, but what if you wanted
to add new elements on the fly, or build it up entirely from scratch?

First, let’s look at reading it in from a file. This is something like adding a row at a time.
We’ll assume that there’s a flat file in which each line is a row and each word an element.
If you’re trying to develop an @AoA array containing all these, here’s the right way to do
that:

while (<>) {

@tmp = split;

push @AoA, [@tmp];

}

You might also have loaded that from a function:

for $i (1 .. 10) {

$AoA[$i] = [somefunc($i)];

}

Or you might have had a temporary variable sitting around with the array in it.

for $i (1 .. 10) {

@tmp = somefunc($i);

$AoA[$i] = [@tmp];

}

It’s important you make sure to use the [] array reference constructor. That’s because
this wouldn’t work:

$AoA[$i] = @tmp; # WRONG!

The reason that doesn’t do what you want is because assigning a named array like that
to a scalar is taking an array in scalar context, which means just counts the number of
elements in @tmp.

If you are running under use strict (and if you aren’t, why in the world aren’t you?),
you’ll have to add some declarations to make it happy:

use strict;

my(@AoA, @tmp);

while (<>) {

@tmp = split;

push @AoA, [@tmp];

}

Of course, you don’t need the temporary array to have a name at all:

while (<>) {

push @AoA, [split];

}

You also don’t have to use push(). You could just make a direct assignment if you knew
where you wanted to put it:

my (@AoA, $i, $line);

for $i (0 .. 10) {

$line = <>;

$AoA[$i] = [split " ", $line];

}

or even just

my (@AoA, $i);

for $i (0 .. 10) {

$AoA[$i] = [split " ", <>];

}

You should in general be leery of using functions that could potentially return lists in
scalar context without explicitly stating such. This would be clearer to the casual reader:

my (@AoA, $i);

for $i (0 .. 10) {

$AoA[$i] = [split " ", scalar(<>)];

}

If you wanted to have a $ref to AoA variable as a reference to an array, you’d have to
do something like this:

while (<>) {

push @$ref_to_AoA, [split];

}

Now you can add new rows. What about adding new columns? If you’re dealing with
just matrices, it’s often easiest to use simple assignment:

for $x (1 .. 10) {

for $y (1 .. 10) {

$AoA[$x][$y] = func($x, $y);

}

}

for $x (3, 7, 9) {

$AoA[$x][20] += func2($x);

}

It doesn’t matter whether those elements are already there or not: it’ll gladly create
them for you, setting intervening elements to undef as need be.

If you wanted just to append to a row, you’d have to do something a bit funnier looking:

add new columns to an existing row

push @{ $AoA[0] }, "wilma", "betty"; # explicit deref

Prior to Perl 5.14, this wouldn’t even compile:

push $AoA[0], "wilma", "betty"; # implicit deref

How come? Because once upon a time, the argument to push() had to be a real array,
not just a reference to one. That’s no longer true. In fact, the line marked "implicit deref"
above works just fine–in this instance–to do what the one that says explicit deref did.

The reason I said "in this instance" is because that only works because $AoA[0] already
held an array reference. If you try that on an undefined variable, you’ll take an exception.
That’s because the implicit derefererence will never autovivify an undefined variable the
way @{ } always will:

my $aref = undef;

push $aref, qw(some more values); # WRONG!

push @$aref, qw(a few more); # ok

If you want to take advantage of this new implicit dereferencing behavior, go right ahead:
it makes code easier on the eye and wrist. Just understand that older releases will choke
on it during compilation. Whenever you make use of something that works only in some
given release of Perl and later, but not earlier, you should place a prominent

use v5.14; # needed for implicit deref of array refs by array ops

directive at the top of the file that needs it. That way when somebody tries to run the
new code under an old perl, rather than getting an error like

Type of arg 1 to push must be array (not array element) at /tmp/a line 8, near ""betty";"

Execution of /tmp/a aborted due to compilation errors.

they’ll be politely informed that

Perl v5.14.0 required--this is only v5.12.3, stopped at /tmp/a line 1.

BEGIN failed--compilation aborted at /tmp/a line 1.

39.2.3 Access and Printing

Now it’s time to print your data structure out. How are you going to do that? Well, if you
want only one of the elements, it’s trivial:

print $AoA[0][0];

If you want to print the whole thing, though, you can’t say

print @AoA; # WRONG

because you’ll get just references listed, and perl will never automatically dereference
things for you. Instead, you have to roll yourself a loop or two. This prints the whole
structure, using the shell-style for() construct to loop across the outer set of subscripts.

for $aref (@AoA) {

say "\t [@$aref],";

}

If you wanted to keep track of subscripts, you might do this:

for $i (0 .. $#AoA) {

say "\t elt $i is [@{$AoA[$i]}],";

}

or maybe even this. Notice the inner loop.

for $i (0 .. $#AoA) {

for $j (0 .. $#{$AoA[$i]}) {

say "elt $i $j is $AoA[$i][$j]";

}

}

As you can see, it’s getting a bit complicated. That’s why sometimes is easier to take a
temporary on your way through:

for $i (0 .. $#AoA) {

$aref = $AoA[$i];

for $j (0 .. $#{$aref}) {

say "elt $i $j is $AoA[$i][$j]";

}

}

Hmm... that’s still a bit ugly. How about this:

for $i (0 .. $#AoA) {

$aref = $AoA[$i];

$n = @$aref - 1;

for $j (0 .. $n) {

say "elt $i $j is $AoA[$i][$j]";

}

}

When you get tired of writing a custom print for your data structures, you might look at
the standard Dumpvalue or Data-Dumper modules. The former is what the Perl debugger
uses, while the latter generates parsable Perl code. For example:

use v5.14; # using the + prototype, new to v5.14

sub show(+) {

require Dumpvalue;

state $prettily = new Dumpvalue::

tick => q("),

compactDump => 1, # comment these two lines out

veryCompact => 1, # if you want a bigger dump

;

dumpValue $prettily @_;

}

Assign a list of array references to an array.

my @AoA = (

["fred", "barney"],

["george", "jane", "elroy"],

["homer", "marge", "bart"],

);

push $AoA[0], "wilma", "betty";

show @AoA;

will print out:

0 0..3 "fred" "barney" "wilma" "betty"

1 0..2 "george" "jane" "elroy"

2 0..2 "homer" "marge" "bart"

Whereas if you comment out the two lines I said you might wish to, then it shows it to
you this way instead:

0 ARRAY(0x8031d0)

0 "fred"

1 "barney"

2 "wilma"

3 "betty"

1 ARRAY(0x803d40)

0 "george"

1 "jane"

2 "elroy"

2 ARRAY(0x803e10)

0 "homer"

1 "marge"

2 "bart"

39.2.4 Slices

If you want to get at a slice (part of a row) in a multidimensional array, you’re going to
have to do some fancy subscripting. That’s because while we have a nice synonym for single
elements via the pointer arrow for dereferencing, no such convenience exists for slices.

Here’s how to do one operation using a loop. We’ll assume an @AoA variable as before.

@part = ();

$x = 4;

for ($y = 7; $y < 13; $y++) {

push @part, $AoA[$x][$y];

}

That same loop could be replaced with a slice operation:

@part = @{$AoA[4]}[7..12];

or spaced out a bit:

@part = @{ $AoA[4] } [7..12];

But as you might well imagine, this can get pretty rough on the reader.

Ah, but what if you wanted a two-dimensional slice, such as having $x run from 4..8 and
$y run from 7 to 12? Hmm... here’s the simple way:

@newAoA = ();

for ($startx = $x = 4; $x <= 8; $x++) {

for ($starty = $y = 7; $y <= 12; $y++) {

$newAoA[$x - $startx][$y - $starty] = $AoA[$x][$y];

}

}

We can reduce some of the looping through slices

for ($x = 4; $x <= 8; $x++) {

push @newAoA, [@{ $AoA[$x] } [7..12]];

}

If you were into Schwartzian Transforms, you would probably have selected map for that

@newAoA = map { [@{ $AoA[$_] } [7..12]] } 4 .. 8;

Although if your manager accused you of seeking job security (or rapid insecurity)
through inscrutable code, it would be hard to argue. :-) If I were you, I’d put that in
a function:

@newAoA = splice_2D(\@AoA, 4 => 8, 7 => 12);

sub splice_2D {

my $lrr = shift; # ref to array of array refs!

my ($x_lo, $x_hi,

$y_lo, $y_hi) = @_;

return map {

[@{ $lrr->[$_] } [$y_lo .. $y_hi]]

} $x_lo .. $x_hi;

}

39.3 SEE ALSO

Section 11.1 [perldata NAME], page 70, Section 62.1 [perlref NAME], page 1077,
Section 17.1 [perldsc NAME], page 246

39.4 AUTHOR

Tom Christiansen <tchrist@perl.com>

Last update: Tue Apr 26 18:30:55 MDT 2011

40 perlmod

40.1 NAME

perlmod - Perl modules (packages and symbol tables)

40.2 DESCRIPTION

40.2.1 Is this the document you were after?

There are other documents which might contain the information that you’re looking for:

This doc

Perl’s packages, namespaces, and some info on classes.

Section 44.1 [perlnewmod NAME], page 760
Tutorial on making a new module.

Section 42.1 [perlmodstyle NAME], page 748
Best practices for making a new module.

40.2.2 Packages

Perl provides a mechanism for alternative namespaces to protect packages from stomping
on each other’s variables. In fact, there’s really no such thing as a global variable in Perl.
The package statement declares the compilation unit as being in the given namespace.
The scope of the package declaration is from the declaration itself through the end of the
enclosing block, eval, or file, whichever comes first (the same scope as the my() and local()
operators). Unqualified dynamic identifiers will be in this namespace, except for those
few identifiers that if unqualified, default to the main package instead of the current one
as described below. A package statement affects only dynamic variables–including those
you’ve used local() on–but not lexical variables created with my(). Typically it would be
the first declaration in a file included by the do, require, or use operators. You can
switch into a package in more than one place; it merely influences which symbol table is
used by the compiler for the rest of that block. You can refer to variables and filehandles
in other packages by prefixing the identifier with the package name and a double colon:
$Package::Variable. If the package name is null, the main package is assumed. That is,
$::sail is equivalent to $main::sail.

The old package delimiter was a single quote, but double colon is now the preferred
delimiter, in part because it’s more readable to humans, and in part because it’s more
readable to emacs macros. It also makes C++ programmers feel like they know what’s
going on–as opposed to using the single quote as separator, which was there to make Ada
programmers feel like they knew what was going on. Because the old-fashioned syntax is
still supported for backwards compatibility, if you try to use a string like "This is $owner’s

house", you’ll be accessing $owner::s; that is, the $s variable in package owner, which is
probably not what you meant. Use braces to disambiguate, as in "This is ${owner}’s

house".

Packages may themselves contain package separators, as in $OUTER::INNER::var. This
implies nothing about the order of name lookups, however. There are no relative packages:

all symbols are either local to the current package, or must be fully qualified from the outer
package name down. For instance, there is nowhere within package OUTER that $INNER::var
refers to $OUTER::INNER::var. INNER refers to a totally separate global package.

Only identifiers starting with letters (or underscore) are stored in a package’s symbol
table. All other symbols are kept in package main, including all punctuation variables, like
$. In addition, when unqualified, the identifiers STDIN, STDOUT, STDERR, ARGV,
ARGVOUT, ENV, INC, and SIG are forced to be in package main, even when used for
other purposes than their built-in ones. If you have a package called m, s, or y, then you
can’t use the qualified form of an identifier because it would be instead interpreted as a
pattern match, a substitution, or a transliteration.

Variables beginning with underscore used to be forced into package main, but we decided
it was more useful for package writers to be able to use leading underscore to indicate private
variables and method names. However, variables and functions named with a single _, such
as $ and sub _, are still forced into the package main. See also Section 86.2.1 [perlvar The
Syntax of Variable Names], page 1375.

evaled strings are compiled in the package in which the eval() was compiled. (As-
signments to $SIG{}, however, assume the signal handler specified is in the main package.
Qualify the signal handler name if you wish to have a signal handler in a package.) For an
example, examine perldb.pl in the Perl library. It initially switches to the DB package so
that the debugger doesn’t interfere with variables in the program you are trying to debug.
At various points, however, it temporarily switches back to the main package to evaluate
various expressions in the context of the main package (or wherever you came from). See
Section 15.1 [perldebug NAME], page 120.

The special symbol __PACKAGE__ contains the current package, but cannot (easily) be
used to construct variable names.

See Section 73.1 [perlsub NAME], page 1216 for other scoping issues related to my() and
local(), and Section 62.1 [perlref NAME], page 1077 regarding closures.

40.2.3 Symbol Tables

The symbol table for a package happens to be stored in the hash of that name with two
colons appended. The main symbol table’s name is thus %main::, or %:: for short. Likewise
the symbol table for the nested package mentioned earlier is named %OUTER::INNER::.

The value in each entry of the hash is what you are referring to when you use the *name
typeglob notation.

local *main::foo = *main::bar;

You can use this to print out all the variables in a package, for instance. The standard
but antiquated dumpvar.pl library and the CPAN module Devel::Symdump make use of
this.

The results of creating new symbol table entries directly or modifying any entries that
are not already typeglobs are undefined and subject to change between releases of perl.

Assignment to a typeglob performs an aliasing operation, i.e.,

*dick = *richard;

causes variables, subroutines, formats, and file and directory handles accessible via the
identifier richard also to be accessible via the identifier dick. If you want to alias only a
particular variable or subroutine, assign a reference instead:

*dick = \$richard;

Which makes $richard and $dick the same variable, but leaves @richard and @dick as
separate arrays. Tricky, eh?

There is one subtle difference between the following statements:

*foo = *bar;

*foo = \$bar;

*foo = *bar makes the typeglobs themselves synonymous while *foo = \$bar makes the
SCALAR portions of two distinct typeglobs refer to the same scalar value. This means that
the following code:

$bar = 1;

*foo = \$bar; # Make $foo an alias for $bar

{

local $bar = 2; # Restrict changes to block

print $foo; # Prints ’1’!

}

Would print ’1’, because $foo holds a reference to the original $bar. The one that was
stuffed away by local() and which will be restored when the block ends. Because variables
are accessed through the typeglob, you can use *foo = *bar to create an alias which can
be localized. (But be aware that this means you can’t have a separate @foo and @bar, etc.)

What makes all of this important is that the Exporter module uses glob aliasing as the
import/export mechanism. Whether or not you can properly localize a variable that has
been exported from a module depends on how it was exported:

@EXPORT = qw($FOO); # Usual form, can’t be localized

@EXPORT = qw(*FOO); # Can be localized

You can work around the first case by using the fully qualified name ($Package::FOO)
where you need a local value, or by overriding it by saying *FOO = *Package::FOO in your
script.

The *x = \$y mechanism may be used to pass and return cheap references into or from
subroutines if you don’t want to copy the whole thing. It only works when assigning to
dynamic variables, not lexicals.

%some_hash = (); # can’t be my()

*some_hash = fn(\%another_hash);

sub fn {

local *hashsym = shift;

now use %hashsym normally, and you

will affect the caller’s %another_hash

my %nhash = (); # do what you want

return \%nhash;

}

On return, the reference will overwrite the hash slot in the symbol table specified by the
*some hash typeglob. This is a somewhat tricky way of passing around references cheaply
when you don’t want to have to remember to dereference variables explicitly.

Another use of symbol tables is for making "constant" scalars.

*PI = \3.14159265358979;

Now you cannot alter $PI, which is probably a good thing all in all. This isn’t the same
as a constant subroutine, which is subject to optimization at compile-time. A constant
subroutine is one prototyped to take no arguments and to return a constant expression. See
Section 73.1 [perlsub NAME], page 1216 for details on these. The use constant pragma is
a convenient shorthand for these.

You can say *foo{PACKAGE} and *foo{NAME} to find out what name and package the
*foo symbol table entry comes from. This may be useful in a subroutine that gets passed
typeglobs as arguments:

sub identify_typeglob {

my $glob = shift;

print ’You gave me ’, *{$glob}{PACKAGE},

’::’, *{$glob}{NAME}, "\n";

}

identify_typeglob *foo;

identify_typeglob *bar::baz;

This prints

You gave me main::foo

You gave me bar::baz

The *foo{THING} notation can also be used to obtain references to the individual ele-
ments of *foo. See Section 62.1 [perlref NAME], page 1077.

Subroutine definitions (and declarations, for that matter) need not necessarily be situ-
ated in the package whose symbol table they occupy. You can define a subroutine outside
its package by explicitly qualifying the name of the subroutine:

package main;

sub Some_package::foo { ... } # &foo defined in Some_package

This is just a shorthand for a typeglob assignment at compile time:

BEGIN { *Some_package::foo = sub { ... } }

and is not the same as writing:

{

package Some_package;

sub foo { ... }

}

In the first two versions, the body of the subroutine is lexically in the main package, not
in Some package. So something like this:

package main;

$Some_package::name = "fred";

$main::name = "barney";

sub Some_package::foo {

print "in ", __PACKAGE__, ": \$name is ’$name’\n";

}

Some_package::foo();

prints:

in main: $name is ’barney’

rather than:

in Some_package: $name is ’fred’

This also has implications for the use of the SUPER:: qualifier (see Section 46.1 [perlobj
NAME], page 769).

40.2.4 BEGIN, UNITCHECK, CHECK, INIT and END

Five specially named code blocks are executed at the beginning and at the end of a running
Perl program. These are the BEGIN, UNITCHECK, CHECK, INIT, and END blocks.

These code blocks can be prefixed with sub to give the appearance of a subroutine
(although this is not considered good style). One should note that these code blocks don’t
really exist as named subroutines (despite their appearance). The thing that gives this away
is the fact that you can have more than one of these code blocks in a program, and they
will get all executed at the appropriate moment. So you can’t execute any of these code
blocks by name.

A BEGIN code block is executed as soon as possible, that is, the moment it is completely
defined, even before the rest of the containing file (or string) is parsed. You may have
multiple BEGIN blocks within a file (or eval’ed string); they will execute in order of definition.
Because a BEGIN code block executes immediately, it can pull in definitions of subroutines
and such from other files in time to be visible to the rest of the compile and run time. Once
a BEGIN has run, it is immediately undefined and any code it used is returned to Perl’s
memory pool.

An END code block is executed as late as possible, that is, after perl has finished running
the program and just before the interpreter is being exited, even if it is exiting as a result of
a die() function. (But not if it’s morphing into another program via exec, or being blown
out of the water by a signal–you have to trap that yourself (if you can).) You may have
multiple END blocks within a file–they will execute in reverse order of definition; that is: last
in, first out (LIFO). END blocks are not executed when you run perl with the -c switch, or
if compilation fails.

Note that END code blocks are not executed at the end of a string eval(): if any END

code blocks are created in a string eval(), they will be executed just as any other END code
block of that package in LIFO order just before the interpreter is being exited.

Inside an END code block, $? contains the value that the program is going to pass to
exit(). You can modify $? to change the exit value of the program. Beware of changing
$? by accident (e.g. by running something via system).

Inside of a END block, the value of ${^GLOBAL_PHASE} will be "END".

UNITCHECK, CHECK and INIT code blocks are useful to catch the transition between the
compilation phase and the execution phase of the main program.

UNITCHECK blocks are run just after the unit which defined them has been compiled.
The main program file and each module it loads are compilation units, as are string evals,
run-time code compiled using the (?{ }) construct in a regex, calls to do FILE, require
FILE, and code after the -e switch on the command line.

BEGIN and UNITCHECK blocks are not directly related to the phase of the interpreter.
They can be created and executed during any phase.

CHECK code blocks are run just after the initial Perl compile phase ends and before the
run time begins, in LIFO order. CHECK code blocks are used in the Perl compiler suite to
save the compiled state of the program.

Inside of a CHECK block, the value of ${^GLOBAL_PHASE} will be "CHECK".

INIT blocks are run just before the Perl runtime begins execution, in "first in, first out"
(FIFO) order.

Inside of an INIT block, the value of ${^GLOBAL_PHASE} will be "INIT".

The CHECK and INIT blocks in code compiled by require, string do, or string eval will
not be executed if they occur after the end of the main compilation phase; that can be a
problem in mod perl and other persistent environments which use those functions to load
code at runtime.

When you use the -n and -p switches to Perl, BEGIN and END work just as they do in awk,
as a degenerate case. Both BEGIN and CHECK blocks are run when you use the -c switch for
a compile-only syntax check, although your main code is not.

The begincheck program makes it all clear, eventually:

#!/usr/bin/perl

begincheck

print "10. Ordinary code runs at runtime.\n";

END { print "16. So this is the end of the tale.\n" }

INIT { print " 7. INIT blocks run FIFO just before runtime.\n" }

UNITCHECK {

print " 4. And therefore before any CHECK blocks.\n"

}

CHECK { print " 6. So this is the sixth line.\n" }

print "11. It runs in order, of course.\n";

BEGIN { print " 1. BEGIN blocks run FIFO during compilation.\n" }

END { print "15. Read perlmod for the rest of the story.\n" }

CHECK { print " 5. CHECK blocks run LIFO after all compilation.\n" }

INIT { print " 8. Run this again, using Perl’s -c switch.\n" }

print "12. This is anti-obfuscated code.\n";

END { print "14. END blocks run LIFO at quitting time.\n" }

BEGIN { print " 2. So this line comes out second.\n" }

UNITCHECK {

print " 3. UNITCHECK blocks run LIFO after each file is compiled.\n"

}

INIT { print " 9. You’ll see the difference right away.\n" }

print "13. It only _looks_ like it should be confusing.\n";

__END__

40.2.5 Perl Classes

There is no special class syntax in Perl, but a package may act as a class if it provides
subroutines to act as methods. Such a package may also derive some of its methods from
another class (package) by listing the other package name(s) in its global @ISA array (which
must be a package global, not a lexical).

For more on this, see Section 47.1 [perlootut NAME], page 786 and Section 46.1 [perlobj
NAME], page 769.

40.2.6 Perl Modules

A module is just a set of related functions in a library file, i.e., a Perl package with the same
name as the file. It is specifically designed to be reusable by other modules or programs. It
may do this by providing a mechanism for exporting some of its symbols into the symbol
table of any package using it, or it may function as a class definition and make its semantics
available implicitly through method calls on the class and its objects, without explicitly
exporting anything. Or it can do a little of both.

For example, to start a traditional, non-OO module called Some::Module, create a file
called Some/Module.pm and start with this template:

package Some::Module; # assumes Some/Module.pm

use strict;

use warnings;

BEGIN {

require Exporter;

set the version for version checking

our $VERSION = 1.00;

Inherit from Exporter to export functions and variables

our @ISA = qw(Exporter);

Functions and variables which are exported by default

our @EXPORT = qw(func1 func2);

Functions and variables which can be optionally exported

our @EXPORT_OK = qw($Var1 %Hashit func3);

}

exported package globals go here

our $Var1 = ’’;

our %Hashit = ();

non-exported package globals go here

(they are still accessible as $Some::Module::stuff)

our @more = ();

our $stuff = ’’;

file-private lexicals go here, before any functions which use them

my $priv_var = ’’;

my %secret_hash = ();

here’s a file-private function as a closure,

callable as $priv_func->();

my $priv_func = sub {

...

};

make all your functions, whether exported or not;

remember to put something interesting in the {} stubs

sub func1 { ... }

sub func2 { ... }

this one isn’t exported, but could be called directly

as Some::Module::func3()

sub func3 { ... }

END { ... } # module clean-up code here (global destructor)

1; # don’t forget to return a true value from the file

Then go on to declare and use your variables in functions without any qualifications. See
Exporter and the perlmodlib for details on mechanics and style issues in module creation.

Perl modules are included into your program by saying

use Module;

or

use Module LIST;

This is exactly equivalent to

BEGIN { require ’Module.pm’; ’Module’->import; }

or

BEGIN { require ’Module.pm’; ’Module’->import(LIST); }

As a special case

use Module ();

is exactly equivalent to

BEGIN { require ’Module.pm’; }

All Perl module files have the extension .pm. The use operator assumes this so you
don’t have to spell out "Module.pm" in quotes. This also helps to differentiate new modules

from old .pl and .ph files. Module names are also capitalized unless they’re functioning
as pragmas; pragmas are in effect compiler directives, and are sometimes called "pragmatic
modules" (or even "pragmata" if you’re a classicist).

The two statements:

require SomeModule;

require "SomeModule.pm";

differ from each other in two ways. In the first case, any double colons in the module
name, such as Some::Module, are translated into your system’s directory separator, usually
"/". The second case does not, and would have to be specified literally. The other difference
is that seeing the first require clues in the compiler that uses of indirect object notation
involving "SomeModule", as in $ob = purge SomeModule, are method calls, not function
calls. (Yes, this really can make a difference.)

Because the use statement implies a BEGIN block, the importing of semantics happens
as soon as the use statement is compiled, before the rest of the file is compiled. This is how
it is able to function as a pragma mechanism, and also how modules are able to declare
subroutines that are then visible as list or unary operators for the rest of the current file.
This will not work if you use require instead of use. With require you can get into this
problem:

require Cwd; # make Cwd:: accessible

$here = Cwd::getcwd();

use Cwd; # import names from Cwd::

$here = getcwd();

require Cwd; # make Cwd:: accessible

$here = getcwd(); # oops! no main::getcwd()

In general, use Module () is recommended over require Module, because it determines
module availability at compile time, not in the middle of your program’s execution. An
exception would be if two modules each tried to use each other, and each also called a
function from that other module. In that case, it’s easy to use require instead.

Perl packages may be nested inside other package names, so we can have package names
containing ::. But if we used that package name directly as a filename it would make for
unwieldy or impossible filenames on some systems. Therefore, if a module’s name is, say,
Text::Soundex, then its definition is actually found in the library file Text/Soundex.pm.

Perl modules always have a .pm file, but there may also be dynamically linked executables
(often ending in .so) or autoloaded subroutine definitions (often ending in .al) associated
with the module. If so, these will be entirely transparent to the user of the module. It is
the responsibility of the .pm file to load (or arrange to autoload) any additional function-
ality. For example, although the POSIX module happens to do both dynamic loading and
autoloading, the user can say just use POSIX to get it all.

40.2.7 Making your module threadsafe

Perl supports a type of threads called interpreter threads (ithreads). These threads can be
used explicitly and implicitly.

Ithreads work by cloning the data tree so that no data is shared between different
threads. These threads can be used by using the threads module or by doing fork() on
win32 (fake fork() support). When a thread is cloned all Perl data is cloned, however
non-Perl data cannot be cloned automatically. Perl after 5.8.0 has support for the CLONE

special subroutine. In CLONE you can do whatever you need to do, like for example handle
the cloning of non-Perl data, if necessary. CLONE will be called once as a class method for
every package that has it defined (or inherits it). It will be called in the context of the new
thread, so all modifications are made in the new area. Currently CLONE is called with no
parameters other than the invocant package name, but code should not assume that this
will remain unchanged, as it is likely that in future extra parameters will be passed in to
give more information about the state of cloning.

If you want to CLONE all objects you will need to keep track of them per package. This
is simply done using a hash and Scalar::Util::weaken().

Perl after 5.8.7 has support for the CLONE_SKIP special subroutine. Like CLONE, CLONE_
SKIP is called once per package; however, it is called just before cloning starts, and in the
context of the parent thread. If it returns a true value, then no objects of that class will
be cloned; or rather, they will be copied as unblessed, undef values. For example: if in the
parent there are two references to a single blessed hash, then in the child there will be two
references to a single undefined scalar value instead. This provides a simple mechanism for
making a module threadsafe; just add sub CLONE_SKIP { 1 } at the top of the class, and
DESTROY() will now only be called once per object. Of course, if the child thread needs to
make use of the objects, then a more sophisticated approach is needed.

Like CLONE, CLONE_SKIP is currently called with no parameters other than the invocant
package name, although that may change. Similarly, to allow for future expansion, the
return value should be a single 0 or 1 value.

40.3 SEE ALSO

See perlmodlib for general style issues related to building Perl modules and classes, as well
as descriptions of the standard library and CPAN, Exporter for how Perl’s standard im-
port/export mechanism works, Section 47.1 [perlootut NAME], page 786 and Section 46.1
[perlobj NAME], page 769 for in-depth information on creating classes, Section 46.1 [per-
lobj NAME], page 769 for a hard-core reference document on objects, Section 73.1 [perl-
sub NAME], page 1216 for an explanation of functions and scoping, and perlxstut and
Section 28.1 [perlguts NAME], page 512 for more information on writing extension modules.

41 perlmodinstall

41.1 NAME

perlmodinstall - Installing CPAN Modules

41.2 DESCRIPTION

You can think of a module as the fundamental unit of reusable Perl code; see Section 40.1
[perlmod NAME], page 732 for details. Whenever anyone creates a chunk of Perl
code that they think will be useful to the world, they register as a Perl developer at
http://www.cpan.org/modules/04pause.html so that they can then upload their code to
the CPAN. The CPAN is the Comprehensive Perl Archive Network and can be accessed at
http://www.cpan.org/ , and searched at http://search.cpan.org/ .

This documentation is for people who want to download CPAN modules and install them
on their own computer.

41.2.1 PREAMBLE

First, are you sure that the module isn’t already on your system? Try perl -MFoo -e 1.
(Replace "Foo" with the name of the module; for instance, perl -MCGI::Carp -e 1.)

If you don’t see an error message, you have the module. (If you do see an error message,
it’s still possible you have the module, but that it’s not in your path, which you can display
with perl -e "print qq(@INC)".) For the remainder of this document, we’ll assume that
you really honestly truly lack an installed module, but have found it on the CPAN.

So now you have a file ending in .tar.gz (or, less often, .zip). You know there’s a tasty
module inside. There are four steps you must now take:

DECOMPRESS the file
UNPACK the file into a directory
BUILD the module (sometimes unnecessary)
INSTALL the module.

Here’s how to perform each step for each operating system. This is <not> a substitute
for reading the README and INSTALL files that might have come with your module!

Also note that these instructions are tailored for installing the module into your
system’s repository of Perl modules, but you can install modules into any directory you
wish. For instance, where I say perl Makefile.PL, you can substitute perl Makefile.PL

PREFIX=/my/perl_directory to install the modules into /my/perl_directory.
Then you can use the modules from your Perl programs with use lib "/my/perl_

directory/lib/site_perl"; or sometimes just use "/my/perl_directory";. If you’re
on a system that requires superuser/root access to install modules into the directories you
see when you type perl -e "print qq(@INC)", you’ll want to install them into a local
directory (such as your home directory) and use this approach.

• If you’re on a Unix or Unix-like system,

You can use Andreas Koenig’s CPAN module (http://www.cpan.org/modules/by-
module/CPAN) to automate the following steps, from DECOMPRESS through IN-
STALL.

A. DECOMPRESS

Decompress the file with gzip -d yourmodule.tar.gz

You can get gzip from ftp://prep.ai.mit.edu/pub/gnu/

Or, you can combine this step with the next to save disk space:

gzip -dc yourmodule.tar.gz | tar -xof -

B. UNPACK

Unpack the result with tar -xof yourmodule.tar

C. BUILD

Go into the newly-created directory and type:

perl Makefile.PL

make test

or

perl Makefile.PL PREFIX=/my/perl_directory

to install it locally. (Remember that if you do this, you’ll have to put use lib

"/my/perl_directory"; near the top of the program that is to use this module.

D. INSTALL

While still in that directory, type:

make install

Make sure you have the appropriate permissions to install the module in your Perl 5
library directory. Often, you’ll need to be root.

That’s all you need to do on Unix systems with dynamic linking. Most Unix systems
have dynamic linking. If yours doesn’t, or if for another reason you have a statically-
linked perl, and the module requires compilation, you’ll need to build a new Perl binary
that includes the module. Again, you’ll probably need to be root.

• If you’re running ActivePerl (Win95/98/2K/NT/XP, Linux, Solaris),

First, type ppm from a shell and see whether ActiveState’s PPM repository has your
module. If so, you can install it with ppm and you won’t have to bother with any of the
other steps here. You might be able to use the CPAN instructions from the "Unix or
Linux" section above as well; give it a try. Otherwise, you’ll have to follow the steps
below.

A. DECOMPRESS

You can use the shareware Winzip (http://www.winzip.com) to decompress and
unpack modules.

B. UNPACK

If you used WinZip, this was already done for you.

C. BUILD

You’ll need the nmake utility, available at http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-
US/nmake15.exe or dmake, available on CPAN. http://search.cpan.org/dist/dmake/

Does the module require compilation (i.e. does it have files that end in .xs, .c, .h,
.y, .cc, .cxx, or .C)? If it does, life is now officially tough for you, because you have
to compile the module yourself (no easy feat on Windows). You’ll need a compiler

such as Visual C++. Alternatively, you can download a pre-built PPM package from
ActiveState. http://aspn.activestate.com/ASPN/Downloads/ActivePerl/PPM/

Go into the newly-created directory and type:

perl Makefile.PL

nmake test

D. INSTALL

While still in that directory, type:

nmake install

• If you’re using a Macintosh with "Classic" MacOS and MacPerl,

A. DECOMPRESS

First, make sure you have the latest cpan-mac distribution (http://www.cpan.org/authors/id/CNANDOR/
), which has utilities for doing all of the steps. Read the cpan-mac directions carefully
and install it. If you choose not to use cpan-mac for some reason, there are alternatives
listed here.

After installing cpan-mac, drop the module archive on the untarzipme droplet, which
will decompress and unpack for you.

Or, you can either use the shareware StuffIt Expander program (
http://my.smithmicro.com/mac/stuffit/) or the freeware MacGzip program
(http://persephone.cps.unizar.es/general/gente/spd/gzip/gzip.html).

B. UNPACK

If you’re using untarzipme or StuffIt, the archive should be extracted now. Or, you can
use the freeware suntar or Tar (http://hyperarchive.lcs.mit.edu/HyperArchive/Archive/cmp/
).

C. BUILD

Check the contents of the distribution. Read the module’s documentation, looking for
reasons why you might have trouble using it with MacPerl. Look for .xs and .c files,
which normally denote that the distribution must be compiled, and you cannot install
it "out of the box." (See Section 41.3 [PORTABILITY], page 746.)

D. INSTALL

If you are using cpan-mac, just drop the folder on the installme droplet, and use the
module.

Or, if you aren’t using cpan-mac, do some manual labor.

Make sure the newlines for the modules are in Mac format, not Unix format. If they are
not then you might have decompressed them incorrectly. Check your decompression
and unpacking utilities settings to make sure they are translating text files properly.

As a last resort, you can use the perl one-liner:

perl -i.bak -pe ’s/(?:\015)?\012/\015/g’ <filenames>

on the source files.

Then move the files (probably just the .pm files, though there may be some additional
ones, too; check the module documentation) to their final destination: This will most

likely be in $ENV{MACPERL}site_lib: (i.e., HD:MacPerl folder:site_lib:). You can
add new paths to the default @INC in the Preferences menu item in the MacPerl appli-
cation ($ENV{MACPERL}site_lib: is added automagically). Create whatever directory
structures are required (i.e., for Some::Module, create $ENV{MACPERL}site_lib:Some:
and put Module.pm in that directory).

Then run the following script (or something like it):

#!perl -w

use AutoSplit;

my $dir = "${MACPERL}site_perl";

autosplit("$dir:Some:Module.pm", "$dir:auto", 0, 1, 1);

• If you’re on the DJGPP port of DOS,

A. DECOMPRESS

djtarx (ftp://ftp.delorie.com/pub/djgpp/current/v2/) will both uncompress and un-
pack.

B. UNPACK

See above.

C. BUILD

Go into the newly-created directory and type:

perl Makefile.PL

make test

You will need the packages mentioned in README.dos in the Perl distribution.

D. INSTALL

While still in that directory, type:

make install

You will need the packages mentioned in README.dos in the Perl distribution.

• If you’re on OS/2,

Get the EMX development suite and gzip/tar, from either Hobbes (
http://hobbes.nmsu.edu) or Leo (http://www.leo.org), and then follow
the instructions for Unix.

• If you’re on VMS,

When downloading from CPAN, save your file with a .tgz extension instead of .tar.gz.
All other periods in the filename should be replaced with underscores. For example,
Your-Module-1.33.tar.gz should be downloaded as Your-Module-1_33.tgz.

A. DECOMPRESS

Type

gzip -d Your-Module.tgz

or, for zipped modules, type

unzip Your-Module.zip

Executables for gzip, zip, and VMStar:

http://www.hp.com/go/openvms/freeware/

and their source code:

http://www.fsf.org/order/ftp.html

Note that GNU’s gzip/gunzip is not the same as Info-ZIP’s zip/unzip package. The
former is a simple compression tool; the latter permits creation of multi-file archives.

B. UNPACK

If you’re using VMStar:

VMStar xf Your-Module.tar

Or, if you’re fond of VMS command syntax:

tar/extract/verbose Your_Module.tar

C. BUILD

Make sure you have MMS (from Digital) or the freeware MMK (available from Mad-
Goat at http://www.madgoat.com). Then type this to create the DESCRIP.MMS for
the module:

perl Makefile.PL

Now you’re ready to build:

mms test

Substitute mmk for mms above if you’re using MMK.

D. INSTALL

Type

mms install

Substitute mmk for mms above if you’re using MMK.

• If you’re on MVS,

Introduce the .tar.gz file into an HFS as binary; don’t translate from ASCII to
EBCDIC.

A. DECOMPRESS

Decompress the file with gzip -d yourmodule.tar.gz

You can get gzip from http://www.s390.ibm.com/products/oe/bpxqp1.html

B. UNPACK

Unpack the result with

pax -o to=IBM-1047,from=ISO8859-1 -r < yourmodule.tar

The BUILD and INSTALL steps are identical to those for Unix. Some modules
generate Makefiles that work better with GNU make, which is available from
http://www.mks.com/s390/gnu/

41.3 PORTABILITY

Note that not all modules will work with on all platforms. See Section 56.1 [perlport
NAME], page 951 for more information on portability issues. Read the documentation to
see if the module will work on your system. There are basically three categories of modules
that will not work "out of the box" with all platforms (with some possibility of overlap):

• Those that should, but don’t. These need to be fixed; consider contacting the author
and possibly writing a patch.

• Those that need to be compiled, where the target platform doesn’t have compilers
readily available. (These modules contain .xs or .c files, usually.) You might be able
to find existing binaries on the CPAN or elsewhere, or you might want to try getting
compilers and building it yourself, and then release the binary for other poor souls to
use.

• Those that are targeted at a specific platform. (Such as the Win32:: modules.) If the
module is targeted specifically at a platform other than yours, you’re out of luck, most
likely.

Check the CPAN Testers if a module should work with your platform but it doesn’t
behave as you’d expect, or you aren’t sure whether or not a module will work under your
platform. If the module you want isn’t listed there, you can test it yourself and let CPAN
Testers know, you can join CPAN Testers, or you can request it be tested.

http://testers.cpan.org/

41.4 HEY

If you have any suggested changes for this page, let me know. Please don’t send me mail
asking for help on how to install your modules. There are too many modules, and too few
Orwants, for me to be able to answer or even acknowledge all your questions. Contact the
module author instead, or post to comp.lang.perl.modules, or ask someone familiar with
Perl on your operating system.

41.5 AUTHOR

Jon Orwant

orwant@medita.mit.edu

with invaluable help from Chris Nandor, and valuable help from Brandon Allbery,
Charles Bailey, Graham Barr, Dominic Dunlop, Jarkko Hietaniemi, Ben Holzman, Tom
Horsley, Nick Ing-Simmons, Tuomas J. Lukka, Laszlo Molnar, Alan Olsen, Peter Prymmer,
Gurusamy Sarathy, Christoph Spalinger, Dan Sugalski, Larry Virden, and Ilya Zakharevich.

First version July 22, 1998; last revised November 21, 2001.

41.6 COPYRIGHT

Copyright (C) 1998, 2002, 2003 Jon Orwant. All Rights Reserved.

This document may be distributed under the same terms as Perl itself.

42 perlmodstyle

42.1 NAME

perlmodstyle - Perl module style guide

42.2 INTRODUCTION

This document attempts to describe the Perl Community’s "best practice" for writing
Perl modules. It extends the recommendations found in Section 72.1 [perlstyle NAME],
page 1212 , which should be considered required reading before reading this document.

While this document is intended to be useful to all module authors, it is particularly
aimed at authors who wish to publish their modules on CPAN.

The focus is on elements of style which are visible to the users of a module, rather
than those parts which are only seen by the module’s developers. However, many of the
guidelines presented in this document can be extrapolated and applied successfully to a
module’s internals.

This document differs from Section 44.1 [perlnewmod NAME], page 760 in that it is
a style guide rather than a tutorial on creating CPAN modules. It provides a checklist
against which modules can be compared to determine whether they conform to best practice,
without necessarily describing in detail how to achieve this.

All the advice contained in this document has been gleaned from extensive conversations
with experienced CPAN authors and users. Every piece of advice given here is the result of
previous mistakes. This information is here to help you avoid the same mistakes and the
extra work that would inevitably be required to fix them.

The first section of this document provides an itemized checklist; subsequent sections
provide a more detailed discussion of the items on the list. The final section, "Common
Pitfalls", describes some of the most popular mistakes made by CPAN authors.

42.3 QUICK CHECKLIST

For more detail on each item in this checklist, see below.

42.3.1 Before you start

• Don’t re-invent the wheel

• Patch, extend or subclass an existing module where possible

• Do one thing and do it well

• Choose an appropriate name

• Get feedback before publishing

42.3.2 The API

• API should be understandable by the average programmer

• Simple methods for simple tasks

• Separate functionality from output

• Consistent naming of subroutines or methods

• Use named parameters (a hash or hashref) when there are more than two parameters

42.3.3 Stability

• Ensure your module works under use strict and -w

• Stable modules should maintain backwards compatibility

42.3.4 Documentation

• Write documentation in POD

• Document purpose, scope and target applications

• Document each publically accessible method or subroutine, including params and re-
turn values

• Give examples of use in your documentation

• Provide a README file and perhaps also release notes, changelog, etc

• Provide links to further information (URL, email)

42.3.5 Release considerations

• Specify pre-requisites in Makefile.PL or Build.PL

• Specify Perl version requirements with use

• Include tests with your module

• Choose a sensible and consistent version numbering scheme (X.YY is the common Perl
module numbering scheme)

• Increment the version number for every change, no matter how small

• Package the module using "make dist"

• Choose an appropriate license (GPL/Artistic is a good default)

42.4 BEFORE YOU START WRITING A MODULE

Try not to launch headlong into developing your module without spending some time think-
ing first. A little forethought may save you a vast amount of effort later on.

42.4.1 Has it been done before?

You may not even need to write the module. Check whether it’s already been done in Perl,
and avoid re-inventing the wheel unless you have a good reason.

Good places to look for pre-existing modules include http://search.cpan.org/ and
https://metacpan.org and asking on module-authors@perl.org (http://lists.perl.
org/list/module-authors.html).

If an existing module almost does what you want, consider writing a patch, writing a
subclass, or otherwise extending the existing module rather than rewriting it.

42.4.2 Do one thing and do it well

At the risk of stating the obvious, modules are intended to be modular. A Perl developer
should be able to use modules to put together the building blocks of their application.

http://search.cpan.org/
https://metacpan.org
http://lists.perl.org/list/module-authors.html
http://lists.perl.org/list/module-authors.html

However, it’s important that the blocks are the right shape, and that the developer shouldn’t
have to use a big block when all they need is a small one.

Your module should have a clearly defined scope which is no longer than a single sentence.
Can your module be broken down into a family of related modules?

Bad example:

"FooBar.pm provides an implementation of the FOO protocol and the related BAR
standard."

Good example:

"Foo.pm provides an implementation of the FOO protocol. Bar.pm implements the
related BAR protocol."

This means that if a developer only needs a module for the BAR standard, they should
not be forced to install libraries for FOO as well.

42.4.3 What’s in a name?

Make sure you choose an appropriate name for your module early on. This will help people
find and remember your module, and make programming with your module more intuitive.

When naming your module, consider the following:

• Be descriptive (i.e. accurately describes the purpose of the module).

• Be consistent with existing modules.

• Reflect the functionality of the module, not the implementation.

• Avoid starting a new top-level hierarchy, especially if a suitable hierarchy already exists
under which you could place your module.

42.4.4 Get feedback before publishing

If you have never uploaded a module to CPAN before (and even if you have), you are
strongly encouraged to get feedback on PrePAN (http://prepan.org). PrePAN is a site
dedicated to discussing ideas for CPAN modules with other Perl developers and is a great
resource for new (and experienced) Perl developers.

You should also try to get feedback from people who are already familiar with the
module’s application domain and the CPAN naming system. Authors of similar modules,
or modules with similar names, may be a good place to start, as are community sites like
Perl Monks (http://www.perlmonks.org).

42.5 DESIGNING AND WRITING YOUR MODULE

Considerations for module design and coding:

42.5.1 To OO or not to OO?

Your module may be object oriented (OO) or not, or it may have both kinds of interfaces
available. There are pros and cons of each technique, which should be considered when you
design your API.

In Perl Best Practices (copyright 2004, Published by O’Reilly Media, Inc.), Damian
Conway provides a list of criteria to use when deciding if OO is the right fit for your
problem:

http://prepan.org
http://www.perlmonks.org

• The system being designed is large, or is likely to become large.

• The data can be aggregated into obvious structures, especially if there’s a large amount
of data in each aggregate.

• The various types of data aggregate form a natural hierarchy that facilitates the use of
inheritance and polymorphism.

• You have a piece of data on which many different operations are applied.

• You need to perform the same general operations on related types of data, but with
slight variations depending on the specific type of data the operations are applied to.

• It’s likely you’ll have to add new data types later.

• The typical interactions between pieces of data are best represented by operators.

• The implementation of individual components of the system is likely to change over
time.

• The system design is already object-oriented.

• Large numbers of other programmers will be using your code modules.

Think carefully about whether OO is appropriate for your module. Gratuitous object
orientation results in complex APIs which are difficult for the average module user to
understand or use.

42.5.2 Designing your API

Your interfaces should be understandable by an average Perl programmer. The following
guidelines may help you judge whether your API is sufficiently straightforward:

Write simple routines to do simple things.
It’s better to have numerous simple routines than a few monolithic ones. If
your routine changes its behaviour significantly based on its arguments, it’s a
sign that you should have two (or more) separate routines.

Separate functionality from output.
Return your results in the most generic form possible and allow the user to
choose how to use them. The most generic form possible is usually a Perl data
structure which can then be used to generate a text report, HTML, XML, a
database query, or whatever else your users require.

If your routine iterates through some kind of list (such as a list of files, or
records in a database) you may consider providing a callback so that users can
manipulate each element of the list in turn. File::Find provides an example of
this with its find(\&wanted, $dir) syntax.

Provide sensible shortcuts and defaults.
Don’t require every module user to jump through the same hoops to achieve a
simple result. You can always include optional parameters or routines for more
complex or non-standard behaviour. If most of your users have to type a few
almost identical lines of code when they start using your module, it’s a sign
that you should have made that behaviour a default. Another good indicator
that you should use defaults is if most of your users call your routines with the
same arguments.

Naming conventions
Your naming should be consistent. For instance, it’s better to have:

display_day();

display_week();

display_year();

than

display_day();

week_display();

show_year();

This applies equally to method names, parameter names, and anything else
which is visible to the user (and most things that aren’t!)

Parameter passing
Use named parameters. It’s easier to use a hash like this:

$obj->do_something(

name => "wibble",

type => "text",

size => 1024,

);

... than to have a long list of unnamed parameters like this:

$obj->do_something("wibble", "text", 1024);

While the list of arguments might work fine for one, two or even three argu-
ments, any more arguments become hard for the module user to remember, and
hard for the module author to manage. If you want to add a new parameter
you will have to add it to the end of the list for backward compatibility, and
this will probably make your list order unintuitive. Also, if many elements may
be undefined you may see the following unattractive method calls:

$obj->do_something(undef, undef, undef, undef, undef, 1024);

Provide sensible defaults for parameters which have them. Don’t make your
users specify parameters which will almost always be the same.

The issue of whether to pass the arguments in a hash or a hashref is largely a
matter of personal style.

The use of hash keys starting with a hyphen (-name) or entirely in upper case
(NAME) is a relic of older versions of Perl in which ordinary lower case strings
were not handled correctly by the => operator. While some modules retain
uppercase or hyphenated argument keys for historical reasons or as a matter of
personal style, most new modules should use simple lower case keys. Whatever
you choose, be consistent!

42.5.3 Strictness and warnings

Your module should run successfully under the strict pragma and should run without gen-
erating any warnings. Your module should also handle taint-checking where appropriate,
though this can cause difficulties in many cases.

42.5.4 Backwards compatibility

Modules which are "stable" should not break backwards compatibility without at least a
long transition phase and a major change in version number.

42.5.5 Error handling and messages

When your module encounters an error it should do one or more of:

• Return an undefined value.

• set $Module::errstr or similar (errstr is a common name used by DBI and other
popular modules; if you choose something else, be sure to document it clearly).

• warn() or carp() a message to STDERR.

• croak() only when your module absolutely cannot figure out what to do. (croak()
is a better version of die() for use within modules, which reports its errors from the
perspective of the caller. See Carp for details of croak(), carp() and other useful
routines.)

• As an alternative to the above, you may prefer to throw exceptions using the Error
module.

Configurable error handling can be very useful to your users. Consider offering a choice
of levels for warning and debug messages, an option to send messages to a separate file, a
way to specify an error-handling routine, or other such features. Be sure to default all these
options to the commonest use.

42.6 DOCUMENTING YOUR MODULE

42.6.1 POD

Your module should include documentation aimed at Perl developers. You should use Perl’s
"plain old documentation" (POD) for your general technical documentation, though you
may wish to write additional documentation (white papers, tutorials, etc) in some other
format. You need to cover the following subjects:

• A synopsis of the common uses of the module

• The purpose, scope and target applications of your module

• Use of each publically accessible method or subroutine, including parameters and return
values

• Examples of use

• Sources of further information

• A contact email address for the author/maintainer

The level of detail in Perl module documentation generally goes from less detailed to
more detailed. Your SYNOPSIS section should contain a minimal example of use (perhaps
as little as one line of code; skip the unusual use cases or anything not needed by most
users); the DESCRIPTION should describe your module in broad terms, generally in just
a few paragraphs; more detail of the module’s routines or methods, lengthy code examples,
or other in-depth material should be given in subsequent sections.

Ideally, someone who’s slightly familiar with your module should be able to refresh their
memory without hitting "page down". As your reader continues through the document,
they should receive a progressively greater amount of knowledge.

The recommended order of sections in Perl module documentation is:

• NAME

• SYNOPSIS

• DESCRIPTION

• One or more sections or subsections giving greater detail of available methods and
routines and any other relevant information.

• BUGS/CAVEATS/etc

• AUTHOR

• SEE ALSO

• COPYRIGHT and LICENSE

Keep your documentation near the code it documents ("inline" documentation). Include
POD for a given method right above that method’s subroutine. This makes it easier to keep
the documentation up to date, and avoids having to document each piece of code twice (once
in POD and once in comments).

42.6.2 README, INSTALL, release notes, changelogs

Your module should also include a README file describing the module and giving pointers
to further information (website, author email).

An INSTALL file should be included, and should contain simple installation instructions.
When using ExtUtils::MakeMaker this will usually be:

perl Makefile.PL
make

make test

make install

When using Module::Build, this will usually be:

perl Build.PL
perl Build

perl Build test
perl Build install

Release notes or changelogs should be produced for each release of your software describ-
ing user-visible changes to your module, in terms relevant to the user.

Unless you have good reasons for using some other format (for example, a format used
within your company), the convention is to name your changelog file Changes, and to follow
the simple format described in CPAN-Changes-Spec.

42.7 RELEASE CONSIDERATIONS

42.7.1 Version numbering

Version numbers should indicate at least major and minor releases, and possibly sub-minor
releases. A major release is one in which most of the functionality has changed, or in
which major new functionality is added. A minor release is one in which a small amount of
functionality has been added or changed. Sub-minor version numbers are usually used for
changes which do not affect functionality, such as documentation patches.

The most common CPAN version numbering scheme looks like this:

1.00, 1.10, 1.11, 1.20, 1.30, 1.31, 1.32

A correct CPAN version number is a floating point number with at least 2 digits after
the decimal. You can test whether it conforms to CPAN by using

perl -MExtUtils::MakeMaker -le ’print MM->parse_version(shift)’ ’Foo.pm’

If you want to release a ’beta’ or ’alpha’ version of a module but don’t want CPAN.pm
to list it as most recent use an ’ ’ after the regular version number followed by at least 2
digits, eg. 1.20 01. If you do this, the following idiom is recommended:

our $VERSION = "1.12_01"; # so CPAN distribution will have

right filename

our $XS_VERSION = $VERSION; # only needed if you have XS code

$VERSION = eval $VERSION; # so "use Module 0.002" won’t warn on

underscore

With that trick MakeMaker will only read the first line and thus read the underscore,
while the perl interpreter will evaluate the $VERSION and convert the string into a number.
Later operations that treat $VERSION as a number will then be able to do so without
provoking a warning about $VERSION not being a number.

Never release anything (even a one-word documentation patch) without incrementing
the number. Even a one-word documentation patch should result in a change in version at
the sub-minor level.

Once picked, it is important to stick to your version scheme, without reducing the number
of digits. This is because "downstream" packagers, such as the FreeBSD ports system,
interpret the version numbers in various ways. If you change the number of digits in your
version scheme, you can confuse these systems so they get the versions of your module out
of order, which is obviously bad.

42.7.2 Pre-requisites

Module authors should carefully consider whether to rely on other modules, and which
modules to rely on.

Most importantly, choose modules which are as stable as possible. In order of preference:

• Core Perl modules

• Stable CPAN modules

• Unstable CPAN modules

• Modules not available from CPAN

Specify version requirements for other Perl modules in the pre-requisites in your Make-
file.PL or Build.PL.

Be sure to specify Perl version requirements both in Makefile.PL or Build.PL and with
require 5.6.1 or similar. See the section on use VERSION of [perlfunc require], page 437
for details.

42.7.3 Testing

All modules should be tested before distribution (using "make disttest"), and the tests
should also be available to people installing the modules (using "make test"). For Mod-
ule::Build you would use the make test equivalent perl Build test.

The importance of these tests is proportional to the alleged stability of a module. A
module which purports to be stable or which hopes to achieve wide use should adhere to
as strict a testing regime as possible.

Useful modules to help you write tests (with minimum impact on your development
process or your time) include Test::Simple, Carp::Assert and Test::Inline. For more sophis-
ticated test suites there are Test::More and Test::MockObject.

42.7.4 Packaging

Modules should be packaged using one of the standard packaging tools. Currently you
have the choice between ExtUtils::MakeMaker and the more platform independent Mod-
ule::Build, allowing modules to be installed in a consistent manner. When using ExtU-
tils::MakeMaker, you can use "make dist" to create your package. Tools exist to help you
to build your module in a MakeMaker-friendly style. These include ExtUtils::ModuleMaker
and h2xs. See also Section 44.1 [perlnewmod NAME], page 760.

42.7.5 Licensing

Make sure that your module has a license, and that the full text of it is included in the
distribution (unless it’s a common one and the terms of the license don’t require you to
include it).

If you don’t know what license to use, dual licensing under the GPL and Artistic licenses
(the same as Perl itself) is a good idea. See Section 27.1 [perlgpl NAME], page 506 and
Section 3.1 [perlartistic NAME], page 18.

42.8 COMMON PITFALLS

42.8.1 Reinventing the wheel

There are certain application spaces which are already very, very well served by CPAN.
One example is templating systems, another is date and time modules, and there are many
more. While it is a rite of passage to write your own version of these things, please consider
carefully whether the Perl world really needs you to publish it.

42.8.2 Trying to do too much

Your module will be part of a developer’s toolkit. It will not, in itself, form the entire
toolkit. It’s tempting to add extra features until your code is a monolithic system rather
than a set of modular building blocks.

42.8.3 Inappropriate documentation

Don’t fall into the trap of writing for the wrong audience. Your primary audience is a
reasonably experienced developer with at least a moderate understanding of your module’s
application domain, who’s just downloaded your module and wants to start using it as
quickly as possible.

Tutorials, end-user documentation, research papers, FAQs etc are not appropriate in
a module’s main documentation. If you really want to write these, include them as sub-
documents such as My::Module::Tutorial or My::Module::FAQ and provide a link in the
SEE ALSO section of the main documentation.

42.9 SEE ALSO

Section 72.1 [perlstyle NAME], page 1212
General Perl style guide

Section 44.1 [perlnewmod NAME], page 760
How to create a new module

Section 52.1 [perlpod NAME], page 900
POD documentation

podchecker

Verifies your POD’s correctness

Packaging Tools
ExtUtils-MakeMaker, Module-Build

Testing tools
Test-Simple, Test-Inline, Carp-Assert, Test-More, Test-MockObject

http://pause.perl.org/
Perl Authors Upload Server. Contains links to information for module authors.

Any good book on software engineering

42.10 AUTHOR

Kirrily "Skud" Robert <skud@cpan.org>

43 perlmroapi

43.1 NAME

perlmroapi - Perl method resolution plugin interface

43.2 DESCRIPTION

As of Perl 5.10.1 there is a new interface for plugging and using method resolution orders
other than the default (linear depth first search). The C3 method resolution order added
in 5.10.0 has been re-implemented as a plugin, without changing its Perl-space interface.

Each plugin should register itself by providing the following structure

struct mro_alg {

AV *(*resolve)(pTHX_ HV *stash, U32 level);

const char *name;

U16 length;

U16 kflags;

U32 hash;

};

and calling Perl_mro_register:

Perl_mro_register(aTHX_ &my_mro_alg);

resolve

Pointer to the linearisation function, described below.

name

Name of the MRO, either in ISO-8859-1 or UTF-8.

length

Length of the name.

kflags

If the name is given in UTF-8, set this to HVhek_UTF8. The value is passed
direct as the parameter kflags to hv_common().

hash

A precomputed hash value for the MRO’s name, or 0.

43.3 Callbacks

The resolve function is called to generate a linearised ISA for the given stash, using this
MRO. It is called with a pointer to the stash, and a level of 0. The core always sets level
to 0 when it calls your function - the parameter is provided to allow your implementation
to track depth if it needs to recurse.

The function should return a reference to an array containing the parent classes in order.
The names of the classes should be the result of calling HvENAME() on the stash. In those
cases where HvENAME() returns null, HvNAME() should be used instead.

The caller is responsible for incrementing the reference count of the array returned if it
wants to keep the structure. Hence, if you have created a temporary value that you keep
no pointer to, sv_2mortal() to ensure that it is disposed of correctly. If you have cached
your return value, then return a pointer to it without changing the reference count.

43.4 Caching

Computing MROs can be expensive. The implementation provides a cache, in which you
can store a single SV *, or anything that can be cast to SV *, such as AV *. To read your
private value, use the macro MRO_GET_PRIVATE_DATA(), passing it the mro_meta structure
from the stash, and a pointer to your mro_alg structure:

meta = HvMROMETA(stash);

private_sv = MRO_GET_PRIVATE_DATA(meta, &my_mro_alg);

To set your private value, call Perl_mro_set_private_data():

Perl_mro_set_private_data(aTHX_ meta, &c3_alg, private_sv);

The private data cache will take ownership of a reference to private sv, much the same
way that hv_store() takes ownership of a reference to the value that you pass it.

43.5 Examples

For examples of MRO implementations, see S_mro_get_linear_isa_c3() and the BOOT:

section of mro/mro.xs, and S_mro_get_linear_isa_dfs() in mro.c

43.6 AUTHORS

The implementation of the C3 MRO and switchable MROs within the perl core was written
by Brandon L Black. Nicholas Clark created the pluggable interface, refactored Brandon’s
implementation to work with it, and wrote this document.

44 perlnewmod

44.1 NAME

perlnewmod - preparing a new module for distribution

44.2 DESCRIPTION

This document gives you some suggestions about how to go about writing Perl modules,
preparing them for distribution, and making them available via CPAN.

One of the things that makes Perl really powerful is the fact that Perl hackers tend to
want to share the solutions to problems they’ve faced, so you and I don’t have to battle
with the same problem again.

The main way they do this is by abstracting the solution into a Perl module. If you
don’t know what one of these is, the rest of this document isn’t going to be much use to you.
You’re also missing out on an awful lot of useful code; consider having a look at Section 40.1
[perlmod NAME], page 732, perlmodlib and Section 41.1 [perlmodinstall NAME], page 742
before coming back here.

When you’ve found that there isn’t a module available for what you’re trying to do, and
you’ve had to write the code yourself, consider packaging up the solution into a module and
uploading it to CPAN so that others can benefit.

You should also take a look at Section 42.1 [perlmodstyle NAME], page 748 for best
practices in making a module.

44.2.1 Warning

We’re going to primarily concentrate on Perl-only modules here, rather than XS modules.
XS modules serve a rather different purpose, and you should consider different things before
distributing them - the popularity of the library you are gluing, the portability to other
operating systems, and so on. However, the notes on preparing the Perl side of the module
and packaging and distributing it will apply equally well to an XS module as a pure-Perl
one.

44.2.2 What should I make into a module?

You should make a module out of any code that you think is going to be useful to others.
Anything that’s likely to fill a hole in the communal library and which someone else can
slot directly into their program. Any part of your code which you can isolate and extract
and plug into something else is a likely candidate.

Let’s take an example. Suppose you’re reading in data from a local format into a hash-
of-hashes in Perl, turning that into a tree, walking the tree and then piping each node to
an Acme Transmogrifier Server.

Now, quite a few people have the Acme Transmogrifier, and you’ve had to write some-
thing to talk the protocol from scratch - you’d almost certainly want to make that into a
module. The level at which you pitch it is up to you: you might want protocol-level modules
analogous to Net-SMTP which then talk to higher level modules analogous to Mail-Send.
The choice is yours, but you do want to get a module out for that server protocol.

Nobody else on the planet is going to talk your local data format, so we can ignore that.
But what about the thing in the middle? Building tree structures from Perl variables and
then traversing them is a nice, general problem, and if nobody’s already written a module
that does that, you might want to modularise that code too.

So hopefully you’ve now got a few ideas about what’s good to modularise. Let’s now see
how it’s done.

44.2.3 Step-by-step: Preparing the ground

Before we even start scraping out the code, there are a few things we’ll want to do in
advance.

Look around
Dig into a bunch of modules to see how they’re written. I’d suggest starting
with Text-Tabs, since it’s in the standard library and is nice and simple, and
then looking at something a little more complex like File-Copy. For object
oriented code, WWW::Mechanize or the Email::* modules provide some good
examples.

These should give you an overall feel for how modules are laid out and written.

Check it’s new
There are a lot of modules on CPAN, and it’s easy to miss one that’s similar
to what you’re planning on contributing. Have a good plough through the
http://search.cpan.org and make sure you’re not the one reinventing the
wheel!

Discuss the need
You might love it. You might feel that everyone else needs it. But there
might not actually be any real demand for it out there. If you’re unsure
about the demand your module will have, consider sending out feelers on the
comp.lang.perl.modules newsgroup, or as a last resort, ask the modules list
at modules@perl.org. Remember that this is a closed list with a very long
turn-around time - be prepared to wait a good while for a response from them.

Choose a name
Perl modules included on CPAN have a naming hierarchy you should try to fit
in with. See perlmodlib for more details on how this works, and browse around
CPAN and the modules list to get a feel of it. At the very least, remember this:
modules should be title capitalised, (This::Thing) fit in with a category, and
explain their purpose succinctly.

Check again
While you’re doing that, make really sure you haven’t missed a module similar
to the one you’re about to write.

When you’ve got your name sorted out and you’re sure that your module is
wanted and not currently available, it’s time to start coding.

http://search.cpan.org

44.2.4 Step-by-step: Making the module

Start with module-starter or h2xs
The module-starter utility is distributed as part of the Module-Starter

CPAN package. It creates a directory with stubs of all the necessary files to
start a new module, according to recent "best practice" for module develop-
ment, and is invoked from the command line, thus:

module-starter --module=Foo::Bar \

--author="Your Name" --email=yourname@cpan.org

If you do not wish to install the Module-Starter package from CPAN, h2xs
is an older tool, originally intended for the development of XS modules, which
comes packaged with the Perl distribution.

A typical invocation of h2xs for a pure Perl module is:

h2xs -AX --skip-exporter --use-new-tests -n Foo::Bar

The -A omits the Autoloader code, -X omits XS elements, --skip-exporter
omits the Exporter code, --use-new-tests sets up a modern testing environ-
ment, and -n specifies the name of the module.

Use strict and warnings

A module’s code has to be warning and strict-clean, since you can’t guarantee
the conditions that it’ll be used under. Besides, you wouldn’t want to distribute
code that wasn’t warning or strict-clean anyway, right?

Use Carp

The Carp module allows you to present your error messages from the caller’s
perspective; this gives you a way to signal a problem with the caller and not
your module. For instance, if you say this:

warn "No hostname given";

the user will see something like this:

No hostname given at /usr/local/lib/perl5/site_perl/5.6.0/Net/Acme.pm

line 123.

which looks like your module is doing something wrong. Instead, you want to
put the blame on the user, and say this:

No hostname given at bad_code, line 10.

You do this by using Carp and replacing your warns with carps. If you need to
die, say croak instead. However, keep warn and die in place for your sanity
checks - where it really is your module at fault.

Use Exporter - wisely!
Exporter gives you a standard way of exporting symbols and subroutines from
your module into the caller’s namespace. For instance, saying use Net::Acme

qw(&frob) would import the frob subroutine.

The package variable @EXPORT will determine which symbols will get exported
when the caller simply says use Net::Acme - you will hardly ever want to put
anything in there. @EXPORT_OK, on the other hand, specifies which symbols
you’re willing to export. If you do want to export a bunch of symbols, use the

%EXPORT_TAGS and define a standard export set - look at Exporter for more
details.

Use Section 52.1 [plain old documentation], page 900
The work isn’t over until the paperwork is done, and you’re going to need to put
in some time writing some documentation for your module. module-starter

or h2xs will provide a stub for you to fill in; if you’re not sure about the format,
look at Section 52.1 [perlpod NAME], page 900 for an introduction. Provide
a good synopsis of how your module is used in code, a description, and then
notes on the syntax and function of the individual subroutines or methods. Use
Perl comments for developer notes and POD for end-user notes.

Write tests
You’re encouraged to create self-tests for your module to ensure it’s working as
intended on the myriad platforms Perl supports; if you upload your module to
CPAN, a host of testers will build your module and send you the results of the
tests. Again, module-starter and h2xs provide a test framework which you
can extend - you should do something more than just checking your module will
compile. Test-Simple and Test-More are good places to start when writing a
test suite.

Write the README
If you’re uploading to CPAN, the automated gremlins will extract the
README file and place that in your CPAN directory. It’ll also appear in the
main by-module and by-category directories if you make it onto the modules
list. It’s a good idea to put here what the module actually does in detail, and
the user-visible changes since the last release.

44.2.5 Step-by-step: Distributing your module

Get a CPAN user ID
Every developer publishing modules on CPAN needs a CPAN ID. Visit
http://pause.perl.org/, select "Request PAUSE Account", and wait for
your request to be approved by the PAUSE administrators.

perl Makefile.PL; make test; make dist

Once again, module-starter or h2xs has done all the work for you. They
produce the standard Makefile.PL you see when you download and install
modules, and this produces a Makefile with a dist target.

Once you’ve ensured that your module passes its own tests - always a good thing
to make sure - you can make dist, and the Makefile will hopefully produce you
a nice tarball of your module, ready for upload.

Upload the tarball
The email you got when you received your CPAN ID will tell you how to log in
to PAUSE, the Perl Authors Upload SErver. From the menus there, you can
upload your module to CPAN.

Announce to the modules list
Once uploaded, it’ll sit unnoticed in your author directory. If you want it
connected to the rest of the CPAN, you’ll need to go to "Register Namespace"

on PAUSE. Once registered, your module will appear in the by-module and
by-category listings on CPAN.

Announce to clpa
If you have a burning desire to tell the world about your release, post an an-
nouncement to the moderated comp.lang.perl.announce newsgroup.

Fix bugs!

Once you start accumulating users, they’ll send you bug reports. If you’re lucky,
they’ll even send you patches. Welcome to the joys of maintaining a software
project...

44.3 AUTHOR

Simon Cozens, simon@cpan.org

Updated by Kirrily "Skud" Robert, skud@cpan.org

44.4 SEE ALSO

Section 40.1 [perlmod NAME], page 732, perlmodlib, Section 41.1 [perlmodinstall
NAME], page 742, h2xs, strict, Carp, Exporter, Section 52.1 [perlpod NAME], page 900,
Test-Simple, Test-More ExtUtils-MakeMaker, Module-Build, Module-Starter

http://www.cpan.org/ , Ken Williams’s tutorial on building your own module at
http://mathforum.org/~ken/perl modules.html

45 perlnumber

45.1 NAME

perlnumber - semantics of numbers and numeric operations in Perl

45.2 SYNOPSIS

$n = 1234; # decimal integer

$n = 0b1110011; # binary integer

$n = 01234; # octal integer

$n = 0x1234; # hexadecimal integer

$n = 12.34e-56; # exponential notation

$n = "-12.34e56"; # number specified as a string

$n = "1234"; # number specified as a string

45.3 DESCRIPTION

This document describes how Perl internally handles numeric values.

Perl’s operator overloading facility is completely ignored here. Operator overloading
allows user-defined behaviors for numbers, such as operations over arbitrarily large integers,
floating points numbers with arbitrary precision, operations over "exotic" numbers such as
modular arithmetic or p-adic arithmetic, and so on. See overload for details.

45.4 Storing numbers

Perl can internally represent numbers in 3 different ways: as native integers, as native
floating point numbers, and as decimal strings. Decimal strings may have an exponential
notation part, as in "12.34e-56". Native here means "a format supported by the C compiler
which was used to build perl".

The term "native" does not mean quite as much when we talk about native integers,
as it does when native floating point numbers are involved. The only implication of the
term "native" on integers is that the limits for the maximal and the minimal supported
true integral quantities are close to powers of 2. However, "native" floats have a most
fundamental restriction: they may represent only those numbers which have a relatively
"short" representation when converted to a binary fraction. For example, 0.9 cannot be
represented by a native float, since the binary fraction for 0.9 is infinite:

binary0.1110011001100...

with the sequence 1100 repeating again and again. In addition to this limitation, the
exponent of the binary number is also restricted when it is represented as a floating point
number. On typical hardware, floating point values can store numbers with up to 53 binary
digits, and with binary exponents between -1024 and 1024. In decimal representation this
is close to 16 decimal digits and decimal exponents in the range of -304..304. The upshot
of all this is that Perl cannot store a number like 12345678901234567 as a floating point
number on such architectures without loss of information.

Similarly, decimal strings can represent only those numbers which have a finite decimal
expansion. Being strings, and thus of arbitrary length, there is no practical limit for the

exponent or number of decimal digits for these numbers. (But realize that what we are
discussing the rules for just the storage of these numbers. The fact that you can store such
"large" numbers does not mean that the operations over these numbers will use all of the
significant digits. See Section 45.5 [Numeric operators and numeric conversions], page 766
for details.)

In fact numbers stored in the native integer format may be stored either in the signed
native form, or in the unsigned native form. Thus the limits for Perl numbers stored as
native integers would typically be -2**31..2**32-1, with appropriate modifications in the
case of 64-bit integers. Again, this does not mean that Perl can do operations only over
integers in this range: it is possible to store many more integers in floating point format.

Summing up, Perl numeric values can store only those numbers which have a finite
decimal expansion or a "short" binary expansion.

45.5 Numeric operators and numeric conversions

As mentioned earlier, Perl can store a number in any one of three formats, but most op-
erators typically understand only one of those formats. When a numeric value is passed
as an argument to such an operator, it will be converted to the format understood by the
operator.

Six such conversions are possible:

native integer --> native floating point (*)

native integer --> decimal string

native floating_point --> native integer (*)

native floating_point --> decimal string (*)

decimal string --> native integer

decimal string --> native floating point (*)

These conversions are governed by the following general rules:

• If the source number can be represented in the target form, that representation is used.

• If the source number is outside of the limits representable in the target form, a repre-
sentation of the closest limit is used. (Loss of information)

• If the source number is between two numbers representable in the target form, a rep-
resentation of one of these numbers is used. (Loss of information)

• In native floating point --> native integer conversions the magnitude of the re-
sult is less than or equal to the magnitude of the source. ("Rounding to zero".)

• If the decimal string --> native integer conversion cannot be done without loss of
information, the result is compatible with the conversion sequence decimal_string -->

native_floating_point --> native_integer. In particular, rounding is strongly bi-
ased to 0, though a number like "0.99999999999999999999" has a chance of being
rounded to 1.

RESTRICTION: The conversions marked with (*) above involve steps performed by
the C compiler. In particular, bugs/features of the compiler used may lead to breakage of
some of the above rules.

45.6 Flavors of Perl numeric operations

Perl operations which take a numeric argument treat that argument in one of four different
ways: they may force it to one of the integer/floating/ string formats, or they may behave
differently depending on the format of the operand. Forcing a numeric value to a particular
format does not change the number stored in the value.

All the operators which need an argument in the integer format treat the argument as in
modular arithmetic, e.g., mod 2**32 on a 32-bit architecture. sprintf "%u", -1 therefore
provides the same result as sprintf "%u", ~0.

Arithmetic operators
The binary operators + - * / % == != > < >= <= and the unary operators - abs

and -- will attempt to convert arguments to integers. If both conversions are
possible without loss of precision, and the operation can be performed with-
out loss of precision then the integer result is used. Otherwise arguments are
converted to floating point format and the floating point result is used. The
caching of conversions (as described above) means that the integer conversion
does not throw away fractional parts on floating point numbers.

++

++ behaves as the other operators above, except that if it is a string matching the
format /^[a-zA-Z]*[0-9]*\z/ the string increment described in Section 48.1
[perlop NAME], page 798 is used.

Arithmetic operators during use integer

In scopes where use integer; is in force, nearly all the operators listed above
will force their argument(s) into integer format, and return an integer re-
sult. The exceptions, abs, ++ and --, do not change their behavior with use

integer;

Other mathematical operators
Operators such as **, sin and exp force arguments to floating point format.

Bitwise operators
Arguments are forced into the integer format if not strings.

Bitwise operators during use integer

forces arguments to integer format. Also shift operations internally use signed
integers rather than the default unsigned.

Operators which expect an integer
force the argument into the integer format. This is applicable to the third and
fourth arguments of sysread, for example.

Operators which expect a string
force the argument into the string format. For example, this is applicable to
printf "%s", $value.

Though forcing an argument into a particular form does not change the stored number,
Perl remembers the result of such conversions. In particular, though the first such conversion
may be time-consuming, repeated operations will not need to redo the conversion.

45.7 AUTHOR

Ilya Zakharevich ilya@math.ohio-state.edu

Editorial adjustments by Gurusamy Sarathy <gsar@ActiveState.com>

Updates for 5.8.0 by Nicholas Clark <nick@ccl4.org>

45.8 SEE ALSO

overload, Section 48.1 [perlop NAME], page 798

46 perlobj

46.1 NAME

perlobj - Perl object reference

46.2 DESCRIPTION

This document provides a reference for Perl’s object orientation features. If you’re look-
ing for an introduction to object-oriented programming in Perl, please see Section 47.1
[perlootut NAME], page 786.

In order to understand Perl objects, you first need to understand references in Perl. See
Section 62.1 [perlref NAME], page 1077 for details.

This document describes all of Perl’s object-oriented (OO) features from the ground up.
If you’re just looking to write some object-oriented code of your own, you are probably
better served by using one of the object systems from CPAN described in Section 47.1
[perlootut NAME], page 786.

If you’re looking to write your own object system, or you need to maintain code which
implements objects from scratch then this document will help you understand exactly how
Perl does object orientation.

There are a few basic principles which define object oriented Perl:

1. An object is simply a data structure that knows to which class it belongs.

2. A class is simply a package. A class provides methods that expect to operate on objects.

3. A method is simply a subroutine that expects a reference to an object (or a package
name, for class methods) as the first argument.

Let’s look at each of these principles in depth.

46.2.1 An Object is Simply a Data Structure

Unlike many other languages which support object orientation, Perl does not provide any
special syntax for constructing an object. Objects are merely Perl data structures (hashes,
arrays, scalars, filehandles, etc.) that have been explicitly associated with a particular class.

That explicit association is created by the built-in bless function, which is typically
used within the constructor subroutine of the class.

Here is a simple constructor:

package File;

sub new {

my $class = shift;

return bless {}, $class;

}

The name new isn’t special. We could name our constructor something else:

package File;

sub load {

my $class = shift;

return bless {}, $class;

}

The modern convention for OO modules is to always use new as the name for the con-
structor, but there is no requirement to do so. Any subroutine that blesses a data structure
into a class is a valid constructor in Perl.

In the previous examples, the {} code creates a reference to an empty anonymous hash.
The bless function then takes that reference and associates the hash with the class in
$class. In the simplest case, the $class variable will end up containing the string "File".

We can also use a variable to store a reference to the data structure that is being blessed
as our object:

sub new {

my $class = shift;

my $self = {};

bless $self, $class;

return $self;

}

Once we’ve blessed the hash referred to by $self we can start calling methods on it.
This is useful if you want to put object initialization in its own separate method:

sub new {

my $class = shift;

my $self = {};

bless $self, $class;

$self->_initialize();

return $self;

}

Since the object is also a hash, you can treat it as one, using it to store data associated
with the object. Typically, code inside the class can treat the hash as an accessible data
structure, while code outside the class should always treat the object as opaque. This is
called encapsulation. Encapsulation means that the user of an object does not have to know
how it is implemented. The user simply calls documented methods on the object.

Note, however, that (unlike most other OO languages) Perl does not ensure or enforce
encapsulation in any way. If you want objects to actually be opaque you need to arrange
for that yourself. This can be done in a variety of ways, including using Section 46.2.16
[Inside-Out objects], page 784 or modules from CPAN.

46.2.1.1 Objects Are Blessed; Variables Are Not

When we bless something, we are not blessing the variable which contains a reference to that
thing, nor are we blessing the reference that the variable stores; we are blessing the thing
that the variable refers to (sometimes known as the referent). This is best demonstrated
with this code:

use Scalar::Util ’blessed’;

my $foo = {};

my $bar = $foo;

bless $foo, ’Class’;

print blessed($bar); # prints "Class"

$bar = "some other value";

print blessed($bar); # prints undef

When we call bless on a variable, we are actually blessing the underlying data structure
that the variable refers to. We are not blessing the reference itself, nor the variable that
contains that reference. That’s why the second call to blessed($bar) returns false. At
that point $bar is no longer storing a reference to an object.

You will sometimes see older books or documentation mention "blessing a reference" or
describe an object as a "blessed reference", but this is incorrect. It isn’t the reference that
is blessed as an object; it’s the thing the reference refers to (i.e. the referent).

46.2.2 A Class is Simply a Package

Perl does not provide any special syntax for class definitions. A package is simply a names-
pace containing variables and subroutines. The only difference is that in a class, the sub-
routines may expect a reference to an object or the name of a class as the first argument.
This is purely a matter of convention, so a class may contain both methods and subroutines
which don’t operate on an object or class.

Each package contains a special array called @ISA. The @ISA array contains a list of that
class’s parent classes, if any. This array is examined when Perl does method resolution,
which we will cover later.

It is possible to manually set @ISA, and you may see this in older Perl code. Much older
code also uses the base pragma. For new code, we recommend that you use the parent

pragma to declare your parents. This pragma will take care of setting @ISA. It will also
load the parent classes and make sure that the package doesn’t inherit from itself.

However the parent classes are set, the package’s @ISA variable will contain a list of
those parents. This is simply a list of scalars, each of which is a string that corresponds to
a package name.

All classes inherit from the UNIVERSAL class implicitly. The UNIVERSAL class is imple-
mented by the Perl core, and provides several default methods, such as isa(), can(), and
VERSION(). The UNIVERSAL class will never appear in a package’s @ISA variable.

Perl only provides method inheritance as a built-in feature. Attribute inheritance is left
up the class to implement. See the Section 46.2.7.1 [Writing Accessors], page 777 section
for details.

46.2.3 A Method is Simply a Subroutine

Perl does not provide any special syntax for defining a method. A method is simply a regular
subroutine, and is declared with sub. What makes a method special is that it expects to
receive either an object or a class name as its first argument.

Perl does provide special syntax for method invocation, the -> operator. We will cover
this in more detail later.

Most methods you write will expect to operate on objects:

sub save {

my $self = shift;

open my $fh, ’>’, $self->path() or die $!;

print {$fh} $self->data() or die $!;

close $fh or die $!;

}

46.2.4 Method Invocation >>

Calling a method on an object is written as $object->method.

The left hand side of the method invocation (or arrow) operator is the object (or class
name), and the right hand side is the method name.

my $pod = File->new(’perlobj.pod’, $data);

$pod->save();

The -> syntax is also used when dereferencing a reference. It looks like the same operator,
but these are two different operations.

When you call a method, the thing on the left side of the arrow is passed as the first
argument to the method. That means when we call Critter->new(), the new() method
receives the string "Critter" as its first argument. When we call $fred->speak(), the
$fred variable is passed as the first argument to speak().

Just as with any Perl subroutine, all of the arguments passed in @_ are aliases to the
original argument. This includes the object itself. If you assign directly to $_[0] you will
change the contents of the variable that holds the reference to the object. We recommend
that you don’t do this unless you know exactly what you’re doing.

Perl knows what package the method is in by looking at the left side of the arrow. If the
left hand side is a package name, it looks for the method in that package. If the left hand
side is an object, then Perl looks for the method in the package that the object has been
blessed into.

If the left hand side is neither a package name nor an object, then the method call will
cause an error, but see the section on Section 46.2.9 [Method Call Variations], page 778 for
more nuances.

46.2.5 Inheritance

We already talked about the special @ISA array and the parent pragma.

When a class inherits from another class, any methods defined in the parent class are
available to the child class. If you attempt to call a method on an object that isn’t defined
in its own class, Perl will also look for that method in any parent classes it may have.

package File::MP3;

use parent ’File’; # sets @File::MP3::ISA = (’File’);

my $mp3 = File::MP3->new(’Andvari.mp3’, $data);

$mp3->save();

Since we didn’t define a save() method in the File::MP3 class, Perl will look at the
File::MP3 class’s parent classes to find the save() method. If Perl cannot find a save()

method anywhere in the inheritance hierarchy, it will die.

In this case, it finds a save() method in the File class. Note that the object passed
to save() in this case is still a File::MP3 object, even though the method is found in the
File class.

We can override a parent’s method in a child class. When we do so, we can still call the
parent class’s method with the SUPER pseudo-class.

sub save {

my $self = shift;

say ’Prepare to rock’;

$self->SUPER::save();

}

The SUPER modifier can only be used for method calls. You can’t use it for regular
subroutine calls or class methods:

SUPER::save($thing); # FAIL: looks for save() sub in package SUPER

SUPER->save($thing); # FAIL: looks for save() method in class

SUPER

$thing->SUPER::save(); # Okay: looks for save() method in parent

classes

46.2.5.1 How SUPER is Resolved

The SUPER pseudo-class is resolved from the package where the call is made. It is not resolved
based on the object’s class. This is important, because it lets methods at different levels
within a deep inheritance hierarchy each correctly call their respective parent methods.

package A;

sub new {

return bless {}, shift;

}

sub speak {

my $self = shift;

say ’A’;

}

package B;

use parent -norequire, ’A’;

sub speak {

my $self = shift;

$self->SUPER::speak();

say ’B’;

}

package C;

use parent -norequire, ’B’;

sub speak {

my $self = shift;

$self->SUPER::speak();

say ’C’;

}

my $c = C->new();

$c->speak();

In this example, we will get the following output:

A

B

C

This demonstrates how SUPER is resolved. Even though the object is blessed into the
C class, the speak() method in the B class can still call SUPER::speak() and expect it to
correctly look in the parent class of B (i.e the class the method call is in), not in the parent
class of C (i.e. the class the object belongs to).

There are rare cases where this package-based resolution can be a problem. If you copy a
subroutine from one package to another, SUPER resolution will be done based on the original
package.

46.2.5.2 Multiple Inheritance

Multiple inheritance often indicates a design problem, but Perl always gives you enough
rope to hang yourself with if you ask for it.

To declare multiple parents, you simply need to pass multiple class names to use parent:

package MultiChild;

use parent ’Parent1’, ’Parent2’;

46.2.5.3 Method Resolution Order

Method resolution order only matters in the case of multiple inheritance. In the case of
single inheritance, Perl simply looks up the inheritance chain to find a method:

Grandparent

|

Parent

|

Child

If we call a method on a Child object and that method is not defined in the Child class,
Perl will look for that method in the Parent class and then, if necessary, in the Grandparent
class.

If Perl cannot find the method in any of these classes, it will die with an error message.

When a class has multiple parents, the method lookup order becomes more complicated.

By default, Perl does a depth-first left-to-right search for a method. That means it starts
with the first parent in the @ISA array, and then searches all of its parents, grandparents,
etc. If it fails to find the method, it then goes to the next parent in the original class’s @ISA
array and searches from there.

SharedGreatGrandParent

/ \

PaternalGrandparent MaternalGrandparent

\ /

Father Mother

\ /

Child

So given the diagram above, Perl will search Child, Father, PaternalGrandparent,
SharedGreatGrandParent, Mother, and finally MaternalGrandparent. This may be a
problem because now we’re looking in SharedGreatGrandParent before we’ve checked all
its derived classes (i.e. before we tried Mother and MaternalGrandparent).

It is possible to ask for a different method resolution order with the mro pragma.

package Child;

use mro ’c3’;

use parent ’Father’, ’Mother’;

This pragma lets you switch to the "C3" resolution order. In simple terms, "C3" order
ensures that shared parent classes are never searched before child classes, so Perl will now
search: Child, Father, PaternalGrandparent, Mother MaternalGrandparent, and finally
SharedGreatGrandParent. Note however that this is not "breadth-first" searching: All
the Father ancestors (except the common ancestor) are searched before any of the Mother
ancestors are considered.

The C3 order also lets you call methods in sibling classes with the next pseudo-class.
See the mro documentation for more details on this feature.

46.2.5.4 Method Resolution Caching

When Perl searches for a method, it caches the lookup so that future calls to the method
do not need to search for it again. Changing a class’s parent class or adding subroutines to
a class will invalidate the cache for that class.

The mro pragma provides some functions for manipulating the method cache directly.

46.2.6 Writing Constructors

As we mentioned earlier, Perl provides no special constructor syntax. This means that a
class must implement its own constructor. A constructor is simply a class method that
returns a reference to a new object.

The constructor can also accept additional parameters that define the object. Let’s write
a real constructor for the File class we used earlier:

package File;

sub new {

my $class = shift;

my ($path, $data) = @_;

my $self = bless {

path => $path,

data => $data,

}, $class;

return $self;

}

As you can see, we’ve stored the path and file data in the object itself. Remember,
under the hood, this object is still just a hash. Later, we’ll write accessors to manipulate
this data.

For our File::MP3 class, we can check to make sure that the path we’re given ends with
".mp3":

package File::MP3;

sub new {

my $class = shift;

my ($path, $data) = @_;

die "You cannot create a File::MP3 without an mp3 extension\n"

unless $path =~ /\.mp3\z/;

return $class->SUPER::new(@_);

}

This constructor lets its parent class do the actual object construction.

46.2.7 Attributes

An attribute is a piece of data belonging to a particular object. Unlike most object-oriented
languages, Perl provides no special syntax or support for declaring and manipulating at-
tributes.

Attributes are often stored in the object itself. For example, if the object is an anonymous
hash, we can store the attribute values in the hash using the attribute name as the key.

While it’s possible to refer directly to these hash keys outside of the class, it’s considered
a best practice to wrap all access to the attribute with accessor methods.

This has several advantages. Accessors make it easier to change the implementation of
an object later while still preserving the original API.

An accessor lets you add additional code around attribute access. For example, you could
apply a default to an attribute that wasn’t set in the constructor, or you could validate that
a new value for the attribute is acceptable.

Finally, using accessors makes inheritance much simpler. Subclasses can use the accessors
rather than having to know how a parent class is implemented internally.

46.2.7.1 Writing Accessors

As with constructors, Perl provides no special accessor declaration syntax, so classes must
provide explicitly written accessor methods. There are two common types of accessors,
read-only and read-write.

A simple read-only accessor simply gets the value of a single attribute:

sub path {

my $self = shift;

return $self->{path};

}

A read-write accessor will allow the caller to set the value as well as get it:

sub path {

my $self = shift;

if (@_) {

$self->{path} = shift;

}

return $self->{path};

}

46.2.8 An Aside About Smarter and Safer Code

Our constructor and accessors are not very smart. They don’t check that a $path is defined,
nor do they check that a $path is a valid filesystem path.

Doing these checks by hand can quickly become tedious. Writing a bunch of accessors
by hand is also incredibly tedious. There are a lot of modules on CPAN that can help you
write safer and more concise code, including the modules we recommend in Section 47.1
[perlootut NAME], page 786.

46.2.9 Method Call Variations

Perl supports several other ways to call methods besides the $object->method() usage
we’ve seen so far.

46.2.9.1 Method Names as Strings

Perl lets you use a scalar variable containing a string as a method name:

my $file = File->new($path, $data);

my $method = ’save’;

$file->$method();

This works exactly like calling $file->save(). This can be very useful for writing
dynamic code. For example, it allows you to pass a method name to be called as a parameter
to another method.

46.2.9.2 Class Names as Strings

Perl also lets you use a scalar containing a string as a class name:

my $class = ’File’;

my $file = $class->new($path, $data);

Again, this allows for very dynamic code.

46.2.9.3 Subroutine References as Methods

You can also use a subroutine reference as a method:

my $sub = sub {

my $self = shift;

$self->save();

};

$file->$sub();

This is exactly equivalent to writing $sub->($file). You may see this idiom in the wild
combined with a call to can:

if (my $meth = $object->can(’foo’)) {

$object->$meth();

}

46.2.9.4 Deferencing Method Call

Perl also lets you use a dereferenced scalar reference in a method call. That’s a mouthful,
so let’s look at some code:

$file->${ \’save’ };

$file->${ returns_scalar_ref() };

$file->${ \(returns_scalar()) };

$file->${ returns_ref_to_sub_ref() };

This works if the dereference produces a string or a subroutine reference.

46.2.9.5 Method Calls on Filehandles

Under the hood, Perl filehandles are instances of the IO::Handle or IO::File class. Once
you have an open filehandle, you can call methods on it. Additionally, you can call methods
on the STDIN, STDOUT, and STDERR filehandles.

open my $fh, ’>’, ’path/to/file’;

$fh->autoflush();

$fh->print(’content’);

STDOUT->autoflush();

46.2.10 Invoking Class Methods

Because Perl allows you to use barewords for package names and subroutine names,
it sometimes interprets a bareword’s meaning incorrectly. For example, the construct
Class->new() can be interpreted as either ’Class’->new() or Class()->new(). In
English, that second interpretation reads as "call a subroutine named Class(), then
call new() as a method on the return value of Class()". If there is a subroutine named
Class() in the current namespace, Perl will always interpret Class->new() as the second
alternative: a call to new() on the object returned by a call to Class()

You can force Perl to use the first interpretation (i.e. as a method call on the class
named "Class") in two ways. First, you can append a :: to the class name:

Class::->new()

Perl will always interpret this as a method call.

Alternatively, you can quote the class name:

’Class’->new()

Of course, if the class name is in a scalar Perl will do the right thing as well:

my $class = ’Class’;

$class->new();

46.2.10.1 Indirect Object Syntax

Outside of the file handle case, use of this syntax is discouraged as it can confuse the Perl
interpreter. See below for more details.

Perl supports another method invocation syntax called "indirect object" notation. This
syntax is called "indirect" because the method comes before the object it is being invoked
on.

This syntax can be used with any class or object method:

my $file = new File $path, $data;

save $file;

We recommend that you avoid this syntax, for several reasons.

First, it can be confusing to read. In the above example, it’s not clear if save is a
method provided by the File class or simply a subroutine that expects a file object as its
first argument.

When used with class methods, the problem is even worse. Because Perl allows subrou-
tine names to be written as barewords, Perl has to guess whether the bareword after the

method is a class name or subroutine name. In other words, Perl can resolve the syntax as
either File->new($path, $data) or new(File($path, $data)).

To parse this code, Perl uses a heuristic based on what package names it has seen, what
subroutines exist in the current package, what barewords it has previously seen, and other
input. Needless to say, heuristics can produce very surprising results!

Older documentation (and some CPAN modules) encouraged this syntax, particularly
for constructors, so you may still find it in the wild. However, we encourage you to avoid
using it in new code.

You can force Perl to interpret the bareword as a class name by appending "::" to it,
like we saw earlier:

my $file = new File:: $path, $data;

46.2.11 bless, blessed, and ref

As we saw earlier, an object is simply a data structure that has been blessed into a class
via the bless function. The bless function can take either one or two arguments:

my $object = bless {}, $class;

my $object = bless {};

In the first form, the anonymous hash is being blessed into the class in $class. In the
second form, the anonymous hash is blessed into the current package.

The second form is strongly discouraged, because it breaks the ability of a subclass to
reuse the parent’s constructor, but you may still run across it in existing code.

If you want to know whether a particular scalar refers to an object, you can use the
blessed function exported by Scalar-Util, which is shipped with the Perl core.

use Scalar::Util ’blessed’;

if (defined blessed($thing)) { ... }

If $thing refers to an object, then this function returns the name of the package the
object has been blessed into. If $thing doesn’t contain a reference to a blessed object, the
blessed function returns undef.

Note that blessed($thing) will also return false if $thing has been blessed into a class
named "0". This is a possible, but quite pathological. Don’t create a class named "0"
unless you know what you’re doing.

Similarly, Perl’s built-in ref function treats a reference to a blessed object specially. If
you call ref($thing) and $thing holds a reference to an object, it will return the name of
the class that the object has been blessed into.

If you simply want to check that a variable contains an object reference, we recommend
that you use defined blessed($object), since ref returns true values for all references,
not just objects.

46.2.12 The UNIVERSAL Class

All classes automatically inherit from the UNIVERSAL class, which is built-in to the Perl
core. This class provides a number of methods, all of which can be called on either a class
or an object. You can also choose to override some of these methods in your class. If you
do so, we recommend that you follow the built-in semantics described below.

isa($class)

The isa method returns true if the object is a member of the class in $class,
or a member of a subclass of $class.

If you override this method, it should never throw an exception.

DOES($role)
The DOES method returns true if its object claims to perform the role $role.
By default, this is equivalent to isa. This method is provided for use by object
system extensions that implement roles, like Moose and Role::Tiny.

You can also override DOES directly in your own classes. If you override this
method, it should never throw an exception.

can($method)
The can method checks to see if the class or object it was called on has a
method named $method. This checks for the method in the class and all of its
parents. If the method exists, then a reference to the subroutine is returned. If
it does not then undef is returned.

If your class responds to method calls via AUTOLOAD, you may want to overload
can to return a subroutine reference for methods which your AUTOLOAD method
handles.

If you override this method, it should never throw an exception.

VERSION($need)
The VERSION method returns the version number of the class (package).

If the $need argument is given then it will check that the current version (as
defined by the $VERSION variable in the package) is greater than or equal to
$need; it will die if this is not the case. This method is called automatically by
the VERSION form of use.

use Package 1.2 qw(some imported subs);

implies:

Package->VERSION(1.2);

We recommend that you use this method to access another package’s version,
rather than looking directly at $Package::VERSION. The package you are look-
ing at could have overridden the VERSION method.

We also recommend using this method to check whether a module has a suffi-
cient version. The internal implementation uses the version module to make
sure that different types of version numbers are compared correctly.

46.2.13 AUTOLOAD

If you call a method that doesn’t exist in a class, Perl will throw an error. However, if that
class or any of its parent classes defines an AUTOLOAD method, that AUTOLOAD method is
called instead.

AUTOLOAD is called as a regular method, and the caller will not know the difference.
Whatever value your AUTOLOAD method returns is returned to the caller.

The fully qualified method name that was called is available in the $AUTOLOAD package
global for your class. Since this is a global, if you want to refer to do it without a package
name prefix under strict ’vars’, you need to declare it.

XXX - this is a terrible way to implement accessors, but it makes

for a simple example.

our $AUTOLOAD;

sub AUTOLOAD {

my $self = shift;

Remove qualifier from original method name...

my $called = $AUTOLOAD =~ s/.*:://r;

Is there an attribute of that name?

die "No such attribute: $called"

unless exists $self->{$called};

If so, return it...

return $self->{$called};

}

sub DESTROY { } # see below

Without the our $AUTOLOAD declaration, this code will not compile under the strict

pragma.

As the comment says, this is not a good way to implement accessors. It’s slow and too
clever by far. However, you may see this as a way to provide accessors in older Perl code.
See Section 47.1 [perlootut NAME], page 786 for recommendations on OO coding in Perl.

If your class does have an AUTOLOAD method, we strongly recommend that you override
can in your class as well. Your overridden can method should return a subroutine reference
for any method that your AUTOLOAD responds to.

46.2.14 Destructors

When the last reference to an object goes away, the object is destroyed. If you only have
one reference to an object stored in a lexical scalar, the object is destroyed when that scalar
goes out of scope. If you store the object in a package global, that object may not go out
of scope until the program exits.

If you want to do something when the object is destroyed, you can define a DESTROY

method in your class. This method will always be called by Perl at the appropriate time,
unless the method is empty.

This is called just like any other method, with the object as the first argument. It does
not receive any additional arguments. However, the $_[0] variable will be read-only in the
destructor, so you cannot assign a value to it.

If your DESTROY method throws an error, this error will be ignored. It will not be sent
to STDERR and it will not cause the program to die. However, if your destructor is running
inside an eval {} block, then the error will change the value of $@.

Because DESTROY methods can be called at any time, you should localize any global
variables you might update in your DESTROY. In particular, if you use eval {} you should
localize $@, and if you use system or backticks you should localize $?.

If you define an AUTOLOAD in your class, then Perl will call your AUTOLOAD to handle the
DESTROY method. You can prevent this by defining an empty DESTROY, like we did in the
autoloading example. You can also check the value of $AUTOLOAD and return without doing
anything when called to handle DESTROY.

46.2.14.1 Global Destruction

The order in which objects are destroyed during the global destruction before the program
exits is unpredictable. This means that any objects contained by your object may already
have been destroyed. You should check that a contained object is defined before calling a
method on it:

sub DESTROY {

my $self = shift;

$self->{handle}->close() if $self->{handle};

}

You can use the ${^GLOBAL_PHASE} variable to detect if you are currently in the global
destruction phase:

sub DESTROY {

my $self = shift;

return if ${^GLOBAL_PHASE} eq ’DESTRUCT’;

$self->{handle}->close();

}

Note that this variable was added in Perl 5.14.0. If you want to detect the global
destruction phase on older versions of Perl, you can use the Devel::GlobalDestruction

module on CPAN.

If your DESTROY method issues a warning during global destruction, the Perl interpreter
will append the string " during global destruction" to the warning.

During global destruction, Perl will always garbage collect objects before unblessed ref-
erences. See Section 30.8.1 [perlhacktips PERL DESTRUCT LEVEL], page 596 for more
information about global destruction.

46.2.15 Non-Hash Objects

All the examples so far have shown objects based on a blessed hash. However, it’s possible
to bless any type of data structure or referent, including scalars, globs, and subroutines.
You may see this sort of thing when looking at code in the wild.

Here’s an example of a module as a blessed scalar:

package Time;

use strict;

use warnings;

sub new {

my $class = shift;

my $time = time;

return bless \$time, $class;

}

sub epoch {

my $self = shift;

return ${ $self };

}

my $time = Time->new();

print $time->epoch();

46.2.16 Inside-Out objects

In the past, the Perl community experimented with a technique called "inside-out objects".
An inside-out object stores its data outside of the object’s reference, indexed on a unique
property of the object, such as its memory address, rather than in the object itself. This
has the advantage of enforcing the encapsulation of object attributes, since their data is not
stored in the object itself.

This technique was popular for a while (and was recommended in Damian Conway’s Perl
Best Practices), but never achieved universal adoption. The Object-InsideOut module on
CPAN provides a comprehensive implementation of this technique, and you may see it or
other inside-out modules in the wild.

Here is a simple example of the technique, using the Hash-Util-FieldHash core module.
This module was added to the core to support inside-out object implementations.

package Time;

use strict;

use warnings;

use Hash::Util::FieldHash ’fieldhash’;

fieldhash my %time_for;

sub new {

my $class = shift;

my $self = bless \(my $object), $class;

$time_for{$self} = time;

return $self;

}

sub epoch {

my $self = shift;

return $time_for{$self};

}

my $time = Time->new;

print $time->epoch;

46.2.17 Pseudo-hashes

The pseudo-hash feature was an experimental feature introduced in earlier versions of Perl
and removed in 5.10.0. A pseudo-hash is an array reference which can be accessed using
named keys like a hash. You may run in to some code in the wild which uses it. See the
fields pragma for more information.

46.3 SEE ALSO

A kinder, gentler tutorial on object-oriented programming in Perl can be found in
Section 47.1 [perlootut NAME], page 786. You should also check out perlmodlib for some
style guides on constructing both modules and classes.

47 perlootut

47.1 NAME

perlootut - Object-Oriented Programming in Perl Tutorial

47.2 DATE

This document was created in February, 2011, and the last major revision was in February,
2013.

If you are reading this in the future then it’s possible that the state of the art has
changed. We recommend you start by reading the perlootut document in the latest stable
release of Perl, rather than this version.

47.3 DESCRIPTION

This document provides an introduction to object-oriented programming in Perl. It begins
with a brief overview of the concepts behind object oriented design. Then it introduces
several different OO systems from CPAN (http://search.cpan.org) which build on top
of what Perl provides.

By default, Perl’s built-in OO system is very minimal, leaving you to do most of the
work. This minimalism made a lot of sense in 1994, but in the years since Perl 5.0 we’ve
seen a number of common patterns emerge in Perl OO. Fortunately, Perl’s flexibility has
allowed a rich ecosystem of Perl OO systems to flourish.

If you want to know how Perl OO works under the hood, the Section 46.1 [perlobj
NAME], page 769 document explains the nitty gritty details.

This document assumes that you already understand the basics of Perl syntax, variable
types, operators, and subroutine calls. If you don’t understand these concepts yet, please
read Section 34.1 [perlintro NAME], page 639 first. You should also read the Section 74.1
[perlsyn NAME], page 1249, Section 48.1 [perlop NAME], page 798, and Section 73.1 [perl-
sub NAME], page 1216 documents.

47.4 OBJECT-ORIENTED FUNDAMENTALS

Most object systems share a number of common concepts. You’ve probably heard terms
like "class", "object, "method", and "attribute" before. Understanding the concepts will
make it much easier to read and write object-oriented code. If you’re already familiar with
these terms, you should still skim this section, since it explains each concept in terms of
Perl’s OO implementation.

Perl’s OO system is class-based. Class-based OO is fairly common. It’s used by Java,
C++, C#, Python, Ruby, and many other languages. There are other object orientation
paradigms as well. JavaScript is the most popular language to use another paradigm.
JavaScript’s OO system is prototype-based.

http://search.cpan.org

47.4.1 Object

An object is a data structure that bundles together data and subroutines which operate on
that data. An object’s data is called attributes, and its subroutines are called methods. An
object can be thought of as a noun (a person, a web service, a computer).

An object represents a single discrete thing. For example, an object might represent a file.
The attributes for a file object might include its path, content, and last modification time. If
we created an object to represent /etc/hostname on a machine named "foo.example.com",
that object’s path would be "/etc/hostname", its content would be "foo\n", and it’s last
modification time would be 1304974868 seconds since the beginning of the epoch.

The methods associated with a file might include rename() and write().

In Perl most objects are hashes, but the OO systems we recommend keep you from
having to worry about this. In practice, it’s best to consider an object’s internal data
structure opaque.

47.4.2 Class

A class defines the behavior of a category of objects. A class is a name for a category (like
"File"), and a class also defines the behavior of objects in that category.

All objects belong to a specific class. For example, our /etc/hostname object belongs
to the File class. When we want to create a specific object, we start with its class, and
construct or instantiate an object. A specific object is often referred to as an instance of a
class.

In Perl, any package can be a class. The difference between a package which is a class
and one which isn’t is based on how the package is used. Here’s our "class declaration" for
the File class:

package File;

In Perl, there is no special keyword for constructing an object. However, most OO
modules on CPAN use a method named new() to construct a new object:

my $hostname = File->new(

path => ’/etc/hostname’,

content => "foo\n",

last_mod_time => 1304974868,

);

(Don’t worry about that -> operator, it will be explained later.)

47.4.2.1 Blessing

As we said earlier, most Perl objects are hashes, but an object can be an instance of any
Perl data type (scalar, array, etc.). Turning a plain data structure into an object is done
by blessing that data structure using Perl’s bless function.

While we strongly suggest you don’t build your objects from scratch, you should know
the term bless. A blessed data structure (aka "a referent") is an object. We sometimes say
that an object has been "blessed into a class".

Once a referent has been blessed, the blessed function from the Scalar-Util core
module can tell us its class name. This subroutine returns an object’s class when passed
an object, and false otherwise.

use Scalar::Util ’blessed’;

print blessed($hash); # undef

print blessed($hostname); # File

47.4.2.2 Constructor

A constructor creates a new object. In Perl, a class’s constructor is just another method,
unlike some other languages, which provide syntax for constructors. Most Perl classes use
new as the name for their constructor:

my $file = File->new(...);

47.4.3 Methods

You already learned that a method is a subroutine that operates on an object. You can
think of a method as the things that an object can do. If an object is a noun, then methods
are its verbs (save, print, open).

In Perl, methods are simply subroutines that live in a class’s package. Methods are
always written to receive the object as their first argument:

sub print_info {

my $self = shift;

print "This file is at ", $self->path, "\n";

}

$file->print_info;

The file is at /etc/hostname

What makes a method special is how it’s called. The arrow operator (->) tells Perl that
we are calling a method.

When we make a method call, Perl arranges for the method’s invocant to be passed as
the first argument. Invocant is a fancy name for the thing on the left side of the arrow. The
invocant can either be a class name or an object. We can also pass additional arguments
to the method:

sub print_info {

my $self = shift;

my $prefix = shift // "This file is at ";

print $prefix, ", ", $self->path, "\n";

}

$file->print_info("The file is located at ");

The file is located at /etc/hostname

47.4.4 Attributes

Each class can define its attributes. When we instantiate an object, we assign values to
those attributes. For example, every File object has a path. Attributes are sometimes
called properties.

Perl has no special syntax for attributes. Under the hood, attributes are often stored as
keys in the object’s underlying hash, but don’t worry about this.

We recommend that you only access attributes via accessor methods. These are methods
that can get or set the value of each attribute. We saw this earlier in the print_info()

example, which calls $self->path.

You might also see the terms getter and setter. These are two types of accessors. A
getter gets the attribute’s value, while a setter sets it. Another term for a setter is mutator

Attributes are typically defined as read-only or read-write. Read-only attributes can
only be set when the object is first created, while read-write attributes can be altered at
any time.

The value of an attribute may itself be another object. For example, instead of returning
its last mod time as a number, the File class could return a DateTime object representing
that value.

It’s possible to have a class that does not expose any publicly settable attributes. Not
every class has attributes and methods.

47.4.5 Polymorphism

Polymorphism is a fancy way of saying that objects from two different classes share an API.
For example, we could have File and WebPage classes which both have a print_content()

method. This method might produce different output for each class, but they share a
common interface.

While the two classes may differ in many ways, when it comes to the print_content()
method, they are the same. This means that we can try to call the print_content()

method on an object of either class, and we don’t have to know what class the object
belongs to!

Polymorphism is one of the key concepts of object-oriented design.

47.4.6 Inheritance

Inheritance lets you create a specialized version of an existing class. Inheritance lets the
new class reuse the methods and attributes of another class.

For example, we could create an File::MP3 class which inherits from File. An
File::MP3 is-a more specific type of File. All mp3 files are files, but not all files are mp3
files.

We often refer to inheritance relationships as parent-child or superclass/subclass

relationships. Sometimes we say that the child has an is-a relationship with its parent class.

File is a superclass of File::MP3, and File::MP3 is a subclass of File.

package File::MP3;

use parent ’File’;

The parent module is one of several ways that Perl lets you define inheritance relation-
ships.

Perl allows multiple inheritance, which means that a class can inherit from multiple
parents. While this is possible, we strongly recommend against it. Generally, you can use
roles to do everything you can do with multiple inheritance, but in a cleaner way.

Note that there’s nothing wrong with defining multiple subclasses of a given class. This
is both common and safe. For example, we might define File::MP3::FixedBitrate and
File::MP3::VariableBitrate classes to distinguish between different types of mp3 file.

47.4.6.1 Overriding methods and method resolution

Inheritance allows two classes to share code. By default, every method in the parent class
is also available in the child. The child can explicitly override a parent’s method to provide
its own implementation. For example, if we have an File::MP3 object, it has the print_

info() method from File:

my $cage = File::MP3->new(

path => ’mp3s/My-Body-Is-a-Cage.mp3’,

content => $mp3_data,

last_mod_time => 1304974868,

title => ’My Body Is a Cage’,

);

$cage->print_info;

The file is at mp3s/My-Body-Is-a-Cage.mp3

If we wanted to include the mp3’s title in the greeting, we could override the method:

package File::MP3;

use parent ’File’;

sub print_info {

my $self = shift;

print "This file is at ", $self->path, "\n";

print "Its title is ", $self->title, "\n";

}

$cage->print_info;

The file is at mp3s/My-Body-Is-a-Cage.mp3

Its title is My Body Is a Cage

The process of determining what method should be used is called method resolution.
What Perl does is look at the object’s class first (File::MP3 in this case). If that class
defines the method, then that class’s version of the method is called. If not, Perl looks at
each parent class in turn. For File::MP3, its only parent is File. If File::MP3 does not
define the method, but File does, then Perl calls the method in File.

If File inherited from DataSource, which inherited from Thing, then Perl would keep
looking "up the chain" if necessary.

It is possible to explicitly call a parent method from a child:

package File::MP3;

use parent ’File’;

sub print_info {

my $self = shift;

$self->SUPER::print_info();

print "Its title is ", $self->title, "\n";

}

The SUPER:: bit tells Perl to look for the print_info() in the File::MP3 class’s inher-
itance chain. When it finds the parent class that implements this method, the method is
called.

We mentioned multiple inheritance earlier. The main problem with multiple inheritance
is that it greatly complicates method resolution. See Section 46.1 [perlobj NAME], page 769
for more details.

47.4.7 Encapsulation

Encapsulation is the idea that an object is opaque. When another developer uses your class,
they don’t need to know how it is implemented, they just need to know what it does.

Encapsulation is important for several reasons. First, it allows you to separate the public
API from the private implementation. This means you can change that implementation
without breaking the API.

Second, when classes are well encapsulated, they become easier to subclass. Ideally, a
subclass uses the same APIs to access object data that its parent class uses. In reality,
subclassing sometimes involves violating encapsulation, but a good API can minimize the
need to do this.

We mentioned earlier that most Perl objects are implemented as hashes under the hood.
The principle of encapsulation tells us that we should not rely on this. Instead, we should use
accessor methods to access the data in that hash. The object systems that we recommend
below all automate the generation of accessor methods. If you use one of them, you should
never have to access the object as a hash directly.

47.4.8 Composition

In object-oriented code, we often find that one object references another object. This is
called composition, or a has-a relationship.

Earlier, we mentioned that the File class’s last_mod_time accessor could return a
DateTime object. This is a perfect example of composition. We could go even further, and
make the path and content accessors return objects as well. The File class would then
be composed of several other objects.

47.4.9 Roles

Roles are something that a class does, rather than something that it is. Roles are relatively
new to Perl, but have become rather popular. Roles are applied to classes. Sometimes we
say that classes consume roles.

Roles are an alternative to inheritance for providing polymorphism. Let’s assume we
have two classes, Radio and Computer. Both of these things have on/off switches. We want
to model that in our class definitions.

We could have both classes inherit from a common parent, like Machine, but not all
machines have on/off switches. We could create a parent class called HasOnOffSwitch, but
that is very artificial. Radios and computers are not specializations of this parent. This
parent is really a rather ridiculous creation.

This is where roles come in. It makes a lot of sense to create a HasOnOffSwitch role
and apply it to both classes. This role would define a known API like providing turn_on()

and turn_off() methods.

Perl does not have any built-in way to express roles. In the past, people just bit the
bullet and used multiple inheritance. Nowadays, there are several good choices on CPAN
for using roles.

47.4.10 When to Use OO

Object Orientation is not the best solution to every problem. In Perl Best Practices (copy-
right 2004, Published by O’Reilly Media, Inc.), Damian Conway provides a list of criteria
to use when deciding if OO is the right fit for your problem:

• The system being designed is large, or is likely to become large.

• The data can be aggregated into obvious structures, especially if there’s a large amount
of data in each aggregate.

• The various types of data aggregate form a natural hierarchy that facilitates the use of
inheritance and polymorphism.

• You have a piece of data on which many different operations are applied.

• You need to perform the same general operations on related types of data, but with
slight variations depending on the specific type of data the operations are applied to.

• It’s likely you’ll have to add new data types later.

• The typical interactions between pieces of data are best represented by operators.

• The implementation of individual components of the system is likely to change over
time.

• The system design is already object-oriented.

• Large numbers of other programmers will be using your code modules.

47.5 PERL OO SYSTEMS

As we mentioned before, Perl’s built-in OO system is very minimal, but also quite flexible.
Over the years, many people have developed systems which build on top of Perl’s built-in
system to provide more features and convenience.

We strongly recommend that you use one of these systems. Even the most minimal of
them eliminates a lot of repetitive boilerplate. There’s really no good reason to write your
classes from scratch in Perl.

If you are interested in the guts underlying these systems, check out Section 46.1 [perlobj
NAME], page 769.

47.5.1 Moose

Moose bills itself as a "postmodern object system for Perl 5". Don’t be scared, the "post-
modern" label is a callback to Larry’s description of Perl as "the first postmodern computer
language".

Moose provides a complete, modern OO system. Its biggest influence is the Common
Lisp Object System, but it also borrows ideas from Smalltalk and several other languages.
Moose was created by Stevan Little, and draws heavily from his work on the Perl 6 OO
design.

Here is our File class using Moose:

package File;

use Moose;

has path => (is => ’ro’);

has content => (is => ’ro’);

has last_mod_time => (is => ’ro’);

sub print_info {

my $self = shift;

print "This file is at ", $self->path, "\n";

}

Moose provides a number of features:

• Declarative sugar

Moose provides a layer of declarative "sugar" for defining classes. That sugar is just a
set of exported functions that make declaring how your class works simpler and more
palatable. This lets you describe what your class is, rather than having to tell Perl how
to implement your class.

The has() subroutine declares an attribute, and Moose automatically creates accessors
for these attributes. It also takes care of creating a new() method for you. This
constructor knows about the attributes you declared, so you can set them when creating
a new File.

• Roles built-in

Moose lets you define roles the same way you define classes:

package HasOnOfSwitch;

use Moose::Role;

has is_on => (

is => ’rw’,

isa => ’Bool’,

);

sub turn_on {

my $self = shift;

$self->is_on(1);

}

sub turn_off {

my $self = shift;

$self->is_on(0);

}

• A miniature type system

In the example above, you can see that we passed isa => ’Bool’ to has() when creat-
ing our is_on attribute. This tells Moose that this attribute must be a boolean value.
If we try to set it to an invalid value, our code will throw an error.

• Full introspection and manipulation

Perl’s built-in introspection features are fairly minimal. Moose builds on top of them
and creates a full introspection layer for your classes. This lets you ask questions like
"what methods does the File class implement?" It also lets you modify your classes
programmatically.

• Self-hosted and extensible

Moose describes itself using its own introspection API. Besides being a cool trick, this
means that you can extend Moose using Moose itself.

• Rich ecosystem

There is a rich ecosystem of Moose extensions on CPAN under the MooseX (http://
search.cpan.org/search?query=MooseX&mode=dist) namespace. In addition, many
modules on CPAN already use Moose, providing you with lots of examples to learn
from.

• Many more features

Moose is a very powerful tool, and we can’t cover all of its features here. We encourage
you to learn more by reading the Moose documentation, starting with Moose::Manual
(http://search.cpan.org/perldoc?Moose::Manual).

Of course, Moose isn’t perfect.

Moose can make your code slower to load. Moose itself is not small, and it does a lot of
code generation when you define your class. This code generation means that your runtime
code is as fast as it can be, but you pay for this when your modules are first loaded.

This load time hit can be a problem when startup speed is important, such as with a
command-line script or a "plain vanilla" CGI script that must be loaded each time it is
executed.

Before you panic, know that many people do use Moose for command-line tools and
other startup-sensitive code. We encourage you to try Moose out first before worrying
about startup speed.

Moose also has several dependencies on other modules. Most of these are small stand-
alone modules, a number of which have been spun off from Moose. Moose itself, and some
of its dependencies, require a compiler. If you need to install your software on a system
without a compiler, or if having any dependencies is a problem, then Moose may not be
right for you.

47.5.1.1 Moo

If you try Moose and find that one of these issues is preventing you from using Moose, we
encourage you to consider Moo next. Moo implements a subset of Moose’s functionality in a
simpler package. For most features that it does implement, the end-user API is identical to
Moose, meaning you can switch from Moo to Moose quite easily.

http://search.cpan.org/search?query=MooseX&mode=dist
http://search.cpan.org/search?query=MooseX&mode=dist
http://search.cpan.org/perldoc?Moose::Manual
http://search.cpan.org/perldoc?Moose::Manual

Moo does not implement most of Moose’s introspection API, so it’s often faster when
loading your modules. Additionally, none of its dependencies require XS, so it can be
installed on machines without a compiler.

One of Moo’s most compelling features is its interoperability with Moose. When someone
tries to use Moose’s introspection API on a Moo class or role, it is transparently inflated into
a Moose class or role. This makes it easier to incorporate Moo-using code into a Moose code
base and vice versa.

For example, a Moose class can subclass a Moo class using extends or consume a Moo

role using with.

The Moose authors hope that one day Moo can be made obsolete by improving Moose

enough, but for now it provides a worthwhile alternative to Moose.

47.5.2 Class::Accessor

Class-Accessor is the polar opposite of Moose. It provides very few features, nor is it
self-hosting.

It is, however, very simple, pure Perl, and it has no non-core dependencies. It also
provides a "Moose-like" API on demand for the features it supports.

Even though it doesn’t do much, it is still preferable to writing your own classes from
scratch.

Here’s our File class with Class::Accessor:

package File;

use Class::Accessor ’antlers’;

has path => (is => ’ro’);

has content => (is => ’ro’);

has last_mod_time => (is => ’ro’);

sub print_info {

my $self = shift;

print "This file is at ", $self->path, "\n";

}

The antlers import flag tells Class::Accessor that you want to define your attributes
using Moose-like syntax. The only parameter that you can pass to has is is. We recommend
that you use this Moose-like syntax if you choose Class::Accessor since it means you will
have a smoother upgrade path if you later decide to move to Moose.

Like Moose, Class::Accessor generates accessor methods and a constructor for your
class.

47.5.3 Class::Tiny

Finally, we have Class-Tiny. This module truly lives up to its name. It has an incredibly
minimal API and absolutely no dependencies on any recent Perl. Still, we think it’s a lot
easier to use than writing your own OO code from scratch.

Here’s our File class once more:

package File;

use Class::Tiny qw(path content last_mod_time);

sub print_info {

my $self = shift;

print "This file is at ", $self->path, "\n";

}

That’s it!

With Class::Tiny, all accessors are read-write. It generates a constructor for you, as
well as the accessors you define.

You can also use Class-Tiny-Antlers for Moose-like syntax.

47.5.4 Role::Tiny

As we mentioned before, roles provide an alternative to inheritance, but Perl does not have
any built-in role support. If you choose to use Moose, it comes with a full-fledged role
implementation. However, if you use one of our other recommended OO modules, you can
still use roles with Role-Tiny

Role::Tiny provides some of the same features as Moose’s role system, but in a much
smaller package. Most notably, it doesn’t support any sort of attribute declaration, so you
have to do that by hand. Still, it’s useful, and works well with Class::Accessor and
Class::Tiny

47.5.5 OO System Summary

Here’s a brief recap of the options we covered:

• Moose

Moose is the maximal option. It has a lot of features, a big ecosystem, and a thriving
user base. We also covered Moo briefly. Moo is Moose lite, and a reasonable alternative
when Moose doesn’t work for your application.

• Class-Accessor

Class::Accessor does a lot less than Moose, and is a nice alternative if you find
Moose overwhelming. It’s been around a long time and is well battle-tested. It also has
a minimal Moose compatibility mode which makes moving from Class::Accessor to
Moose easy.

• Class-Tiny

Class::Tiny is the absolute minimal option. It has no dependencies, and almost no
syntax to learn. It’s a good option for a super minimal environment and for throwing
something together quickly without having to worry about details.

• Role-Tiny

Use Role::Tiny with Class::Accessor or Class::Tiny if you find yourself considering
multiple inheritance. If you go with Moose, it comes with its own role implementation.

47.5.6 Other OO Systems

There are literally dozens of other OO-related modules on CPAN besides those covered
here, and you’re likely to run across one or more of them if you work with other people’s
code.

In addition, plenty of code in the wild does all of its OO "by hand", using just the
Perl built-in OO features. If you need to maintain such code, you should read Section 46.1
[perlobj NAME], page 769 to understand exactly how Perl’s built-in OO works.

47.6 CONCLUSION

As we said before, Perl’s minimal OO system has led to a profusion of OO systems on
CPAN. While you can still drop down to the bare metal and write your classes by hand,
there’s really no reason to do that with modern Perl.

For small systems, Class-Tiny and Class-Accessor both provide minimal object sys-
tems that take care of basic boilerplate for you.

For bigger projects, Moose provides a rich set of features that will let you focus on
implementing your business logic.

We encourage you to play with and evaluate Moose, Class-Accessor, and Class-Tiny

to see which OO system is right for you.

48 perlop

48.1 NAME

perlop - Perl operators and precedence

48.2 DESCRIPTION

In Perl, the operator determines what operation is performed, independent of the type of
the operands. For example $x + $y is always a numeric addition, and if $x or $y do not
contain numbers, an attempt is made to convert them to numbers first.

This is in contrast to many other dynamic languages, where the operation is determined
by the type of the first argument. It also means that Perl has two versions of some operators,
one for numeric and one for string comparison. For example $x == $y compares two numbers
for equality, and $x eq $y compares two strings.

There are a few exceptions though: x can be either string repetition or list repetition,
depending on the type of the left operand, and &, |, ^ and ~ can be either string or numeric
bit operations.

48.2.1 Operator Precedence and Associativity

Operator precedence and associativity work in Perl more or less like they do in mathematics.

Operator precedence means some operators are evaluated before others. For example,
in 2 + 4 * 5, the multiplication has higher precedence so 4 * 5 is evaluated first yielding
2 + 20 == 22 and not 6 * 5 == 30.

Operator associativity defines what happens if a sequence of the same operators is used
one after another: whether the evaluator will evaluate the left operations first, or the
right first. For example, in 8 - 4 - 2, subtraction is left associative so Perl evaluates the
expression left to right. 8 - 4 is evaluated first making the expression 4 - 2 == 2 and not
8 - 2 == 6.

Perl operators have the following associativity and precedence, listed from highest prece-
dence to lowest. Operators borrowed from C keep the same precedence relationship with
each other, even where C’s precedence is slightly screwy. (This makes learning Perl easier
for C folks.) With very few exceptions, these all operate on scalar values only, not array
values.

left terms and list operators (leftward)

left ->

nonassoc ++ --

right **

right ! ~ \ and unary + and -

left =~ !~

left * / % x

left + - .

left << >>

nonassoc named unary operators

nonassoc < > <= >= lt gt le ge

nonassoc == != <=> eq ne cmp ~~

left &

left | ^

left &&

left || //

nonassoc

right ?:

right = += -= *= etc. goto last next redo dump

left , =>

nonassoc list operators (rightward)

right not

left and

left or xor

In the following sections, these operators are covered in precedence order.

Many operators can be overloaded for objects. See overload.

48.2.2 Terms and List Operators (Leftward)

A TERM has the highest precedence in Perl. They include variables, quote and quote-like
operators, any expression in parentheses, and any function whose arguments are parenthe-
sized. Actually, there aren’t really functions in this sense, just list operators and unary
operators behaving as functions because you put parentheses around the arguments. These
are all documented in Section 25.1 [perlfunc NAME], page 351.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.) is followed
by a left parenthesis as the next token, the operator and arguments within parentheses are
taken to be of highest precedence, just like a normal function call.

In the absence of parentheses, the precedence of list operators such as print, sort, or
chmod is either very high or very low depending on whether you are looking at the left side
or the right side of the operator. For example, in

@ary = (1, 3, sort 4, 2);

print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on
the left are evaluated after. In other words, list operators tend to gobble up all arguments
that follow, and then act like a simple TERM with regard to the preceding expression. Be
careful with parentheses:

These evaluate exit before doing the print:

print($foo, exit); # Obviously not what you want.

print $foo, exit; # Nor is this.

These do the print before evaluating exit:

(print $foo), exit; # This is what you want.

print($foo), exit; # Or this.

print ($foo), exit; # Or even this.

Also note that

print ($foo & 255) + 1, "\n";

probably doesn’t do what you expect at first glance. The parentheses enclose the ar-
gument list for print which is evaluated (printing the result of $foo & 255). Then one is
added to the return value of print (usually 1). The result is something like this:

1 + 1, "\n"; # Obviously not what you meant.

To do what you meant properly, you must write:

print(($foo & 255) + 1, "\n");

See Section 48.2.11 [Named Unary Operators], page 804 for more discussion of this.

Also parsed as terms are the do {} and eval {} constructs, as well as subroutine and
method calls, and the anonymous constructors [] and {}.

See also Section 48.2.29 [Quote and Quote-like Operators], page 818 toward the end of
this section, as well as Section 48.2.33 [I/O Operators], page 844.

48.2.3 The Arrow Operator >>

"->" is an infix dereference operator, just as it is in C and C++. If the right side is either
a [...], {...}, or a (...) subscript, then the left side must be either a hard or symbolic
reference to an array, a hash, or a subroutine respectively. (Or technically speaking, a
location capable of holding a hard reference, if it’s an array or hash reference being used
for assignment.) See Section 63.1 [perlreftut NAME], page 1092 and Section 62.1 [perlref
NAME], page 1077.

Otherwise, the right side is a method name or a simple scalar variable containing either
the method name or a subroutine reference, and the left side must be either an object (a
blessed reference) or a class name (that is, a package name). See Section 46.1 [perlobj
NAME], page 769.

The dereferencing cases (as opposed to method-calling cases) are somewhat extended by
the experimental postderef feature. For the details of that feature, consult Section 62.5
[perlref Postfix Dereference Syntax], page 1088.

48.2.4 Auto-increment and Auto-decrement

"++" and "--" work as in C. That is, if placed before a variable, they increment or decrement
the variable by one before returning the value, and if placed after, increment or decrement
after returning the value.

$i = 0; $j = 0;

print $i++; # prints 0

print ++$j; # prints 1

Note that just as in C, Perl doesn’t define when the variable is incremented or decre-
mented. You just know it will be done sometime before or after the value is returned. This
also means that modifying a variable twice in the same statement will lead to undefined
behavior. Avoid statements like:

$i = $i ++;

print ++ $i + $i ++;

Perl will not guarantee what the result of the above statements is.

The auto-increment operator has a little extra builtin magic to it. If you increment a
variable that is numeric, or that has ever been used in a numeric context, you get a normal
increment. If, however, the variable has been used in only string contexts since it was set,

and has a value that is not the empty string and matches the pattern /^[a-zA-Z]*[0-

9]*\z/, the increment is done as a string, preserving each character within its range, with
carry:

print ++($foo = "99"); # prints "100"

print ++($foo = "a0"); # prints "a1"

print ++($foo = "Az"); # prints "Ba"

print ++($foo = "zz"); # prints "aaa"

undef is always treated as numeric, and in particular is changed to 0 before incrementing
(so that a post-increment of an undef value will return 0 rather than undef).

The auto-decrement operator is not magical.

48.2.5 Exponentiation

Binary "**" is the exponentiation operator. It binds even more tightly than unary minus,
so -2**4 is -(2**4), not (-2)**4. (This is implemented using C’s pow(3) function, which
actually works on doubles internally.)

Note that certain exponentiation expressions are ill-defined: these include 0**0, 1**Inf,
and Inf**0. Do not expect any particular results from these special cases, the results are
platform-dependent.

48.2.6 Symbolic Unary Operators

Unary "!" performs logical negation, that is, "not". See also not for a lower precedence
version of this.

Unary "-" performs arithmetic negation if the operand is numeric, including any string
that looks like a number. If the operand is an identifier, a string consisting of a minus sign
concatenated with the identifier is returned. Otherwise, if the string starts with a plus or
minus, a string starting with the opposite sign is returned. One effect of these rules is that
-bareword is equivalent to the string "-bareword". If, however, the string begins with a
non-alphabetic character (excluding "+" or "-"), Perl will attempt to convert the string
to a numeric, and the arithmetic negation is performed. If the string cannot be cleanly
converted to a numeric, Perl will give the warning Argument "the string" isn’t numeric in
negation (-) at

Unary "~" performs bitwise negation, that is, 1’s complement. For example, 0666 & ~027

is 0640. (See also Section 48.2.37 [Integer Arithmetic], page 849 and Section 48.2.36 [Bitwise
String Operators], page 848.) Note that the width of the result is platform-dependent: ~0
is 32 bits wide on a 32-bit platform, but 64 bits wide on a 64-bit platform, so if you are
expecting a certain bit width, remember to use the "&" operator to mask off the excess bits.

When complementing strings, if all characters have ordinal values under 256, then their
complements will, also. But if they do not, all characters will be in either 32- or 64-bit
complements, depending on your architecture. So for example, ~"\x{3B1}" is "\x{FFFF_
FC4E}" on 32-bit machines and "\x{FFFF_FFFF_FFFF_FC4E}" on 64-bit machines.

If the experimental "bitwise" feature is enabled via use feature ’bitwise’, then unary
"~" always treats its argument as a number, and an alternate form of the operator, "~.",
always treats its argument as a string. So ~0 and ~"0" will both give 2**32-1 on 32-bit
platforms, whereas ~.0 and ~."0" will both yield "\xff". This feature produces a warning
unless you use no warnings ’experimental::bitwise’.

Unary "+" has no effect whatsoever, even on strings. It is useful syntactically for separat-
ing a function name from a parenthesized expression that would otherwise be interpreted
as the complete list of function arguments. (See examples above under Terms and List
Operators (Leftward).)

Unary "\" creates a reference to whatever follows it. See Section 63.1 [perlreftut NAME],
page 1092 and Section 62.1 [perlref NAME], page 1077. Do not confuse this behavior with
the behavior of backslash within a string, although both forms do convey the notion of
protecting the next thing from interpolation.

48.2.7 Binding Operators

Binary "=~" binds a scalar expression to a pattern match. Certain operations search or
modify the string $_ by default. This operator makes that kind of operation work on some
other string. The right argument is a search pattern, substitution, or transliteration. The
left argument is what is supposed to be searched, substituted, or transliterated instead of
the default $_. When used in scalar context, the return value generally indicates the success
of the operation. The exceptions are substitution (s///) and transliteration (y///) with the
/r (non-destructive) option, which cause the return value to be the result of the substitution.
Behavior in list context depends on the particular operator. See Section 48.2.30 [Regexp
Quote-Like Operators], page 823 for details and Section 68.1 [perlretut NAME], page 1131
for examples using these operators.

If the right argument is an expression rather than a search pattern, substitution, or
transliteration, it is interpreted as a search pattern at run time. Note that this means that
its contents will be interpolated twice, so

’\\’ =~ q’\\’;

is not ok, as the regex engine will end up trying to compile the pattern \, which it will
consider a syntax error.

Binary "!~" is just like "=~" except the return value is negated in the logical sense.

Binary "!~" with a non-destructive substitution (s///r) or transliteration (y///r) is a
syntax error.

48.2.8 Multiplicative Operators

Binary "*" multiplies two numbers.

Binary "/" divides two numbers.

Binary "%" is the modulo operator, which computes the division remainder of its first
argument with respect to its second argument. Given integer operands $m and $n: If $n is
positive, then $m % $n is $m minus the largest multiple of $n less than or equal to $m. If $n
is negative, then $m % $n is $m minus the smallest multiple of $n that is not less than $m

(that is, the result will be less than or equal to zero). If the operands $m and $n are floating
point values and the absolute value of $n (that is abs($n)) is less than (UV_MAX + 1), only
the integer portion of $m and $n will be used in the operation (Note: here UV_MAX means the
maximum of the unsigned integer type). If the absolute value of the right operand (abs($n))
is greater than or equal to (UV_MAX + 1), "%" computes the floating-point remainder $r in
the equation ($r = $m - $i*$n) where $i is a certain integer that makes $r have the same
sign as the right operand $n (not as the left operand $m like C function fmod()) and the
absolute value less than that of $n. Note that when use integer is in scope, "%" gives you

direct access to the modulo operator as implemented by your C compiler. This operator is
not as well defined for negative operands, but it will execute faster.

Binary "x" is the repetition operator. In scalar context or if the left operand is not
enclosed in parentheses, it returns a string consisting of the left operand repeated the
number of times specified by the right operand. In list context, if the left operand is
enclosed in parentheses or is a list formed by qw/STRING/, it repeats the list. If the right
operand is zero or negative (raising a warning on negative), it returns an empty string or
an empty list, depending on the context.

print ’-’ x 80; # print row of dashes

print "\t" x ($tab/8), ’ ’ x ($tab%8); # tab over

@ones = (1) x 80; # a list of 80 1’s

@ones = (5) x @ones; # set all elements to 5

48.2.9 Additive Operators

Binary "+" returns the sum of two numbers.

Binary "-" returns the difference of two numbers.

Binary "." concatenates two strings.

48.2.10 Shift Operators > >>>

Binary "<<" returns the value of its left argument shifted left by the number of bits specified
by the right argument. Arguments should be integers. (See also Section 48.2.37 [Integer
Arithmetic], page 849.)

Binary ">>" returns the value of its left argument shifted right by the number of bits
specified by the right argument. Arguments should be integers. (See also Section 48.2.37
[Integer Arithmetic], page 849.)

Note that both << and >> in Perl are implemented directly using << and >> in C. If
use integer (see Section 48.2.37 [Integer Arithmetic], page 849) is in force then signed C
integers are used, else unsigned C integers are used. Either way, the implementation isn’t
going to generate results larger than the size of the integer type Perl was built with (32 bits
or 64 bits).

The result of overflowing the range of the integers is undefined because it is undefined
also in C. In other words, using 32-bit integers, 1 << 32 is undefined. Shifting by a negative
number of bits is also undefined.

If you get tired of being subject to your platform’s native integers, the use bigint

pragma neatly sidesteps the issue altogether:

print 20 << 20; # 20971520

print 20 << 40; # 5120 on 32-bit machines,

21990232555520 on 64-bit machines

use bigint;

print 20 << 100; # 25353012004564588029934064107520

48.2.11 Named Unary Operators

The various named unary operators are treated as functions with one argument, with op-
tional parentheses.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.) is followed
by a left parenthesis as the next token, the operator and arguments within parentheses are
taken to be of highest precedence, just like a normal function call. For example, because
named unary operators are higher precedence than ||:

chdir $foo || die; # (chdir $foo) || die

chdir($foo) || die; # (chdir $foo) || die

chdir ($foo) || die; # (chdir $foo) || die

chdir +($foo) || die; # (chdir $foo) || die

but, because "*" is higher precedence than named operators:

chdir $foo * 20; # chdir ($foo * 20)

chdir($foo) * 20; # (chdir $foo) * 20

chdir ($foo) * 20; # (chdir $foo) * 20

chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # rand (10 * 20)

rand(10) * 20; # (rand 10) * 20

rand (10) * 20; # (rand 10) * 20

rand +(10) * 20; # rand (10 * 20)

Regarding precedence, the filetest operators, like -f, -M, etc. are treated like named
unary operators, but they don’t follow this functional parenthesis rule. That means, for
example, that -f($file).".bak" is equivalent to -f "$file.bak".

See also Section 48.2.2 [Terms and List Operators (Leftward)], page 799.

48.2.12 Relational Operators

Perl operators that return true or false generally return values that can be safely used as
numbers. For example, the relational operators in this section and the equality operators in
the next one return 1 for true and a special version of the defined empty string, "", which
counts as a zero but is exempt from warnings about improper numeric conversions, just as
"0 but true" is.

Binary "<" returns true if the left argument is numerically less than the right argument.

Binary ">" returns true if the left argument is numerically greater than the right argu-
ment. >>

Binary "<=" returns true if the left argument is numerically less than or equal to the
right argument.

Binary ">=" returns true if the left argument is numerically greater than or equal to the
right argument. = >>

Binary "lt" returns true if the left argument is stringwise less than the right argument.

Binary "gt" returns true if the left argument is stringwise greater than the right argu-
ment.

Binary "le" returns true if the left argument is stringwise less than or equal to the right
argument.

Binary "ge" returns true if the left argument is stringwise greater than or equal to the
right argument.

48.2.13 Equality Operators

Binary "==" returns true if the left argument is numerically equal to the right argument.

Binary "!=" returns true if the left argument is numerically not equal to the right
argument.

Binary "<=>" returns -1, 0, or 1 depending on whether the left argument is numerically
less than, equal to, or greater than the right argument. If your platform supports NaN’s
(not-a-numbers) as numeric values, using them with "<=>" returns undef. NaN is not "<",
"==", ">", "<=" or ">=" anything (even NaN), so those 5 return false. NaN != NaN returns
true, as does NaN != anything else. If your platform doesn’t support NaN’s then NaN is just
a string with numeric value 0. >>

$ perl -le ’$x = "NaN"; print "No NaN support here" if $x == $x’

$ perl -le ’$x = "NaN"; print "NaN support here" if $x != $x’

(Note that the bigint, bigrat, and bignum pragmas all support "NaN".)

Binary "eq" returns true if the left argument is stringwise equal to the right argument.

Binary "ne" returns true if the left argument is stringwise not equal to the right argu-
ment.

Binary "cmp" returns -1, 0, or 1 depending on whether the left argument is stringwise
less than, equal to, or greater than the right argument.

Binary "~~" does a smartmatch between its arguments. Smart matching is described in
the next section.

"lt", "le", "ge", "gt" and "cmp" use the collation (sort) order specified by the current
LC_COLLATE locale if a use locale form that includes collation is in effect. See Section 38.1
[perllocale NAME], page 701. Do not mix these with Unicode, only use them with legacy
8-bit locale encodings. The standard Unicode-Collate and Unicode-Collate-Locale

modules offer much more powerful solutions to collation issues.

For case-insensitive comparisions, look at the [perlfunc fc], page 383 case-folding function,
available in Perl v5.16 or later:

if (fc($x) eq fc($y)) { ... }

48.2.14 Smartmatch Operator

First available in Perl 5.10.1 (the 5.10.0 version behaved differently), binary ~~ does a
"smartmatch" between its arguments. This is mostly used implicitly in the when construct
described in Section 74.1 [perlsyn NAME], page 1249, although not all when clauses call the
smartmatch operator. Unique among all of Perl’s operators, the smartmatch operator can
recurse. The smartmatch operator is [experimental], page 945 and its behavior is subject
to change.

It is also unique in that all other Perl operators impose a context (usually string or nu-
meric context) on their operands, autoconverting those operands to those imposed contexts.
In contrast, smartmatch infers contexts from the actual types of its operands and uses that
type information to select a suitable comparison mechanism.

The ~~ operator compares its operands "polymorphically", determining how to compare
them according to their actual types (numeric, string, array, hash, etc.) Like the equality
operators with which it shares the same precedence, ~~ returns 1 for true and "" for false.
It is often best read aloud as "in", "inside of", or "is contained in", because the left operand
is often looked for inside the right operand. That makes the order of the operands to the
smartmatch operand often opposite that of the regular match operator. In other words, the
"smaller" thing is usually placed in the left operand and the larger one in the right.

The behavior of a smartmatch depends on what type of things its arguments are, as
determined by the following table. The first row of the table whose types apply determines
the smartmatch behavior. Because what actually happens is mostly determined by the type
of the second operand, the table is sorted on the right operand instead of on the left.

Left Right Description and pseudocode

===

Any undef check whether Any is undefined

like: !defined Any

Any Object invoke ~~ overloading on Object, or die

Right operand is an ARRAY:

Left Right Description and pseudocode

===

ARRAY1 ARRAY2 recurse on paired elements of ARRAY1 and ARRAY2[2]

like: (ARRAY1[0] ~~ ARRAY2[0])

&& (ARRAY1[1] ~~ ARRAY2[1]) && ...

HASH ARRAY any ARRAY elements exist as HASH keys

like: grep { exists HASH->{$_} } ARRAY

Regexp ARRAY any ARRAY elements pattern match Regexp

like: grep { /Regexp/ } ARRAY

undef ARRAY undef in ARRAY

like: grep { !defined } ARRAY

Any ARRAY smartmatch each ARRAY element[3]

like: grep { Any ~~ $_ } ARRAY

Right operand is a HASH:

Left Right Description and pseudocode

===

HASH1 HASH2 all same keys in both HASHes

like: keys HASH1 ==

grep { exists HASH2->{$_} } keys HASH1

ARRAY HASH any ARRAY elements exist as HASH keys

like: grep { exists HASH->{$_} } ARRAY

Regexp HASH any HASH keys pattern match Regexp

like: grep { /Regexp/ } keys HASH

undef HASH always false (undef can’t be a key)

like: 0 == 1

Any HASH HASH key existence

like: exists HASH->{Any}

Right operand is CODE:

Left Right Description and pseudocode

===

ARRAY CODE sub returns true on all ARRAY elements[1]

like: !grep { !CODE->($_) } ARRAY

HASH CODE sub returns true on all HASH keys[1]

like: !grep { !CODE->($_) } keys HASH

Any CODE sub passed Any returns true

like: CODE->(Any)

Right operand is a Regexp:

Left Right Description and pseudocode

===

ARRAY Regexp any ARRAY elements match Regexp

like: grep { /Regexp/ } ARRAY

HASH Regexp any HASH keys match Regexp

like: grep { /Regexp/ } keys HASH

Any Regexp pattern match

like: Any =~ /Regexp/

Other:

Left Right Description and pseudocode

===

Object Any invoke ~~ overloading on Object,

or fall back to...

Any Num numeric equality

like: Any == Num

Num nummy[4] numeric equality

like: Num == nummy

undef Any check whether undefined

like: !defined(Any)

Any Any string equality

like: Any eq Any

Notes:

1. Empty hashes or arrays match.
2. That is, each element smartmatches the element of the same index in the other array.[3]
3. If a circular reference is found, fall back to referential equality.
4. Either an actual number, or a string that looks like one.

The smartmatch implicitly dereferences any non-blessed hash or array reference, so the
HASH and ARRAY entries apply in those cases. For blessed references, the Object entries
apply. Smartmatches involving hashes only consider hash keys, never hash values.

The "like" code entry is not always an exact rendition. For example, the smartmatch
operator short-circuits whenever possible, but grep does not. Also, grep in scalar context
returns the number of matches, but ~~ returns only true or false.

Unlike most operators, the smartmatch operator knows to treat undef specially:

use v5.10.1;

@array = (1, 2, 3, undef, 4, 5);

say "some elements undefined" if undef ~~ @array;

Each operand is considered in a modified scalar context, the modification being that array
and hash variables are passed by reference to the operator, which implicitly dereferences
them. Both elements of each pair are the same:

use v5.10.1;

my %hash = (red => 1, blue => 2, green => 3,

orange => 4, yellow => 5, purple => 6,

black => 7, grey => 8, white => 9);

my @array = qw(red blue green);

say "some array elements in hash keys" if @array ~~ %hash;

say "some array elements in hash keys" if \@array ~~ \%hash;

say "red in array" if "red" ~~ @array;

say "red in array" if "red" ~~ \@array;

say "some keys end in e" if /e$/ ~~ %hash;

say "some keys end in e" if /e$/ ~~ \%hash;

Two arrays smartmatch if each element in the first array smartmatches (that is, is "in")
the corresponding element in the second array, recursively.

use v5.10.1;

my @little = qw(red blue green);

my @bigger = ("red", "blue", ["orange", "green"]);

if (@little ~~ @bigger) { # true!

say "little is contained in bigger";

}

Because the smartmatch operator recurses on nested arrays, this will still report that
"red" is in the array.

use v5.10.1;

my @array = qw(red blue green);

my $nested_array = [[[[[[[@array]]]]]]];

say "red in array" if "red" ~~ $nested_array;

If two arrays smartmatch each other, then they are deep copies of each others’ values,
as this example reports:

use v5.12.0;

my @a = (0, 1, 2, [3, [4, 5], 6], 7);

my @b = (0, 1, 2, [3, [4, 5], 6], 7);

if (@a ~~ @b && @b ~~ @a) {

say "a and b are deep copies of each other";

}

elsif (@a ~~ @b) {

say "a smartmatches in b";

}

elsif (@b ~~ @a) {

say "b smartmatches in a";

}

else {

say "a and b don’t smartmatch each other at all";

}

If you were to set $b[3] = 4, then instead of reporting that "a and b are deep copies of
each other", it now reports that "b smartmatches in a". That’s because the corresponding
position in @a contains an array that (eventually) has a 4 in it.

Smartmatching one hash against another reports whether both contain the same keys,
no more and no less. This could be used to see whether two records have the same field
names, without caring what values those fields might have. For example:

use v5.10.1;

sub make_dogtag {

state $REQUIRED_FIELDS = { name=>1, rank=>1, serial_num=>1 };

my ($class, $init_fields) = @_;

die "Must supply (only) name, rank, and serial number"

unless $init_fields ~~ $REQUIRED_FIELDS;

...

}

or, if other non-required fields are allowed, use ARRAY ~~ HASH:

use v5.10.1;

sub make_dogtag {

state $REQUIRED_FIELDS = { name=>1, rank=>1, serial_num=>1 };

my ($class, $init_fields) = @_;

die "Must supply (at least) name, rank, and serial number"

unless [keys %{$init_fields}] ~~ $REQUIRED_FIELDS;

...

}

The smartmatch operator is most often used as the implicit operator of a when clause.
See the section on "Switch Statements" in Section 74.1 [perlsyn NAME], page 1249.

48.2.14.1 Smartmatching of Objects

To avoid relying on an object’s underlying representation, if the smartmatch’s right
operand is an object that doesn’t overload ~~, it raises the exception "Smartmatching a

non-overloaded object breaks encapsulation". That’s because one has no business
digging around to see whether something is "in" an object. These are all illegal on objects
without a ~~ overload:

%hash ~~ $object

42 ~~ $object

"fred" ~~ $object

However, you can change the way an object is smartmatched by overloading the ~~

operator. This is allowed to extend the usual smartmatch semantics. For objects that do
have an ~~ overload, see overload.

Using an object as the left operand is allowed, although not very useful. Smartmatching
rules take precedence over overloading, so even if the object in the left operand has smart-
match overloading, this will be ignored. A left operand that is a non-overloaded object falls
back on a string or numeric comparison of whatever the ref operator returns. That means
that

$object ~~ X

does not invoke the overload method with X as an argument. Instead the above table is
consulted as normal, and based on the type of X, overloading may or may not be invoked.
For simple strings or numbers, "in" becomes equivalent to this:

$object ~~ $number ref($object) == $number

$object ~~ $string ref($object) eq $string

For example, this reports that the handle smells IOish (but please don’t really do this!):

use IO::Handle;

my $fh = IO::Handle->new();

if ($fh ~~ /\bIO\b/) {

say "handle smells IOish";

}

That’s because it treats $fh as a string like "IO::Handle=GLOB(0x8039e0)", then pat-
tern matches against that.

48.2.15 Bitwise And

Binary "&" returns its operands ANDed together bit by bit. Although no warning is cur-
rently raised, the result is not well defined when this operation is performed on operands
that aren’t either numbers (see Section 48.2.37 [Integer Arithmetic], page 849) nor bitstrings
(see Section 48.2.36 [Bitwise String Operators], page 848).

Note that "&" has lower priority than relational operators, so for example the parentheses
are essential in a test like

print "Even\n" if ($x & 1) == 0;

If the experimental "bitwise" feature is enabled via use feature ’bitwise’, then this
operator always treats its operand as numbers. This feature produces a warning unless you
also use no warnings ’experimental::bitwise’.

48.2.16 Bitwise Or and Exclusive Or

Binary "|" returns its operands ORed together bit by bit.

Binary "^" returns its operands XORed together bit by bit.

Although no warning is currently raised, the results are not well defined when these
operations are performed on operands that aren’t either numbers (see Section 48.2.37 [In-
teger Arithmetic], page 849) nor bitstrings (see Section 48.2.36 [Bitwise String Operators],
page 848).

Note that "|" and "^" have lower priority than relational operators, so for example the
parentheses are essential in a test like

print "false\n" if (8 | 2) != 10;

If the experimental "bitwise" feature is enabled via use feature ’bitwise’, then this
operator always treats its operand as numbers. This feature produces a warning unless you
also use no warnings ’experimental::bitwise’.

48.2.17 C-style Logical And

Binary "&&" performs a short-circuit logical AND operation. That is, if the left operand
is false, the right operand is not even evaluated. Scalar or list context propagates down to
the right operand if it is evaluated.

48.2.18 C-style Logical Or

Binary "||" performs a short-circuit logical OR operation. That is, if the left operand is
true, the right operand is not even evaluated. Scalar or list context propagates down to the
right operand if it is evaluated.

48.2.19 Logical Defined-Or

Although it has no direct equivalent in C, Perl’s // operator is related to its C-style "or". In
fact, it’s exactly the same as ||, except that it tests the left hand side’s definedness instead
of its truth. Thus, EXPR1 // EXPR2 returns the value of EXPR1 if it’s defined, otherwise, the
value of EXPR2 is returned. (EXPR1 is evaluated in scalar context, EXPR2 in the context of //
itself). Usually, this is the same result as defined(EXPR1) ? EXPR1 : EXPR2 (except that
the ternary-operator form can be used as a lvalue, while EXPR1 // EXPR2 cannot). This is
very useful for providing default values for variables. If you actually want to test if at least
one of $x and $y is defined, use defined($x // $y).

The ||, // and && operators return the last value evaluated (unlike C’s || and &&, which
return 0 or 1). Thus, a reasonably portable way to find out the home directory might be:

$home = $ENV{HOME}

// $ENV{LOGDIR}

// (getpwuid($<))[7]

// die "You’re homeless!\n";

In particular, this means that you shouldn’t use this for selecting between two aggregates
for assignment:

@a = @b || @c; # this is wrong

@a = scalar(@b) || @c; # really meant this

@a = @b ? @b : @c; # this works fine, though

As alternatives to && and || when used for control flow, Perl provides the and and or

operators (see below). The short-circuit behavior is identical. The precedence of "and" and
"or" is much lower, however, so that you can safely use them after a list operator without
the need for parentheses:

unlink "alpha", "beta", "gamma"

or gripe(), next LINE;

With the C-style operators that would have been written like this:

unlink("alpha", "beta", "gamma")

|| (gripe(), next LINE);

It would be even more readable to write that this way:

unless(unlink("alpha", "beta", "gamma")) {

gripe();

next LINE;

}

Using "or" for assignment is unlikely to do what you want; see below.

48.2.20 Range Operators

Binary ".." is the range operator, which is really two different operators depending on the
context. In list context, it returns a list of values counting (up by ones) from the left value
to the right value. If the left value is greater than the right value then it returns the empty
list. The range operator is useful for writing foreach (1..10) loops and for doing slice
operations on arrays. In the current implementation, no temporary array is created when
the range operator is used as the expression in foreach loops, but older versions of Perl
might burn a lot of memory when you write something like this:

for (1 .. 1_000_000) {

code

}

The range operator also works on strings, using the magical auto-increment, see below.

In scalar context, ".." returns a boolean value. The operator is bistable, like a flip-flop,
and emulates the line-range (comma) operator of sed, awk, and various editors. Each ".."

operator maintains its own boolean state, even across calls to a subroutine that contains it.
It is false as long as its left operand is false. Once the left operand is true, the range operator
stays true until the right operand is true, AFTER which the range operator becomes false
again. It doesn’t become false till the next time the range operator is evaluated. It can
test the right operand and become false on the same evaluation it became true (as in awk),
but it still returns true once. If you don’t want it to test the right operand until the next

evaluation, as in sed, just use three dots ("...") instead of two. In all other regards, "..."
behaves just like ".." does.

The right operand is not evaluated while the operator is in the "false" state, and the
left operand is not evaluated while the operator is in the "true" state. The precedence is a
little lower than || and &&. The value returned is either the empty string for false, or a
sequence number (beginning with 1) for true. The sequence number is reset for each range
encountered. The final sequence number in a range has the string "E0" appended to it,
which doesn’t affect its numeric value, but gives you something to search for if you want
to exclude the endpoint. You can exclude the beginning point by waiting for the sequence
number to be greater than 1.

If either operand of scalar ".." is a constant expression, that operand is considered true
if it is equal (==) to the current input line number (the $. variable).

To be pedantic, the comparison is actually int(EXPR) == int(EXPR), but that is only
an issue if you use a floating point expression; when implicitly using $. as described in
the previous paragraph, the comparison is int(EXPR) == int($.) which is only an issue
when $. is set to a floating point value and you are not reading from a file. Furthermore,
"span" .. "spat" or 2.18 .. 3.14 will not do what you want in scalar context because
each of the operands are evaluated using their integer representation.

Examples:

As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines, short for

if ($. == 101 .. $. == 200) { print; }

next LINE if (1 .. /^$/); # skip header lines, short for

next LINE if ($. == 1 .. /^$/);

(typically in a loop labeled LINE)

s/^/> / if (/^$/ .. eof()); # quote body

parse mail messages

while (<>) {

$in_header = 1 .. /^$/;

$in_body = /^$/ .. eof;

if ($in_header) {

do something

} else { # in body

do something else

}

} continue {

close ARGV if eof; # reset $. each file

}

Here’s a simple example to illustrate the difference between the two range operators:

@lines = (" - Foo",

"01 - Bar",

"1 - Baz",

" - Quux");

foreach (@lines) {

if (/0/ .. /1/) {

print "$_\n";

}

}

This program will print only the line containing "Bar". If the range operator is changed
to ..., it will also print the "Baz" line.

And now some examples as a list operator:

for (101 .. 200) { print } # print $_ 100 times

@foo = @foo[0 .. $#foo]; # an expensive no-op

@foo = @foo[$#foo-4 .. $#foo]; # slice last 5 items

The range operator (in list context) makes use of the magical auto-increment algorithm
if the operands are strings. You can say

@alphabet = ("A" .. "Z");

to get all normal letters of the English alphabet, or

$hexdigit = (0 .. 9, "a" .. "f")[$num & 15];

to get a hexadecimal digit, or

@z2 = ("01" .. "31");

print $z2[$mday];

to get dates with leading zeros.

If the final value specified is not in the sequence that the magical increment would
produce, the sequence goes until the next value would be longer than the final value specified.

If the initial value specified isn’t part of a magical increment sequence (that is, a non-
empty string matching /^[a-zA-Z]*[0-9]*\z/), only the initial value will be returned. So
the following will only return an alpha:

use charnames "greek";

my @greek_small = ("\N{alpha}" .. "\N{omega}");

To get the 25 traditional lowercase Greek letters, including both sigmas, you could use
this instead:

use charnames "greek";

my @greek_small = map { chr } (ord("\N{alpha}")

..

ord("\N{omega}")

);

However, because there are many other lowercase Greek characters than just those,
to match lowercase Greek characters in a regular expression, you could use the pattern
/(?:(?=\p{Greek})\p{Lower})+/ (or the Section 61.2.3.9 [experimental feature],
page 1073 /(?[\p{Greek} & \p{Lower}])+/).

Because each operand is evaluated in integer form, 2.18 .. 3.14 will return two elements
in list context.

@list = (2.18 .. 3.14); # same as @list = (2 .. 3);

48.2.21 Conditional Operator

Ternary "?:" is the conditional operator, just as in C. It works much like an if-then-else.
If the argument before the ? is true, the argument before the : is returned, otherwise the
argument after the : is returned. For example:

printf "I have %d dog%s.\n", $n,

($n == 1) ? "" : "s";

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is
selected.

$x = $ok ? $y : $z; # get a scalar

@x = $ok ? @y : @z; # get an array

$x = $ok ? @y : @z; # oops, that’s just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal lvalues
(meaning that you can assign to them):

($x_or_y ? $x : $y) = $z;

Because this operator produces an assignable result, using assignments without paren-
theses will get you in trouble. For example, this:

$x % 2 ? $x += 10 : $x += 2

Really means this:

(($x % 2) ? ($x += 10) : $x) += 2

Rather than this:

($x % 2) ? ($x += 10) : ($x += 2)

That should probably be written more simply as:

$x += ($x % 2) ? 10 : 2;

48.2.22 Assignment Operators

> = >>>

"=" is the ordinary assignment operator.

Assignment operators work as in C. That is,

$x += 2;

is equivalent to

$x = $x + 2;

although without duplicating any side effects that dereferencing the lvalue might trig-
ger, such as from tie(). Other assignment operators work similarly. The following are
recognized:

**= += *= &= &.= <<= &&=

-= /= |= |.= >>= ||=

.= %= ^= ^.= //=

x=

Although these are grouped by family, they all have the precedence of assignment. These
combined assignment operators can only operate on scalars, whereas the ordinary assign-
ment operator can assign to arrays, hashes, lists and even references. (See Section 11.2.3

["Context"], page 73 and Section 11.2.6 [perldata List value constructors], page 79, and
Section 62.6 [perlref Assigning to References], page 1089.)

Unlike in C, the scalar assignment operator produces a valid lvalue. Modifying an
assignment is equivalent to doing the assignment and then modifying the variable that was
assigned to. This is useful for modifying a copy of something, like this:

($tmp = $global) =~ tr/13579/24680/;

Although as of 5.14, that can be also be accomplished this way:

use v5.14;

$tmp = ($global =~ tr/13579/24680/r);

Likewise,

($x += 2) *= 3;

is equivalent to

$x += 2;

$x *= 3;

Similarly, a list assignment in list context produces the list of lvalues assigned to, and a
list assignment in scalar context returns the number of elements produced by the expression
on the right hand side of the assignment.

The three dotted bitwise assignment operators (&.= |.= ^.=) are new in Perl 5.22 and
experimental. See Section 48.2.36 [Bitwise String Operators], page 848.

48.2.23 Comma Operator

Binary "," is the comma operator. In scalar context it evaluates its left argument, throws
that value away, then evaluates its right argument and returns that value. This is just like
C’s comma operator.

In list context, it’s just the list argument separator, and inserts both its arguments into
the list. These arguments are also evaluated from left to right.

The => operator (sometimes pronounced "fat comma") is a synonym for the comma
except that it causes a word on its left to be interpreted as a string if it begins with a
letter or underscore and is composed only of letters, digits and underscores. This includes
operands that might otherwise be interpreted as operators, constants, single number v-
strings or function calls. If in doubt about this behavior, the left operand can be quoted
explicitly.

Otherwise, the => operator behaves exactly as the comma operator or list argument
separator, according to context.

For example:

use constant FOO => "something";

my %h = (FOO => 23);

is equivalent to:

my %h = ("FOO", 23);

It is NOT :

my %h = ("something", 23);

The => operator is helpful in documenting the correspondence between keys and values
in hashes, and other paired elements in lists.

%hash = ($key => $value);

login($username => $password);

The special quoting behavior ignores precedence, and hence may apply to part of the
left operand:

print time.shift => "bbb";

That example prints something like "1314363215shiftbbb", because the => implicitly
quotes the shift immediately on its left, ignoring the fact that time.shift is the entire
left operand.

48.2.24 List Operators (Rightward)

On the right side of a list operator, the comma has very low precedence, such that it controls
all comma-separated expressions found there. The only operators with lower precedence
are the logical operators "and", "or", and "not", which may be used to evaluate calls to
list operators without the need for parentheses:

open HANDLE, "< :utf8", "filename" or die "Can’t open: $!\n";

However, some people find that code harder to read than writing it with parentheses:

open(HANDLE, "< :utf8", "filename") or die "Can’t open: $!\n";

in which case you might as well just use the more customary "||" operator:

open(HANDLE, "< :utf8", "filename") || die "Can’t open: $!\n";

See also discussion of list operators in Terms and List Operators (Leftward).

48.2.25 Logical Not

Unary "not" returns the logical negation of the expression to its right. It’s the equivalent
of "!" except for the very low precedence.

48.2.26 Logical And

Binary "and" returns the logical conjunction of the two surrounding expressions. It’s equiv-
alent to && except for the very low precedence. This means that it short-circuits: the right
expression is evaluated only if the left expression is true.

48.2.27 Logical or and Exclusive Or

Binary "or" returns the logical disjunction of the two surrounding expressions. It’s equiv-
alent to || except for the very low precedence. This makes it useful for control flow:

print FH $data or die "Can’t write to FH: $!";

This means that it short-circuits: the right expression is evaluated only if the left ex-
pression is false. Due to its precedence, you must be careful to avoid using it as replacement
for the || operator. It usually works out better for flow control than in assignments:

$x = $y or $z; # bug: this is wrong

($x = $y) or $z; # really means this

$x = $y || $z; # better written this way

However, when it’s a list-context assignment and you’re trying to use || for control flow,
you probably need "or" so that the assignment takes higher precedence.

@info = stat($file) || die; # oops, scalar sense of stat!

@info = stat($file) or die; # better, now @info gets its due

Then again, you could always use parentheses.

Binary "xor" returns the exclusive-OR of the two surrounding expressions. It cannot
short-circuit (of course).

There is no low precedence operator for defined-OR.

48.2.28 C Operators Missing From Perl

Here is what C has that Perl doesn’t:

unary &

Address-of operator. (But see the "\" operator for taking a reference.)

unary *

Dereference-address operator. (Perl’s prefix dereferencing operators are typed:
$, @, %, and &.)

(TYPE)

Type-casting operator.

48.2.29 Quote and Quote-like Operators

>

While we usually think of quotes as literal values, in Perl they function as operators, pro-
viding various kinds of interpolating and pattern matching capabilities. Perl provides cus-
tomary quote characters for these behaviors, but also provides a way for you to choose
your quote character for any of them. In the following table, a {} represents any pair of
delimiters you choose.

Customary Generic Meaning Interpolates

’’ q{} Literal no

"" qq{} Literal yes

‘‘ qx{} Command yes*

qw{} Word list no

// m{} Pattern match yes*

qr{} Pattern yes*

s{}{} Substitution yes*

tr{}{} Transliteration no (but see below)

y{}{} Transliteration no (but see below)

<<EOF here-doc yes*

* unless the delimiter is ’’.

Non-bracketing delimiters use the same character fore and aft, but the four sorts of
ASCII brackets (round, angle, square, curly) all nest, which means that

q{foo{bar}baz}

is the same as

’foo{bar}baz’

Note, however, that this does not always work for quoting Perl code:

$s = q{ if($x eq "}") ... }; # WRONG

is a syntax error. The Text-Balanced module (standard as of v5.8, and from CPAN
before then) is able to do this properly.

There can be whitespace between the operator and the quoting characters, except when
is being used as the quoting character. q#foo# is parsed as the string foo, while q #foo#

is the operator q followed by a comment. Its argument will be taken from the next line.
This allows you to write:

s {foo} # Replace foo

{bar} # with bar.

The following escape sequences are available in constructs that interpolate, and in
transliterations:

Sequence Note Description

\t tab (HT, TAB)

\n newline (NL)

\r return (CR)

\f form feed (FF)

\b backspace (BS)

\a alarm (bell) (BEL)

\e escape (ESC)

\x{263A} [1,8] hex char (example: SMILEY)

\x1b [2,8] restricted range hex char (example: ESC)

\N{name} [3] named Unicode character or character sequence

\N{U+263D} [4,8] Unicode character (example: FIRST QUARTER MOON)

\c[[5] control char (example: chr(27))

\o{23072} [6,8] octal char (example: SMILEY)

\033 [7,8] restricted range octal char (example: ESC)

[1]

The result is the character specified by the hexadecimal number between the
braces. See [[8]], page 821 below for details on which character.

Only hexadecimal digits are valid between the braces. If an invalid charac-
ter is encountered, a warning will be issued and the invalid character and all
subsequent characters (valid or invalid) within the braces will be discarded.

If there are no valid digits between the braces, the generated character is the
NULL character (\x{00}). However, an explicit empty brace (\x{}) will not
cause a warning (currently).

[2]

The result is the character specified by the hexadecimal number in the range
0x00 to 0xFF. See [[8]], page 821 below for details on which character.

Only hexadecimal digits are valid following \x. When \x is followed by fewer
than two valid digits, any valid digits will be zero-padded. This means that
\x7 will be interpreted as \x07, and a lone "\x" will be interpreted as \x00.
Except at the end of a string, having fewer than two valid digits will result in a
warning. Note that although the warning says the illegal character is ignored,
it is only ignored as part of the escape and will still be used as the subsequent
character in the string. For example:

Original Result Warns?

"\x7" "\x07" no

"\x" "\x00" no

"\x7q" "\x07q" yes

"\xq" "\x00q" yes

[3]

The result is the Unicode character or character sequence given by name. See
charnames.

[4]

\N{U+hexadecimal number} means the Unicode character whose Unicode code
point is hexadecimal number.

[5]

The character following \c is mapped to some other character as shown in the
table:

Sequence Value

\c@ chr(0)

\cA chr(1)

\ca chr(1)

\cB chr(2)

\cb chr(2)

...

\cZ chr(26)

\cz chr(26)

\c[chr(27)

See below for chr(28)

\c] chr(29)

\c^ chr(30)

\c_ chr(31)

\c? chr(127) # (on ASCII platforms; see below for link to

EBCDIC discussion)

In other words, it’s the character whose code point has had 64 xor’d with its
uppercase. \c? is DELETE on ASCII platforms because ord("?") ^ 64 is 127,
and \c@ is NULL because the ord of "@" is 64, so xor’ing 64 itself produces 0.

Also, \c\X yields chr(28) . "X" for any X, but cannot come at the end of a
string, because the backslash would be parsed as escaping the end quote.

On ASCII platforms, the resulting characters from the list above are the com-
plete set of ASCII controls. This isn’t the case on EBCDIC platforms; see

Section 19.7 [perlebcdic OPERATOR DIFFERENCES], page 286 for a full dis-
cussion of the differences between these for ASCII versus EBCDIC platforms.

Use of any other character following the "c" besides those listed above is dis-
couraged, and as of Perl v5.20, the only characters actually allowed are the
printable ASCII ones, minus the left brace "{". What happens for any of the
allowed other characters is that the value is derived by xor’ing with the sev-
enth bit, which is 64, and a warning raised if enabled. Using the non-allowed
characters generates a fatal error.

To get platform independent controls, you can use \N{...}.

[6]

The result is the character specified by the octal number between the braces.
See [[8]], page 821 below for details on which character.

If a character that isn’t an octal digit is encountered, a warning is raised, and
the value is based on the octal digits before it, discarding it and all following
characters up to the closing brace. It is a fatal error if there are no octal digits
at all.

[7]

The result is the character specified by the three-digit octal number in the
range 000 to 777 (but best to not use above 077, see next paragraph). See [[8]],
page 821 below for details on which character.

Some contexts allow 2 or even 1 digit, but any usage without exactly three
digits, the first being a zero, may give unintended results. (For example, in a
regular expression it may be confused with a backreference; see Section 60.2.3.7
[perlrebackslash Octal escapes], page 1049.) Starting in Perl 5.14, you may use
\o{} instead, which avoids all these problems. Otherwise, it is best to use this
construct only for ordinals \077 and below, remembering to pad to the left
with zeros to make three digits. For larger ordinals, either use \o{}, or convert
to something else, such as to hex and use \N{U+} (which is portable between
platforms with different character sets) or \x{} instead.

[8]

Several constructs above specify a character by a number. That number gives
the character’s position in the character set encoding (indexed from 0). This
is called synonymously its ordinal, code position, or code point. Perl works
on platforms that have a native encoding currently of either ASCII/Latin1 or
EBCDIC, each of which allow specification of 256 characters. In general, if
the number is 255 (0xFF, 0377) or below, Perl interprets this in the platform’s
native encoding. If the number is 256 (0x100, 0400) or above, Perl interprets it
as a Unicode code point and the result is the corresponding Unicode character.
For example \x{50} and \o{120} both are the number 80 in decimal, which is
less than 256, so the number is interpreted in the native character set encoding.
In ASCII the character in the 80th position (indexed from 0) is the letter "P",
and in EBCDIC it is the ampersand symbol "&". \x{100} and \o{400} are
both 256 in decimal, so the number is interpreted as a Unicode code point no
matter what the native encoding is. The name of the character in the 256th
position (indexed by 0) in Unicode is LATIN CAPITAL LETTER A WITH MACRON.

There are a couple of exceptions to the above rule. \N{U+hex number} is al-
ways interpreted as a Unicode code point, so that \N{U+0050} is "P" even on
EBCDIC platforms. And if encoding is in effect, the number is considered
to be in that encoding, and is translated from that into the platform’s native
encoding if there is a corresponding native character; otherwise to Unicode.

NOTE: Unlike C and other languages, Perl has no \v escape sequence for the vertical tab
(VT, which is 11 in both ASCII and EBCDIC), but you may use \N{VT}, \ck, \N{U+0b}, or
\x0b. (\v does have meaning in regular expression patterns in Perl, see Section 58.1 [perlre
NAME], page 989.)

The following escape sequences are available in constructs that interpolate, but not in
transliterations.

\l lowercase next character only

\u titlecase (not uppercase!) next character only

\L lowercase all characters till \E or end of string

\U uppercase all characters till \E or end of string

\F foldcase all characters till \E or end of string

\Q quote (disable) pattern metacharacters till \E or

end of string

\E end either case modification or quoted section

(whichever was last seen)

See [perlfunc quotemeta], page 430 for the exact definition of characters that are quoted
by \Q.

\L, \U, \F, and \Q can stack, in which case you need one \E for each. For example:

say"This \Qquoting \ubusiness \Uhere isn’t quite\E done yet,\E is it?";

This quoting\ Business\ HERE\ ISN\’T\ QUITE\ done\ yet\, is it?

If a use locale form that includes LC_CTYPE is in effect (see Section 38.1 [perllocale
NAME], page 701), the case map used by \l, \L, \u, and \U is taken from the current
locale. If Unicode (for example, \N{} or code points of 0x100 or beyond) is being used,
the case map used by \l, \L, \u, and \U is as defined by Unicode. That means that case-
mapping a single character can sometimes produce a sequence of several characters. Under
use locale, \F produces the same results as \L for all locales but a UTF-8 one, where it
instead uses the Unicode definition.

All systems use the virtual "\n" to represent a line terminator, called a "newline".
There is no such thing as an unvarying, physical newline character. It is only an illusion
that the operating system, device drivers, C libraries, and Perl all conspire to preserve. Not
all systems read "\r" as ASCII CR and "\n" as ASCII LF. For example, on the ancient
Macs (pre-MacOS X) of yesteryear, these used to be reversed, and on systems without a line
terminator, printing "\n" might emit no actual data. In general, use "\n" when you mean a
"newline" for your system, but use the literal ASCII when you need an exact character. For
example, most networking protocols expect and prefer a CR+LF ("\015\012" or "\cM\cJ")
for line terminators, and although they often accept just "\012", they seldom tolerate just
"\015". If you get in the habit of using "\n" for networking, you may be burned some day.

For constructs that do interpolate, variables beginning with "$" or "@" are interpolated.
Subscripted variables such as $a[3] or $href->{key}[0] are also interpolated, as are array
and hash slices. But method calls such as $obj->meth are not.

Interpolating an array or slice interpolates the elements in order, separated by the value
of $", so is equivalent to interpolating join $", @array. "Punctuation" arrays such as @*
are usually interpolated only if the name is enclosed in braces @{*}, but the arrays @_, @+,
and @- are interpolated even without braces.

For double-quoted strings, the quoting from \Q is applied after interpolation and escapes
are processed.

"abc\Qfoo\tbar$s\Exyz"

is equivalent to

"abc" . quotemeta("foo\tbar$s") . "xyz"

For the pattern of regex operators (qr//, m// and s///), the quoting from \Q is applied
after interpolation is processed, but before escapes are processed. This allows the pattern
to match literally (except for $ and @). For example, the following matches:

’\s\t’ =~ /\Q\s\t/

Because $ or @ trigger interpolation, you’ll need to use something like
/\Quser\E\@\Qhost/ to match them literally.

Patterns are subject to an additional level of interpretation as a regular expression. This
is done as a second pass, after variables are interpolated, so that regular expressions may
be incorporated into the pattern from the variables. If this is not what you want, use \Q to
interpolate a variable literally.

Apart from the behavior described above, Perl does not expand multiple levels of inter-
polation. In particular, contrary to the expectations of shell programmers, back-quotes do
NOT interpolate within double quotes, nor do single quotes impede evaluation of variables
when used within double quotes.

48.2.30 Regexp Quote-Like Operators

Here are the quote-like operators that apply to pattern matching and related activities.

qr/STRING/msixpodualn

This operator quotes (and possibly compiles) its STRING as a regular expres-
sion. STRING is interpolated the same way as PATTERN in m/PATTERN/. If
"’" is used as the delimiter, no interpolation is done. Returns a Perl value
which may be used instead of the corresponding /STRING/msixpodualn expres-
sion. The returned value is a normalized version of the original pattern. It
magically differs from a string containing the same characters: ref(qr/x/) re-
turns "Regexp"; however, dereferencing it is not well defined (you currently get
the normalized version of the original pattern, but this may change).

For example,

$rex = qr/my.STRING/is;

print $rex; # prints (?si-xm:my.STRING)

s/$rex/foo/;

is equivalent to

s/my.STRING/foo/is;

The result may be used as a subpattern in a match:

$re = qr/$pattern/;

$string =~ /foo${re}bar/; # can be interpolated in other

patterns

$string =~ $re; # or used standalone

$string =~ /$re/; # or this way

Since Perl may compile the pattern at the moment of execution of the qr()

operator, using qr() may have speed advantages in some situations, notably if
the result of qr() is used standalone:

sub match {

my $patterns = shift;

my @compiled = map qr/$_/i, @$patterns;

grep {

my $success = 0;

foreach my $pat (@compiled) {

$success = 1, last if /$pat/;

}

$success;

} @_;

}

Precompilation of the pattern into an internal representation at the moment
of qr() avoids the need to recompile the pattern every time a match /$pat/

is attempted. (Perl has many other internal optimizations, but none would be
triggered in the above example if we did not use qr() operator.)

Options (specified by the following modifiers) are:

m Treat string as multiple lines.

s Treat string as single line. (Make . match a newline)

i Do case-insensitive pattern matching.

x Use extended regular expressions.

p When matching preserve a copy of the matched string so

that ${^PREMATCH}, ${^MATCH}, ${^POSTMATCH} will be

defined (ignored starting in v5.20) as these are always

defined starting in that relese

o Compile pattern only once.

a ASCII-restrict: Use ASCII for \d, \s, \w; specifying two

a’s further restricts things to that that no ASCII

character will match a non-ASCII one under /i.

l Use the current run-time locale’s rules.

u Use Unicode rules.

d Use Unicode or native charset, as in 5.12 and earlier.

n Non-capture mode. Don’t let () fill in $1, $2, etc...

If a precompiled pattern is embedded in a larger pattern then the effect of
"msixpluadn" will be propagated appropriately. The effect that the /omodifier
has is not propagated, being restricted to those patterns explicitly using it.

The last four modifiers listed above, added in Perl 5.14, control the character
set rules, but /a is the only one you are likely to want to specify explicitly; the
other three are selected automatically by various pragmas.

See Section 58.1 [perlre NAME], page 989 for additional information on valid
syntax for STRING, and for a detailed look at the semantics of regular ex-
pressions. In particular, all modifiers except the largely obsolete /o are further
explained in Section 58.2.1 [perlre Modifiers], page 989. /o is described in the
next section.

m/PATTERN/msixpodualngc

/PATTERN/msixpodualngc

Searches a string for a pattern match, and in scalar context returns true if it
succeeds, false if it fails. If no string is specified via the =~ or !~ operator, the $_
string is searched. (The string specified with =~ need not be an lvalue–it may
be the result of an expression evaluation, but remember the =~ binds rather
tightly.) See also Section 58.1 [perlre NAME], page 989.

Options are as described in qr// above; in addition, the following match process
modifiers are available:

g Match globally, i.e., find all occurrences.

c Do not reset search position on a failed match when /g is

in effect.

If "/" is the delimiter then the initial m is optional. With the m you can use any
pair of non-whitespace (ASCII) characters as delimiters. This is particularly
useful for matching path names that contain "/", to avoid LTS (leaning tooth-
pick syndrome). If "?" is the delimiter, then a match-only-once rule applies,
described in m?PATTERN? below. If "’" (single quote) is the delimiter, no in-
terpolation is performed on the PATTERN. When using a delimiter character
valid in an identifier, whitespace is required after the m.

PATTERN may contain variables, which will be interpolated every time the
pattern search is evaluated, except for when the delimiter is a single quote.
(Note that $(, $), and $| are not interpolated because they look like end-of-
string tests.) Perl will not recompile the pattern unless an interpolated variable
that it contains changes. You can force Perl to skip the test and never recompile
by adding a /o (which stands for "once") after the trailing delimiter. Once
upon a time, Perl would recompile regular expressions unnecessarily, and this
modifier was useful to tell it not to do so, in the interests of speed. But now,
the only reasons to use /o are one of:

1. The variables are thousands of characters long and you know that they
don’t change, and you need to wring out the last little bit of speed by
having Perl skip testing for that. (There is a maintenance penalty for
doing this, as mentioning /o constitutes a promise that you won’t change
the variables in the pattern. If you do change them, Perl won’t even notice.)

2. you want the pattern to use the initial values of the variables regardless of
whether they change or not. (But there are saner ways of accomplishing
this than using /o.)

3. If the pattern contains embedded code, such as

use re ’eval’;

$code = ’foo(?{ $x })’;

/$code/

then perl will recompile each time, even though the pattern string hasn’t
changed, to ensure that the current value of $x is seen each time. Use /o

if you want to avoid this.

The bottom line is that using /o is almost never a good idea.

The empty pattern //

If the PATTERN evaluates to the empty string, the last successfully matched
regular expression is used instead. In this case, only the g and c flags on the
empty pattern are honored; the other flags are taken from the original pattern.
If no match has previously succeeded, this will (silently) act instead as a genuine
empty pattern (which will always match).

Note that it’s possible to confuse Perl into thinking // (the empty regex) is
really // (the defined-or operator). Perl is usually pretty good about this, but
some pathological cases might trigger this, such as $x/// (is that ($x) / (//)

or $x // /?) and print $fh // (print $fh(// or print($fh //?). In all of
these examples, Perl will assume you meant defined-or. If you meant the empty
regex, just use parentheses or spaces to disambiguate, or even prefix the empty
regex with an m (so // becomes m//).

Matching in list context
If the /g option is not used, m// in list context returns a list consisting of the
subexpressions matched by the parentheses in the pattern, that is, ($1, $2,
$3...) (Note that here $1 etc. are also set). When there are no parentheses
in the pattern, the return value is the list (1) for success. With or without
parentheses, an empty list is returned upon failure.

Examples:

open(TTY, "+</dev/tty")

|| die "can’t access /dev/tty: $!";

<TTY> =~ /^y/i && foo(); # do foo if desired

if (/Version: *([0-9.]*)/) { $version = $1; }

next if m#^/usr/spool/uucp#;

poor man’s grep

$arg = shift;

while (<>) {

print if /$arg/o; # compile only once (no longer needed!)

}

if (($F1, $F2, $Etc) = ($foo =~ /^(\S+)\s+(\S+)\s*(.*)/))

This last example splits $foo into the first two words and the remainder of the
line, and assigns those three fields to $F1, $F2, and $Etc. The conditional is
true if any variables were assigned; that is, if the pattern matched.

The /g modifier specifies global pattern matching–that is, matching as many
times as possible within the string. How it behaves depends on the context.
In list context, it returns a list of the substrings matched by any capturing
parentheses in the regular expression. If there are no parentheses, it returns a
list of all the matched strings, as if there were parentheses around the whole
pattern.

In scalar context, each execution of m//g finds the next match, returning true
if it matches, and false if there is no further match. The position after the
last match can be read or set using the pos() function; see [perlfunc pos],
page 428. A failed match normally resets the search position to the beginning
of the string, but you can avoid that by adding the /c modifier (for example,
m//gc). Modifying the target string also resets the search position.

\G assertion

You can intermix m//g matches with m/\G.../g, where \G is a zero-width
assertion that matches the exact position where the previous m//g, if any, left
off. Without the /g modifier, the \G assertion still anchors at pos() as it was
at the start of the operation (see [perlfunc pos], page 428), but the match is
of course only attempted once. Using \G without /g on a target string that
has not previously had a /g match applied to it is the same as using the \A

assertion to match the beginning of the string. Note also that, currently, \G is
only properly supported when anchored at the very beginning of the pattern.

Examples:

list context

($one,$five,$fifteen) = (‘uptime‘ =~ /(\d+\.\d+)/g);

scalar context

local $/ = "";

while ($paragraph = <>) {

while ($paragraph =~ /\p{Ll}[’")]*[.!?]+[’")]*\s/g) {

$sentences++;

}

}

say $sentences;

Here’s another way to check for sentences in a paragraph:

my $sentence_rx = qr{

(?: (?<= ^) | (?<= \s)) # after start-of-string or

whitespace

\p{Lu} # capital letter

.*? # a bunch of anything

(?<= \S) # that ends in non-

whitespace

(?<! \b [DMS]r) # but isn’t a common abbr.

(?<! \b Mrs)

(?<! \b Sra)

(?<! \b St)

[.?!] # followed by a sentence

ender

(?= $ | \s) # in front of end-of-string

or whitespace

}sx;

local $/ = "";

while (my $paragraph = <>) {

say "NEW PARAGRAPH";

my $count = 0;

while ($paragraph =~ /($sentence_rx)/g) {

printf "\tgot sentence %d: <%s>\n", ++$count, $1;

}

}

Here’s how to use m//gc with \G:

$_ = "ppooqppqq";

while ($i++ < 2) {

print "1: ’";

print $1 while /(o)/gc; print "’, pos=", pos, "\n";

print "2: ’";

print $1 if /\G(q)/gc; print "’, pos=", pos, "\n";

print "3: ’";

print $1 while /(p)/gc; print "’, pos=", pos, "\n";

}

print "Final: ’$1’, pos=",pos,"\n" if /\G(.)/;

The last example should print:

1: ’oo’, pos=4

2: ’q’, pos=5

3: ’pp’, pos=7

1: ’’, pos=7

2: ’q’, pos=8

3: ’’, pos=8

Final: ’q’, pos=8

Notice that the final match matched q instead of p, which a match without the
\G anchor would have done. Also note that the final match did not update pos.
pos is only updated on a /g match. If the final match did indeed match p, it’s
a good bet that you’re running a very old (pre-5.6.0) version of Perl.

A useful idiom for lex-like scanners is /\G.../gc. You can combine several reg-
exps like this to process a string part-by-part, doing different actions depending
on which regexp matched. Each regexp tries to match where the previous one
leaves off.

$_ = <<’EOL’;

$url = URI::URL->new("http://example.com/");

die if $url eq "xXx";

EOL

LOOP: {

print(" digits"), redo LOOP if /\G\d+\b[,.;]?\s*/gc;

print(" lowercase"), redo LOOP

if /\G\p{Ll}+\b[,.;]?\s*/gc;

print(" UPPERCASE"), redo LOOP

if /\G\p{Lu}+\b[,.;]?\s*/gc;

print(" Capitalized"), redo LOOP

if /\G\p{Lu}\p{Ll}+\b[,.;]?\s*/gc;

print(" MiXeD"), redo LOOP if /\G\pL+\b[,.;]?\s*/gc;

print(" alphanumeric"), redo LOOP

if /\G[\p{Alpha}\pN]+\b[,.;]?\s*/gc;

print(" line-noise"), redo LOOP if /\G\W+/gc;

print ". That’s all!\n";

}

Here is the output (split into several lines):

line-noise lowercase line-noise UPPERCASE line-noise UPPERCASE

line-noise lowercase line-noise lowercase line-noise lowercase

lowercase line-noise lowercase lowercase line-noise lowercase

lowercase line-noise MiXeD line-noise. That’s all!

m?PATTERN?msixpodualngc

?PATTERN?msixpodualngc

This is just like the m/PATTERN/ search, except that it matches only once be-
tween calls to the reset() operator. This is a useful optimization when you
want to see only the first occurrence of something in each file of a set of files,
for instance. Only m?? patterns local to the current package are reset.

while (<>) {

if (m?^$?) {

blank line between header and body

}

} continue {

reset if eof; # clear m?? status for next file

}

Another example switched the first "latin1" encoding it finds to "utf8" in a
pod file:

s//utf8/ if m? ^ =encoding \h+ \K latin1 ?x;

The match-once behavior is controlled by the match delimiter being ?; with
any other delimiter this is the normal m// operator.

In the past, the leading m in m?PATTERN? was optional, but omitting it would
produce a deprecation warning. As of v5.22.0, omitting it produces a syntax
error. If you encounter this construct in older code, you can just add m.

s/PATTERN/REPLACEMENT/msixpodualngcer

Searches a string for a pattern, and if found, replaces that pattern with the
replacement text and returns the number of substitutions made. Otherwise it
returns false (specifically, the empty string).

If the /r (non-destructive) option is used then it runs the substitution on a copy
of the string and instead of returning the number of substitutions, it returns
the copy whether or not a substitution occurred. The original string is never
changed when /r is used. The copy will always be a plain string, even if the
input is an object or a tied variable.

If no string is specified via the =~ or !~ operator, the $_ variable is searched
and modified. Unless the /r option is used, the string specified must be a scalar
variable, an array element, a hash element, or an assignment to one of those;
that is, some sort of scalar lvalue.

If the delimiter chosen is a single quote, no interpolation is done on either the
PATTERN or the REPLACEMENT. Otherwise, if the PATTERN contains a
$ that looks like a variable rather than an end-of-string test, the variable will
be interpolated into the pattern at run-time. If you want the pattern compiled
only once the first time the variable is interpolated, use the /o option. If
the pattern evaluates to the empty string, the last successfully executed regular
expression is used instead. See Section 58.1 [perlre NAME], page 989 for further
explanation on these.

Options are as with m// with the addition of the following replacement specific
options:

e Evaluate the right side as an expression.

ee Evaluate the right side as a string then eval the

result.

r Return substitution and leave the original string

untouched.

Any non-whitespace delimiter may replace the slashes. Add space after the
s when using a character allowed in identifiers. If single quotes are used, no
interpretation is done on the replacement string (the /e modifier overrides this,
however). Note that Perl treats backticks as normal delimiters; the replace-
ment text is not evaluated as a command. If the PATTERN is delimited by
bracketing quotes, the REPLACEMENT has its own pair of quotes, which may
or may not be bracketing quotes, for example, s(foo)(bar) or s<foo>/bar/.
A /e will cause the replacement portion to be treated as a full-fledged Perl
expression and evaluated right then and there. It is, however, syntax checked
at compile-time. A second e modifier will cause the replacement portion to be
evaled before being run as a Perl expression.

Examples:

s/\bgreen\b/mauve/g; # don’t change wintergreen

$path =~ s|/usr/bin|/usr/local/bin|;

s/Login: $foo/Login: $bar/; # run-time pattern

($foo = $bar) =~ s/this/that/; # copy first, then

change

($foo = "$bar") =~ s/this/that/; # convert to string,

copy, then change

$foo = $bar =~ s/this/that/r; # Same as above using /r

$foo = $bar =~ s/this/that/r

=~ s/that/the other/r; # Chained substitutes

using /r

@foo = map { s/this/that/r } @bar # /r is very useful in

maps

$count = ($paragraph =~ s/Mister\b/Mr./g); # get change-cnt

$_ = ’abc123xyz’;

s/\d+/$&*2/e; # yields ’abc246xyz’

s/\d+/sprintf("%5d",$&)/e; # yields ’abc 246xyz’

s/\w/$& x 2/eg; # yields ’aabbcc 224466xxyyzz’

s/%(.)/$percent{$1}/g; # change percent escapes; no /e

s/%(.)/$percent{$1} || $&/ge; # expr now, so /e

s/^=(\w+)/pod($1)/ge; # use function call

$_ = ’abc123xyz’;

$x = s/abc/def/r; # $x is ’def123xyz’ and

$_ remains ’abc123xyz’.

expand variables in $_, but dynamics only, using

symbolic dereferencing

s/\$(\w+)/${$1}/g;

Add one to the value of any numbers in the string

s/(\d+)/1 + $1/eg;

Titlecase words in the last 30 characters only

substr($str, -30) =~ s/\b(\p{Alpha}+)\b/\u\L$1/g;

This will expand any embedded scalar variable

(including lexicals) in $_ : First $1 is interpolated

to the variable name, and then evaluated

s/(\$\w+)/$1/eeg;

Delete (most) C comments.

$program =~ s {

/* # Match the opening delimiter.

.*? # Match a minimal number of characters.

*/ # Match the closing delimiter.

} []gsx;

s/^\s*(.*?)\s*$/$1/; # trim whitespace in $_,

expensively

for ($variable) { # trim whitespace in $variable,

cheap

s/^\s+//;

s/\s+$//;

}

s/([^]*) *([^]*)/$2 $1/; # reverse 1st two fields

Note the use of $ instead of \ in the last example. Unlike sed, we use the
\<digit> form only in the left hand side. Anywhere else it’s $<digit>.

Occasionally, you can’t use just a /g to get all the changes to occur that you
might want. Here are two common cases:

put commas in the right places in an integer

1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g;

expand tabs to 8-column spacing

1 while s/\t+/’ ’ x (length($&)*8 - length($‘)%8)/e;

48.2.31 Quote-Like Operators

q/STRING/

’STRING’

A single-quoted, literal string. A backslash represents a backslash unless fol-
lowed by the delimiter or another backslash, in which case the delimiter or
backslash is interpolated.

$foo = q!I said, "You said, ’She said it.’"!;

$bar = q(’This is it.’);

$baz = ’\n’; # a two-character string

qq/STRING/

"STRING"

A double-quoted, interpolated string.

$_ .= qq

(*** The previous line contains the naughty word "$1".\n)

if /\b(tcl|java|python)\b/i; # :-)

$baz = "\n"; # a one-character string

qx/STRING/

‘STRING‘

A string which is (possibly) interpolated and then executed as a system com-
mand with /bin/sh or its equivalent. Shell wildcards, pipes, and redirections
will be honored. The collected standard output of the command is returned;
standard error is unaffected. In scalar context, it comes back as a single (po-
tentially multi-line) string, or undef if the command failed. In list context,

returns a list of lines (however you’ve defined lines with $/ or $INPUT_RECORD_
SEPARATOR), or an empty list if the command failed.

Because backticks do not affect standard error, use shell file descriptor syntax
(assuming the shell supports this) if you care to address this. To capture a
command’s STDERR and STDOUT together:

$output = ‘cmd 2>&1‘;

To capture a command’s STDOUT but discard its STDERR:

$output = ‘cmd 2>/dev/null‘;

To capture a command’s STDERR but discard its STDOUT (ordering is im-
portant here):

$output = ‘cmd 2>&1 1>/dev/null‘;

To exchange a command’s STDOUT and STDERR in order to capture the
STDERR but leave its STDOUT to come out the old STDERR:

$output = ‘cmd 3>&1 1>&2 2>&3 3>&-‘;

To read both a command’s STDOUT and its STDERR separately, it’s easiest
to redirect them separately to files, and then read from those files when the
program is done:

system("program args 1>program.stdout 2>program.stderr");

The STDIN filehandle used by the command is inherited from Perl’s STDIN.
For example:

open(SPLAT, "stuff") || die "can’t open stuff: $!";

open(STDIN, "<&SPLAT") || die "can’t dupe SPLAT: $!";

print STDOUT ‘sort‘;

will print the sorted contents of the file named "stuff".

Using single-quote as a delimiter protects the command from Perl’s double-
quote interpolation, passing it on to the shell instead:

$perl_info = qx(ps $$); # that’s Perl’s $$

$shell_info = qx’ps $$’; # that’s the new shell’s $$

How that string gets evaluated is entirely subject to the command interpreter on
your system. On most platforms, you will have to protect shell metacharacters
if you want them treated literally. This is in practice difficult to do, as it’s
unclear how to escape which characters. See Section 70.1 [perlsec NAME],
page 1198 for a clean and safe example of a manual fork() and exec() to
emulate backticks safely.

On some platforms (notably DOS-like ones), the shell may not be capable of
dealing with multiline commands, so putting newlines in the string may not
get you what you want. You may be able to evaluate multiple commands in a
single line by separating them with the command separator character, if your
shell supports that (for example, ; on many Unix shells and & on the Windows
NT cmd shell).

Perl will attempt to flush all files opened for output before starting the child
process, but this may not be supported on some platforms (see Section 56.1

[perlport NAME], page 951). To be safe, you may need to set $| ($AUTOFLUSH
in English) or call the autoflush()method of IO-Handle on any open handles.

Beware that some command shells may place restrictions on the length of the
command line. You must ensure your strings don’t exceed this limit after any
necessary interpolations. See the platform-specific release notes for more details
about your particular environment.

Using this operator can lead to programs that are difficult to port, because the
shell commands called vary between systems, and may in fact not be present at
all. As one example, the type command under the POSIX shell is very different
from the type command under DOS. That doesn’t mean you should go out of
your way to avoid backticks when they’re the right way to get something done.
Perl was made to be a glue language, and one of the things it glues together is
commands. Just understand what you’re getting yourself into.

See Section 48.2.33 [I/O Operators], page 844 for more discussion.

qw/STRING/

Evaluates to a list of the words extracted out of STRING, using embedded
whitespace as the word delimiters. It can be understood as being roughly
equivalent to:

split(" ", q/STRING/);

the differences being that it generates a real list at compile time, and in scalar
context it returns the last element in the list. So this expression:

qw(foo bar baz)

is semantically equivalent to the list:

"foo", "bar", "baz"

Some frequently seen examples:

use POSIX qw(setlocale localeconv)

@EXPORT = qw(foo bar baz);

A common mistake is to try to separate the words with commas or to put
comments into a multi-line qw-string. For this reason, the use warnings pragma
and the -w switch (that is, the $^W variable) produces warnings if the STRING
contains the "," or the "#" character.

tr/SEARCHLIST/REPLACEMENTLIST/cdsr

y/SEARCHLIST/REPLACEMENTLIST/cdsr

Transliterates all occurrences of the characters found in the search list with
the corresponding character in the replacement list. It returns the number of
characters replaced or deleted. If no string is specified via the =~ or !~ operator,
the $_ string is transliterated.

If the /r (non-destructive) option is present, a new copy of the string is made
and its characters transliterated, and this copy is returned no matter whether it
was modified or not: the original string is always left unchanged. The new copy
is always a plain string, even if the input string is an object or a tied variable.

Unless the /r option is used, the string specified with =~ must be a scalar
variable, an array element, a hash element, or an assignment to one of those;
in other words, an lvalue.

A character range may be specified with a hyphen, so tr/A-J/0-9/ does the
same replacement as tr/ACEGIBDFHJ/0246813579/. For sed devotees, y is
provided as a synonym for tr. If the SEARCHLIST is delimited by brack-
eting quotes, the REPLACEMENTLIST has its own pair of quotes, which
may or may not be bracketing quotes; for example, tr[aeiouy][yuoiea] or
tr(+\-*/)/ABCD/.

Characters may be literals or any of the escape sequences accepted in double-
quoted strings. But there is no interpolation, so "$" and "@" are treated as
literals. A hyphen at the beginning or end, or preceded by a backslash is
considered a literal. Escape sequence details are in Section 48.2.29 [the table
near the beginning of this section], page 818. It is a bug in Perl v5.22 that
something like

tr/\N{U+20}-\N{U+7E}foobar//

does not treat that range as fully Unicode.

Note that tr does not do regular expression character classes such as \d or \pL.
The tr operator is not equivalent to the tr(1) utility. If you want to map
strings between lower/upper cases, see [perlfunc lc], page 399 and [perlfunc
uc], page 476, and in general consider using the s operator if you need regular
expressions. The \U, \u, \L, and \l string-interpolation escapes on the right side
of a substitution operator will perform correct case-mappings, but tr[a-z][A-
Z] will not (except sometimes on legacy 7-bit data).

Note also that the whole range idea is rather unportable between character
sets–and even within character sets they may cause results you probably didn’t
expect. A sound principle is to use only ranges that begin from and end at either
alphabets of equal case (a-e, A-E), or digits (0-4). Anything else is unsafe. If
in doubt, spell out the character sets in full.

Options:

c Complement the SEARCHLIST.

d Delete found but unreplaced characters.

s Squash duplicate replaced characters.

r Return the modified string and leave the original string

untouched.

If the /cmodifier is specified, the SEARCHLIST character set is complemented.
If the /d modifier is specified, any characters specified by SEARCHLIST not
found in REPLACEMENTLIST are deleted. (Note that this is slightly more
flexible than the behavior of some tr programs, which delete anything they
find in the SEARCHLIST, period.) If the /s modifier is specified, sequences of
characters that were transliterated to the same character are squashed down to
a single instance of the character.

If the /d modifier is used, the REPLACEMENTLIST is always interpreted
exactly as specified. Otherwise, if the REPLACEMENTLIST is shorter than
the SEARCHLIST, the final character is replicated till it is long enough. If the
REPLACEMENTLIST is empty, the SEARCHLIST is replicated. This latter
is useful for counting characters in a class or for squashing character sequences
in a class.

http://man.he.net/man1/tr

Examples:

$ARGV[1] =~ tr/A-Z/a-z/; # canonicalize to lower case ASCII

$cnt = tr/*/*/; # count the stars in $_

$cnt = $sky =~ tr/*/*/; # count the stars in $sky

$cnt = tr/0-9//; # count the digits in $_

tr/a-zA-Z//s; # bookkeeper -> bokeper

($HOST = $host) =~ tr/a-z/A-Z/;

$HOST = $host =~ tr/a-z/A-Z/r; # same thing

$HOST = $host =~ tr/a-z/A-Z/r # chained with s///r

=~ s/:/ -p/r;

tr/a-zA-Z/ /cs; # change non-alphas to single space

@stripped = map tr/a-zA-Z/ /csr, @original;

/r with map

tr [\200-\377]

[\000-\177]; # wickedly delete 8th bit

If multiple transliterations are given for a character, only the first one is used:

tr/AAA/XYZ/

will transliterate any A to X.

Because the transliteration table is built at compile time, neither the SEARCH-
LIST nor the REPLACEMENTLIST are subjected to double quote interpola-
tion. That means that if you want to use variables, you must use an eval():

eval "tr/$oldlist/$newlist/";

die $@ if $@;

eval "tr/$oldlist/$newlist/, 1" or die $@;

<<EOF >

A line-oriented form of quoting is based on the shell "here-document" syntax.
Following a << you specify a string to terminate the quoted material, and all
lines following the current line down to the terminating string are the value of
the item.

The terminating string may be either an identifier (a word), or some quoted
text. An unquoted identifier works like double quotes. There may not be a space
between the << and the identifier, unless the identifier is explicitly quoted. (If
you put a space it will be treated as a null identifier, which is valid, and matches
the first empty line.) The terminating string must appear by itself (unquoted
and with no surrounding whitespace) on the terminating line.

If the terminating string is quoted, the type of quotes used determine the treat-
ment of the text.

Double Quotes
Double quotes indicate that the text will be interpolated using ex-
actly the same rules as normal double quoted strings.

print <<EOF;

The price is $Price.

EOF

print << "EOF"; # same as above

The price is $Price.

EOF

Single Quotes
Single quotes indicate the text is to be treated literally with no
interpolation of its content. This is similar to single quoted strings
except that backslashes have no special meaning, with \\ being
treated as two backslashes and not one as they would in every
other quoting construct.

Just as in the shell, a backslashed bareword following the << means
the same thing as a single-quoted string does:

$cost = <<’VISTA’; # hasta la ...

That’ll be $10 please, ma’am.

VISTA

$cost = <<\VISTA; # Same thing!

That’ll be $10 please, ma’am.

VISTA

This is the only form of quoting in perl where there is no need to
worry about escaping content, something that code generators can
and do make good use of.

Backticks

The content of the here doc is treated just as it would be if the string
were embedded in backticks. Thus the content is interpolated as
though it were double quoted and then executed via the shell, with
the results of the execution returned.

print << ‘EOC‘; # execute command and get results

echo hi there

EOC

It is possible to stack multiple here-docs in a row:

print <<"foo", <<"bar"; # you can stack them

I said foo.

foo

I said bar.

bar

myfunc(<< "THIS", 23, <<’THAT’);

Here’s a line

or two.

THIS

and here’s another.

THAT

Just don’t forget that you have to put a semicolon on the end to finish the
statement, as Perl doesn’t know you’re not going to try to do this:

print <<ABC

179231

ABC

+ 20;

If you want to remove the line terminator from your here-docs, use chomp().

chomp($string = <<’END’);

This is a string.

END

If you want your here-docs to be indented with the rest of the code, you’ll need
to remove leading whitespace from each line manually:

($quote = <<’FINIS’) =~ s/^\s+//gm;

The Road goes ever on and on,

down from the door where it began.

FINIS

If you use a here-doc within a delimited construct, such as in s///eg, the quoted
material must still come on the line following the <<FOO marker, which means
it may be inside the delimited construct:

s/this/<<E . ’that’

the other

E

. ’more ’/eg;

It works this way as of Perl 5.18. Historically, it was inconsistent, and you
would have to write

s/this/<<E . ’that’

. ’more ’/eg;

the other

E

outside of string evals.

Additionally, quoting rules for the end-of-string identifier are unrelated to Perl’s
quoting rules. q(), qq(), and the like are not supported in place of ’’ and "",
and the only interpolation is for backslashing the quoting character:

print << "abc\"def";

testing...

abc"def

Finally, quoted strings cannot span multiple lines. The general rule is that the
identifier must be a string literal. Stick with that, and you should be safe.

48.2.32 Gory details of parsing quoted constructs

When presented with something that might have several different interpretations, Perl uses
the DWIM (that’s "Do What I Mean") principle to pick the most probable interpretation.
This strategy is so successful that Perl programmers often do not suspect the ambivalence
of what they write. But from time to time, Perl’s notions differ substantially from what
the author honestly meant.

This section hopes to clarify how Perl handles quoted constructs. Although the most
common reason to learn this is to unravel labyrinthine regular expressions, because the initial
steps of parsing are the same for all quoting operators, they are all discussed together.

The most important Perl parsing rule is the first one discussed below: when processing
a quoted construct, Perl first finds the end of that construct, then interprets its contents.
If you understand this rule, you may skip the rest of this section on the first reading. The
other rules are likely to contradict the user’s expectations much less frequently than this
first one.

Some passes discussed below are performed concurrently, but because their results are
the same, we consider them individually. For different quoting constructs, Perl performs
different numbers of passes, from one to four, but these passes are always performed in the
same order.

Finding the end
The first pass is finding the end of the quoted construct. This results in saving to
a safe location a copy of the text (between the starting and ending delimiters),
normalized as necessary to avoid needing to know what the original delimiters
were.

If the construct is a here-doc, the ending delimiter is a line that has a terminat-
ing string as the content. Therefore <<EOF is terminated by EOF immediately
followed by "\n" and starting from the first column of the terminating line.
When searching for the terminating line of a here-doc, nothing is skipped. In
other words, lines after the here-doc syntax are compared with the terminating
string line by line.

For the constructs except here-docs, single characters are used as starting and
ending delimiters. If the starting delimiter is an opening punctuation (that is (,
[, {, or <), the ending delimiter is the corresponding closing punctuation (that
is),], }, or >). If the starting delimiter is an unpaired character like / or a
closing punctuation, the ending delimiter is the same as the starting delimiter.
Therefore a / terminates a qq// construct, while a] terminates both qq[] and
qq]] constructs.

When searching for single-character delimiters, escaped delimiters and \\ are
skipped. For example, while searching for terminating /, combinations of \\
and \/ are skipped. If the delimiters are bracketing, nested pairs are also
skipped. For example, while searching for a closing] paired with the opening
[, combinations of \\, \], and \[are all skipped, and nested [and] are skipped
as well. However, when backslashes are used as the delimiters (like qq\\ and

tr\\\), nothing is skipped. During the search for the end, backslashes that
escape delimiters or other backslashes are removed (exactly speaking, they are
not copied to the safe location).

For constructs with three-part delimiters (s///, y///, and tr///), the search
is repeated once more. If the first delimiter is not an opening punctuation,
the three delimiters must be the same, such as s!!! and tr))), in which case
the second delimiter terminates the left part and starts the right part at once.
If the left part is delimited by bracketing punctuation (that is (), [], {}, or
<>), the right part needs another pair of delimiters such as s(){} and tr[]//.
In these cases, whitespace and comments are allowed between the two parts,
although the comment must follow at least one whitespace character; otherwise
a character expected as the start of the comment may be regarded as the starting
delimiter of the right part.

During this search no attention is paid to the semantics of the construct. Thus:

"$hash{"$foo/$bar"}"

or:

m/

bar # NOT a comment, this slash / terminated m//!

/x

do not form legal quoted expressions. The quoted part ends on the first " and
/, and the rest happens to be a syntax error. Because the slash that terminated
m// was followed by a SPACE, the example above is not m//x, but rather m//
with no /x modifier. So the embedded # is interpreted as a literal #.

Also no attention is paid to \c\ (multichar control char syntax) during this
search. Thus the second \ in qq/\c\/ is interpreted as a part of \/, and the
following / is not recognized as a delimiter. Instead, use \034 or \x1c at the
end of quoted constructs.

Interpolation
The next step is interpolation in the text obtained, which is now delimiter-
independent. There are multiple cases.

<<’EOF’

No interpolation is performed. Note that the combination \\ is left
intact, since escaped delimiters are not available for here-docs.

m’’, the pattern of s’’’
No interpolation is performed at this stage. Any backslashed se-
quences including \\ are treated at the stage to [parsing regular
expressions], page 843.

’’, q//, tr’’’, y’’’, the replacement of s’’’
The only interpolation is removal of \ from pairs of \\. Therefore
"-" in tr’’’ and y’’’ is treated literally as a hyphen and no
character range is available. \1 in the replacement of s’’’ does
not work as $1.

tr///, y///
No variable interpolation occurs. String modifying combinations
for case and quoting such as \Q, \U, and \E are not recognized.
The other escape sequences such as \200 and \t and backslashed
characters such as \\ and \- are converted to appropriate literals.
The character "-" is treated specially and therefore \- is treated
as a literal "-".

"", ‘‘, qq//, qx//, <file*glob>, <<"EOF"
\Q, \U, \u, \L, \l, \F (possibly paired with \E) are converted to cor-
responding Perl constructs. Thus, "$foo\Qbaz$bar" is converted
to $foo . (quotemeta("baz" . $bar)) internally. The other es-
cape sequences such as \200 and \t and backslashed characters
such as \\ and \- are replaced with appropriate expansions.

Let it be stressed that whatever falls between \Q and \E is inter-
polated in the usual way. Something like "\Q\\E" has no \E in-
side. Instead, it has \Q, \\, and E, so the result is the same as
for "\\\\E". As a general rule, backslashes between \Q and \E

may lead to counterintuitive results. So, "\Q\t\E" is converted to
quotemeta("\t"), which is the same as "\\\t" (since TAB is not
alphanumeric). Note also that:

$str = ’\t’;

return "\Q$str";

may be closer to the conjectural intention of the writer of "\Q\t\E".

Interpolated scalars and arrays are converted internally to the join
and "." catenation operations. Thus, "$foo XXX ’@arr’" becomes:

$foo . " XXX ’" . (join $", @arr) . "’";

All operations above are performed simultaneously, left to right.

Because the result of "\Q STRING \E" has all metacharacters
quoted, there is no way to insert a literal $ or @ inside a \Q\E pair.
If protected by \, $ will be quoted to become "\\\$"; if not, it is
interpreted as the start of an interpolated scalar.

Note also that the interpolation code needs to make a decision
on where the interpolated scalar ends. For instance, whether
"a $x -> {c}" really means:

"a " . $x . " -> {c}";

or:

"a " . $x -> {c};

Most of the time, the longest possible text that does not include
spaces between components and which contains matching braces
or brackets. because the outcome may be determined by voting
based on heuristic estimators, the result is not strictly predictable.
Fortunately, it’s usually correct for ambiguous cases.

the replacement of s///
Processing of \Q, \U, \u, \L, \l, \F and interpolation happens as
with qq// constructs.

It is at this step that \1 is begrudgingly converted to $1 in the
replacement text of s///, in order to correct the incorrigible sed
hackers who haven’t picked up the saner idiom yet. A warning is
emitted if the use warnings pragma or the -w command-line flag
(that is, the $^W variable) was set.

RE in ?RE?, /RE/, m/RE/, s/RE/foo/,
Processing of \Q, \U, \u, \L, \l, \F, \E, and interpolation happens
(almost) as with qq// constructs.

Processing of \N{...} is also done here, and compiled into an inter-
mediate form for the regex compiler. (This is because, as mentioned
below, the regex compilation may be done at execution time, and
\N{...} is a compile-time construct.)

However any other combinations of \ followed by a character are
not substituted but only skipped, in order to parse them as regular
expressions at the following step. As \c is skipped at this step, @
of \c@ in RE is possibly treated as an array symbol (for example
@foo), even though the same text in qq// gives interpolation of
\c@.

Code blocks such as (?{BLOCK}) are handled by temporarily
passing control back to the perl parser, in a similar way
that an interpolated array subscript expression such as
"foo$array[1+f("[xyz")]bar" would be.

Moreover, inside (?{BLOCK}), (?# comment), and a #-comment
in a /x-regular expression, no processing is performed whatsoever.
This is the first step at which the presence of the /x modifier is
relevant.

Interpolation in patterns has several quirks: $|, $(, $), @+ and @-

are not interpolated, and constructs $var[SOMETHING] are voted
(by several different estimators) to be either an array element or
$var followed by an RE alternative. This is where the notation
${arr[$bar]} comes handy: /${arr[0-9]}/ is interpreted as
array element -9, not as a regular expression from the variable
$arr followed by a digit, which would be the interpretation of
/$arr[0-9]/. Since voting among different estimators may occur,
the result is not predictable.

The lack of processing of \\ creates specific restrictions on the post-
processed text. If the delimiter is /, one cannot get the combination
\/ into the result of this step. / will finish the regular expression,
\/ will be stripped to / on the previous step, and \\/ will be left
as is. Because / is equivalent to \/ inside a regular expression,
this does not matter unless the delimiter happens to be character

special to the RE engine, such as in s*foo*bar*, m[foo], or ?foo?;
or an alphanumeric char, as in:

m m ^ a \s* b mmx;

In the RE above, which is intentionally obfuscated for illustration,
the delimiter is m, the modifier is mx, and after delimiter-removal
the RE is the same as for m/ ^ a \s* b /mx. There’s more than
one reason you’re encouraged to restrict your delimiters to non-
alphanumeric, non-whitespace choices.

This step is the last one for all constructs except regular expressions, which are
processed further.

parsing regular expressions
Previous steps were performed during the compilation of Perl code, but this
one happens at run time, although it may be optimized to be calculated at
compile time if appropriate. After preprocessing described above, and possibly
after evaluation if concatenation, joining, casing translation, or metaquoting
are involved, the resulting string is passed to the RE engine for compilation.

Whatever happens in the RE engine might be better discussed in Section 58.1
[perlre NAME], page 989, but for the sake of continuity, we shall do so here.

This is another step where the presence of the /x modifier is relevant. The RE
engine scans the string from left to right and converts it into a finite automaton.

Backslashed characters are either replaced with corresponding literal strings (as
with \{), or else they generate special nodes in the finite automaton (as with
\b). Characters special to the RE engine (such as |) generate corresponding
nodes or groups of nodes. (?#...) comments are ignored. All the rest is either
converted to literal strings to match, or else is ignored (as is whitespace and
#-style comments if /x is present).

Parsing of the bracketed character class construct, [...], is rather different
than the rule used for the rest of the pattern. The terminator of this construct
is found using the same rules as for finding the terminator of a {}-delimited
construct, the only exception being that] immediately following [is treated
as though preceded by a backslash.

The terminator of runtime (?{...}) is found by temporarily switching control
to the perl parser, which should stop at the point where the logically balancing
terminating } is found.

It is possible to inspect both the string given to RE engine and the resulting
finite automaton. See the arguments debug/debugcolor in the use re pragma,
as well as Perl’s -Dr command-line switch documented in Section 69.3.3 [perlrun
Command Switches], page 1179.

Optimization of regular expressions
This step is listed for completeness only. Since it does not change semantics,
details of this step are not documented and are subject to change without notice.
This step is performed over the finite automaton that was generated during the
previous pass.

It is at this stage that split() silently optimizes /^/ to mean /^/m.

48.2.33 I/O Operators

>> >>

There are several I/O operators you should know about.

A string enclosed by backticks (grave accents) first undergoes double-quote interpolation.
It is then interpreted as an external command, and the output of that command is the value
of the backtick string, like in a shell. In scalar context, a single string consisting of all output
is returned. In list context, a list of values is returned, one per line of output. (You can set
$/ to use a different line terminator.) The command is executed each time the pseudo-literal
is evaluated. The status value of the command is returned in $? (see Section 86.1 [perlvar
NAME], page 1375 for the interpretation of $?). Unlike in csh, no translation is done on
the return data–newlines remain newlines. Unlike in any of the shells, single quotes do
not hide variable names in the command from interpretation. To pass a literal dollar-sign
through to the shell you need to hide it with a backslash. The generalized form of backticks
is qx//. (Because backticks always undergo shell expansion as well, see Section 70.1 [perlsec
NAME], page 1198 for security concerns.)

In scalar context, evaluating a filehandle in angle brackets yields the next line from that
file (the newline, if any, included), or undef at end-of-file or on error. When $/ is set to
undef (sometimes known as file-slurp mode) and the file is empty, it returns ’’ the first
time, followed by undef subsequently.

Ordinarily you must assign the returned value to a variable, but there is one situation
where an automatic assignment happens. If and only if the input symbol is the only thing
inside the conditional of a while statement (even if disguised as a for(;;) loop), the value is
automatically assigned to the global variable $_, destroying whatever was there previously.
(This may seem like an odd thing to you, but you’ll use the construct in almost every Perl
script you write.) The $_ variable is not implicitly localized. You’ll have to put a local $_;

before the loop if you want that to happen.

The following lines are equivalent:

while (defined($_ = <STDIN>)) { print; }

while ($_ = <STDIN>) { print; }

while (<STDIN>) { print; }

for (;<STDIN>;) { print; }

print while defined($_ = <STDIN>);

print while ($_ = <STDIN>);

print while <STDIN>;

This also behaves similarly, but assigns to a lexical variable instead of to $_:

while (my $line = <STDIN>) { print $line }

In these loop constructs, the assigned value (whether assignment is automatic or explicit)
is then tested to see whether it is defined. The defined test avoids problems where the line
has a string value that would be treated as false by Perl; for example a "" or a "0" with no
trailing newline. If you really mean for such values to terminate the loop, they should be
tested for explicitly:

while (($_ = <STDIN>) ne ’0’) { ... }

while (<STDIN>) { last unless $_; ... }

In other boolean contexts, <FILEHANDLE> without an explicit defined test or comparison
elicits a warning if the use warnings pragma or the -w command-line switch (the $^W

variable) is in effect.

The filehandles STDIN, STDOUT, and STDERR are predefined. (The filehandles stdin,
stdout, and stderr will also work except in packages, where they would be interpreted as
local identifiers rather than global.) Additional filehandles may be created with the open()
function, amongst others. See Section 49.1 [perlopentut NAME], page 852 and 〈undefined〉
[perlfunc open], page 〈undefined〉 for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list comprising all
input lines is returned, one line per list element. It’s easy to grow to a rather large data
space this way, so use with care.

<FILEHANDLE> may also be spelled readline(*FILEHANDLE). See [perlfunc readline],
page 433.

The null filehandle <> is special: it can be used to emulate the behavior of sed and awk,
and any other Unix filter program that takes a list of filenames, doing the same to each line
of input from all of them. Input from <> comes either from standard input, or from each
file listed on the command line. Here’s how it works: the first time <> is evaluated, the
@ARGV array is checked, and if it is empty, $ARGV[0] is set to "-", which when opened gives
you standard input. The @ARGV array is then processed as a list of filenames. The loop

while (<>) {

... # code for each line

}

is equivalent to the following Perl-like pseudo code:

unshift(@ARGV, ’-’) unless @ARGV;

while ($ARGV = shift) {

open(ARGV, $ARGV);

while (<ARGV>) {

... # code for each line

}

}

except that it isn’t so cumbersome to say, and will actually work. It really does shift the
@ARGV array and put the current filename into the $ARGV variable. It also uses filehandle
ARGV internally. <> is just a synonym for <ARGV>, which is magical. (The pseudo code
above doesn’t work because it treats <ARGV> as non-magical.)

Since the null filehandle uses the two argument form of 〈undefined〉 [perlfunc open],
page 〈undefined〉 it interprets special characters, so if you have a script like this:

while (<>) {

print;

}

and call it with perl dangerous.pl ’rm -rfv *|’, it actually opens a pipe, executes
the rm command and reads rm’s output from that pipe. If you want all items in @ARGV to
be interpreted as file names, you can use the module ARGV::readonly from CPAN, or use
the double bracket:

while (<<>>) {

print;

}

Using double angle brackets inside of a while causes the open to use the three argument
form (with the second argument being <), so all arguments in ARGV are treated as literal
filenames (including "-"). (Note that for convenience, if you use <<>> and if @ARGV is empty,
it will still read from the standard input.)

You can modify @ARGV before the first <> as long as the array ends up containing the
list of filenames you really want. Line numbers ($.) continue as though the input were one
big happy file. See the example in [perlfunc eof], page 376 for how to reset line numbers on
each file.

If you want to set @ARGV to your own list of files, go right ahead. This sets @ARGV to all
plain text files if no @ARGV was given:

@ARGV = grep { -f && -T } glob(’*’) unless @ARGV;

You can even set them to pipe commands. For example, this automatically filters com-
pressed arguments through gzip:

@ARGV = map { /\.(gz|Z)$/ ? "gzip -dc < $_ |" : $_ } @ARGV;

If you want to pass switches into your script, you can use one of the Getopts modules
or put a loop on the front like this:

while ($_ = $ARGV[0], /^-/) {

shift;

last if /^--$/;

if (/^-D(.*)/) { $debug = $1 }

if (/^-v/) { $verbose++ }

... # other switches

}

while (<>) {

... # code for each line

}

The <> symbol will return undef for end-of-file only once. If you call it again after this,
it will assume you are processing another @ARGV list, and if you haven’t set @ARGV, will read
input from STDIN.

If what the angle brackets contain is a simple scalar variable (for example, $foo), then
that variable contains the name of the filehandle to input from, or its typeglob, or a reference
to the same. For example:

$fh = *STDIN;

$line = <$fh>;

If what’s within the angle brackets is neither a filehandle nor a simple scalar variable
containing a filehandle name, typeglob, or typeglob reference, it is interpreted as a filename
pattern to be globbed, and either a list of filenames or the next filename in the list is
returned, depending on context. This distinction is determined on syntactic grounds alone.
That means <$x> is always a readline() from an indirect handle, but <$hash{key}> is
always a glob(). That’s because $x is a simple scalar variable, but $hash{key} is not–
it’s a hash element. Even <$x > (note the extra space) is treated as glob("$x "), not
readline($x).

One level of double-quote interpretation is done first, but you can’t say <$foo> because
that’s an indirect filehandle as explained in the previous paragraph. (In older versions of
Perl, programmers would insert curly brackets to force interpretation as a filename glob:
<${foo}>. These days, it’s considered cleaner to call the internal function directly as
glob($foo), which is probably the right way to have done it in the first place.) For
example:

while (<*.c>) {

chmod 0644, $_;

}

is roughly equivalent to:

open(FOO, "echo *.c | tr -s ’ \t\r\f’ ’\\012\\012\\012\\012’|");

while (<FOO>) {

chomp;

chmod 0644, $_;

}

except that the globbing is actually done internally using the standard File-Glob ex-
tension. Of course, the shortest way to do the above is:

chmod 0644, <*.c>;

A (file)glob evaluates its (embedded) argument only when it is starting a new list. All
values must be read before it will start over. In list context, this isn’t important because
you automatically get them all anyway. However, in scalar context the operator returns
the next value each time it’s called, or undef when the list has run out. As with filehandle
reads, an automatic defined is generated when the glob occurs in the test part of a while,
because legal glob returns (for example, a file called 0) would otherwise terminate the loop.
Again, undef is returned only once. So if you’re expecting a single value from a glob, it is
much better to say

($file) = <blurch*>;

than

$file = <blurch*>;

because the latter will alternate between returning a filename and returning false.

If you’re trying to do variable interpolation, it’s definitely better to use the glob()

function, because the older notation can cause people to become confused with the indirect
filehandle notation.

@files = glob("$dir/*.[ch]");

@files = glob($files[$i]);

48.2.34 Constant Folding

Like C, Perl does a certain amount of expression evaluation at compile time whenever
it determines that all arguments to an operator are static and have no side effects. In
particular, string concatenation happens at compile time between literals that don’t do
variable substitution. Backslash interpolation also happens at compile time. You can say

’Now is the time for all’

. "\n"

. ’good men to come to.’

and this all reduces to one string internally. Likewise, if you say

foreach $file (@filenames) {

if (-s $file > 5 + 100 * 2**16) { }

}

the compiler precomputes the number which that expression represents so that the in-
terpreter won’t have to.

48.2.35 No-ops

Perl doesn’t officially have a no-op operator, but the bare constants 0 and 1 are special-cased
not to produce a warning in void context, so you can for example safely do

1 while foo();

48.2.36 Bitwise String Operators

Bitstrings of any size may be manipulated by the bitwise operators (~ | & ^).

If the operands to a binary bitwise op are strings of different sizes, | and ^ ops act as
though the shorter operand had additional zero bits on the right, while the & op acts as
though the longer operand were truncated to the length of the shorter. The granularity for
such extension or truncation is one or more bytes.

ASCII-based examples

print "j p \n" ^ " a h"; # prints "JAPH\n"

print "JA" | " ph\n"; # prints "japh\n"

print "japh\nJunk" & ’_____’; # prints "JAPH\n";

print ’p N$’ ^ " E<H\n"; # prints "Perl\n";

If you are intending to manipulate bitstrings, be certain that you’re supplying bitstrings:
If an operand is a number, that will imply a numeric bitwise operation. You may explicitly
show which type of operation you intend by using "" or 0+, as in the examples below.

$foo = 150 | 105; # yields 255 (0x96 | 0x69 is 0xFF)

$foo = ’150’ | 105; # yields 255

$foo = 150 | ’105’; # yields 255

$foo = ’150’ | ’105’; # yields string ’155’ (under ASCII)

$baz = 0+$foo & 0+$bar; # both ops explicitly numeric

$biz = "$foo" ^ "$bar"; # both ops explicitly stringy

This somewhat unpredictable behavior can be avoided with the experimental "bitwise"
feature, new in Perl 5.22. You can enable it via use feature ’bitwise’. By default,
it will warn unless the "experimental::bitwise" warnings category has been disabled.
(use experimental ’bitwise’ will enable the feature and disable the warning.) Under
this feature, the four standard bitwise operators (~ | & ^) are always numeric. Adding a
dot after each operator (~. |. &. ^.) forces it to treat its operands as strings:

use experimental "bitwise";

$foo = 150 | 105; # yields 255 (0x96 | 0x69 is 0xFF)

$foo = ’150’ | 105; # yields 255

$foo = 150 | ’105’; # yields 255

$foo = ’150’ | ’105’; # yields 255

$foo = 150 |. 105; # yields string ’155’

$foo = ’150’ |. 105; # yields string ’155’

$foo = 150 |.’105’; # yields string ’155’

$foo = ’150’ |.’105’; # yields string ’155’

$baz = $foo & $bar; # both operands numeric

$biz = $foo ^. $bar; # both operands stringy

The assignment variants of these operators (&= |= ^= &.= |.= ^.=) behave likewise un-
der the feature.

The behavior of these operators is problematic (and subject to change) if either or both
of the strings are encoded in UTF-8 (see Section 81.2.2 [perlunicode Byte and Character
Semantics], page 1318.

See 〈undefined〉 [perlfunc vec], page 〈undefined〉 for information on how to manipulate
individual bits in a bit vector.

48.2.37 Integer Arithmetic

By default, Perl assumes that it must do most of its arithmetic in floating point. But by
saying

use integer;

you may tell the compiler to use integer operations (see integer for a detailed explana-
tion) from here to the end of the enclosing BLOCK. An inner BLOCK may countermand
this by saying

no integer;

which lasts until the end of that BLOCK. Note that this doesn’t mean everything is an
integer, merely that Perl will use integer operations for arithmetic, comparison, and bitwise
operators. For example, even under use integer, if you take the sqrt(2), you’ll still get
1.4142135623731 or so.

Used on numbers, the bitwise operators (& | ^ ~ << >>) always produce integral results.
(But see also Section 48.2.36 [Bitwise String Operators], page 848.) However, use integer

still has meaning for them. By default, their results are interpreted as unsigned integers,
but if use integer is in effect, their results are interpreted as signed integers. For example,
~0 usually evaluates to a large integral value. However, use integer; ~0 is -1 on two’s-
complement machines.

48.2.38 Floating-point Arithmetic

While use integer provides integer-only arithmetic, there is no analogous mechanism to
provide automatic rounding or truncation to a certain number of decimal places. For
rounding to a certain number of digits, sprintf() or printf() is usually the easiest route.
See perlfaq4.

Floating-point numbers are only approximations to what a mathematician would call
real numbers. There are infinitely more reals than floats, so some corners must be cut. For
example:

printf "%.20g\n", 123456789123456789;

produces 123456789123456784

Testing for exact floating-point equality or inequality is not a good idea. Here’s a (rela-
tively expensive) work-around to compare whether two floating-point numbers are equal to

a particular number of decimal places. See Knuth, volume II, for a more robust treatment
of this topic.

sub fp_equal {

my ($X, $Y, $POINTS) = @_;

my ($tX, $tY);

$tX = sprintf("%.${POINTS}g", $X);

$tY = sprintf("%.${POINTS}g", $Y);

return $tX eq $tY;

}

The POSIX module (part of the standard perl distribution) implements ceil(),
floor(), and other mathematical and trigonometric functions. The Math-Complex module
(part of the standard perl distribution) defines mathematical functions that work on both
the reals and the imaginary numbers. Math::Complex is not as efficient as POSIX, but
POSIX can’t work with complex numbers.

Rounding in financial applications can have serious implications, and the rounding
method used should be specified precisely. In these cases, it probably pays not to trust
whichever system rounding is being used by Perl, but to instead implement the rounding
function you need yourself.

48.2.39 Bigger Numbers

The standard Math-BigInt, Math-BigRat, and Math-BigFloat modules, along with the
bignum, bigint, and bigrat pragmas, provide variable-precision arithmetic and overloaded
operators, although they’re currently pretty slow. At the cost of some space and considerable
speed, they avoid the normal pitfalls associated with limited-precision representations.

use 5.010;

use bigint; # easy interface to Math::BigInt

$x = 123456789123456789;

say $x * $x;

+15241578780673678515622620750190521

Or with rationals:

use 5.010;

use bigrat;

$x = 3/22;

$y = 4/6;

say "x/y is ", $x/$y;

say "x*y is ", $x*$y;

x/y is 9/44

x*y is 1/11

Several modules let you calculate with unlimited or fixed precision (bound only by mem-
ory and CPU time). There are also some non-standard modules that provide faster imple-
mentations via external C libraries.

Here is a short, but incomplete summary:

Math::String treat string sequences like numbers

Math::FixedPrecision calculate with a fixed precision

Math::Currency for currency calculations

Bit::Vector manipulate bit vectors fast (uses C)

Math::BigIntFast Bit::Vector wrapper for big numbers

Math::Pari provides access to the Pari C library

Math::Cephes uses the external Cephes C library (no

big numbers)

Math::Cephes::Fraction fractions via the Cephes library

Math::GMP another one using an external C library

Math::GMPz an alternative interface to libgmp’s big ints

Math::GMPq an interface to libgmp’s fraction numbers

Math::GMPf an interface to libgmp’s floating point numbers

Choose wisely.

49 perlopentut

49.1 NAME

perlopentut - simple recipes for opening files and pipes in Perl

49.2 DESCRIPTION

Whenever you do I/O on a file in Perl, you do so through what in Perl is called a filehandle.
A filehandle is an internal name for an external file. It is the job of the open function to
make the association between the internal name and the external name, and it is the job of
the close function to break that association.

For your convenience, Perl sets up a few special filehandles that are already open when
you run. These include STDIN, STDOUT, STDERR, and ARGV. Since those are pre-opened, you
can use them right away without having to go to the trouble of opening them yourself:

print STDERR "This is a debugging message.\n";

print STDOUT "Please enter something: ";

$response = <STDIN> // die "how come no input?";

print STDOUT "Thank you!\n";

while (<ARGV>) { ... }

As you see from those examples, STDOUT and STDERR are output handles, and STDIN and
ARGV are input handles. They are in all capital letters because they are reserved to Perl,
much like the @ARGV array and the %ENV hash are. Their external associations were set up
by your shell.

You will need to open every other filehandle on your own. Although there are many
variants, the most common way to call Perl’s open() function is with three arguments and
one return value:

OK = open(HANDLE, MODE, PATHNAME)

Where:

OK

will be some defined value if the open succeeds, but undef if it fails;

HANDLE

should be an undefined scalar variable to be filled in by the open function if it
succeeds;

MODE

is the access mode and the encoding format to open the file with;

PATHNAME
is the external name of the file you want opened.

Most of the complexity of the open function lies in the many possible values that the
MODE parameter can take on.

One last thing before we show you how to open files: opening files does not (usually)
automatically lock them in Perl. See perlfaq5 for how to lock.

49.3 Opening Text Files

49.3.1 Opening Text Files for Reading

If you want to read from a text file, first open it in read-only mode like this:

my $filename = "/some/path/to/a/textfile/goes/here";

my $encoding = ":encoding(UTF-8)";

my $handle = undef; # this will be filled in on success

open($handle, "< $encoding", $filename)

|| die "$0: can’t open $filename for reading: $!";

As with the shell, in Perl the "<" is used to open the file in read-only mode. If it succeeds,
Perl allocates a brand new filehandle for you and fills in your previously undefined $handle

argument with a reference to that handle.

Now you may use functions like readline, read, getc, and sysread on that handle.
Probably the most common input function is the one that looks like an operator:

$line = readline($handle);

$line = <$handle>; # same thing

Because the readline function returns undef at end of file or upon error, you will
sometimes see it used this way:

$line = <$handle>;

if (defined $line) {

do something with $line

}

else {

$line is not valid, so skip it

}

You can also just quickly die on an undefined value this way:

$line = <$handle> // die "no input found";

However, if hitting EOF is an expected and normal event, you do not want to exit
simply because you have run out of input. Instead, you probably just want to exit an input
loop. You can then test to see if an actual error has caused the loop to terminate, and act
accordingly:

while (<$handle>) {

do something with data in $_

}

if ($!) {

die "unexpected error while reading from $filename: $!";

}

A Note on Encodings: Having to specify the text encoding every time might seem a bit
of a bother. To set up a default encoding for open so that you don’t have to supply it each
time, you can use the open pragma:

use open qw< :encoding(UTF-8) >;

Once you’ve done that, you can safely omit the encoding part of the open mode:

open($handle, "<", $filename)

|| die "$0: can’t open $filename for reading: $!";

But never use the bare "<" without having set up a default encoding first. Otherwise,
Perl cannot know which of the many, many, many possible flavors of text file you have,
and Perl will have no idea how to correctly map the data in your file into actual characters
it can work with. Other common encoding formats including "ASCII", "ISO-8859-1",
"ISO-8859-15", "Windows-1252", "MacRoman", and even "UTF-16LE". See Section 84.1
[perlunitut NAME], page 1367 for more about encodings.

49.3.2 Opening Text Files for Writing

When you want to write to a file, you first have to decide what to do about any existing
contents of that file. You have two basic choices here: to preserve or to clobber.

If you want to preserve any existing contents, then you want to open the file in append
mode. As in the shell, in Perl you use ">>" to open an existing file in append mode. ">>"
creates the file if it does not already exist.

my $handle = undef;

my $filename = "/some/path/to/a/textfile/goes/here";

my $encoding = ":encoding(UTF-8)";

open($handle, ">> $encoding", $filename)

|| die "$0: can’t open $filename for appending: $!";

Now you can write to that filehandle using any of print, printf, say, write, or
syswrite.

As noted above, if the file does not already exist, then the append-mode open will create
it for you. But if the file does already exist, its contents are safe from harm because you
will be adding your new text past the end of the old text.

On the other hand, sometimes you want to clobber whatever might already be there. To
empty out a file before you start writing to it, you can open it in write-only mode:

my $handle = undef;

my $filename = "/some/path/to/a/textfile/goes/here";

my $encoding = ":encoding(UTF-8)";

open($handle, "> $encoding", $filename)

|| die "$0: can’t open $filename in write-open mode: $!";

Here again Perl works just like the shell in that the ">" clobbers an existing file.

As with the append mode, when you open a file in write-only mode, you can now write
to that filehandle using any of print, printf, say, write, or syswrite.

What about read-write mode? You should probably pretend it doesn’t exist, because
opening text files in read-write mode is unlikely to do what you would like. See perlfaq5

for details.

49.4 Opening Binary Files

If the file to be opened contains binary data instead of text characters, then the MODE

argument to open is a little different. Instead of specifying the encoding, you tell Perl that
your data are in raw bytes.

my $filename = "/some/path/to/a/binary/file/goes/here";

my $encoding = ":raw :bytes"

my $handle = undef; # this will be filled in on success

And then open as before, choosing "<", ">>", or ">" as needed:

open($handle, "< $encoding", $filename)

|| die "$0: can’t open $filename for reading: $!";

open($handle, ">> $encoding", $filename)

|| die "$0: can’t open $filename for appending: $!";

open($handle, "> $encoding", $filename)

|| die "$0: can’t open $filename in write-open mode: $!";

Alternately, you can change to binary mode on an existing handle this way:

binmode($handle) || die "cannot binmode handle";

This is especially handy for the handles that Perl has already opened for you.

binmode(STDIN) || die "cannot binmode STDIN";

binmode(STDOUT) || die "cannot binmode STDOUT";

You can also pass binmode an explicit encoding to change it on the fly. This isn’t exactly
"binary" mode, but we still use binmode to do it:

binmode(STDIN, ":encoding(MacRoman)") || die "cannot binmode STDIN";

binmode(STDOUT, ":encoding(UTF-8)") || die "cannot binmode STDOUT";

Once you have your binary file properly opened in the right mode, you can use all the
same Perl I/O functions as you used on text files. However, you may wish to use the
fixed-size read instead of the variable-sized readline for your input.

Here’s an example of how to copy a binary file:

my $BUFSIZ = 64 * (2 ** 10);

my $name_in = "/some/input/file";

my $name_out = "/some/output/flie";

my($in_fh, $out_fh, $buffer);

open($in_fh, "<", $name_in)

|| die "$0: cannot open $name_in for reading: $!";

open($out_fh, ">", $name_out)

|| die "$0: cannot open $name_out for writing: $!";

for my $fh ($in_fh, $out_fh) {

binmode($fh) || die "binmode failed";

}

while (read($in_fh, $buffer, $BUFSIZ)) {

unless (print $out_fh $buffer) {

die "couldn’t write to $name_out: $!";

}

}

close($in_fh) || die "couldn’t close $name_in: $!";

close($out_fh) || die "couldn’t close $name_out: $!";

49.5 Opening Pipes

To be announced.

49.6 Low-level File Opens via sysopen

To be announced. Or deleted.

49.7 SEE ALSO

To be announced.

49.8 AUTHOR and COPYRIGHT

Copyright 2013 Tom Christiansen.

This documentation is free; you can redistribute it and/or modify it under the same
terms as Perl itself.

50 perlpacktut

50.1 NAME

perlpacktut - tutorial on pack and unpack

50.2 DESCRIPTION

pack and unpack are two functions for transforming data according to a user-defined tem-
plate, between the guarded way Perl stores values and some well-defined representation as
might be required in the environment of a Perl program. Unfortunately, they’re also two
of the most misunderstood and most often overlooked functions that Perl provides. This
tutorial will demystify them for you.

50.3 The Basic Principle

Most programming languages don’t shelter the memory where variables are stored. In C,
for instance, you can take the address of some variable, and the sizeof operator tells you
how many bytes are allocated to the variable. Using the address and the size, you may
access the storage to your heart’s content.

In Perl, you just can’t access memory at random, but the structural and representational
conversion provided by pack and unpack is an excellent alternative. The pack function con-
verts values to a byte sequence containing representations according to a given specification,
the so-called "template" argument. unpack is the reverse process, deriving some values from
the contents of a string of bytes. (Be cautioned, however, that not all that has been packed
together can be neatly unpacked - a very common experience as seasoned travellers are
likely to confirm.)

Why, you may ask, would you need a chunk of memory containing some values in binary
representation? One good reason is input and output accessing some file, a device, or a
network connection, whereby this binary representation is either forced on you or will give
you some benefit in processing. Another cause is passing data to some system call that is
not available as a Perl function: syscall requires you to provide parameters stored in the
way it happens in a C program. Even text processing (as shown in the next section) may
be simplified with judicious usage of these two functions.

To see how (un)packing works, we’ll start with a simple template code where the con-
version is in low gear: between the contents of a byte sequence and a string of hexadecimal
digits. Let’s use unpack, since this is likely to remind you of a dump program, or some
desperate last message unfortunate programs are wont to throw at you before they expire
into the wild blue yonder. Assuming that the variable $mem holds a sequence of bytes that
we’d like to inspect without assuming anything about its meaning, we can write

my($hex) = unpack(’H*’, $mem);

print "$hex\n";

whereupon we might see something like this, with each pair of hex digits corresponding
to a byte:

41204d414e204120504c414e20412043414e414c2050414e414d41

What was in this chunk of memory? Numbers, characters, or a mixture of both? Assum-
ing that we’re on a computer where ASCII (or some similar) encoding is used: hexadecimal
values in the range 0x40 - 0x5A indicate an uppercase letter, and 0x20 encodes a space. So
we might assume it is a piece of text, which some are able to read like a tabloid; but others
will have to get hold of an ASCII table and relive that firstgrader feeling. Not caring too
much about which way to read this, we note that unpack with the template code H converts
the contents of a sequence of bytes into the customary hexadecimal notation. Since "a
sequence of" is a pretty vague indication of quantity, H has been defined to convert just a
single hexadecimal digit unless it is followed by a repeat count. An asterisk for the repeat
count means to use whatever remains.

The inverse operation - packing byte contents from a string of hexadecimal digits - is
just as easily written. For instance:

my $s = pack(’H2’ x 10, 30..39);

print "$s\n";

Since we feed a list of ten 2-digit hexadecimal strings to pack, the pack template should
contain ten pack codes. If this is run on a computer with ASCII character coding, it will
print 0123456789.

50.4 Packing Text

Let’s suppose you’ve got to read in a data file like this:

Date |Description | Income|Expenditure

01/24/2001 Zed’s Camel Emporium 1147.99

01/28/2001 Flea spray 24.99

01/29/2001 Camel rides to tourists 235.00

How do we do it? You might think first to use split; however, since split collapses
blank fields, you’ll never know whether a record was income or expenditure. Oops. Well,
you could always use substr:

while (<>) {

my $date = substr($_, 0, 11);

my $desc = substr($_, 12, 27);

my $income = substr($_, 40, 7);

my $expend = substr($_, 52, 7);

...

}

It’s not really a barrel of laughs, is it? In fact, it’s worse than it may seem; the eagle-
eyed may notice that the first field should only be 10 characters wide, and the error has
propagated right through the other numbers - which we’ve had to count by hand. So it’s
error-prone as well as horribly unfriendly.

Or maybe we could use regular expressions:

while (<>) {

my($date, $desc, $income, $expend) =

m|(\d\d/\d\d/\d{4}) (.{27}) (.{7})(.*)|;

...

}

Urgh. Well, it’s a bit better, but - well, would you want to maintain that?

Hey, isn’t Perl supposed to make this sort of thing easy? Well, it does, if you use the
right tools. pack and unpack are designed to help you out when dealing with fixed-width
data like the above. Let’s have a look at a solution with unpack:

while (<>) {

my($date, $desc, $income, $expend) = unpack("A10xA27xA7A*", $_);

...

}

That looks a bit nicer; but we’ve got to take apart that weird template. Where did I
pull that out of?

OK, let’s have a look at some of our data again; in fact, we’ll include the headers, and
a handy ruler so we can keep track of where we are.

1 2 3 4 5

1234567890123456789012345678901234567890123456789012345678

Date |Description | Income|Expenditure

01/28/2001 Flea spray 24.99

01/29/2001 Camel rides to tourists 235.00

From this, we can see that the date column stretches from column 1 to column 10 - ten
characters wide. The pack-ese for "character" is A, and ten of them are A10. So if we just
wanted to extract the dates, we could say this:

my($date) = unpack("A10", $_);

OK, what’s next? Between the date and the description is a blank column; we want to
skip over that. The x template means "skip forward", so we want one of those. Next, we
have another batch of characters, from 12 to 38. That’s 27 more characters, hence A27.
(Don’t make the fencepost error - there are 27 characters between 12 and 38, not 26. Count
’em!)

Now we skip another character and pick up the next 7 characters:

my($date,$description,$income) = unpack("A10xA27xA7", $_);

Now comes the clever bit. Lines in our ledger which are just income and not expenditure
might end at column 46. Hence, we don’t want to tell our unpack pattern that we need to
find another 12 characters; we’ll just say "if there’s anything left, take it". As you might
guess from regular expressions, that’s what the * means: "use everything remaining".

• Be warned, though, that unlike regular expressions, if the unpack template doesn’t
match the incoming data, Perl will scream and die.

Hence, putting it all together:

my ($date, $description, $income, $expend) =

unpack("A10xA27xA7xA*", $_);

Now, that’s our data parsed. I suppose what we might want to do now is total up our
income and expenditure, and add another line to the end of our ledger - in the same format
- saying how much we’ve brought in and how much we’ve spent:

while (<>) {

my ($date, $desc, $income, $expend) =

unpack("A10xA27xA7xA*", $_);

$tot_income += $income;

$tot_expend += $expend;

}

$tot_income = sprintf("%.2f", $tot_income); # Get them into

$tot_expend = sprintf("%.2f", $tot_expend); # "financial" format

$date = POSIX::strftime("%m/%d/%Y", localtime);

OK, let’s go:

print pack("A10xA27xA7xA*", $date, "Totals",

$tot_income, $tot_expend);

Oh, hmm. That didn’t quite work. Let’s see what happened:

01/24/2001 Zed’s Camel Emporium 1147.99

01/28/2001 Flea spray 24.99

01/29/2001 Camel rides to tourists 1235.00

03/23/2001Totals 1235.001172.98

OK, it’s a start, but what happened to the spaces? We put x, didn’t we? Shouldn’t it
skip forward? Let’s look at what 〈undefined〉 [perlfunc pack], page 〈undefined〉 says:

x A null byte.

Urgh. No wonder. There’s a big difference between "a null byte", character zero, and
"a space", character 32. Perl’s put something between the date and the description - but
unfortunately, we can’t see it!

What we actually need to do is expand the width of the fields. The A format pads any
non-existent characters with spaces, so we can use the additional spaces to line up our fields,
like this:

print pack("A11 A28 A8 A*", $date, "Totals",

$tot_income, $tot_expend);

(Note that you can put spaces in the template to make it more readable, but they don’t
translate to spaces in the output.) Here’s what we got this time:

01/24/2001 Zed’s Camel Emporium 1147.99

01/28/2001 Flea spray 24.99

01/29/2001 Camel rides to tourists 1235.00

03/23/2001 Totals 1235.00 1172.98

That’s a bit better, but we still have that last column which needs to be moved further
over. There’s an easy way to fix this up: unfortunately, we can’t get pack to right-justify
our fields, but we can get sprintf to do it:

$tot_income = sprintf("%.2f", $tot_income);

$tot_expend = sprintf("%12.2f", $tot_expend);

$date = POSIX::strftime("%m/%d/%Y", localtime);

print pack("A11 A28 A8 A*", $date, "Totals",

$tot_income, $tot_expend);

This time we get the right answer:

01/28/2001 Flea spray 24.99

01/29/2001 Camel rides to tourists 1235.00

03/23/2001 Totals 1235.00 1172.98

So that’s how we consume and produce fixed-width data. Let’s recap what we’ve seen
of pack and unpack so far:

• Use pack to go from several pieces of data to one fixed-width version; use unpack to
turn a fixed-width-format string into several pieces of data.

• The pack format A means "any character"; if you’re packing and you’ve run out of
things to pack, pack will fill the rest up with spaces.

• x means "skip a byte" when unpacking; when packing, it means "introduce a null
byte" - that’s probably not what you mean if you’re dealing with plain text.

• You can follow the formats with numbers to say how many characters should be affected
by that format: A12 means "take 12 characters"; x6 means "skip 6 bytes" or "character
0, 6 times".

• Instead of a number, you can use * to mean "consume everything else left".

Warning: when packing multiple pieces of data, * only means "consume all of the
current piece of data". That’s to say

pack("A*A*", $one, $two)

packs all of $one into the first A* and then all of $two into the second. This is a general
principle: each format character corresponds to one piece of data to be packed.

50.5 Packing Numbers

So much for textual data. Let’s get onto the meaty stuff that pack and unpack are best at:
handling binary formats for numbers. There is, of course, not just one binary format - life
would be too simple - but Perl will do all the finicky labor for you.

50.5.1 Integers

Packing and unpacking numbers implies conversion to and from some specific binary rep-
resentation. Leaving floating point numbers aside for the moment, the salient properties of
any such representation are:

• the number of bytes used for storing the integer,

• whether the contents are interpreted as a signed or unsigned number,

• the byte ordering: whether the first byte is the least or most significant byte (or:
little-endian or big-endian, respectively).

So, for instance, to pack 20302 to a signed 16 bit integer in your computer’s representation
you write

my $ps = pack(’s’, 20302);

Again, the result is a string, now containing 2 bytes. If you print this string (which
is, generally, not recommended) you might see ON or NO (depending on your system’s byte
ordering) - or something entirely different if your computer doesn’t use ASCII character
encoding. Unpacking $ps with the same template returns the original integer value:

my($s) = unpack(’s’, $ps);

This is true for all numeric template codes. But don’t expect miracles: if the packed
value exceeds the allotted byte capacity, high order bits are silently discarded, and unpack
certainly won’t be able to pull them back out of some magic hat. And, when you pack using
a signed template code such as s, an excess value may result in the sign bit getting set, and
unpacking this will smartly return a negative value.

16 bits won’t get you too far with integers, but there is l and L for signed and unsigned
32-bit integers. And if this is not enough and your system supports 64 bit integers you
can push the limits much closer to infinity with pack codes q and Q. A notable exception
is provided by pack codes i and I for signed and unsigned integers of the "local custom"

variety: Such an integer will take up as many bytes as a local C compiler returns for
sizeof(int), but it’ll use at least 32 bits.

Each of the integer pack codes sSlLqQ results in a fixed number of bytes, no matter
where you execute your program. This may be useful for some applications, but it does not
provide for a portable way to pass data structures between Perl and C programs (bound
to happen when you call XS extensions or the Perl function syscall), or when you read
or write binary files. What you’ll need in this case are template codes that depend on
what your local C compiler compiles when you code short or unsigned long, for instance.
These codes and their corresponding byte lengths are shown in the table below. Since the
C standard leaves much leeway with respect to the relative sizes of these data types, actual
values may vary, and that’s why the values are given as expressions in C and Perl. (If you’d
like to use values from %Config in your program you have to import it with use Config.)

signed unsigned byte length in C byte length in Perl

s! S! sizeof(short) $Config{shortsize}

i! I! sizeof(int) $Config{intsize}

l! L! sizeof(long) $Config{longsize}

q! Q! sizeof(long long) $Config{longlongsize}

The i! and I! codes aren’t different from i and I; they are tolerated for completeness’
sake.

50.5.2 Unpacking a Stack Frame

Requesting a particular byte ordering may be necessary when you work with binary data
coming from some specific architecture whereas your program could run on a totally different
system. As an example, assume you have 24 bytes containing a stack frame as it happens
on an Intel 8086:

+---------+ +----+----+ +---------+

TOS: | IP | TOS+4:| FL | FH | FLAGS TOS+14:| SI |

+---------+ +----+----+ +---------+

| CS | | AL | AH | AX | DI |

+---------+ +----+----+ +---------+

| BL | BH | BX | BP |

+----+----+ +---------+

| CL | CH | CX | DS |

+----+----+ +---------+

| DL | DH | DX | ES |

+----+----+ +---------+

First, we note that this time-honored 16-bit CPU uses little-endian order, and that’s
why the low order byte is stored at the lower address. To unpack such a (unsigned) short
we’ll have to use code v. A repeat count unpacks all 12 shorts:

my($ip, $cs, $flags, $ax, $bx, $cd, $dx, $si, $di, $bp, $ds, $es) =

unpack(’v12’, $frame);

Alternatively, we could have used C to unpack the individually accessible byte registers
FL, FH, AL, AH, etc.:

my($fl, $fh, $al, $ah, $bl, $bh, $cl, $ch, $dl, $dh) =

unpack(’C10’, substr($frame, 4, 10));

It would be nice if we could do this in one fell swoop: unpack a short, back up a little,
and then unpack 2 bytes. Since Perl is nice, it proffers the template code X to back up one
byte. Putting this all together, we may now write:

my($ip, $cs,

$flags,$fl,$fh,

$ax,$al,$ah, $bx,$bl,$bh, $cx,$cl,$ch, $dx,$dl,$dh,

$si, $di, $bp, $ds, $es) =

unpack(’v2’ . (’vXXCC’ x 5) . ’v5’, $frame);

(The clumsy construction of the template can be avoided - just read on!)

We’ve taken some pains to construct the template so that it matches the contents of our
frame buffer. Otherwise we’d either get undefined values, or unpack could not unpack all.
If pack runs out of items, it will supply null strings (which are coerced into zeroes whenever
the pack code says so).

50.5.3 How to Eat an Egg on a Net

The pack code for big-endian (high order byte at the lowest address) is n for 16 bit and N

for 32 bit integers. You use these codes if you know that your data comes from a compliant
architecture, but, surprisingly enough, you should also use these pack codes if you exchange
binary data, across the network, with some system that you know next to nothing about.
The simple reason is that this order has been chosen as the network order, and all standard-
fearing programs ought to follow this convention. (This is, of course, a stern backing for
one of the Lilliputian parties and may well influence the political development there.) So,
if the protocol expects you to send a message by sending the length first, followed by just
so many bytes, you could write:

my $buf = pack(’N’, length($msg)) . $msg;

or even:

my $buf = pack(’NA*’, length($msg), $msg);

and pass $buf to your send routine. Some protocols demand that the count should
include the length of the count itself: then just add 4 to the data length. (But make sure
to read Section 50.8 [Lengths and Widths], page 868 before you really code this!)

50.5.4 Byte-order modifiers

In the previous sections we’ve learned how to use n, N, v and V to pack and unpack integers
with big- or little-endian byte-order. While this is nice, it’s still rather limited because it

leaves out all kinds of signed integers as well as 64-bit integers. For example, if you wanted
to unpack a sequence of signed big-endian 16-bit integers in a platform-independent way,
you would have to write:

my @data = unpack ’s*’, pack ’S*’, unpack ’n*’, $buf;

This is ugly. As of Perl 5.9.2, there’s a much nicer way to express your desire for a certain
byte-order: the > and < modifiers. > is the big-endian modifier, while < is the little-endian
modifier. Using them, we could rewrite the above code as:

my @data = unpack ’s>*’, $buf;

As you can see, the "big end" of the arrow touches the s, which is a nice way to remember
that > is the big-endian modifier. The same obviously works for <, where the "little end"
touches the code.

You will probably find these modifiers even more useful if you have to deal with big-
or little-endian C structures. Be sure to read Section 50.9 [Packing and Unpacking C
Structures], page 870 for more on that.

50.5.5 Floating point Numbers

For packing floating point numbers you have the choice between the pack codes f, d, F and
D. f and d pack into (or unpack from) single-precision or double-precision representation
as it is provided by your system. If your systems supports it, D can be used to pack and
unpack (long double) values, which can offer even more resolution than f or d. Note that
there are different long double formats.

F packs an NV, which is the floating point type used by Perl internally.

There is no such thing as a network representation for reals, so if you want to send
your real numbers across computer boundaries, you’d better stick to text representation,
possibly using the hexadecimal float format (avoiding the decimal conversion loss), unless
you’re absolutely sure what’s on the other end of the line. For the even more adventuresome,
you can use the byte-order modifiers from the previous section also on floating point codes.

50.6 Exotic Templates

50.6.1 Bit Strings

Bits are the atoms in the memory world. Access to individual bits may have to be used
either as a last resort or because it is the most convenient way to handle your data. Bit
string (un)packing converts between strings containing a series of 0 and 1 characters and a
sequence of bytes each containing a group of 8 bits. This is almost as simple as it sounds,
except that there are two ways the contents of a byte may be written as a bit string. Let’s
have a look at an annotated byte:

7 6 5 4 3 2 1 0

+-----------------+

| 1 0 0 0 1 1 0 0 |

+-----------------+

MSB LSB

It’s egg-eating all over again: Some think that as a bit string this should be written
"10001100" i.e. beginning with the most significant bit, others insist on "00110001". Well,
Perl isn’t biased, so that’s why we have two bit string codes:

$byte = pack(’B8’, ’10001100’); # start with MSB

$byte = pack(’b8’, ’00110001’); # start with LSB

It is not possible to pack or unpack bit fields - just integral bytes. pack always starts
at the next byte boundary and "rounds up" to the next multiple of 8 by adding zero bits
as required. (If you do want bit fields, there is 〈undefined〉 [perlfunc vec], page 〈undefined〉.
Or you could implement bit field handling at the character string level, using split, substr,
and concatenation on unpacked bit strings.)

To illustrate unpacking for bit strings, we’ll decompose a simple status register (a "-"
stands for a "reserved" bit):

+-----------------+-----------------+

| S Z - A - P - C | - - - - O D I T |

+-----------------+-----------------+

MSB LSB MSB LSB

Converting these two bytes to a string can be done with the unpack template ’b16’.
To obtain the individual bit values from the bit string we use split with the "empty"
separator pattern which dissects into individual characters. Bit values from the "reserved"
positions are simply assigned to undef, a convenient notation for "I don’t care where this
goes".

($carry, undef, $parity, undef, $auxcarry, undef, $zero, $sign,

$trace, $interrupt, $direction, $overflow) =

split(//, unpack(’b16’, $status));

We could have used an unpack template ’b12’ just as well, since the last 4 bits can be
ignored anyway.

50.6.2 Uuencoding

Another odd-man-out in the template alphabet is u, which packs a "uuencoded string".
("uu" is short for Unix-to-Unix.) Chances are that you won’t ever need this encoding
technique which was invented to overcome the shortcomings of old-fashioned transmission
mediums that do not support other than simple ASCII data. The essential recipe is simple:
Take three bytes, or 24 bits. Split them into 4 six-packs, adding a space (0x20) to each.
Repeat until all of the data is blended. Fold groups of 4 bytes into lines no longer than 60
and garnish them in front with the original byte count (incremented by 0x20) and a "\n"

at the end. - The pack chef will prepare this for you, a la minute, when you select pack
code u on the menu:

my $uubuf = pack(’u’, $bindat);

A repeat count after u sets the number of bytes to put into an uuencoded line, which is
the maximum of 45 by default, but could be set to some (smaller) integer multiple of three.
unpack simply ignores the repeat count.

50.6.3 Doing Sums

An even stranger template code is %<number>. First, because it’s used as a prefix to some
other template code. Second, because it cannot be used in pack at all, and third, in unpack,
doesn’t return the data as defined by the template code it precedes. Instead it’ll give you
an integer of number bits that is computed from the data value by doing sums. For numeric
unpack codes, no big feat is achieved:

my $buf = pack(’iii’, 100, 20, 3);

print unpack(’%32i3’, $buf), "\n"; # prints 123

For string values, % returns the sum of the byte values saving you the trouble of a sum
loop with substr and ord:

print unpack(’%32A*’, "\x01\x10"), "\n"; # prints 17

Although the % code is documented as returning a "checksum": don’t put your trust
in such values! Even when applied to a small number of bytes, they won’t guarantee a
noticeable Hamming distance.

In connection with b or B, % simply adds bits, and this can be put to good use to count
set bits efficiently:

my $bitcount = unpack(’%32b*’, $mask);

And an even parity bit can be determined like this:

my $evenparity = unpack(’%1b*’, $mask);

50.6.4 Unicode

Unicode is a character set that can represent most characters in most of the world’s lan-
guages, providing room for over one million different characters. Unicode 3.1 specifies 94,140
characters: The Basic Latin characters are assigned to the numbers 0 - 127. The Latin-1
Supplement with characters that are used in several European languages is in the next range,
up to 255. After some more Latin extensions we find the character sets from languages using
non-Roman alphabets, interspersed with a variety of symbol sets such as currency symbols,
Zapf Dingbats or Braille. (You might want to visit http://www.unicode.org/ for a look
at some of them - my personal favourites are Telugu and Kannada.)

The Unicode character sets associates characters with integers. Encoding these numbers
in an equal number of bytes would more than double the requirements for storing texts
written in Latin alphabets. The UTF-8 encoding avoids this by storing the most common
(from a western point of view) characters in a single byte while encoding the rarer ones in
three or more bytes.

Perl uses UTF-8, internally, for most Unicode strings.

So what has this got to do with pack? Well, if you want to compose a Unicode string
(that is internally encoded as UTF-8), you can do so by using template code U. As an
example, let’s produce the Euro currency symbol (code number 0x20AC):

$UTF8{Euro} = pack(’U’, 0x20AC);

Equivalent to: $UTF8{Euro} = "\x{20ac}";

Inspecting $UTF8{Euro} shows that it contains 3 bytes: "\xe2\x82\xac". However, it
contains only 1 character, number 0x20AC. The round trip can be completed with unpack:

$Unicode{Euro} = unpack(’U’, $UTF8{Euro});

Unpacking using the U template code also works on UTF-8 encoded byte strings.

Usually you’ll want to pack or unpack UTF-8 strings:

pack and unpack the Hebrew alphabet

my $alefbet = pack(’U*’, 0x05d0..0x05ea);

my @hebrew = unpack(’U*’, $utf);

http://www.unicode.org/

Please note: in the general case, you’re better off using Encode::decode utf8 to decode
a UTF-8 encoded byte string to a Perl Unicode string, and Encode::encode utf8 to encode
a Perl Unicode string to UTF-8 bytes. These functions provide means of handling invalid
byte sequences and generally have a friendlier interface.

50.6.5 Another Portable Binary Encoding

The pack code w has been added to support a portable binary data encoding scheme that
goes way beyond simple integers. (Details can be found at http://Casbah.org/ , the
Scarab project.) A BER (Binary Encoded Representation) compressed unsigned integer
stores base 128 digits, most significant digit first, with as few digits as possible. Bit eight
(the high bit) is set on each byte except the last. There is no size limit to BER encoding,
but Perl won’t go to extremes.

my $berbuf = pack(’w*’, 1, 128, 128+1, 128*128+127);

A hex dump of $berbuf, with spaces inserted at the right places, shows 01 8100 8101
81807F. Since the last byte is always less than 128, unpack knows where to stop.

50.7 Template Grouping

Prior to Perl 5.8, repetitions of templates had to be made by x-multiplication of template
strings. Now there is a better way as we may use the pack codes (and) combined with a
repeat count. The unpack template from the Stack Frame example can simply be written
like this:

unpack(’v2 (vXXCC)5 v5’, $frame)

Let’s explore this feature a little more. We’ll begin with the equivalent of

join(’’, map(substr($_, 0, 1), @str))

which returns a string consisting of the first character from each string. Using pack, we
can write

pack(’(A)’.@str, @str)

or, because a repeat count * means "repeat as often as required", simply

pack(’(A)*’, @str)

(Note that the template A* would only have packed $str[0] in full length.)

To pack dates stored as triplets (day, month, year) in an array @dates into a sequence
of byte, byte, short integer we can write

$pd = pack(’(CCS)*’, map(@$_, @dates));

To swap pairs of characters in a string (with even length) one could use several techniques.
First, let’s use x and X to skip forward and back:

$s = pack(’(A)*’, unpack(’(xAXXAx)*’, $s));

We can also use @ to jump to an offset, with 0 being the position where we were when
the last (was encountered:

$s = pack(’(A)*’, unpack(’(@1A @0A @2)*’, $s));

Finally, there is also an entirely different approach by unpacking big endian shorts and
packing them in the reverse byte order:

$s = pack(’(v)*’, unpack(’(n)*’, $s);

http://Casbah.org/

50.8 Lengths and Widths

50.8.1 String Lengths

In the previous section we’ve seen a network message that was constructed by prefixing the
binary message length to the actual message. You’ll find that packing a length followed by
so many bytes of data is a frequently used recipe since appending a null byte won’t work if
a null byte may be part of the data. Here is an example where both techniques are used:
after two null terminated strings with source and destination address, a Short Message (to
a mobile phone) is sent after a length byte:

my $msg = pack(’Z*Z*CA*’, $src, $dst, length($sm), $sm);

Unpacking this message can be done with the same template:

($src, $dst, $len, $sm) = unpack(’Z*Z*CA*’, $msg);

There’s a subtle trap lurking in the offing: Adding another field after the Short Message
(in variable $sm) is all right when packing, but this cannot be unpacked naively:

pack a message

my $msg = pack(’Z*Z*CA*C’, $src, $dst, length($sm), $sm, $prio);

unpack fails - $prio remains undefined!

($src, $dst, $len, $sm, $prio) = unpack(’Z*Z*CA*C’, $msg);

The pack code A* gobbles up all remaining bytes, and $prio remains undefined! Before
we let disappointment dampen the morale: Perl’s got the trump card to make this trick
too, just a little further up the sleeve. Watch this:

pack a message: ASCIIZ, ASCIIZ, length/string, byte

my $msg = pack(’Z* Z* C/A* C’, $src, $dst, $sm, $prio);

unpack

($src, $dst, $sm, $prio) = unpack(’Z* Z* C/A* C’, $msg);

Combining two pack codes with a slash (/) associates them with a single value from the
argument list. In pack, the length of the argument is taken and packed according to the
first code while the argument itself is added after being converted with the template code
after the slash. This saves us the trouble of inserting the length call, but it is in unpack

where we really score: The value of the length byte marks the end of the string to be taken
from the buffer. Since this combination doesn’t make sense except when the second pack
code isn’t a*, A* or Z*, Perl won’t let you.

The pack code preceding / may be anything that’s fit to represent a number: All the
numeric binary pack codes, and even text codes such as A4 or Z*:

pack/unpack a string preceded by its length in ASCII

my $buf = pack(’A4/A*’, "Humpty-Dumpty");

unpack $buf: ’13 Humpty-Dumpty’

my $txt = unpack(’A4/A*’, $buf);

/ is not implemented in Perls before 5.6, so if your code is required to work on older
Perls you’ll need to unpack(’Z* Z* C’) to get the length, then use it to make a new unpack
string. For example

pack a message: ASCIIZ, ASCIIZ, length, string, byte

(5.005 compatible)

my $msg = pack(’Z* Z* C A* C’, $src, $dst, length $sm, $sm, $prio);

unpack

(undef, undef, $len) = unpack(’Z* Z* C’, $msg);

($src, $dst, $sm, $prio) = unpack ("Z* Z* x A$len C", $msg);

But that second unpack is rushing ahead. It isn’t using a simple literal string for the
template. So maybe we should introduce...

50.8.2 Dynamic Templates

So far, we’ve seen literals used as templates. If the list of pack items doesn’t have fixed
length, an expression constructing the template is required (whenever, for some reason, ()*
cannot be used). Here’s an example: To store named string values in a way that can be
conveniently parsed by a C program, we create a sequence of names and null terminated
ASCII strings, with = between the name and the value, followed by an additional delimiting
null byte. Here’s how:

my $env = pack(’(A*A*Z*)’ . keys(%Env) . ’C’,

map({ ($_, ’=’, $Env{$_}) } keys(%Env)), 0);

Let’s examine the cogs of this byte mill, one by one. There’s the map call, creating the
items we intend to stuff into the $env buffer: to each key (in $_) it adds the = separator and
the hash entry value. Each triplet is packed with the template code sequence A*A*Z* that
is repeated according to the number of keys. (Yes, that’s what the keys function returns
in scalar context.) To get the very last null byte, we add a 0 at the end of the pack list, to
be packed with C. (Attentive readers may have noticed that we could have omitted the 0.)

For the reverse operation, we’ll have to determine the number of items in the buffer
before we can let unpack rip it apart:

my $n = $env =~ tr/\0// - 1;

my %env = map(split(/=/, $_), unpack("(Z*)$n", $env));

The tr counts the null bytes. The unpack call returns a list of name-value pairs each of
which is taken apart in the map block.

50.8.3 Counting Repetitions

Rather than storing a sentinel at the end of a data item (or a list of items), we could precede
the data with a count. Again, we pack keys and values of a hash, preceding each with an
unsigned short length count, and up front we store the number of pairs:

my $env = pack(’S(S/A* S/A*)*’, scalar keys(%Env), %Env);

This simplifies the reverse operation as the number of repetitions can be unpacked with
the / code:

my %env = unpack(’S/(S/A* S/A*)’, $env);

Note that this is one of the rare cases where you cannot use the same template for pack
and unpack because pack can’t determine a repeat count for a ()-group.

50.8.4 Intel HEX

Intel HEX is a file format for representing binary data, mostly for programming various
chips, as a text file. (See http://en.wikipedia.org/wiki/.hex for a detailed description,
and http://en.wikipedia.org/wiki/SREC_(file_format) for the Motorola S-record
format, which can be unravelled using the same technique.) Each line begins with a colon
(’:’) and is followed by a sequence of hexadecimal characters, specifying a byte count n (8
bit), an address (16 bit, big endian), a record type (8 bit), n data bytes and a checksum (8
bit) computed as the least significant byte of the two’s complement sum of the preceding
bytes. Example: :0300300002337A1E.

The first step of processing such a line is the conversion, to binary, of the hexadecimal
data, to obtain the four fields, while checking the checksum. No surprise here: we’ll start
with a simple pack call to convert everything to binary:

my $binrec = pack(’H*’, substr($hexrec, 1));

The resulting byte sequence is most convenient for checking the checksum. Don’t slow
your program down with a for loop adding the ord values of this string’s bytes - the unpack
code % is the thing to use for computing the 8-bit sum of all bytes, which must be equal to
zero:

die unless unpack("%8C*", $binrec) == 0;

Finally, let’s get those four fields. By now, you shouldn’t have any problems with the
first three fields - but how can we use the byte count of the data in the first field as a length
for the data field? Here the codes x and X come to the rescue, as they permit jumping back
and forth in the string to unpack.

my($addr, $type, $data) = unpack("x n C X4 C x3 /a", $bin);

Code x skips a byte, since we don’t need the count yet. Code n takes care of the 16-bit
big-endian integer address, and C unpacks the record type. Being at offset 4, where the
data begins, we need the count. X4 brings us back to square one, which is the byte at offset
0. Now we pick up the count, and zoom forth to offset 4, where we are now fully furnished
to extract the exact number of data bytes, leaving the trailing checksum byte alone.

50.9 Packing and Unpacking C Structures

In previous sections we have seen how to pack numbers and character strings. If it were not
for a couple of snags we could conclude this section right away with the terse remark that
C structures don’t contain anything else, and therefore you already know all there is to it.
Sorry, no: read on, please.

If you have to deal with a lot of C structures, and don’t want to hack all your
template strings manually, you’ll probably want to have a look at the CPAN module
Convert::Binary::C. Not only can it parse your C source directly, but it also has built-in
support for all the odds and ends described further on in this section.

50.9.1 The Alignment Pit

In the consideration of speed against memory requirements the balance has been tilted in
favor of faster execution. This has influenced the way C compilers allocate memory for
structures: On architectures where a 16-bit or 32-bit operand can be moved faster between

http://en.wikipedia.org/wiki/.hex
http://en.wikipedia.org/wiki/SREC_(file_format)

places in memory, or to or from a CPU register, if it is aligned at an even or multiple-of-
four or even at a multiple-of eight address, a C compiler will give you this speed benefit
by stuffing extra bytes into structures. If you don’t cross the C shoreline this is not likely
to cause you any grief (although you should care when you design large data structures, or
you want your code to be portable between architectures (you do want that, don’t you?)).

To see how this affects pack and unpack, we’ll compare these two C structures:

typedef struct {

char c1;

short s;

char c2;

long l;

} gappy_t;

typedef struct {

long l;

short s;

char c1;

char c2;

} dense_t;

Typically, a C compiler allocates 12 bytes to a gappy_t variable, but requires only 8
bytes for a dense_t. After investigating this further, we can draw memory maps, showing
where the extra 4 bytes are hidden:

0 +4 +8 +12

+--+--+--+--+--+--+--+--+--+--+--+--+

|c1|xx| s |c2|xx|xx|xx| l | xx = fill byte

+--+--+--+--+--+--+--+--+--+--+--+--+

gappy_t

0 +4 +8

+--+--+--+--+--+--+--+--+

| l | h |c1|c2|

+--+--+--+--+--+--+--+--+

dense_t

And that’s where the first quirk strikes: pack and unpack templates have to be stuffed
with x codes to get those extra fill bytes.

The natural question: "Why can’t Perl compensate for the gaps?" warrants an answer.
One good reason is that C compilers might provide (non-ANSI) extensions permitting all
sorts of fancy control over the way structures are aligned, even at the level of an individual
structure field. And, if this were not enough, there is an insidious thing called union where
the amount of fill bytes cannot be derived from the alignment of the next item alone.

OK, so let’s bite the bullet. Here’s one way to get the alignment right by inserting
template codes x, which don’t take a corresponding item from the list:

my $gappy = pack(’cxs cxxx l!’, $c1, $s, $c2, $l);

Note the ! after l: We want to make sure that we pack a long integer as it is compiled by
our C compiler. And even now, it will only work for the platforms where the compiler aligns

things as above. And somebody somewhere has a platform where it doesn’t. [Probably a
Cray, where shorts, ints and longs are all 8 bytes. :-)]

Counting bytes and watching alignments in lengthy structures is bound to be a drag.
Isn’t there a way we can create the template with a simple program? Here’s a C program
that does the trick:

#include <stdio.h>

#include <stddef.h>

typedef struct {

char fc1;

short fs;

char fc2;

long fl;

} gappy_t;

#define Pt(struct,field,tchar) \

printf("@%d%s ", offsetof(struct,field), # tchar);

int main() {

Pt(gappy_t, fc1, c);

Pt(gappy_t, fs, s!);

Pt(gappy_t, fc2, c);

Pt(gappy_t, fl, l!);

printf("\n");

}

The output line can be used as a template in a pack or unpack call:

my $gappy = pack(’@0c @2s! @4c @8l!’, $c1, $s, $c2, $l);

Gee, yet another template code - as if we hadn’t plenty. But @ saves our day by enabling
us to specify the offset from the beginning of the pack buffer to the next item: This is just
the value the offsetof macro (defined in <stddef.h>) returns when given a struct type
and one of its field names ("member-designator" in C standardese).

Neither using offsets nor adding x’s to bridge the gaps is satisfactory. (Just imagine
what happens if the structure changes.) What we really need is a way of saying "skip as
many bytes as required to the next multiple of N". In fluent Templatese, you say this with
x!N where N is replaced by the appropriate value. Here’s the next version of our struct
packaging:

my $gappy = pack(’c x!2 s c x!4 l!’, $c1, $s, $c2, $l);

That’s certainly better, but we still have to know how long all the integers are, and
portability is far away. Rather than 2, for instance, we want to say "however long a short
is". But this can be done by enclosing the appropriate pack code in brackets: [s]. So,
here’s the very best we can do:

my $gappy = pack(’c x![s] s c x![l!] l!’, $c1, $s, $c2, $l);

50.9.2 Dealing with Endian-ness

Now, imagine that we want to pack the data for a machine with a different byte-order.
First, we’ll have to figure out how big the data types on the target machine really are. Let’s
assume that the longs are 32 bits wide and the shorts are 16 bits wide. You can then rewrite
the template as:

my $gappy = pack(’c x![s] s c x![l] l’, $c1, $s, $c2, $l);

If the target machine is little-endian, we could write:

my $gappy = pack(’c x![s] s< c x![l] l<’, $c1, $s, $c2, $l);

This forces the short and the long members to be little-endian, and is just fine if you
don’t have too many struct members. But we could also use the byte-order modifier on a
group and write the following:

my $gappy = pack(’(c x![s] s c x![l] l)<’, $c1, $s, $c2, $l);

This is not as short as before, but it makes it more obvious that we intend to have
little-endian byte-order for a whole group, not only for individual template codes. It can
also be more readable and easier to maintain.

50.9.3 Alignment, Take 2

I’m afraid that we’re not quite through with the alignment catch yet. The hydra raises
another ugly head when you pack arrays of structures:

typedef struct {

short count;

char glyph;

} cell_t;

typedef cell_t buffer_t[BUFLEN];

Where’s the catch? Padding is neither required before the first field count, nor between
this and the next field glyph, so why can’t we simply pack like this:

something goes wrong here:

pack(’s!a’ x @buffer,

map{ ($_->{count}, $_->{glyph}) } @buffer);

This packs 3*@buffer bytes, but it turns out that the size of buffer_t is four times
BUFLEN! The moral of the story is that the required alignment of a structure or array is
propagated to the next higher level where we have to consider padding at the end of each
component as well. Thus the correct template is:

pack(’s!ax’ x @buffer,

map{ ($_->{count}, $_->{glyph}) } @buffer);

50.9.4 Alignment, Take 3

And even if you take all the above into account, ANSI still lets this:

typedef struct {

char foo[2];

} foo_t;

vary in size. The alignment constraint of the structure can be greater than any of its
elements. [And if you think that this doesn’t affect anything common, dismember the next

cellphone that you see. Many have ARM cores, and the ARM structure rules make sizeof
(foo_t) == 4]

50.9.5 Pointers for How to Use Them

The title of this section indicates the second problem you may run into sooner or later
when you pack C structures. If the function you intend to call expects a, say, void * value,
you cannot simply take a reference to a Perl variable. (Although that value certainly is a
memory address, it’s not the address where the variable’s contents are stored.)

Template code P promises to pack a "pointer to a fixed length string". Isn’t this what
we want? Let’s try:

allocate some storage and pack a pointer to it

my $memory = "\x00" x $size;

my $memptr = pack(’P’, $memory);

But wait: doesn’t pack just return a sequence of bytes? How can we pass this string of
bytes to some C code expecting a pointer which is, after all, nothing but a number? The
answer is simple: We have to obtain the numeric address from the bytes returned by pack.

my $ptr = unpack(’L!’, $memptr);

Obviously this assumes that it is possible to typecast a pointer to an unsigned long and
vice versa, which frequently works but should not be taken as a universal law. - Now that
we have this pointer the next question is: How can we put it to good use? We need a call
to some C function where a pointer is expected. The read(2) system call comes to mind:

ssize_t read(int fd, void *buf, size_t count);

After reading Section 25.1 [perlfunc NAME], page 351 explaining how to use syscall

we can write this Perl function copying a file to standard output:

require ’syscall.ph’; # run h2ph to generate this file

sub cat($){

my $path = shift();

my $size = -s $path;

my $memory = "\x00" x $size; # allocate some memory

my $ptr = unpack(’L’, pack(’P’, $memory));

open(F, $path) || die("$path: cannot open ($!)\n");

my $fd = fileno(F);

my $res = syscall(&SYS_read, fileno(F), $ptr, $size);

print $memory;

close(F);

}

This is neither a specimen of simplicity nor a paragon of portability but it illustrates
the point: We are able to sneak behind the scenes and access Perl’s otherwise well-guarded
memory! (Important note: Perl’s syscall does not require you to construct pointers in
this roundabout way. You simply pass a string variable, and Perl forwards the address.)

How does unpack with P work? Imagine some pointer in the buffer about to be unpacked:
If it isn’t the null pointer (which will smartly produce the undef value) we have a start
address - but then what? Perl has no way of knowing how long this "fixed length string"
is, so it’s up to you to specify the actual size as an explicit length after P.

my $mem = "abcdefghijklmn";

print unpack(’P5’, pack(’P’, $mem)); # prints "abcde"

As a consequence, pack ignores any number or * after P.

Now that we have seen P at work, we might as well give p a whirl. Why do we need a
second template code for packing pointers at all? The answer lies behind the simple fact
that an unpack with p promises a null-terminated string starting at the address taken from
the buffer, and that implies a length for the data item to be returned:

my $buf = pack(’p’, "abc\x00efhijklmn");

print unpack(’p’, $buf); # prints "abc"

Albeit this is apt to be confusing: As a consequence of the length being implied by the
string’s length, a number after pack code p is a repeat count, not a length as after P.

Using pack(..., $x) with P or p to get the address where $x is actually stored must
be used with circumspection. Perl’s internal machinery considers the relation between a
variable and that address as its very own private matter and doesn’t really care that we
have obtained a copy. Therefore:

• Do not use pack with p or P to obtain the address of variable that’s bound to go out
of scope (and thereby freeing its memory) before you are done with using the memory
at that address.

• Be very careful with Perl operations that change the value of the variable. Appending
something to the variable, for instance, might require reallocation of its storage, leaving
you with a pointer into no-man’s land.

• Don’t think that you can get the address of a Perl variable when it is stored as an integer
or double number! pack(’P’, $x) will force the variable’s internal representation to
string, just as if you had written something like $x .= ’’.

It’s safe, however, to P- or p-pack a string literal, because Perl simply allocates an
anonymous variable.

50.10 Pack Recipes

Here are a collection of (possibly) useful canned recipes for pack and unpack:

Convert IP address for socket functions

pack("C4", split /\./, "123.4.5.6");

Count the bits in a chunk of memory (e.g. a select vector)

unpack(’%32b*’, $mask);

Determine the endianness of your system

$is_little_endian = unpack(’c’, pack(’s’, 1));

$is_big_endian = unpack(’xc’, pack(’s’, 1));

Determine the number of bits in a native integer

$bits = unpack(’%32I!’, ~0);

Prepare argument for the nanosleep system call

my $timespec = pack(’L!L!’, $secs, $nanosecs);

For a simple memory dump we unpack some bytes into just as many pairs of hex digits,
and use map to handle the traditional spacing - 16 bytes to a line:

my $i;

print map(++$i % 16 ? "$_ " : "$_\n",

unpack(’H2’ x length($mem), $mem)),

length($mem) % 16 ? "\n" : ’’;

50.11 Funnies Section

Pulling digits out of nowhere...

print unpack(’C’, pack(’x’)),

unpack(’%B*’, pack(’A’)),

unpack(’H’, pack(’A’)),

unpack(’A’, unpack(’C’, pack(’A’))), "\n";

One for the road ;-)

my $advice = pack(’all u can in a van’);

50.12 Authors

Simon Cozens and Wolfgang Laun.

51 perlperf

51.1 NAME

perlperf - Perl Performance and Optimization Techniques

51.2 DESCRIPTION

This is an introduction to the use of performance and optimization techniques which can
be used with particular reference to perl programs. While many perl developers have come
from other languages, and can use their prior knowledge where appropriate, there are many
other people who might benefit from a few perl specific pointers. If you want the condensed
version, perhaps the best advice comes from the renowned Japanese Samurai, Miyamoto
Musashi, who said:

"Do Not Engage in Useless Activity"

in 1645.

51.3 OVERVIEW

Perhaps the most common mistake programmers make is to attempt to optimize their code
before a program actually does anything useful - this is a bad idea. There’s no point in
having an extremely fast program that doesn’t work. The first job is to get a program to
correctly do something useful, (not to mention ensuring the test suite is fully functional),
and only then to consider optimizing it. Having decided to optimize existing working code,
there are several simple but essential steps to consider which are intrinsic to any optimization
process.

51.3.1 ONE STEP SIDEWAYS

Firstly, you need to establish a baseline time for the existing code, which timing needs to
be reliable and repeatable. You’ll probably want to use the Benchmark or Devel::NYTProf
modules, or something similar, for this step, or perhaps the Unix system time utility,
whichever is appropriate. See the base of this document for a longer list of benchmarking
and profiling modules, and recommended further reading.

51.3.2 ONE STEP FORWARD

Next, having examined the program for hot spots, (places where the code seems to run
slowly), change the code with the intention of making it run faster. Using version control
software, like subversion, will ensure no changes are irreversible. It’s too easy to fiddle
here and fiddle there - don’t change too much at any one time or you might not discover
which piece of code really was the slow bit.

51.3.3 ANOTHER STEP SIDEWAYS

It’s not enough to say: "that will make it run faster", you have to check it. Rerun the
code under control of the benchmarking or profiling modules, from the first step above, and
check that the new code executed the same task in less time. Save your work and repeat...

51.4 GENERAL GUIDELINES

The critical thing when considering performance is to remember there is no such thing as
a Golden Bullet, which is why there are no rules, only guidelines.

It is clear that inline code is going to be faster than subroutine or method calls, because
there is less overhead, but this approach has the disadvantage of being less maintainable
and comes at the cost of greater memory usage - there is no such thing as a free lunch.
If you are searching for an element in a list, it can be more efficient to store the data in
a hash structure, and then simply look to see whether the key is defined, rather than to
loop through the entire array using grep() for instance. substr() may be (a lot) faster than
grep() but not as flexible, so you have another trade-off to access. Your code may contain
a line which takes 0.01 of a second to execute which if you call it 1,000 times, quite likely
in a program parsing even medium sized files for instance, you already have a 10 second
delay, in just one single code location, and if you call that line 100,000 times, your entire
program will slow down to an unbearable crawl.

Using a subroutine as part of your sort is a powerful way to get exactly what you want,
but will usually be slower than the built-in alphabetic cmp and numeric <=> sort operators.
It is possible to make multiple passes over your data, building indices to make the upcoming
sort more efficient, and to use what is known as the OM (Orcish Maneuver) to cache the sort
keys in advance. The cache lookup, while a good idea, can itself be a source of slowdown by
enforcing a double pass over the data - once to setup the cache, and once to sort the data.
Using pack() to extract the required sort key into a consistent string can be an efficient
way to build a single string to compare, instead of using multiple sort keys, which makes
it possible to use the standard, written in c and fast, perl sort() function on the output,
and is the basis of the GRT (Guttman Rossler Transform). Some string combinations can
slow the GRT down, by just being too plain complex for its own good.

For applications using database backends, the standard DBIx namespace has tries to help
with keeping things nippy, not least because it tries to not query the database until the
latest possible moment, but always read the docs which come with your choice of libraries.
Among the many issues facing developers dealing with databases should remain aware of is
to always use SQL placeholders and to consider pre-fetching data sets when this might prove
advantageous. Splitting up a large file by assigning multiple processes to parsing a single
file, using say POE, threads or fork can also be a useful way of optimizing your usage of
the available CPU resources, though this technique is fraught with concurrency issues and
demands high attention to detail.

Every case has a specific application and one or more exceptions, and there is no replace-
ment for running a few tests and finding out which method works best for your particular
environment, this is why writing optimal code is not an exact science, and why we love
using Perl so much - TMTOWTDI.

51.5 BENCHMARKS

Here are a few examples to demonstrate usage of Perl’s benchmarking tools.

51.5.1 Assigning and Dereferencing Variables.

I’m sure most of us have seen code which looks like, (or worse than), this:

if ($obj->{_ref}->{_myscore} >= $obj->{_ref}->{_yourscore}) {

...

This sort of code can be a real eyesore to read, as well as being very sensitive to typos,
and it’s much clearer to dereference the variable explicitly. We’re side-stepping the issue
of working with object-oriented programming techniques to encapsulate variable access
via methods, only accessible through an object. Here we’re just discussing the technical
implementation of choice, and whether this has an effect on performance. We can see
whether this dereferencing operation, has any overhead by putting comparative code in a
file and running a Benchmark test.

dereference

#!/usr/bin/perl

use strict;

use warnings;

use Benchmark;

my $ref = {

’ref’ => {

_myscore => ’100 + 1’,

_yourscore => ’102 - 1’,

},

};

timethese(1000000, {

’direct’ => sub {

my $x = $ref->{ref}->{_myscore} . $ref->{ref}->{_yourscore} ;

},

’dereference’ => sub {

my $ref = $ref->{ref};

my $myscore = $ref->{_myscore};

my $yourscore = $ref->{_yourscore};

my $x = $myscore . $yourscore;

},

});

It’s essential to run any timing measurements a sufficient number of times so the numbers
settle on a numerical average, otherwise each run will naturally fluctuate due to variations in
the environment, to reduce the effect of contention for CPU resources and network bandwidth
for instance. Running the above code for one million iterations, we can take a look at the
report output by the Benchmark module, to see which approach is the most effective.

$> perl dereference

Benchmark: timing 1000000 iterations of dereference, direct...

dereference: 2 wallclock secs (1.59 usr + 0.00 sys = 1.59 CPU) @ 628930.82/s (n=1000000)

direct: 1 wallclock secs (1.20 usr + 0.00 sys = 1.20 CPU) @ 833333.33/s (n=1000000)

The difference is clear to see and the dereferencing approach is slower. While it managed
to execute an average of 628,930 times a second during our test, the direct approach managed
to run an additional 204,403 times, unfortunately. Unfortunately, because there are many
examples of code written using the multiple layer direct variable access, and it’s usually
horrible. It is, however, minusculy faster. The question remains whether the minute gain
is actually worth the eyestrain, or the loss of maintainability.

51.5.2 Search and replace or tr

If we have a string which needs to be modified, while a regex will almost always be much
more flexible, tr, an oft underused tool, can still be a useful. One scenario might be replace
all vowels with another character. The regex solution might look like this:

$str =~ s/[aeiou]/x/g

The tr alternative might look like this:

$str =~ tr/aeiou/xxxxx/

We can put that into a test file which we can run to check which approach is the fastest,
using a global $STR variable to assign to the my $str variable so as to avoid perl trying to
optimize any of the work away by noticing it’s assigned only the once.

regex-transliterate

#!/usr/bin/perl

use strict;

use warnings;

use Benchmark;

my $STR = "$$-this and that";

timethese(1000000, {

’sr’ => sub { my $str = $STR; $str =~ s/[aeiou]/x/g; return $str; },

’tr’ => sub { my $str = $STR; $str =~ tr/aeiou/xxxxx/; return $str; },

});

Running the code gives us our results:

$> perl regex-transliterate

Benchmark: timing 1000000 iterations of sr, tr...

sr: 2 wallclock secs (1.19 usr + 0.00 sys = 1.19 CPU) @ 840336.13/s (n=1000000)

tr: 0 wallclock secs (0.49 usr + 0.00 sys = 0.49 CPU) @ 2040816.33/s (n=1000000)

The tr version is a clear winner. One solution is flexible, the other is fast - and it’s
appropriately the programmer’s choice which to use.

Check the Benchmark docs for further useful techniques.

51.6 PROFILING TOOLS

A slightly larger piece of code will provide something on which a profiler can produce more
extensive reporting statistics. This example uses the simplistic wordmatch program which
parses a given input file and spews out a short report on the contents.

wordmatch

#!/usr/bin/perl

use strict;

use warnings;

=head1 NAME

filewords - word analysis of input file

=head1 SYNOPSIS

filewords -f inputfilename [-d]

=head1 DESCRIPTION

This program parses the given filename, specified with C<-f>, and displays a

simple analysis of the words found therein. Use the C<-d> switch to enable

debugging messages.

=cut

use FileHandle;

use Getopt::Long;

my $debug = 0;

my $file = ’’;

my $result = GetOptions (

’debug’ => \$debug,

’file=s’ => \$file,

);

die("invalid args") unless $result;

unless (-f $file) {

die("Usage: $0 -f filename [-d]");

}

my $FH = FileHandle->new("< $file") or die("unable to open file($file): $!");

my $i_LINES = 0;

my $i_WORDS = 0;

my %count = ();

my @lines = <$FH>;

foreach my $line (@lines) {

$i_LINES++;

$line =~ s/\n//;

my @words = split(/ +/, $line);

my $i_words = scalar(@words);

$i_WORDS = $i_WORDS + $i_words;

debug("line: $i_LINES supplying $i_words words: @words");

my $i_word = 0;

foreach my $word (@words) {

$i_word++;

$count{$i_LINES}{spec} += matches($i_word, $word, ’[^a-zA-Z0-9]’);

$count{$i_LINES}{only} += matches($i_word, $word, ’^[^a-zA-Z0-9]+$’);

$count{$i_LINES}{cons} += matches($i_word, $word, ’^[(?i:bcdfghjklmnpqrstvwxyz)]+$’);

$count{$i_LINES}{vows} += matches($i_word, $word, ’^[(?i:aeiou)]+$’);

$count{$i_LINES}{caps} += matches($i_word, $word, ’^[(A-Z)]+$’);

}

}

print report(%count);

sub matches {

my $i_wd = shift;

my $word = shift;

my $regex = shift;

my $has = 0;

if ($word =~ /($regex)/) {

$has++ if $1;

}

debug("word: $i_wd ".($has ? ’matches’ : ’does not match’)." chars: /$regex/");

return $has;

}

sub report {

my %report = @_;

my %rep;

foreach my $line (keys %report) {

foreach my $key (keys %{ $report{$line} }) {

$rep{$key} += $report{$line}{$key};

}

}

my $report = qq|

$0 report for $file:

lines in file: $i_LINES

words in file: $i_WORDS

words with special (non-word) characters: $i_spec

words with only special (non-word) characters: $i_only

words with only consonants: $i_cons

words with only capital letters: $i_caps

words with only vowels: $i_vows

|;

return $report;

}

sub debug {

my $message = shift;

if ($debug) {

print STDERR "DBG: $message\n";

}

}

exit 0;

51.6.1 Devel::DProf

This venerable module has been the de-facto standard for Perl code profiling for more
than a decade, but has been replaced by a number of other modules which have brought
us back to the 21st century. Although you’re recommended to evaluate your tool from the
several mentioned here and from the CPAN list at the base of this document, (and currently
Devel-NYTProf seems to be the weapon of choice - see below), we’ll take a quick look at
the output from Devel-DProf first, to set a baseline for Perl profiling tools. Run the above
program under the control of Devel::DProf by using the -d switch on the command-line.

$> perl -d:DProf wordmatch -f perl5db.pl

<...multiple lines snipped...>

wordmatch report for perl5db.pl:

lines in file: 9428

words in file: 50243

words with special (non-word) characters: 20480

words with only special (non-word) characters: 7790

words with only consonants: 4801

words with only capital letters: 1316

words with only vowels: 1701

Devel::DProf produces a special file, called tmon.out by default, and this file is read by
the dprofpp program, which is already installed as part of the Devel::DProf distribution.

If you call dprofpp with no options, it will read the tmon.out file in the current directory
and produce a human readable statistics report of the run of your program. Note that this
may take a little time.

$> dprofpp

Total Elapsed Time = 2.951677 Seconds

User+System Time = 2.871677 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name

102. 2.945 3.003 251215 0.0000 0.0000 main::matches

2.40 0.069 0.069 260643 0.0000 0.0000 main::debug

1.74 0.050 0.050 1 0.0500 0.0500 main::report

1.04 0.030 0.049 4 0.0075 0.0123 main::BEGIN

0.35 0.010 0.010 3 0.0033 0.0033 Exporter::as_heavy

0.35 0.010 0.010 7 0.0014 0.0014 IO::File::BEGIN

0.00 - -0.000 1 - - Getopt::Long::FindOption

0.00 - -0.000 1 - - Symbol::BEGIN

0.00 - -0.000 1 - - Fcntl::BEGIN

0.00 - -0.000 1 - - Fcntl::bootstrap

0.00 - -0.000 1 - - warnings::BEGIN

0.00 - -0.000 1 - - IO::bootstrap

0.00 - -0.000 1 - - Getopt::Long::ConfigDefaults

0.00 - -0.000 1 - - Getopt::Long::Configure

0.00 - -0.000 1 - - Symbol::gensym

dprofpp will produce some quite detailed reporting on the activity of the wordmatch

program. The wallclock, user and system, times are at the top of the analysis, and after
this are the main columns defining which define the report. Check the dprofpp docs for
details of the many options it supports.

See also Apache::DProf which hooks Devel::DProf into mod_perl.

51.6.2 Devel::Profiler

Let’s take a look at the same program using a different profiler: Devel::Profiler, a drop-
in Perl-only replacement for Devel::DProf. The usage is very slightly different in that
instead of using the special -d: flag, you pull Devel::Profiler in directly as a module
using -M.

$> perl -MDevel::Profiler wordmatch -f perl5db.pl

<...multiple lines snipped...>

wordmatch report for perl5db.pl:

lines in file: 9428

words in file: 50243

words with special (non-word) characters: 20480

words with only special (non-word) characters: 7790

words with only consonants: 4801

words with only capital letters: 1316

words with only vowels: 1701

Devel::Profiler generates a tmon.out file which is compatible with the dprofpp pro-
gram, thus saving the construction of a dedicated statistics reader program. dprofpp usage
is therefore identical to the above example.

$> dprofpp

Total Elapsed Time = 20.984 Seconds

User+System Time = 19.981 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name

49.0 9.792 14.509 251215 0.0000 0.0001 main::matches

24.4 4.887 4.887 260643 0.0000 0.0000 main::debug

0.25 0.049 0.049 1 0.0490 0.0490 main::report

0.00 0.000 0.000 1 0.0000 0.0000 Getopt::Long::GetOptions

0.00 0.000 0.000 2 0.0000 0.0000 Getopt::Long::ParseOptionSpec

0.00 0.000 0.000 1 0.0000 0.0000 Getopt::Long::FindOption

0.00 0.000 0.000 1 0.0000 0.0000 IO::File::new

0.00 0.000 0.000 1 0.0000 0.0000 IO::Handle::new

0.00 0.000 0.000 1 0.0000 0.0000 Symbol::gensym

0.00 0.000 0.000 1 0.0000 0.0000 IO::File::open

Interestingly we get slightly different results, which is mostly because the algorithm
which generates the report is different, even though the output file format was allegedly
identical. The elapsed, user and system times are clearly showing the time it took for
Devel::Profiler to execute its own run, but the column listings feel more accurate some-
how than the ones we had earlier from Devel::DProf. The 102% figure has disappeared, for
example. This is where we have to use the tools at our disposal, and recognise their pros and
cons, before using them. Interestingly, the numbers of calls for each subroutine are identical
in the two reports, it’s the percentages which differ. As the author of Devel::Proviler
writes:

...running HTML::Template’s test suite under Devel::DProf shows output()

taking NO time but Devel::Profiler shows around 10% of the time is in output().

I don’t know which to trust but my gut tells me something is wrong with

Devel::DProf. HTML::Template::output() is a big routine that’s called for

every test. Either way, something needs fixing.

YMMV.

See also Devel::Apache::Profiler which hooks Devel::Profiler into mod_perl.

51.6.3 Devel::SmallProf

The Devel::SmallProf profiler examines the runtime of your Perl program and produces
a line-by-line listing to show how many times each line was called, and how long each line
took to execute. It is called by supplying the familiar -d flag to Perl at runtime.

$> perl -d:SmallProf wordmatch -f perl5db.pl

<...multiple lines snipped...>

wordmatch report for perl5db.pl:

lines in file: 9428

words in file: 50243

words with special (non-word) characters: 20480

words with only special (non-word) characters: 7790

words with only consonants: 4801

words with only capital letters: 1316

words with only vowels: 1701

Devel::SmallProf writes it’s output into a file called smallprof.out, by default. The
format of the file looks like this:

<num> <time> <ctime> <line>:<text>

When the program has terminated, the output may be examined and sorted using any
standard text filtering utilities. Something like the following may be sufficient:

$> cat smallprof.out | grep \d*: | sort -k3 | tac | head -n20

251215 1.65674 7.68000 75: if ($word =~ /($regex)/) {

251215 0.03264 4.40000 79: debug("word: $i_wd ".($has ? ’matches’ :

251215 0.02693 4.10000 81: return $has;

260643 0.02841 4.07000 128: if ($debug) {

260643 0.02601 4.04000 126: my $message = shift;

251215 0.02641 3.91000 73: my $has = 0;

251215 0.03311 3.71000 70: my $i_wd = shift;

251215 0.02699 3.69000 72: my $regex = shift;

251215 0.02766 3.68000 71: my $word = shift;

50243 0.59726 1.00000 59: $count{$i_LINES}{cons} =

50243 0.48175 0.92000 61: $count{$i_LINES}{spec} =

50243 0.00644 0.89000 56: my $i_cons = matches($i_word, $word,

50243 0.48837 0.88000 63: $count{$i_LINES}{caps} =

50243 0.00516 0.88000 58: my $i_caps = matches($i_word, $word, ’^[(A-

50243 0.00631 0.81000 54: my $i_spec = matches($i_word, $word, ’[^a-

50243 0.00496 0.80000 57: my $i_vows = matches($i_word, $word,

50243 0.00688 0.80000 53: $i_word++;

50243 0.48469 0.79000 62: $count{$i_LINES}{only} =

50243 0.48928 0.77000 60: $count{$i_LINES}{vows} =

50243 0.00683 0.75000 55: my $i_only = matches($i_word, $word, ’^[^a-

You can immediately see a slightly different focus to the subroutine profiling modules,
and we start to see exactly which line of code is taking the most time. That regex line is
looking a bit suspicious, for example. Remember that these tools are supposed to be used
together, there is no single best way to profile your code, you need to use the best tools for
the job.

See also Apache::SmallProf which hooks Devel::SmallProf into mod_perl.

51.6.4 Devel::FastProf

Devel::FastProf is another Perl line profiler. This was written with a view to getting
a faster line profiler, than is possible with for example Devel::SmallProf, because it’s
written in C. To use Devel::FastProf, supply the -d argument to Perl:

$> perl -d:FastProf wordmatch -f perl5db.pl

<...multiple lines snipped...>

wordmatch report for perl5db.pl:

lines in file: 9428

words in file: 50243

words with special (non-word) characters: 20480

words with only special (non-word) characters: 7790

words with only consonants: 4801

words with only capital letters: 1316

words with only vowels: 1701

Devel::FastProf writes statistics to the file fastprof.out in the current directory. The
output file, which can be specified, can be interpreted by using the fprofpp command-line
program.

$> fprofpp | head -n20

fprofpp output format is:

filename:line time count: source

wordmatch:75 3.93338 251215: if ($word =~ /($regex)/) {

wordmatch:79 1.77774 251215: debug("word: $i_wd ".($has ? ’matches’ : ’does not match’)." chars: /$regex/");

wordmatch:81 1.47604 251215: return $has;

wordmatch:126 1.43441 260643: my $message = shift;

wordmatch:128 1.42156 260643: if ($debug) {

wordmatch:70 1.36824 251215: my $i_wd = shift;

wordmatch:71 1.36739 251215: my $word = shift;

wordmatch:72 1.35939 251215: my $regex = shift;

Straightaway we can see that the number of times each line has been called is identical
to the Devel::SmallProf output, and the sequence is only very slightly different based
on the ordering of the amount of time each line took to execute, if ($debug) { and
my $message = shift;, for example. The differences in the actual times recorded might
be in the algorithm used internally, or it could be due to system resource limitations or
contention.

See also the DBIx-Profile which will profile database queries running under the DBIx::*
namespace.

51.6.5 Devel::NYTProf

Devel::NYTProf is the next generation of Perl code profiler, fixing many shortcomings in
other tools and implementing many cool features. First of all it can be used as either a line
profiler, a block or a subroutine profiler, all at once. It can also use sub-microsecond (100ns)
resolution on systems which provide clock_gettime(). It can be started and stopped even
by the program being profiled. It’s a one-line entry to profile mod_perl applications. It’s
written in c and is probably the fastest profiler available for Perl. The list of coolness just
goes on. Enough of that, let’s see how to it works - just use the familiar -d switch to plug
it in and run the code.

$> perl -d:NYTProf wordmatch -f perl5db.pl

wordmatch report for perl5db.pl:

lines in file: 9427

words in file: 50243

words with special (non-word) characters: 20480

words with only special (non-word) characters: 7790

words with only consonants: 4801

words with only capital letters: 1316

words with only vowels: 1701

NYTProf will generate a report database into the file nytprof.out by default. Human
readable reports can be generated from here by using the supplied nytprofhtml (HTML
output) and nytprofcsv (CSV output) programs. We’ve used the Unix system html2text

utility to convert the nytprof/index.html file for convenience here.

$> html2text nytprof/index.html

Performance Profile Index

For wordmatch

Run on Fri Sep 26 13:46:39 2008

Reported on Fri Sep 26 13:47:23 2008

Top 15 Subroutines -- ordered by exclusive time

|Calls |P |F |Inclusive|Exclusive|Subroutine |

| | | |Time |Time | |

|251215|5 |1 |13.09263 |10.47692 |main:: |matches |

|260642|2 |1 |2.71199 |2.71199 |main:: |debug |

|1 |1 |1 |0.21404 |0.21404 |main:: |report |

|2 |2 |2 |0.00511 |0.00511 |XSLoader:: |load (xsub) |

|14 |14|7 |0.00304 |0.00298 |Exporter:: |import |

|3 |1 |1 |0.00265 |0.00254 |Exporter:: |as_heavy |

|10 |10|4 |0.00140 |0.00140 |vars:: |import |

|13 |13|1 |0.00129 |0.00109 |constant:: |import |

|1 |1 |1 |0.00360 |0.00096 |FileHandle:: |import |

|3 |3 |3 |0.00086 |0.00074 |warnings::register::|import |

|9 |3 |1 |0.00036 |0.00036 |strict:: |bits |

|13 |13|13|0.00032 |0.00029 |strict:: |import |

|2 |2 |2 |0.00020 |0.00020 |warnings:: |import |

|2 |1 |1 |0.00020 |0.00020 |Getopt::Long:: |ParseOptionSpec|

|7 |7 |6 |0.00043 |0.00020 |strict:: |unimport |

For more information see the full list of 189 subroutines.

The first part of the report already shows the critical information regarding which sub-
routines are using the most time. The next gives some statistics about the source files
profiled.

Source Code Files -- ordered by exclusive time then name

|Stmts |Exclusive|Avg. |Reports |Source File |

| |Time | | | |

|2699761|15.66654 |6e-06 |line . block . sub|wordmatch |

|35 |0.02187 |0.00062|line . block . sub|IO/Handle.pm |

|274 |0.01525 |0.00006|line . block . sub|Getopt/Long.pm |

|20 |0.00585 |0.00029|line . block . sub|Fcntl.pm |

|128 |0.00340 |0.00003|line . block . sub|Exporter/Heavy.pm |

|42 |0.00332 |0.00008|line . block . sub|IO/File.pm |

|261 |0.00308 |0.00001|line . block . sub|Exporter.pm |

|323 |0.00248 |8e-06 |line . block . sub|constant.pm |

|12 |0.00246 |0.00021|line . block . sub|File/Spec/Unix.pm |

|191 |0.00240 |0.00001|line . block . sub|vars.pm |

|77 |0.00201 |0.00003|line . block . sub|FileHandle.pm |

|12 |0.00198 |0.00016|line . block . sub|Carp.pm |

|14 |0.00175 |0.00013|line . block . sub|Symbol.pm |

|15 |0.00130 |0.00009|line . block . sub|IO.pm |

|22 |0.00120 |0.00005|line . block . sub|IO/Seekable.pm |

|198 |0.00085 |4e-06 |line . block . sub|warnings/register.pm|

|114 |0.00080 |7e-06 |line . block . sub|strict.pm |

|47 |0.00068 |0.00001|line . block . sub|warnings.pm |

|27 |0.00054 |0.00002|line . block . sub|overload.pm |

|9 |0.00047 |0.00005|line . block . sub|SelectSaver.pm |

|13 |0.00045 |0.00003|line . block . sub|File/Spec.pm |

|2701595|15.73869 | |Total |

|128647 |0.74946 | |Average |

| |0.00201 |0.00003|Median |

| |0.00121 |0.00003|Deviation |

Report produced by the NYTProf 2.03 Perl profiler, developed by Tim Bunce and

Adam Kaplan.

At this point, if you’re using the html report, you can click through the various links
to bore down into each subroutine and each line of code. Because we’re using the text
reporting here, and there’s a whole directory full of reports built for each source file, we’ll
just display a part of the corresponding wordmatch-line.html file, sufficient to give an
idea of the sort of output you can expect from this cool tool.

$> html2text nytprof/wordmatch-line.html

Performance Profile -- -block view-.-line view-.-sub view-

For wordmatch

Run on Fri Sep 26 13:46:39 2008

Reported on Fri Sep 26 13:47:22 2008

File wordmatch

Subroutines -- ordered by exclusive time

|Calls |P|F|Inclusive|Exclusive|Subroutine |

| | | |Time |Time | |

|251215|5|1|13.09263 |10.47692 |main::|matches|

|260642|2|1|2.71199 |2.71199 |main::|debug |

|1 |1|1|0.21404 |0.21404 |main::|report |

|0 |0|0|0 |0 |main::|BEGIN |

|Line|Stmts.|Exclusive|Avg. |Code |

| | |Time | | |

|1 | | | |#!/usr/bin/perl |

|2 | | | | |

| | | | |use strict; |

|3 |3 |0.00086 |0.00029|# spent 0.00003s making 1 calls to strict:: |

| | | | |import |

| | | | |use warnings; |

|4 |3 |0.01563 |0.00521|# spent 0.00012s making 1 calls to warnings:: |

| | | | |import |

|5 | | | | |

|6 | | | |=head1 NAME |

|7 | | | | |

|8 | | | |filewords - word analysis of input file |

<...snip...>

|62 |1 |0.00445 |0.00445|print report(%count); |

| | | | |# spent 0.21404s making 1 calls to main::report|

|63 | | | | |

| | | | |# spent 23.56955s (10.47692+2.61571) within |

| | | | |main::matches which was called 251215 times, |

| | | | |avg 0.00005s/call: # 50243 times |

| | | | |(2.12134+0.51939s) at line 57 of wordmatch, avg|

| | | | |0.00005s/call # 50243 times (2.17735+0.54550s) |

|64 | | | |at line 56 of wordmatch, avg 0.00005s/call # |

| | | | |50243 times (2.10992+0.51797s) at line 58 of |

| | | | |wordmatch, avg 0.00005s/call # 50243 times |

| | | | |(2.12696+0.51598s) at line 55 of wordmatch, avg|

| | | | |0.00005s/call # 50243 times (1.94134+0.51687s) |

| | | | |at line 54 of wordmatch, avg 0.00005s/call |

| | | | |sub matches { |

<...snip...>

|102 | | | | |

| | | | |# spent 2.71199s within main::debug which was |

| | | | |called 260642 times, avg 0.00001s/call: # |

| | | | |251215 times (2.61571+0s) by main::matches at |

|103 | | | |line 74 of wordmatch, avg 0.00001s/call # 9427 |

| | | | |times (0.09628+0s) at line 50 of wordmatch, avg|

| | | | |0.00001s/call |

| | | | |sub debug { |

|104 |260642|0.58496 |2e-06 |my $message = shift; |

|105 | | | | |

|106 |260642|1.09917 |4e-06 |if ($debug) { |

|107 | | | |print STDERR "DBG: $message\n"; |

|108 | | | |} |

|109 | | | |} |

|110 | | | | |

|111 |1 |0.01501 |0.01501|exit 0; |

|112 | | | | |

Oodles of very useful information in there - this seems to be the way forward.

See also Devel::NYTProf::Apache which hooks Devel::NYTProf into mod_perl.

51.7 SORTING

Perl modules are not the only tools a performance analyst has at their disposal, system
tools like time should not be overlooked as the next example shows, where we take a quick
look at sorting. Many books, theses and articles, have been written about efficient sorting
algorithms, and this is not the place to repeat such work, there’s several good sorting
modules which deserve taking a look at too: Sort::Maker, Sort::Key spring to mind.
However, it’s still possible to make some observations on certain Perl specific interpretations
on issues relating to sorting data sets and give an example or two with regard to how sorting
large data volumes can effect performance. Firstly, an often overlooked point when sorting
large amounts of data, one can attempt to reduce the data set to be dealt with and in many
cases grep() can be quite useful as a simple filter:

@data = sort grep { /$filter/ } @incoming

A command such as this can vastly reduce the volume of material to actually sort
through in the first place, and should not be too lightly disregarded purely on the basis of
its simplicity. The KISS principle is too often overlooked - the next example uses the simple
system time utility to demonstrate. Let’s take a look at an actual example of sorting the
contents of a large file, an apache logfile would do. This one has over a quarter of a million
lines, is 50M in size, and a snippet of it looks like this:

logfile

188.209-65-87.adsl-dyn.isp.belgacom.be - - [08/Feb/2007:12:57:16 +0000] "GET /favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

188.209-65-87.adsl-dyn.isp.belgacom.be - - [08/Feb/2007:12:57:16 +0000] "GET /favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

151.56.71.198 - - [08/Feb/2007:12:57:41 +0000] "GET /suse-on-vaio.html HTTP/1.1" 200 2858 "http://www.linux-on-laptops.com/sony.html" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.8.1.1) Gecko/20061204 Firefox/2.0.0.1"

151.56.71.198 - - [08/Feb/2007:12:57:42 +0000] "GET /data/css HTTP/1.1" 404 206 "http://www.rfi.net/suse-on-vaio.html" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.8.1.1) Gecko/20061204 Firefox/2.0.0.1"

151.56.71.198 - - [08/Feb/2007:12:57:43 +0000] "GET /favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.8.1.1) Gecko/20061204 Firefox/2.0.0.1"

217.113.68.60 - - [08/Feb/2007:13:02:15 +0000] "GET / HTTP/1.1" 304 - "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

217.113.68.60 - - [08/Feb/2007:13:02:16 +0000] "GET /data/css HTTP/1.1" 404 206 "http://www.rfi.net/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

debora.to.isac.cnr.it - - [08/Feb/2007:13:03:58 +0000] "GET /suse-on-vaio.html HTTP/1.1" 200 2858 "http://www.linux-on-laptops.com/sony.html" "Mozilla/5.0 (compatible; Konqueror/3.4; Linux) KHTML/3.4.0 (like Gecko)"

debora.to.isac.cnr.it - - [08/Feb/2007:13:03:58 +0000] "GET /data/css HTTP/1.1" 404 206 "http://www.rfi.net/suse-on-vaio.html" "Mozilla/5.0 (compatible; Konqueror/3.4; Linux) KHTML/3.4.0 (like Gecko)"

debora.to.isac.cnr.it - - [08/Feb/2007:13:03:58 +0000] "GET /favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/5.0 (compatible; Konqueror/3.4; Linux) KHTML/3.4.0 (like Gecko)"

195.24.196.99 - - [08/Feb/2007:13:26:48 +0000] "GET / HTTP/1.0" 200 3309 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.8.0.9) Gecko/20061206 Firefox/1.5.0.9"

195.24.196.99 - - [08/Feb/2007:13:26:58 +0000] "GET /data/css HTTP/1.0" 404 206 "http://www.rfi.net/" "Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.8.0.9) Gecko/20061206 Firefox/1.5.0.9"

195.24.196.99 - - [08/Feb/2007:13:26:59 +0000] "GET /favicon.ico HTTP/1.0" 404 209 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.8.0.9) Gecko/20061206 Firefox/1.5.0.9"

crawl1.cosmixcorp.com - - [08/Feb/2007:13:27:57 +0000] "GET /robots.txt HTTP/1.0" 200 179 "-" "voyager/1.0"

crawl1.cosmixcorp.com - - [08/Feb/2007:13:28:25 +0000] "GET /links.html HTTP/1.0" 200 3413 "-" "voyager/1.0"

fhm226.internetdsl.tpnet.pl - - [08/Feb/2007:13:37:32 +0000] "GET /suse-on-vaio.html HTTP/1.1" 200 2858 "http://www.linux-on-laptops.com/sony.html" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

fhm226.internetdsl.tpnet.pl - - [08/Feb/2007:13:37:34 +0000] "GET /data/css HTTP/1.1" 404 206 "http://www.rfi.net/suse-on-vaio.html" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

80.247.140.134 - - [08/Feb/2007:13:57:35 +0000] "GET / HTTP/1.1" 200 3309 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)"

80.247.140.134 - - [08/Feb/2007:13:57:37 +0000] "GET /data/css HTTP/1.1" 404 206 "http://www.rfi.net" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)"

pop.compuscan.co.za - - [08/Feb/2007:14:10:43 +0000] "GET / HTTP/1.1" 200 3309 "-" "www.clamav.net"

livebot-207-46-98-57.search.live.com - - [08/Feb/2007:14:12:04 +0000] "GET /robots.txt HTTP/1.0" 200 179 "-" "msnbot/1.0 (+http://search.msn.com/msnbot.htm)"

livebot-207-46-98-57.search.live.com - - [08/Feb/2007:14:12:04 +0000] "GET /html/oracle.html HTTP/1.0" 404 214 "-" "msnbot/1.0 (+http://search.msn.com/msnbot.htm)"

dslb-088-064-005-154.pools.arcor-ip.net - - [08/Feb/2007:14:12:15 +0000] "GET / HTTP/1.1" 200 3309 "-" "www.clamav.net"

196.201.92.41 - - [08/Feb/2007:14:15:01 +0000] "GET / HTTP/1.1" 200 3309 "-" "MOT-L7/08.B7.DCR MIB/2.2.1 Profile/MIDP-2.0 Configuration/CLDC-1.1"

The specific task here is to sort the 286,525 lines of this file by Response Code, Query,
Browser, Referring Url, and lastly Date. One solution might be to use the following code,
which iterates over the files given on the command-line.

sort-apache-log

#!/usr/bin/perl -n

use strict;

use warnings;

my @data;

LINE:

while (<>) {

my $line = $_;

if (

$line =~ m/^(

([\w\.\-]+) # client

\s*-\s*-\s*\[

([^]]+) # date

\]\s*"\w+\s*

(\S+) # query

[^"]+"\s*

(\d+) # status

\s+\S+\s+"[^"]*"\s+"

([^"]*) # browser

"

.*

)$/x

) {

my @chunks = split(/ +/, $line);

my $ip = $1;

my $date = $2;

my $query = $3;

my $status = $4;

my $browser = $5;

push(@data, [$ip, $date, $query, $status, $browser, $line]);

}

}

my @sorted = sort {

$a->[3] cmp $b->[3]

||

$a->[2] cmp $b->[2]

||

$a->[0] cmp $b->[0]

||

$a->[1] cmp $b->[1]

||

$a->[4] cmp $b->[4]

} @data;

foreach my $data (@sorted) {

print $data->[5];

}

exit 0;

When running this program, redirect STDOUT so it is possible to check the output is
correct from following test runs and use the system time utility to check the overall runtime.

$> time ./sort-apache-log logfile > out-sort

real 0m17.371s

user 0m15.757s

sys 0m0.592s

The program took just over 17 wallclock seconds to run. Note the different values time
outputs, it’s important to always use the same one, and to not confuse what each one means.

Elapsed Real Time
The overall, or wallclock, time between when time was called, and when it
terminates. The elapsed time includes both user and system times, and time
spent waiting for other users and processes on the system. Inevitably, this is
the most approximate of the measurements given.

User CPU Time
The user time is the amount of time the entire process spent on behalf of the
user on this system executing this program.

System CPU Time
The system time is the amount of time the kernel itself spent executing routines,
or system calls, on behalf of this process user.

Running this same process as a Schwarzian Transform it is possible to eliminate the
input and output arrays for storing all the data, and work on the input directly as it arrives
too. Otherwise, the code looks fairly similar:

sort-apache-log-schwarzian

#!/usr/bin/perl -n

use strict;

use warnings;

print

map $_->[0] =>

sort {

$a->[4] cmp $b->[4]

||

$a->[3] cmp $b->[3]

||

$a->[1] cmp $b->[1]

||

$a->[2] cmp $b->[2]

||

$a->[5] cmp $b->[5]

}

map [$_, m/^(

([\w\.\-]+) # client

\s*-\s*-\s*\[

([^]]+) # date

\]\s*"\w+\s*

(\S+) # query

[^"]+"\s*

(\d+) # status

\s+\S+\s+"[^"]*"\s+"

([^"]*) # browser

"

.*

)$/xo]

=> <>;

exit 0;

Run the new code against the same logfile, as above, to check the new time.

$> time ./sort-apache-log-schwarzian logfile > out-schwarz

real 0m9.664s

user 0m8.873s

sys 0m0.704s

The time has been cut in half, which is a respectable speed improvement by any standard.
Naturally, it is important to check the output is consistent with the first program run, this
is where the Unix system cksum utility comes in.

$> cksum out-sort out-schwarz

3044173777 52029194 out-sort

3044173777 52029194 out-schwarz

BTW. Beware too of pressure from managers who see you speed a program up by 50%
of the runtime once, only to get a request one month later to do the same again (true story)
- you’ll just have to point out you’re only human, even if you are a Perl programmer, and
you’ll see what you can do...

51.8 LOGGING

An essential part of any good development process is appropriate error handling with ap-
propriately informative messages, however there exists a school of thought which suggests
that log files should be chatty, as if the chain of unbroken output somehow ensures the
survival of the program. If speed is in any way an issue, this approach is wrong.

A common sight is code which looks something like this:

logger->debug("A logging message via process-id: $$ INC: " . Dumper(\%INC))

The problem is that this code will always be parsed and executed, even when the debug
level set in the logging configuration file is zero. Once the debug() subroutine has been
entered, and the internal $debug variable confirmed to be zero, for example, the message
which has been sent in will be discarded and the program will continue. In the example given
though, the \%INC hash will already have been dumped, and the message string constructed,
all of which work could be bypassed by a debug variable at the statement level, like this:

logger->debug("A logging message via process-id: $$ INC: " . Dumper(\%INC)) if $DEBUG;

This effect can be demonstrated by setting up a test script with both forms, including a
debug() subroutine to emulate typical logger() functionality.

ifdebug

#!/usr/bin/perl

use strict;

use warnings;

use Benchmark;

use Data::Dumper;

my $DEBUG = 0;

sub debug {

my $msg = shift;

if ($DEBUG) {

print "DEBUG: $msg\n";

}

};

timethese(100000, {

’debug’ => sub {

debug("A $0 logging message via process-id: $$" . Dumper(\%INC))

},

’ifdebug’ => sub {

debug("A $0 logging message via process-id: $$" . Dumper(\%INC)) if $DEBUG

},

});

Let’s see what Benchmark makes of this:

$> perl ifdebug

Benchmark: timing 100000 iterations of constant, sub...

ifdebug: 0 wallclock secs (0.01 usr + 0.00 sys = 0.01 CPU) @ 10000000.00/s (n=100000)

(warning: too few iterations for a reliable count)

debug: 14 wallclock secs (13.18 usr + 0.04 sys = 13.22 CPU) @ 7564.30/s (n=100000)

In the one case the code, which does exactly the same thing as far as outputting any
debugging information is concerned, in other words nothing, takes 14 seconds, and in the
other case the code takes one hundredth of a second. Looks fairly definitive. Use a $DEBUG

variable BEFORE you call the subroutine, rather than relying on the smart functionality
inside it.

51.8.1 Logging if DEBUG (constant)

It’s possible to take the previous idea a little further, by using a compile time DEBUG constant.

ifdebug-constant

#!/usr/bin/perl

use strict;

use warnings;

use Benchmark;

use Data::Dumper;

use constant

DEBUG => 0

;

sub debug {

if (DEBUG) {

my $msg = shift;

print "DEBUG: $msg\n";

}

};

timethese(100000, {

’debug’ => sub {

debug("A $0 logging message via process-id: $$" . Dumper(\%INC))

},

’constant’ => sub {

debug("A $0 logging message via process-id: $$" . Dumper(\%INC)) if DEBUG

},

});

Running this program produces the following output:

$> perl ifdebug-constant

Benchmark: timing 100000 iterations of constant, sub...

constant: 0 wallclock secs (-0.00 usr + 0.00 sys = -0.00 CPU) @ -7205759403792793600000.00/s (n=100000)

(warning: too few iterations for a reliable count)

sub: 14 wallclock secs (13.09 usr + 0.00 sys = 13.09 CPU) @ 7639.42/s (n=100000)

The DEBUG constant wipes the floor with even the $debug variable, clocking in at minus
zero seconds, and generates a "warning: too few iterations for a reliable count" message
into the bargain. To see what is really going on, and why we had too few iterations when
we thought we asked for 100000, we can use the very useful B::Deparse to inspect the new
code:

$> perl -MO=Deparse ifdebug-constant

use Benchmark;

use Data::Dumper;

use constant (’DEBUG’, 0);

sub debug {

use warnings;

use strict ’refs’;

0;

}

use warnings;

use strict ’refs’;

timethese(100000, {’sub’, sub {

debug "A $0 logging message via process-id: $$" . Dumper(\%INC);

}

, ’constant’, sub {

0;

}

});

ifdebug-constant syntax OK

The output shows the constant() subroutine we’re testing being replaced with the value
of the DEBUG constant: zero. The line to be tested has been completely optimized away,
and you can’t get much more efficient than that.

51.9 POSTSCRIPT

This document has provided several way to go about identifying hot-spots, and checking
whether any modifications have improved the runtime of the code.

As a final thought, remember that it’s not (at the time of writing) possible to produce
a useful program which will run in zero or negative time and this basic principle can be
written as: useful programs are slow by their very definition. It is of course possible to write
a nearly instantaneous program, but it’s not going to do very much, here’s a very efficient
one:

$> perl -e 0

Optimizing that any further is a job for p5p.

51.10 SEE ALSO

Further reading can be found using the modules and links below.

51.10.1 PERLDOCS

For example: perldoc -f sort.

perlfaq4.

Section 23.1 [perlfork NAME], page 337, Section 25.1 [perlfunc NAME], page 351,
Section 68.1 [perlretut NAME], page 1131, Section 75.1 [perlthrtut NAME], page 1269.

threads.

51.10.2 MAN PAGES

time.

51.10.3 MODULES

It’s not possible to individually showcase all the performance related code for Perl here,
naturally, but here’s a short list of modules from the CPAN which deserve further attention.

Apache::DProf

Apache::SmallProf

Benchmark

DBIx::Profile

Devel::AutoProfiler

Devel::DProf

Devel::DProfLB

Devel::FastProf

Devel::GraphVizProf

Devel::NYTProf

Devel::NYTProf::Apache

Devel::Profiler

Devel::Profile

Devel::Profit

Devel::SmallProf

Devel::WxProf

POE::Devel::Profiler

Sort::Key

Sort::Maker

51.10.4 URLS

Very useful online reference material:

http://www.ccl4.org/~nick/P/Fast_Enough/

http://www-128.ibm.com/developerworks/library/l-optperl.html

http://perlbuzz.com/2007/11/bind-output-variables-in-dbi-for-speed-and-safety.html

http://en.wikipedia.org/wiki/Performance_analysis

http://apache.perl.org/docs/1.0/guide/performance.html

http://perlgolf.sourceforge.net/

http://www.sysarch.com/Perl/sort_paper.html

51.11 AUTHOR

Richard Foley <richard.foley@rfi.net> Copyright (c) 2008

52 perlpod

52.1 NAME

perlpod - the Plain Old Documentation format

52.2 DESCRIPTION

Pod is a simple-to-use markup language used for writing documentation for Perl, Perl
programs, and Perl modules.

Translators are available for converting Pod to various formats like plain text, HTML,
man pages, and more.

Pod markup consists of three basic kinds of paragraphs: Section 52.2.1 [ordinary],
page 900, Section 52.2.2 [verbatim], page 900, and Section 52.2.3 [command], page 900.

52.2.1 Ordinary Paragraph

Most paragraphs in your documentation will be ordinary blocks of text, like this one. You
can simply type in your text without any markup whatsoever, and with just a blank line
before and after. When it gets formatted, it will undergo minimal formatting, like being
rewrapped, probably put into a proportionally spaced font, and maybe even justified.

You can use formatting codes in ordinary paragraphs, for bold, italic, code-style,
perlfaq, and more. Such codes are explained in the "Section 52.2.4 [Formatting Codes],
page 904" section, below.

52.2.2 Verbatim Paragraph

Verbatim paragraphs are usually used for presenting a codeblock or other text which does
not require any special parsing or formatting, and which shouldn’t be wrapped.

A verbatim paragraph is distinguished by having its first character be a space or a tab.
(And commonly, all its lines begin with spaces and/or tabs.) It should be reproduced
exactly, with tabs assumed to be on 8-column boundaries. There are no special formatting
codes, so you can’t italicize or anything like that. A \ means \, and nothing else.

52.2.3 Command Paragraph

A command paragraph is used for special treatment of whole chunks of text, usually as
headings or parts of lists.

All command paragraphs (which are typically only one line long) start with "=", followed
by an identifier, followed by arbitrary text that the command can use however it pleases.
Currently recognized commands are

=pod

=head1 Heading Text

=head2 Heading Text

=head3 Heading Text

=head4 Heading Text

=over indentlevel

=item stuff

=back

=begin format

=end format

=for format text...

=encoding type

=cut

To explain them each in detail:

=head1 Heading Text

=head2 Heading Text

=head3 Heading Text

=head4 Heading Text

Head1 through head4 produce headings, head1 being the highest level. The
text in the rest of this paragraph is the content of the heading. For example:

=head2 Object Attributes

The text "Object Attributes" comprises the heading there. The text in these
heading commands can use formatting codes, as seen here:

=head2 Possible Values for C<$/>

Such commands are explained in the "Section 52.2.4 [Formatting Codes],
page 904" section, below.

=over indentlevel

=item stuff...

=back

Item, over, and back require a little more explanation: "=over" starts a region
specifically for the generation of a list using "=item" commands, or for indent-
ing (groups of) normal paragraphs. At the end of your list, use "=back" to end
it. The indentlevel option to "=over" indicates how far over to indent, generally
in ems (where one em is the width of an "M" in the document’s base font) or
roughly comparable units; if there is no indentlevel option, it defaults to four.
(And some formatters may just ignore whatever indentlevel you provide.) In
the stuff in =item stuff..., you may use formatting codes, as seen here:

=item Using C<$|> to Control Buffering

Such commands are explained in the "Section 52.2.4 [Formatting Codes],
page 904" section, below.

Note also that there are some basic rules to using "=over" ... "=back" regions:

• Don’t use "=item"s outside of an "=over" ... "=back" region.

• The first thing after the "=over" command should be an "=item", unless
there aren’t going to be any items at all in this "=over" ... "=back" region.

• Don’t put "=headn" commands inside an "=over" ... "=back" region.

• And perhaps most importantly, keep the items consistent: either use
"=item *" for all of them, to produce bullets; or use "=item 1.", "=item
2.", etc., to produce numbered lists; or use "=item foo", "=item bar",
etc.–namely, things that look nothing like bullets or numbers.

If you start with bullets or numbers, stick with them, as formatters use the
first "=item" type to decide how to format the list.

=cut

To end a Pod block, use a blank line, then a line beginning with "=cut",
and a blank line after it. This lets Perl (and the Pod formatter) know that
this is where Perl code is resuming. (The blank line before the "=cut" is not
technically necessary, but many older Pod processors require it.)

=pod

The "=pod" command by itself doesn’t do much of anything, but it signals to
Perl (and Pod formatters) that a Pod block starts here. A Pod block starts with
any command paragraph, so a "=pod" command is usually used just when you
want to start a Pod block with an ordinary paragraph or a verbatim paragraph.
For example:

=item stuff()

This function does stuff.

=cut

sub stuff {

...

}

=pod

Remember to check its return value, as in:

stuff() || die "Couldn’t do stuff!";

=cut

=begin formatname

=end formatname

=for formatname text...

For, begin, and end will let you have regions of text/code/data that are not
generally interpreted as normal Pod text, but are passed directly to particular
formatters, or are otherwise special. A formatter that can use that format will
use the region, otherwise it will be completely ignored.

A command "=begin formatname", some paragraphs, and a command "=end
formatname", mean that the text/data in between is meant for formatters that
understand the special format called formatname. For example,

=begin html

<hr>

<p> This is a raw HTML paragraph </p>

=end html

The command "=for formatname text..." specifies that the remainder of just
this paragraph (starting right after formatname) is in that special format.

=for html <hr>

<p> This is a raw HTML paragraph </p>

This means the same thing as the above "=begin html" ... "=end html" region.

That is, with "=for", you can have only one paragraph’s worth of text (i.e., the
text in "=foo targetname text..."), but with "=begin targetname" ... "=end
targetname", you can have any amount of stuff in between. (Note that there
still must be a blank line after the "=begin" command and a blank line before
the "=end" command.)

Here are some examples of how to use these:

=begin html

Figure 1.

=end html

=begin text

| foo |

| bar |

^^^^ Figure 1. ^^^^

=end text

Some format names that formatters currently are known to accept include
"roff", "man", "latex", "tex", "text", and "html". (Some formatters will treat
some of these as synonyms.)

A format name of "comment" is common for just making notes (presumably to
yourself) that won’t appear in any formatted version of the Pod document:

=for comment

Make sure that all the available options are documented!

Some formatnames will require a leading colon (as in "=for :formatname",
or "=begin :formatname" ... "=end :formatname"), to signal that the text
is not raw data, but instead is Pod text (i.e., possibly containing formatting
codes) that’s just not for normal formatting (e.g., may not be a normal-use
paragraph, but might be for formatting as a footnote).

=encoding encodingname

This command is used for declaring the encoding of a document. Most users
won’t need this; but if your encoding isn’t US-ASCII, then put a =encoding

encodingname command very early in the document so that pod formatters will
know how to decode the document. For encodingname, use a name recognized

by the Encode-Supported module. Some pod formatters may try to guess be-
tween a Latin-1 or CP-1252 versus UTF-8 encoding, but they may guess wrong.
It’s best to be explicit if you use anything besides strict ASCII. Examples:

=encoding latin1

=encoding utf8

=encoding koi8-r

=encoding ShiftJIS

=encoding big5

=encoding affects the whole document, and must occur only once.

And don’t forget, all commands but =encoding last up until the end of its paragraph,
not its line. So in the examples below, you can see that every command needs the blank line
after it, to end its paragraph. (And some older Pod translators may require the =encoding
line to have a following blank line as well, even though it should be legal to omit.)

Some examples of lists include:

=over

=item *

First item

=item *

Second item

=back

=over

=item Foo()

Description of Foo function

=item Bar()

Description of Bar function

=back

52.2.4 Formatting Codes

In ordinary paragraphs and in some command paragraphs, various formatting codes (a.k.a.
"interior sequences") can be used:

I<text> – italic text <> >>

Used for emphasis ("be I<careful!>") and parameters ("redo I<LABEL>")

B<text> – bold text <> >>

Used for switches ("perl’s B<-n> switch"), programs ("some systems

provide a B<chfn> for that"), emphasis ("be B<careful!>"), and so on
("and that feature is known as B<autovivification>").

C<code> – code text <> >>

Renders code in a typewriter font, or gives some other indication that this rep-
resents program text ("C<gmtime($^T)>") or some other form of computerese
("C<drwxr-xr-x>").

L<name> – a hyperlink <> >>

There are various syntaxes, listed below. In the syntaxes given, text, name,
and section cannot contain the characters ’/’ and ’|’; and any ’<’ or ’>’ should
be matched.

• L<name>

Link to a Perl manual page (e.g., L<Net::Ping>). Note that name should
not contain spaces. This syntax is also occasionally used for references to
Unix man pages, as in L<crontab(5)>.

• L<name/"sec"> or L<name/sec>

Link to a section in other manual page. E.g., L<perlsyn/"For Loops">

• L</"sec"> or L</sec>

Link to a section in this manual page. E.g., L</"Object Methods">

A section is started by the named heading or item. For example,
L<perlvar/$.> or L<perlvar/"$."> both link to the section started by
"=item $." in perlvar. And L<perlsyn/For Loops> or L<perlsyn/"For

Loops"> both link to the section started by "=head2 For Loops" in perlsyn.

To control what text is used for display, you use "L<text|...>", as in:

• L<text|name>

Link this text to that manual page. E.g., L<Perl Error

Messages|perldiag>

• L<text|name/"sec"> or L<text|name/sec>

Link this text to that section in that manual page. E.g., L<postfix

"if"|perlsyn/"Statement Modifiers">

• L<text|/"sec"> or L<text|/sec> or L<text|"sec">

Link this text to that section in this manual page. E.g., L<the various

attributes|/"Member Data">

Or you can link to a web page:

• L<scheme:...>

L<text|scheme:...>

Links to an absolute URL. For example, L<http://www.perl.org/> or
L<The Perl Home Page|http://www.perl.org/>.

E<escape> – a character escape <> >>

Very similar to HTML/XML &foo; "entity references":

• E<lt> – a literal < (less than)

• E<gt> – a literal > (greater than)

• E<verbar> – a literal | (vertical bar)

• E<sol> – a literal / (sol idus)

The above four are optional except in other formatting codes, notably
L<...>, and when preceded by a capital letter.

• E<htmlname>

Some non-numeric HTML entity name, such as E<eacute>, meaning the
same thing as é in HTML – i.e., a lowercase e with an acute (/-
shaped) accent.

• E<number>

The ASCII/Latin-1/Unicode character with that number. A leading "0x"
means that number is hex, as in E<0x201E>. A leading "0" means that
number is octal, as in E<075>. Otherwise number is interpreted as being
in decimal, as in E<181>.

Note that older Pod formatters might not recognize octal or hex numeric
escapes, and that many formatters cannot reliably render characters above
255. (Some formatters may even have to use compromised renderings of
Latin-1/CP-1252 characters, like rendering E<eacute> as just a plain "e".)

F<filename> – used for filenames <> >>

Typically displayed in italics. Example: "F<.cshrc>"

S<text> – text contains non-breaking spaces <> >>

This means that the words in text should not be broken across lines. Example:
S<$x ? $y : $z>.

X<topic name> – an index entry <> >>

This is ignored by most formatters, but some may use it for building indexes. It
always renders as empty-string. Example: X<absolutizing relative URLs>

Z<> – a null (zero-effect) formatting code <> >>

This is rarely used. It’s one way to get around using an E<...> code sometimes.
For example, instead of "NE<lt>3" (for "N<3") you could write "NZ<><3" (the
"Z<>" breaks up the "N" and the "<" so they can’t be considered the part of
a (fictitious) "N<...>" code).

Most of the time, you will need only a single set of angle brackets to delimit the beginning
and end of formatting codes. However, sometimes you will want to put a real right angle
bracket (a greater-than sign, ’>’) inside of a formatting code. This is particularly common
when using a formatting code to provide a different font-type for a snippet of code. As with
all things in Perl, there is more than one way to do it. One way is to simply escape the
closing bracket using an E code:

C<$a E<lt>=E<gt> $b>

This will produce: "$a <=> $b"

A more readable, and perhaps more "plain" way is to use an alternate set of delimiters
that doesn’t require a single ">" to be escaped. Doubled angle brackets ("<<" and ">>")
may be used if and only if there is whitespace right after the opening delimiter and whitespace
right before the closing delimiter! For example, the following will do the trick:

C<< $a <=> $b >>

In fact, you can use as many repeated angle-brackets as you like so long as you have the
same number of them in the opening and closing delimiters, and make sure that whitespace
immediately follows the last ’<’ of the opening delimiter, and immediately precedes the first
’>’ of the closing delimiter. (The whitespace is ignored.) So the following will also work:

C<<< $a <=> $b >>>

C<<<< $a <=> $b >>>>

And they all mean exactly the same as this:

C<$a E<lt>=E<gt> $b>

The multiple-bracket form does not affect the interpretation of the contents of the for-
matting code, only how it must end. That means that the examples above are also exactly
the same as this:

C<< $a E<lt>=E<gt> $b >>

As a further example, this means that if you wanted to put these bits of code in C (code)
style:

open(X, ">>thing.dat") || die $!

$foo->bar();

you could do it like so:

C<<< open(X, ">>thing.dat") || die $! >>>

C<< $foo->bar(); >>

which is presumably easier to read than the old way:

C<open(X, "E<gt>E<gt>thing.dat") || die $!>

C<$foo-E<gt>bar();>

This is currently supported by pod2text (Pod::Text), pod2man (Pod::Man), and any
other pod2xxx or Pod::Xxxx translators that use Pod::Parser 1.093 or later, or Pod::Tree
1.02 or later.

52.2.5 The Intent

The intent is simplicity of use, not power of expression. Paragraphs look like paragraphs
(block format), so that they stand out visually, and so that I could run them through fmt

easily to reformat them (that’s F7 in my version of vi, or Esc Q in my version of emacs). I
wanted the translator to always leave the ’ and ‘ and " quotes alone, in verbatim mode,
so I could slurp in a working program, shift it over four spaces, and have it print out, er,
verbatim. And presumably in a monospace font.

The Pod format is not necessarily sufficient for writing a book. Pod is just meant to be
an idiot-proof common source for nroff, HTML, TeX, and other markup languages, as used
for online documentation. Translators exist for pod2text, pod2html, pod2man (that’s for
nroff(1) and troff(1)), pod2latex, and pod2fm. Various others are available in CPAN.

52.2.6 Embedding Pods in Perl Modules

You can embed Pod documentation in your Perl modules and scripts. Start your docu-
mentation with an empty line, a "=head1" command at the beginning, and end it with a
"=cut" command and an empty line. The perl executable will ignore the Pod text. You can
place a Pod statement where perl expects the beginning of a new statement, but not within
a statement, as that would result in an error. See any of the supplied library modules for
examples.

If you’re going to put your Pod at the end of the file, and you’re using an __END__ or
__DATA__ cut mark, make sure to put an empty line there before the first Pod command.

__END__

=head1 NAME

Time::Local - efficiently compute time from local and GMT time

Without that empty line before the "=head1", many translators wouldn’t have recog-
nized the "=head1" as starting a Pod block.

52.2.7 Hints for Writing Pod

• The podchecker command is provided for checking Pod syntax for errors and warnings.
For example, it checks for completely blank lines in Pod blocks and for unknown com-
mands and formatting codes. You should still also pass your document through one or
more translators and proofread the result, or print out the result and proofread that.
Some of the problems found may be bugs in the translators, which you may or may
not wish to work around.

• If you’re more familiar with writing in HTML than with writing in Pod, you can try
your hand at writing documentation in simple HTML, and converting it to Pod with the
experimental Pod-HTML2Pod module, (available in CPAN), and looking at the resulting
code. The experimental Pod-PXML module in CPAN might also be useful.

• Many older Pod translators require the lines before every Pod command and after every
Pod command (including "=cut"!) to be a blank line. Having something like this:

- - - - - - - - - - - -

=item $firecracker->boom()

This noisily detonates the firecracker object.

=cut

sub boom {

...

...will make such Pod translators completely fail to see the Pod block at all.

Instead, have it like this:

- - - - - - - - - - - -

=item $firecracker->boom()

This noisily detonates the firecracker object.

=cut

sub boom {

...

• Some older Pod translators require paragraphs (including command paragraphs like
"=head2 Functions") to be separated by completely empty lines. If you have an appar-
ently empty line with some spaces on it, this might not count as a separator for those
translators, and that could cause odd formatting.

• Older translators might add wording around an L<> link, so that L<Foo::Bar> may
become "the Foo::Bar manpage", for example. So you shouldn’t write things like
the L<foo> documentation, if you want the translated document to read sensibly.
Instead, write the L<Foo::Bar|Foo::Bar> documentation or L<the Foo::Bar

documentation|Foo::Bar>, to control how the link comes out.

• Going past the 70th column in a verbatim block might be ungracefully wrapped by
some formatters.

52.3 SEE ALSO

Section 53.1 [perlpodspec NAME], page 910, Section 74.2.14 [perlsyn PODs: Embed-
ded Documentation], page 1261, Section 44.1 [perlnewmod NAME], page 760, perldoc,
pod2html, pod2man, podchecker.

52.4 AUTHOR

Larry Wall, Sean M. Burke

53 perlpodspec

53.1 NAME

perlpodspec - Plain Old Documentation: format specification and notes

53.2 DESCRIPTION

This document is detailed notes on the Pod markup language. Most people will only have
to read Section 52.1 [perlpod], page 900 to know how to write in Pod, but this document
may answer some incidental questions to do with parsing and rendering Pod.

In this document, "must" / "must not", "should" / "should not", and "may" have their
conventional (cf. RFC 2119) meanings: "X must do Y" means that if X doesn’t do Y,
it’s against this specification, and should really be fixed. "X should do Y" means that it’s
recommended, but X may fail to do Y, if there’s a good reason. "X may do Y" is merely a
note that X can do Y at will (although it is up to the reader to detect any connotation of
"and I think it would be nice if X did Y" versus "it wouldn’t really bother me if X did Y").

Notably, when I say "the parser should do Y", the parser may fail to do Y, if the calling
application explicitly requests that the parser not do Y. I often phrase this as "the parser
should, by default, do Y." This doesn’t require the parser to provide an option for turning off
whatever feature Y is (like expanding tabs in verbatim paragraphs), although it implicates
that such an option may be provided.

53.3 Pod Definitions

Pod is embedded in files, typically Perl source files, although you can write a file that’s
nothing but Pod.

A line in a file consists of zero or more non-newline characters, terminated by either a
newline or the end of the file.

A newline sequence is usually a platform-dependent concept, but Pod parsers should
understand it to mean any of CR (ASCII 13), LF (ASCII 10), or a CRLF (ASCII 13
followed immediately by ASCII 10), in addition to any other system-specific meaning. The
first CR/CRLF/LF sequence in the file may be used as the basis for identifying the newline
sequence for parsing the rest of the file.

A blank line is a line consisting entirely of zero or more spaces (ASCII 32) or tabs (ASCII
9), and terminated by a newline or end-of-file. A non-blank line is a line containing one or
more characters other than space or tab (and terminated by a newline or end-of-file).

(Note: Many older Pod parsers did not accept a line consisting of spaces/tabs and then
a newline as a blank line. The only lines they considered blank were lines consisting of no
characters at all, terminated by a newline.)

Whitespace is used in this document as a blanket term for spaces, tabs, and newline
sequences. (By itself, this term usually refers to literal whitespace. That is, sequences of
whitespace characters in Pod source, as opposed to "E<32>", which is a formatting code
that denotes a whitespace character.)

A Pod parser is a module meant for parsing Pod (regardless of whether this involves
calling callbacks or building a parse tree or directly formatting it). A Pod formatter (or

Pod translator) is a module or program that converts Pod to some other format (HTML,
plaintext, TeX, PostScript, RTF). A Pod processor might be a formatter or translator, or
might be a program that does something else with the Pod (like counting words, scanning
for index points, etc.).

Pod content is contained in Pod blocks. A Pod block starts with a line that matches
m/\A=[a-zA-Z]/, and continues up to the next line that matches m/\A=cut/ or up to the
end of the file if there is no m/\A=cut/ line.

Within a Pod block, there are Pod paragraphs. A Pod paragraph consists of non-blank
lines of text, separated by one or more blank lines.

For purposes of Pod processing, there are four types of paragraphs in a Pod block:

• A command paragraph (also called a "directive"). The first line of this paragraph must
match m/\A=[a-zA-Z]/. Command paragraphs are typically one line, as in:

=head1 NOTES

=item *

But they may span several (non-blank) lines:

=for comment

Hm, I wonder what it would look like if

you tried to write a BNF for Pod from this.

=head3 Dr. Strangelove, or: How I Learned to

Stop Worrying and Love the Bomb

Some command paragraphs allow formatting codes in their content (i.e., after the part
that matches m/\A=[a-zA-Z]\S*\s*/), as in:

=head1 Did You Remember to C<use strict;>?

In other words, the Pod processing handler for "head1" will apply the same processing
to "Did You Remember to C<use strict;>?" that it would to an ordinary paragraph (i.e.,
formatting codes like "C<...>") are parsed and presumably formatted appropriately,
and whitespace in the form of literal spaces and/or tabs is not significant.

• A verbatim paragraph. The first line of this paragraph must be a literal space or tab,
and this paragraph must not be inside a "=begin identifier", ... "=end identifier"
sequence unless "identifier" begins with a colon (":"). That is, if a paragraph starts
with a literal space or tab, but is inside a "=begin identifier", ... "=end identifier"
region, then it’s a data paragraph, unless "identifier" begins with a colon.

Whitespace is significant in verbatim paragraphs (although, in processing, tabs are
probably expanded).

• An ordinary paragraph. A paragraph is an ordinary paragraph if its first line matches
neither m/\A=[a-zA-Z]/ nor m/\A[\t]/, and if it’s not inside a "=begin identifier",
... "=end identifier" sequence unless "identifier" begins with a colon (":").

• A data paragraph. This is a paragraph that is inside a "=begin identifier" ... "=end
identifier" sequence where "identifier" does not begin with a literal colon (":"). In
some sense, a data paragraph is not part of Pod at all (i.e., effectively it’s "out-of-
band"), since it’s not subject to most kinds of Pod parsing; but it is specified here,

since Pod parsers need to be able to call an event for it, or store it in some form in a
parse tree, or at least just parse around it.

For example: consider the following paragraphs:

<- that’s the 0th column

=head1 Foo

Stuff

$foo->bar

=cut

Here, "=head1 Foo" and "=cut" are command paragraphs because the first line of each
matches m/\A=[a-zA-Z]/. "[space][space]$foo->bar" is a verbatim paragraph, because its
first line starts with a literal whitespace character (and there’s no "=begin"..."=end" region
around).

The "=begin identifier" ... "=end identifier" commands stop paragraphs that they
surround from being parsed as ordinary or verbatim paragraphs, if identifier doesn’t begin
with a colon. This is discussed in detail in the section Section 53.9 [About Data Paragraphs
and "=begin/=end" Regions], page 932.

53.4 Pod Commands

This section is intended to supplement and clarify the discussion in Section 52.2.3 [perlpod
Command Paragraph], page 900. These are the currently recognized Pod commands:

"=head1", "=head2", "=head3", "=head4"
This command indicates that the text in the remainder of the paragraph is a
heading. That text may contain formatting codes. Examples:

=head1 Object Attributes

=head3 What B<Not> to Do!

"=pod"

This command indicates that this paragraph begins a Pod block. (If we are
already in the middle of a Pod block, this command has no effect at all.) If
there is any text in this command paragraph after "=pod", it must be ignored.
Examples:

=pod

This is a plain Pod paragraph.

=pod This text is ignored.

"=cut"

This command indicates that this line is the end of this previously started
Pod block. If there is any text after "=cut" on the line, it must be ignored.
Examples:

=cut

=cut The documentation ends here.

=cut

This is the first line of program text.

sub foo { # This is the second.

It is an error to try to start a Pod block with a "=cut" command. In that case,
the Pod processor must halt parsing of the input file, and must by default emit
a warning.

"=over"

This command indicates that this is the start of a list/indent region. If there
is any text following the "=over", it must consist of only a nonzero positive
numeral. The semantics of this numeral is explained in the Section 53.8 [About
=over...=back Regions], page 928 section, further below. Formatting codes are
not expanded. Examples:

=over 3

=over 3.5

=over

"=item"

This command indicates that an item in a list begins here. Formatting codes
are processed. The semantics of the (optional) text in the remainder of this
paragraph are explained in the Section 53.8 [About =over...=back Regions],
page 928 section, further below. Examples:

=item

=item *

=item *

=item 14

=item 3.

=item C<< $thing->stuff(I<dodad>) >>

=item For transporting us beyond seas to be tried for pretended

offenses

=item He is at this time transporting large armies of foreign

mercenaries to complete the works of death, desolation and

tyranny, already begun with circumstances of cruelty and perfidy

scarcely paralleled in the most barbarous ages, and totally

unworthy the head of a civilized nation.

"=back"

This command indicates that this is the end of the region begun by the most
recent "=over" command. It permits no text after the "=back" command.

"=begin formatname"
"=begin formatname parameter"

This marks the following paragraphs (until the matching "=end formatname")
as being for some special kind of processing. Unless "formatname" begins with
a colon, the contained non-command paragraphs are data paragraphs. But
if "formatname" does begin with a colon, then non-command paragraphs are
ordinary paragraphs or data paragraphs. This is discussed in detail in the
section Section 53.9 [About Data Paragraphs and "=begin/=end" Regions],
page 932.

It is advised that formatnames match the regexp m/\A:?[-a-zA-Z0-9_]+\z/.
Everything following whitespace after the formatname is a parameter that may
be used by the formatter when dealing with this region. This parameter must
not be repeated in the "=end" paragraph. Implementors should anticipate
future expansion in the semantics and syntax of the first parameter to "=be-
gin"/"=end"/"=for".

"=end formatname"
This marks the end of the region opened by the matching "=begin formatname"
region. If "formatname" is not the formatname of the most recent open "=begin
formatname" region, then this is an error, and must generate an error message.
This is discussed in detail in the section Section 53.9 [About Data Paragraphs
and "=begin/=end" Regions], page 932.

"=for formatname text..."
This is synonymous with:

=begin formatname

text...

=end formatname

That is, it creates a region consisting of a single paragraph; that paragraph
is to be treated as a normal paragraph if "formatname" begins with a ":";
if "formatname" doesn’t begin with a colon, then "text..." will constitute a
data paragraph. There is no way to use "=for formatname text..." to express
"text..." as a verbatim paragraph.

"=encoding encodingname"
This command, which should occur early in the document (at least before any
non-US-ASCII data!), declares that this document is encoded in the encoding
encodingname, which must be an encoding name that Encode recognizes. (En-
code’s list of supported encodings, in Encode-Supported, is useful here.) If the
Pod parser cannot decode the declared encoding, it should emit a warning and
may abort parsing the document altogether.

A document having more than one "=encoding" line should be considered an
error. Pod processors may silently tolerate this if the not-first "=encoding"
lines are just duplicates of the first one (e.g., if there’s a "=encoding utf8"
line, and later on another "=encoding utf8" line). But Pod processors should
complain if there are contradictory "=encoding" lines in the same document
(e.g., if there is a "=encoding utf8" early in the document and "=encoding
big5" later). Pod processors that recognize BOMs may also complain if they
see an "=encoding" line that contradicts the BOM (e.g., if a document with a
UTF-16LE BOM has an "=encoding shiftjis" line).

If a Pod processor sees any command other than the ones listed above (like "=head",
or "=haed1", or "=stuff", or "=cuttlefish", or "=w123"), that processor must by default
treat this as an error. It must not process the paragraph beginning with that command,
must by default warn of this as an error, and may abort the parse. A Pod parser may
allow a way for particular applications to add to the above list of known commands, and
to stipulate, for each additional command, whether formatting codes should be processed.

Future versions of this specification may add additional commands.

53.5 Pod Formatting Codes

(Note that in previous drafts of this document and of perlpod, formatting codes were referred
to as "interior sequences", and this term may still be found in the documentation for Pod
parsers, and in error messages from Pod processors.)

There are two syntaxes for formatting codes:

• A formatting code starts with a capital letter (just US-ASCII [A-Z]) followed by a "<",
any number of characters, and ending with the first matching ">". Examples:

That’s what I<you> think!

What’s C<dump()> for?

and C<unlink()> Under Different Operating Systems>

• A formatting code starts with a capital letter (just US-ASCII [A-Z]) followed by two
or more "<"’s, one or more whitespace characters, any number of characters, one or
more whitespace characters, and ending with the first matching sequence of two or
more ">"’s, where the number of ">"’s equals the number of "<"’s in the opening of
this formatting code. Examples:

That’s what I<< you >> think!

C<<< open(X, ">>thing.dat") || die $! >>>

B<< $foo->bar(); >>

With this syntax, the whitespace character(s) after the "C<<<" and before the ">>>"

(or whatever letter) are not renderable. They do not signify whitespace, are merely
part of the formatting codes themselves. That is, these are all synonymous:

C<thing>

C<< thing >>

C<< thing >>

C<<< thing >>>

C<<<<

thing

>>>>

and so on.

Finally, the multiple-angle-bracket form does not alter the interpretation of nested for-
matting codes, meaning that the following four example lines are identical in meaning:

B<example: C<$a E<lt>=E<gt> $b>>

B<example: C<< $a <=> $b >>>

B<example: C<< $a E<lt>=E<gt> $b >>>

B<<< example: C<< $a E<lt>=E<gt> $b >> >>>

In parsing Pod, a notably tricky part is the correct parsing of (potentially nested!)
formatting codes. Implementors should consult the code in the parse_text routine in
Pod::Parser as an example of a correct implementation.

I<text> – italic text
See the brief discussion in Section 52.2.4 [perlpod Formatting Codes], page 904.

B<text> – bold text
See the brief discussion in Section 52.2.4 [perlpod Formatting Codes], page 904.

C<code> – code text
See the brief discussion in Section 52.2.4 [perlpod Formatting Codes], page 904.

F<filename> – style for filenames
See the brief discussion in Section 52.2.4 [perlpod Formatting Codes], page 904.

X<topic name> – an index entry
See the brief discussion in Section 52.2.4 [perlpod Formatting Codes], page 904.

This code is unusual in that most formatters completely discard this code and
its content. Other formatters will render it with invisible codes that can be
used in building an index of the current document.

Z<> – a null (zero-effect) formatting code
Discussed briefly in Section 52.2.4 [perlpod Formatting Codes], page 904.

This code is unusual is that it should have no content. That is, a processor may
complain if it sees Z<potatoes>. Whether or not it complains, the potatoes
text should ignored.

L<name> – a hyperlink
The complicated syntaxes of this code are discussed at length in Section 52.2.4
[perlpod Formatting Codes], page 904, and implementation details are discussed
below, in Section 53.7 [About L<...> Codes], page 925. Parsing the contents of
L<content> is tricky. Notably, the content has to be checked for whether it
looks like a URL, or whether it has to be split on literal "|" and/or "/" (in the
right order!), and so on, before E<...> codes are resolved.

E<escape> – a character escape
See Section 52.2.4 [perlpod Formatting Codes], page 904, and several points in
Section 53.6 [Notes on Implementing Pod Processors], page 918.

S<text> – text contains non-breaking spaces
This formatting code is syntactically simple, but semantically complex. What
it means is that each space in the printable content of this code signifies a
non-breaking space.

Consider:

C<$x ? $y : $z>

S<C<$x ? $y : $z>>

Both signify the monospace (c[ode] style) text consisting of "$x", one space,
"?", one space, ":", one space, "$z". The difference is that in the latter, with
the S code, those spaces are not "normal" spaces, but instead are non-breaking
spaces.

If a Pod processor sees any formatting code other than the ones listed above (as in
"N<...>", or "Q<...>", etc.), that processor must by default treat this as an error. A Pod
parser may allow a way for particular applications to add to the above list of known format-
ting codes; a Pod parser might even allow a way to stipulate, for each additional command,
whether it requires some form of special processing, as L<...> does.

Future versions of this specification may add additional formatting codes.

Historical note: A few older Pod processors would not see a ">" as closing a "C<" code,
if the ">" was immediately preceded by a "-". This was so that this:

C<$foo->bar>

would parse as equivalent to this:

C<$foo-E<gt>bar>

instead of as equivalent to a "C" formatting code containing only "$foo-", and then
a "bar>" outside the "C" formatting code. This problem has since been solved by the
addition of syntaxes like this:

C<< $foo->bar >>

Compliant parsers must not treat "->" as special.

Formatting codes absolutely cannot span paragraphs. If a code is opened in one para-
graph, and no closing code is found by the end of that paragraph, the Pod parser must close
that formatting code, and should complain (as in "Unterminated I code in the paragraph
starting at line 123: ’Time objects are not...’"). So these two paragraphs:

I<I told you not to do this!

Don’t make me say it again!>

...must not be parsed as two paragraphs in italics (with the I code starting in one
paragraph and starting in another.) Instead, the first paragraph should generate a warning,
but that aside, the above code must parse as if it were:

I<I told you not to do this!>

Don’t make me say it again!E<gt>

(In SGMLish jargon, all Pod commands are like block-level elements, whereas all Pod
formatting codes are like inline-level elements.)

53.6 Notes on Implementing Pod Processors

The following is a long section of miscellaneous requirements and suggestions to do with
Pod processing.

• Pod formatters should tolerate lines in verbatim blocks that are of any length, even if
that means having to break them (possibly several times, for very long lines) to avoid
text running off the side of the page. Pod formatters may warn of such line-breaking.
Such warnings are particularly appropriate for lines are over 100 characters long, which
are usually not intentional.

• Pod parsers must recognize all of the three well-known newline formats: CR, LF, and
CRLF. See Section 56.1 [perlport], page 951.

• Pod parsers should accept input lines that are of any length.

• Since Perl recognizes a Unicode Byte Order Mark at the start of files as signaling
that the file is Unicode encoded as in UTF-16 (whether big-endian or little-endian) or
UTF-8, Pod parsers should do the same. Otherwise, the character encoding should be
understood as being UTF-8 if the first highbit byte sequence in the file seems valid as
a UTF-8 sequence, or otherwise as CP-1252 (earlier versions of this specification used
Latin-1 instead of CP-1252).

Future versions of this specification may specify how Pod can accept other encodings.
Presumably treatment of other encodings in Pod parsing would be as in XML parsing:
whatever the encoding declared by a particular Pod file, content is to be stored in
memory as Unicode characters.

• The well known Unicode Byte Order Marks are as follows: if the file begins with the
two literal byte values 0xFE 0xFF, this is the BOM for big-endian UTF-16. If the file
begins with the two literal byte value 0xFF 0xFE, this is the BOM for little-endian
UTF-16. On an ASCII platform, if the file begins with the three literal byte values
0xEF 0xBB 0xBF, this is the BOM for UTF-8. A mechanism portable to EBCDIC
platforms is to:

my $utf8_bom = "\x{FEFF}";

utf8::encode($utf8_bom);

• A naive, but often sufficient heuristic on ASCII platforms, for testing the first highbit
byte-sequence in a BOM-less file (whether in code or in Pod!), to see whether that
sequence is valid as UTF-8 (RFC 2279) is to check whether that the first byte in the
sequence is in the range 0xC2 - 0xFD and whether the next byte is in the range 0x80 -
0xBF. If so, the parser may conclude that this file is in UTF-8, and all highbit sequences
in the file should be assumed to be UTF-8. Otherwise the parser should treat the file as
being in CP-1252. (A better check, and which works on EBCDIC platforms as well, is to
pass a copy of the sequence to utf8 which performs a full validity check on the sequence
and returns TRUE if it is valid UTF-8, FALSE otherwise. This function is always pre-
loaded, is fast because it is written in C, and will only get called at most once, so you
don’t need to avoid it out of performance concerns.) In the unlikely circumstance that

the first highbit sequence in a truly non-UTF-8 file happens to appear to be UTF-8,
one can cater to our heuristic (as well as any more intelligent heuristic) by prefacing
that line with a comment line containing a highbit sequence that is clearly not valid
as UTF-8. A line consisting of simply "#", an e-acute, and any non-highbit byte, is
sufficient to establish this file’s encoding.

• Pod processors must treat a "=for [label] [content...]" paragraph as meaning the same
thing as a "=begin [label]" paragraph, content, and an "=end [label]" paragraph. (The
parser may conflate these two constructs, or may leave them distinct, in the expectation
that the formatter will nevertheless treat them the same.)

• When rendering Pod to a format that allows comments (i.e., to nearly any format other
than plaintext), a Pod formatter must insert comment text identifying its name and
version number, and the name and version numbers of any modules it might be using
to process the Pod. Minimal examples:

%% POD::Pod2PS v3.14159, using POD::Parser v1.92

<!-- Pod::HTML v3.14159, using POD::Parser v1.92 -->

{\doccomm generated by Pod::Tree::RTF 3.14159 using Pod::Tree 1.08}

.\" Pod::Man version 3.14159, using POD::Parser version 1.92

Formatters may also insert additional comments, including: the release date of the Pod
formatter program, the contact address for the author(s) of the formatter, the current
time, the name of input file, the formatting options in effect, version of Perl used, etc.

Formatters may also choose to note errors/warnings as comments, besides or instead
of emitting them otherwise (as in messages to STDERR, or dieing).

• Pod parsers may emit warnings or error messages ("Unknown E code E<zslig>!")
to STDERR (whether through printing to STDERR, or warning/carping, or
dieing/croaking), but must allow suppressing all such STDERR output, and
instead allow an option for reporting errors/warnings in some other way, whether by
triggering a callback, or noting errors in some attribute of the document object, or
some similarly unobtrusive mechanism – or even by appending a "Pod Errors" section
to the end of the parsed form of the document.

• In cases of exceptionally aberrant documents, Pod parsers may abort the parse. Even
then, using dieing/croaking is to be avoided; where possible, the parser library may
simply close the input file and add text like "*** Formatting Aborted ***" to the end
of the (partial) in-memory document.

• In paragraphs where formatting codes (like E<...>, B<...>) are understood (i.e., not ver-
batim paragraphs, but including ordinary paragraphs, and command paragraphs that
produce renderable text, like "=head1"), literal whitespace should generally be consid-
ered "insignificant", in that one literal space has the same meaning as any (nonzero)
number of literal spaces, literal newlines, and literal tabs (as long as this produces no
blank lines, since those would terminate the paragraph). Pod parsers should compact
literal whitespace in each processed paragraph, but may provide an option for overrid-
ing this (since some processing tasks do not require it), or may follow additional special
rules (for example, specially treating period-space-space or period-newline sequences).

• Pod parsers should not, by default, try to coerce apostrophe (’) and quote (") into
smart quotes (little 9’s, 66’s, 99’s, etc), nor try to turn backtick (‘) into anything else
but a single backtick character (distinct from an open quote character!), nor "–" into
anything but two minus signs. They must never do any of those things to text in C<...>
formatting codes, and never ever to text in verbatim paragraphs.

• When rendering Pod to a format that has two kinds of hyphens (-), one that’s a non-
breaking hyphen, and another that’s a breakable hyphen (as in "object-oriented", which
can be split across lines as "object-", newline, "oriented"), formatters are encouraged
to generally translate "-" to non-breaking hyphen, but may apply heuristics to convert
some of these to breaking hyphens.

• Pod formatters should make reasonable efforts to keep words of Perl code from being
broken across lines. For example, "Foo::Bar" in some formatting systems is seen as
eligible for being broken across lines as "Foo::" newline "Bar" or even "Foo::-" newline
"Bar". This should be avoided where possible, either by disabling all line-breaking in
mid-word, or by wrapping particular words with internal punctuation in "don’t break
this across lines" codes (which in some formats may not be a single code, but might be
a matter of inserting non-breaking zero-width spaces between every pair of characters
in a word.)

• Pod parsers should, by default, expand tabs in verbatim paragraphs as they are pro-
cessed, before passing them to the formatter or other processor. Parsers may also allow
an option for overriding this.

• Pod parsers should, by default, remove newlines from the end of ordinary and verbatim
paragraphs before passing them to the formatter. For example, while the paragraph
you’re reading now could be considered, in Pod source, to end with (and contain) the
newline(s) that end it, it should be processed as ending with (and containing) the
period character that ends this sentence.

• Pod parsers, when reporting errors, should make some effort to report an approximate
line number ("Nested E<>’s in Paragraph #52, near line 633 of Thing/Foo.pm!"),
instead of merely noting the paragraph number ("Nested E<>’s in Paragraph #52
of Thing/Foo.pm!"). Where this is problematic, the paragraph number should at
least be accompanied by an excerpt from the paragraph ("Nested E<>’s in Paragraph
#52 of Thing/Foo.pm, which begins ’Read/write accessor for the C<interest rate> at-
tribute...’").

• Pod parsers, when processing a series of verbatim paragraphs one after another, should
consider them to be one large verbatim paragraph that happens to contain blank lines.
I.e., these two lines, which have a blank line between them:

use Foo;

print Foo->VERSION

should be unified into one paragraph ("\tuse Foo;\n\n\tprint Foo->VERSION") before
being passed to the formatter or other processor. Parsers may also allow an option for
overriding this.

While this might be too cumbersome to implement in event-based Pod parsers, it is
straightforward for parsers that return parse trees.

• Pod formatters, where feasible, are advised to avoid splitting short verbatim paragraphs
(under twelve lines, say) across pages.

• Pod parsers must treat a line with only spaces and/or tabs on it as a "blank line" such
as separates paragraphs. (Some older parsers recognized only two adjacent newlines as
a "blank line" but would not recognize a newline, a space, and a newline, as a blank
line. This is noncompliant behavior.)

• Authors of Pod formatters/processors should make every effort to avoid writing their
own Pod parser. There are already several in CPAN, with a wide range of interface
styles – and one of them, Pod::Parser, comes with modern versions of Perl.

• Characters in Pod documents may be conveyed either as literals, or by number in E<n>
codes, or by an equivalent mnemonic, as in E<eacute> which is exactly equivalent to
E<233>. The numbers are the Latin1/Unicode values, even on EBCDIC platforms.

When referring to characters by using a E<n> numeric code, numbers in the range
32-126 refer to those well known US-ASCII characters (also defined there by Unicode,
with the same meaning), which all Pod formatters must render faithfully. Characters
whose E<> numbers are in the ranges 0-31 and 127-159 should not be used (neither
as literals, nor as E<number> codes), except for the literal byte-sequences for newline
(ASCII 13, ASCII 13 10, or ASCII 10), and tab (ASCII 9).

Numbers in the range 160-255 refer to Latin-1 characters (also defined there by Unicode,
with the same meaning). Numbers above 255 should be understood to refer to Unicode
characters.

• Be warned that some formatters cannot reliably render characters outside 32-126; and
many are able to handle 32-126 and 160-255, but nothing above 255.

• Besides the well-known "E<lt>" and "E<gt>" codes for less-than and greater-than,
Pod parsers must understand "E<sol>" for "/" (solidus, slash), and "E<verbar>"
for "|" (vertical bar, pipe). Pod parsers should also understand "E<lchevron>" and
"E<rchevron>" as legacy codes for characters 171 and 187, i.e., "left-pointing double
angle quotation mark" = "left pointing guillemet" and "right-pointing double angle
quotation mark" = "right pointing guillemet". (These look like little "<<" and ">>",
and they are now preferably expressed with the HTML/XHTML codes "E<laquo>"
and "E<raquo>".)

• Pod parsers should understand all "E<html>" codes as defined in the entity declarations
in the most recent XHTML specification at www.W3.org. Pod parsers must understand
at least the entities that define characters in the range 160-255 (Latin-1). Pod parsers,
when faced with some unknown "E<identifier>" code, shouldn’t simply replace it with
nullstring (by default, at least), but may pass it through as a string consisting of the
literal characters E, less-than, identifier, greater-than. Or Pod parsers may offer the
alternative option of processing such unknown "E<identifier>" codes by firing an event
especially for such codes, or by adding a special node-type to the in-memory document
tree. Such "E<identifier>" may have special meaning to some processors, or some
processors may choose to add them to a special error report.

• Pod parsers must also support the XHTML codes "E<quot>" for character 34 (double-
quote, "), "E<amp>" for character 38 (ampersand, &), and "E<apos>" for character
39 (apostrophe, ’).

• Note that in all cases of "E<whatever>", whatever (whether an htmlname, or a number
in any base) must consist only of alphanumeric characters – that is, whatever must
watch m/\A\w+\z/. So "E< 0 1 2 3 >" is invalid, because it contains spaces, which
aren’t alphanumeric characters. This presumably does not need special treatment
by a Pod processor; " 0 1 2 3 " doesn’t look like a number in any base, so it would
presumably be looked up in the table of HTML-like names. Since there isn’t (and
cannot be) an HTML-like entity called " 0 1 2 3 ", this will be treated as an error.
However, Pod processors may treat "E< 0 1 2 3 >" or "E<e-acute>" as syntactically
invalid, potentially earning a different error message than the error message (or warning,
or event) generated by a merely unknown (but theoretically valid) htmlname, as in
"E<qacute>" [sic]. However, Pod parsers are not required to make this distinction.

• Note that E<number> must not be interpreted as simply "codepoint number in the
current/native character set". It always means only "the character represented by
codepoint number in Unicode." (This is identical to the semantics of &#number ; in
XML.)

This will likely require many formatters to have tables mapping from treatable Unicode
codepoints (such as the "\xE9" for the e-acute character) to the escape sequences or
codes necessary for conveying such sequences in the target output format. A converter
to *roff would, for example know that "\xE9" (whether conveyed literally, or via a
E<...> sequence) is to be conveyed as "e*’". Similarly, a program rendering Pod in
a Mac OS application window, would presumably need to know that "\xE9" maps to
codepoint 142 in MacRoman encoding that (at time of writing) is native for Mac OS.
Such Unicode2whatever mappings are presumably already widely available for common
output formats. (Such mappings may be incomplete! Implementers are not expected
to bend over backwards in an attempt to render Cherokee syllabics, Etruscan runes,
Byzantine musical symbols, or any of the other weird things that Unicode can encode.)
And if a Pod document uses a character not found in such a mapping, the formatter
should consider it an unrenderable character.

• If, surprisingly, the implementor of a Pod formatter can’t find a satisfactory pre-existing
table mapping from Unicode characters to escapes in the target format (e.g., a decent
table of Unicode characters to *roff escapes), it will be necessary to build such a
table. If you are in this circumstance, you should begin with the characters in the
range 0x00A0 - 0x00FF, which is mostly the heavily used accented characters. Then
proceed (as patience permits and fastidiousness compels) through the characters that
the (X)HTML standards groups judged important enough to merit mnemonics for.
These are declared in the (X)HTML specifications at the www.W3.org site. At time of
writing (September 2001), the most recent entity declaration files are:

http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent

http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent

http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent

Then you can progress through any remaining notable Unicode characters in the range
0x2000-0x204D (consult the character tables at www.unicode.org), and whatever else
strikes your fancy. For example, in xhtml-symbol.ent, there is the entry:

<!ENTITY infin "∞"> <!-- infinity, U+221E ISOtech -->

While the mapping "infin" to the character "\x{221E}" will (hopefully) have been
already handled by the Pod parser, the presence of the character in this file means
that it’s reasonably important enough to include in a formatter’s table that maps
from notable Unicode characters to the codes necessary for rendering them. So for a
Unicode-to-*roff mapping, for example, this would merit the entry:

"\x{221E}" => ’\(in’,

It is eagerly hoped that in the future, increasing numbers of formats (and formatters)
will support Unicode characters directly (as (X)HTML does with ∞, ∞,
or ∞), reducing the need for idiosyncratic mappings of Unicode-to-my escapes.

• It is up to individual Pod formatter to display good judgement when confronted with
an unrenderable character (which is distinct from an unknown E<thing> sequence that
the parser couldn’t resolve to anything, renderable or not). It is good practice to
map Latin letters with diacritics (like "E<eacute>"/"E<233>") to the corresponding
unaccented US-ASCII letters (like a simple character 101, "e"), but clearly this is
often not feasible, and an unrenderable character may be represented as "?", or the
like. In attempting a sane fallback (as from E<233> to "e"), Pod formatters may use
the %Latin1Code to fallback table in Pod-Escapes, or Text-Unidecode, if available.

For example, this Pod text:

magic is enabled if you set C<$Currency> to ’E<euro>’.

may be rendered as: "magic is enabled if you set $Currency to ’? ’" or as "magic is
enabled if you set $Currency to ’[euro]’", or as "magic is enabled if you set $Currency
to ’[x20AC]’, etc.

A Pod formatter may also note, in a comment or warning, a list of what unrenderable
characters were encountered.

• E<...> may freely appear in any formatting code (other than in another E<...> or
in an Z<>). That is, "X<The E<euro>1,000,000 Solution>" is valid, as is "L<The
E<euro>1,000,000 Solution|Million::Euros>".

• Some Pod formatters output to formats that implement non-breaking spaces as an indi-
vidual character (which I’ll call "NBSP"), and others output to formats that implement
non-breaking spaces just as spaces wrapped in a "don’t break this across lines" code.
Note that at the level of Pod, both sorts of codes can occur: Pod can contain a NBSP
character (whether as a literal, or as a "E<160>" or "E<nbsp>" code); and Pod can
contain "S<foo I<bar> baz>" codes, where "mere spaces" (character 32) in such codes
are taken to represent non-breaking spaces. Pod parsers should consider supporting
the optional parsing of "S<foo I<bar> baz>" as if it were "fooNBSPI<bar>NBSPbaz",
and, going the other way, the optional parsing of groups of words joined by NBSP’s as
if each group were in a S<...> code, so that formatters may use the representation that
maps best to what the output format demands.

• Some processors may find that the S<...> code is easiest to implement by replacing
each space in the parse tree under the content of the S, with an NBSP. But note: the
replacement should apply not to spaces in all text, but only to spaces in printable
text. (This distinction may or may not be evident in the particular tree/event model
implemented by the Pod parser.) For example, consider this unusual case:

S<L</Autoloaded Functions>>

This means that the space in the middle of the visible link text must not be broken
across lines. In other words, it’s the same as this:

L<"AutoloadedE<160>Functions"/Autoloaded Functions>

However, a misapplied space-to-NBSP replacement could (wrongly) produce something
equivalent to this:

L<"AutoloadedE<160>Functions"/AutoloadedE<160>Functions>

...which is almost definitely not going to work as a hyperlink (assuming this formatter
outputs a format supporting hypertext).

Formatters may choose to just not support the S format code, especially in cases where
the output format simply has no NBSP character/code and no code for "don’t break
this stuff across lines".

• Besides the NBSP character discussed above, implementors are reminded of the ex-
istence of the other "special" character in Latin-1, the "soft hyphen" character, also
known as "discretionary hyphen", i.e. E<173> = E<0xAD> = E<shy>). This charac-
ter expresses an optional hyphenation point. That is, it normally renders as nothing,
but may render as a "-" if a formatter breaks the word at that point. Pod format-
ters should, as appropriate, do one of the following: 1) render this with a code with
the same meaning (e.g., "\-" in RTF), 2) pass it through in the expectation that the
formatter understands this character as such, or 3) delete it.

For example:

sigE<shy>action

manuE<shy>script

JarkE<shy>ko HieE<shy>taE<shy>nieE<shy>mi

These signal to a formatter that if it is to hyphenate "sigaction" or "manuscript",
then it should be done as "sig-[linebreak]action" or "manu-[linebreak]script" (and if it
doesn’t hyphenate it, then the E<shy> doesn’t show up at all). And if it is to hyphenate
"Jarkko" and/or "Hietaniemi", it can do so only at the points where there is a E<shy>

code.

In practice, it is anticipated that this character will not be used often, but formatters
should either support it, or delete it.

• If you think that you want to add a new command to Pod (like, say, a "=biblio"
command), consider whether you could get the same effect with a for or begin/end
sequence: "=for biblio ..." or "=begin biblio" ... "=end biblio". Pod processors that
don’t understand "=for biblio", etc, will simply ignore it, whereas they may complain
loudly if they see "=biblio".

• Throughout this document, "Pod" has been the preferred spelling for the name of the
documentation format. One may also use "POD" or "pod". For the documentation
that is (typically) in the Pod format, you may use "pod", or "Pod", or "POD". Un-
derstanding these distinctions is useful; but obsessing over how to spell them, usually
is not.

53.7 About L<...> Codes

As you can tell from a glance at Section 52.1 [perlpod], page 900, the L<...> code is the
most complex of the Pod formatting codes. The points below will hopefully clarify what it
means and how processors should deal with it.

• In parsing an L<...> code, Pod parsers must distinguish at least four attributes:

First:

The link-text. If there is none, this must be undef. (E.g., in "L<Perl Func-
tions|perlfunc>", the link-text is "Perl Functions". In "L<Time::HiRes>"
and even "L<|Time::HiRes>", there is no link text. Note that link text
may contain formatting.)

Second:

The possibly inferred link-text; i.e., if there was no real link text, then this
is the text that we’ll infer in its place. (E.g., for "L<Getopt::Std>", the
inferred link text is "Getopt::Std".)

Third:

The name or URL, or undef if none. (E.g., in "L<Perl Func-
tions|perlfunc>", the name (also sometimes called the page) is "perlfunc".
In "L</CAVEATS>", the name is undef.)

Fourth:

The section (AKA "item" in older perlpods), or undef if none. E.g.,
in "L<Getopt::Std/DESCRIPTION>", "DESCRIPTION" is the section.
(Note that this is not the same as a manpage section like the "5" in "man
5 crontab". "Section Foo" in the Pod sense means the part of the text
that’s introduced by the heading or item whose text is "Foo".)

Pod parsers may also note additional attributes including:

Fifth:

A flag for whether item 3 (if present) is a URL (like "http://lists.perl.org"
is), in which case there should be no section attribute; a Pod name (like
"perldoc" and "Getopt::Std" are); or possibly a man page name (like
"crontab(5)" is).

Sixth:

The raw original L<...> content, before text is split on "|", "/", etc, and
before E<...> codes are expanded.

(The above were numbered only for concise reference below. It is not a requirement
that these be passed as an actual list or array.)

For example:

L<Foo::Bar>

=> undef, # link text

"Foo::Bar", # possibly inferred link text

"Foo::Bar", # name

undef, # section

’pod’, # what sort of link

"Foo::Bar" # original content

L<Perlport’s section on NL’s|perlport/Newlines>

=> "Perlport’s section on NL’s", # link text

"Perlport’s section on NL’s", # possibly inferred link text

"perlport", # name

"Newlines", # section

’pod’, # what sort of link

"Perlport’s section on NL’s|perlport/Newlines"

original content

L<perlport/Newlines>

=> undef, # link text

’"Newlines" in perlport’, # possibly inferred link text

"perlport", # name

"Newlines", # section

’pod’, # what sort of link

"perlport/Newlines" # original content

L<crontab(5)/"DESCRIPTION">

=> undef, # link text

’"DESCRIPTION" in crontab(5)’, # possibly inferred link text

"crontab(5)", # name

"DESCRIPTION", # section

’man’, # what sort of link

’crontab(5)/"DESCRIPTION"’ # original content

L</Object Attributes>

=> undef, # link text

’"Object Attributes"’, # possibly inferred link text

undef, # name

"Object Attributes", # section

’pod’, # what sort of link

"/Object Attributes" # original content

L<http://www.perl.org/>

=> undef, # link text

"http://www.perl.org/", # possibly inferred link text

"http://www.perl.org/", # name

undef, # section

’url’, # what sort of link

"http://www.perl.org/" # original content

L<Perl.org|http://www.perl.org/>

=> "Perl.org", # link text

"http://www.perl.org/", # possibly inferred link text

"http://www.perl.org/", # name

undef, # section

’url’, # what sort of link

"Perl.org|http://www.perl.org/" # original content

Note that you can distinguish URL-links from anything else by the fact that
they match m/\A\w+:[^:\s]\S*\z/. So L<http://www.perl.com> is a URL, but
L<HTTP::Response> isn’t.

• In case of L<...> codes with no "text|" part in them, older formatters have exhib-
ited great variation in actually displaying the link or cross reference. For example,
L<crontab(5)> would render as "the crontab(5) manpage", or "in the crontab(5)

manpage" or just "crontab(5)".

Pod processors must now treat "text|"-less links as follows:

L<name> => L<name|name>

L</section> => L<"section"|/section>

L<name/section> => L<"section" in name|name/section>

• Note that section names might contain markup. I.e., if a section starts with:

=head2 About the C<-M> Operator

or with:

=item About the C<-M> Operator

then a link to it would look like this:

L<somedoc/About the C<-M> Operator>

Formatters may choose to ignore the markup for purposes of resolving the link and use
only the renderable characters in the section name, as in:

<h1>About the <code>-M</code>

Operator</h1>

...

About the <code>-M</code>

Operator" in somedoc

• Previous versions of perlpod distinguished L<name/"section"> links from
L<name/item> links (and their targets). These have been merged syntactically
and semantically in the current specification, and section can refer either to a
"=headn Heading Content" command or to a "=item Item Content" command. This
specification does not specify what behavior should be in the case of a given document
having several things all seeming to produce the same section identifier (e.g., in HTML,
several things all producing the same anchorname in ...
elements). Where Pod processors can control this behavior, they should use the first
such anchor. That is, L<Foo/Bar> refers to the first "Bar" section in Foo.

But for some processors/formats this cannot be easily controlled; as with the HTML
example, the behavior of multiple ambiguous ... is most
easily just left up to browsers to decide.

• In a L<text|...> code, text may contain formatting codes for formatting or for E<...>
escapes, as in:

L<B<ummE<234>stuff>|...>

For L<...> codes without a "name|" part, only E<...> and Z<> codes may occur.
That is, authors should not use "L<B<Foo::Bar>>".

Note, however, that formatting codes and Z<>’s can occur in any and all parts of an
L<...> (i.e., in name, section, text, and url).

Authors must not nest L<...> codes. For example, "L<The L<Foo::Bar> man page>"
should be treated as an error.

• Note that Pod authors may use formatting codes inside the "text" part of
"L<text|name>" (and so on for L<text|/"sec">).

In other words, this is valid:

Go read L<the docs on C<$.>|perlvar/"$.">

Some output formats that do allow rendering "L<...>" codes as hypertext, might not
allow the link-text to be formatted; in that case, formatters will have to just ignore
that formatting.

• At time of writing, L<name> values are of two types: either the name of a Pod page
like L<Foo::Bar> (which might be a real Perl module or program in an @INC /
PATH directory, or a .pod file in those places); or the name of a Unix man page,
like L<crontab(5)>. In theory, L<chmod> in ambiguous between a Pod page called
"chmod", or the Unix man page "chmod" (in whatever man-section). However, the
presence of a string in parens, as in "crontab(5)", is sufficient to signal that what is
being discussed is not a Pod page, and so is presumably a Unix man page. The dis-
tinction is of no importance to many Pod processors, but some processors that render
to hypertext formats may need to distinguish them in order to know how to render a
given L<foo> code.

• Previous versions of perlpod allowed for a L<section> syntax (as in L<Object

Attributes>), which was not easily distinguishable from L<name> syntax and for
L<"section"> which was only slightly less ambiguous. This syntax is no longer in the
specification, and has been replaced by the L</section> syntax (where the slash was
formerly optional). Pod parsers should tolerate the L<"section"> syntax, for a while
at least. The suggested heuristic for distinguishing L<section> from L<name> is that
if it contains any whitespace, it’s a section. Pod processors should warn about this
being deprecated syntax.

53.8 About =over...=back Regions

"=over"..."=back" regions are used for various kinds of list-like structures. (I use the term
"region" here simply as a collective term for everything from the "=over" to the matching
"=back".)

• The non-zero numeric indentlevel in "=over indentlevel" ... "=back" is used for giving
the formatter a clue as to how many "spaces" (ems, or roughly equivalent units) it
should tab over, although many formatters will have to convert this to an absolute
measurement that may not exactly match with the size of spaces (or M’s) in the doc-
ument’s base font. Other formatters may have to completely ignore the number. The
lack of any explicit indentlevel parameter is equivalent to an indentlevel value of 4.

Pod processors may complain if indentlevel is present but is not a positive number
matching m/\A(\d*\.)?\d+\z/.

• Authors of Pod formatters are reminded that "=over" ... "=back" may map to sev-
eral different constructs in your output format. For example, in converting Pod to
(X)HTML, it can map to any of ..., ..., <dl>...</dl>, or <block-
quote>...</blockquote>. Similarly, "=item" can map to or <dt>.

• Each "=over" ... "=back" region should be one of the following:

• An "=over" ... "=back" region containing only "=item *" commands, each fol-
lowed by some number of ordinary/verbatim paragraphs, other nested "=over" ...
"=back" regions, "=for..." paragraphs, and "=begin"..."=end" regions.

(Pod processors must tolerate a bare "=item" as if it were "=item *".) Whether
"*" is rendered as a literal asterisk, an "o", or as some kind of real bullet character,
is left up to the Pod formatter, and may depend on the level of nesting.

• An "=over" ... "=back" region containing only m/\A=item\s+\d+\.?\s*\z/ para-
graphs, each one (or each group of them) followed by some number of ordi-
nary/verbatim paragraphs, other nested "=over" ... "=back" regions, "=for..."
paragraphs, and/or "=begin"..."=end" codes. Note that the numbers must start
at 1 in each section, and must proceed in order and without skipping numbers.

(Pod processors must tolerate lines like "=item 1" as if they were "=item 1.", with
the period.)

• An "=over" ... "=back" region containing only "=item [text]" commands, each
one (or each group of them) followed by some number of ordinary/verbatim para-
graphs, other nested "=over" ... "=back" regions, or "=for..." paragraphs, and
"=begin"..."=end" regions.

The "=item [text]" paragraph should not match m/\A=item\s+\d+\.?\s*\z/ or
m/\A=item\s+*\s*\z/, nor should it match just m/\A=item\s*\z/.

• An "=over" ... "=back" region containing no "=item" paragraphs at all, and con-
taining only some number of ordinary/verbatim paragraphs, and possibly also some
nested "=over" ... "=back" regions, "=for..." paragraphs, and "=begin"..."=end"
regions. Such an itemless "=over" ... "=back" region in Pod is equivalent in mean-
ing to a "<blockquote>...</blockquote>" element in HTML.

Note that with all the above cases, you can determine which type of "=over" ...
"=back" you have, by examining the first (non-"=cut", non-"=pod") Pod paragraph
after the "=over" command.

• Pod formatters must tolerate arbitrarily large amounts of text in the "=item text..."
paragraph. In practice, most such paragraphs are short, as in:

=item For cutting off our trade with all parts of the world

But they may be arbitrarily long:

=item For transporting us beyond seas to be tried for pretended

offenses

=item He is at this time transporting large armies of foreign

mercenaries to complete the works of death, desolation and

tyranny, already begun with circumstances of cruelty and perfidy

scarcely paralleled in the most barbarous ages, and totally

unworthy the head of a civilized nation.

• Pod processors should tolerate "=item *" / "=item number" commands with no ac-
companying paragraph. The middle item is an example:

=over

=item 1

Pick up dry cleaning.

=item 2

=item 3

Stop by the store. Get Abba Zabas, Stoli, and cheap lawn chairs.

=back

• No "=over" ... "=back" region can contain headings. Processors may treat such a
heading as an error.

• Note that an "=over" ... "=back" region should have some content. That is, authors
should not have an empty region like this:

=over

=back

Pod processors seeing such a contentless "=over" ... "=back" region, may ignore it, or
may report it as an error.

• Processors must tolerate an "=over" list that goes off the end of the document (i.e.,
which has no matching "=back"), but they may warn about such a list.

• Authors of Pod formatters should note that this construct:

=item Neque

=item Porro

=item Quisquam Est

Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci

velit, sed quia non numquam eius modi tempora incidunt ut

labore et dolore magnam aliquam quaerat voluptatem.

=item Ut Enim

is semantically ambiguous, in a way that makes formatting decisions a bit difficult.
On the one hand, it could be mention of an item "Neque", mention of another item
"Porro", and mention of another item "Quisquam Est", with just the last one requiring
the explanatory paragraph "Qui dolorem ipsum quia dolor..."; and then an item "Ut
Enim". In that case, you’d want to format it like so:

Neque

Porro

Quisquam Est

Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci

velit, sed quia non numquam eius modi tempora incidunt ut

labore et dolore magnam aliquam quaerat voluptatem.

Ut Enim

But it could equally well be a discussion of three (related or equivalent) items, "Neque",
"Porro", and "Quisquam Est", followed by a paragraph explaining them all, and then
a new item "Ut Enim". In that case, you’d probably want to format it like so:

Neque

Porro

Quisquam Est

Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci

velit, sed quia non numquam eius modi tempora incidunt ut

labore et dolore magnam aliquam quaerat voluptatem.

Ut Enim

But (for the foreseeable future), Pod does not provide any way for Pod authors to
distinguish which grouping is meant by the above "=item"-cluster structure. So for-
matters should format it like so:

Neque

Porro

Quisquam Est

Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci

velit, sed quia non numquam eius modi tempora incidunt ut

labore et dolore magnam aliquam quaerat voluptatem.

Ut Enim

That is, there should be (at least roughly) equal spacing between items as between
paragraphs (although that spacing may well be less than the full height of a line of
text). This leaves it to the reader to use (con)textual cues to figure out whether the
"Qui dolorem ipsum..." paragraph applies to the "Quisquam Est" item or to all three
items "Neque", "Porro", and "Quisquam Est". While not an ideal situation, this is
preferable to providing formatting cues that may be actually contrary to the author’s
intent.

53.9 About Data Paragraphs and "=begin/=end" Regions

Data paragraphs are typically used for inlining non-Pod data that is to be used (typically
passed through) when rendering the document to a specific format:

=begin rtf

\par{\pard\qr\sa4500{\i Printed\~\chdate\~\chtime}\par}

=end rtf

The exact same effect could, incidentally, be achieved with a single "=for" paragraph:

=for rtf \par{\pard\qr\sa4500{\i Printed\~\chdate\~\chtime}\par}

(Although that is not formally a data paragraph, it has the same meaning as one, and
Pod parsers may parse it as one.)

Another example of a data paragraph:

=begin html

I like PIE!

<hr>Especially pecan pie!

=end html

If these were ordinary paragraphs, the Pod parser would try to expand the "E"

(in the first paragraph) as a formatting code, just like "E<lt>" or "E<eacute>". But since
this is in a "=begin identifier"..."=end identifier" region and the identifier "html" doesn’t
begin have a ":" prefix, the contents of this region are stored as data paragraphs, instead
of being processed as ordinary paragraphs (or if they began with a spaces and/or tabs, as
verbatim paragraphs).

As a further example: At time of writing, no "biblio" identifier is supported, but suppose
some processor were written to recognize it as a way of (say) denoting a bibliographic
reference (necessarily containing formatting codes in ordinary paragraphs). The fact that
"biblio" paragraphs were meant for ordinary processing would be indicated by prefacing
each "biblio" identifier with a colon:

=begin :biblio

Wirth, Niklaus. 1976. I<Algorithms + Data Structures =

Programs.> Prentice-Hall, Englewood Cliffs, NJ.

=end :biblio

This would signal to the parser that paragraphs in this begin...end region are subject
to normal handling as ordinary/verbatim paragraphs (while still tagged as meant only for
processors that understand the "biblio" identifier). The same effect could be had with:

=for :biblio

Wirth, Niklaus. 1976. I<Algorithms + Data Structures =

Programs.> Prentice-Hall, Englewood Cliffs, NJ.

The ":" on these identifiers means simply "process this stuff normally, even though the
result will be for some special target". I suggest that parser APIs report "biblio" as the
target identifier, but also report that it had a ":" prefix. (And similarly, with the above
"html", report "html" as the target identifier, and note the lack of a ":" prefix.)

Note that a "=begin identifier"..."=end identifier" region where identifier begins with
a colon, can contain commands. For example:

=begin :biblio

Wirth’s classic is available in several editions, including:

=for comment

hm, check abebooks.com for how much used copies cost.

=over

=item

Wirth, Niklaus. 1975. I<Algorithmen und Datenstrukturen.>

Teubner, Stuttgart. [Yes, it’s in German.]

=item

Wirth, Niklaus. 1976. I<Algorithms + Data Structures =

Programs.> Prentice-Hall, Englewood Cliffs, NJ.

=back

=end :biblio

Note, however, a "=begin identifier"..."=end identifier" region where identifier does
not begin with a colon, should not directly contain "=head1" ... "=head4" commands, nor
"=over", nor "=back", nor "=item". For example, this may be considered invalid:

=begin somedata

This is a data paragraph.

=head1 Don’t do this!

This is a data paragraph too.

=end somedata

A Pod processor may signal that the above (specifically the "=head1" paragraph) is an
error. Note, however, that the following should not be treated as an error:

=begin somedata

This is a data paragraph.

=cut

Yup, this isn’t Pod anymore.

sub excl { (rand() > .5) ? "hoo!" : "hah!" }

=pod

This is a data paragraph too.

=end somedata

And this too is valid:

=begin someformat

This is a data paragraph.

And this is a data paragraph.

=begin someotherformat

This is a data paragraph too.

And this is a data paragraph too.

=begin :yetanotherformat

=head2 This is a command paragraph!

This is an ordinary paragraph!

And this is a verbatim paragraph!

=end :yetanotherformat

=end someotherformat

Another data paragraph!

=end someformat

The contents of the above "=begin :yetanotherformat" ... "=end :yetanotherformat" re-
gion aren’t data paragraphs, because the immediately containing region’s identifier (":yetan-
otherformat") begins with a colon. In practice, most regions that contain data paragraphs
will contain only data paragraphs; however, the above nesting is syntactically valid as Pod,
even if it is rare. However, the handlers for some formats, like "html", will accept only
data paragraphs, not nested regions; and they may complain if they see (targeted for them)
nested regions, or commands, other than "=end", "=pod", and "=cut".

Also consider this valid structure:

=begin :biblio

Wirth’s classic is available in several editions, including:

=over

=item

Wirth, Niklaus. 1975. I<Algorithmen und Datenstrukturen.>

Teubner, Stuttgart. [Yes, it’s in German.]

=item

Wirth, Niklaus. 1976. I<Algorithms + Data Structures =

Programs.> Prentice-Hall, Englewood Cliffs, NJ.

=back

Buy buy buy!

=begin html

<hr>

=end html

Now now now!

=end :biblio

There, the "=begin html"..."=end html" region is nested inside the larger "=begin
:biblio"..."=end :biblio" region. Note that the content of the "=begin html"..."=end html"
region is data paragraph(s), because the immediately containing region’s identifier ("html")
doesn’t begin with a colon.

Pod parsers, when processing a series of data paragraphs one after another (within a
single region), should consider them to be one large data paragraph that happens to contain
blank lines. So the content of the above "=begin html"..."=end html" may be stored as two
data paragraphs (one consisting of "\n" and
another consisting of "<hr>\n"), but should be stored as a single data paragraph (consisting
of "\n\n<hr>\n").

Pod processors should tolerate empty "=begin something"..."=end something" regions,
empty "=begin :something"..."=end :something" regions, and contentless "=for something"
and "=for :something" paragraphs. I.e., these should be tolerated:

=for html

=begin html

=end html

=begin :biblio

=end :biblio

Incidentally, note that there’s no easy way to express a data paragraph starting with
something that looks like a command. Consider:

=begin stuff

=shazbot

=end stuff

There, "=shazbot" will be parsed as a Pod command "shazbot", not as a data paragraph
"=shazbot\n". However, you can express a data paragraph consisting of "=shazbot\n"
using this code:

=for stuff =shazbot

The situation where this is necessary, is presumably quite rare.

Note that =end commands must match the currently open =begin command. That is,
they must properly nest. For example, this is valid:

=begin outer

X

=begin inner

Y

=end inner

Z

=end outer

while this is invalid:

=begin outer

X

=begin inner

Y

=end outer

Z

=end inner

This latter is improper because when the "=end outer" command is seen, the currently
open region has the formatname "inner", not "outer". (It just happens that "outer" is the
format name of a higher-up region.) This is an error. Processors must by default report
this as an error, and may halt processing the document containing that error. A corollary
of this is that regions cannot "overlap". That is, the latter block above does not represent
a region called "outer" which contains X and Y, overlapping a region called "inner" which
contains Y and Z. But because it is invalid (as all apparently overlapping regions would
be), it doesn’t represent that, or anything at all.

Similarly, this is invalid:

=begin thing

=end hting

This is an error because the region is opened by "thing", and the "=end" tries to close
"hting" [sic].

This is also invalid:

=begin thing

=end

This is invalid because every "=end" command must have a formatname parameter.

53.10 SEE ALSO

Section 52.1 [perlpod NAME], page 900, Section 74.2.14 [perlsyn PODs: Embedded Docu-
mentation], page 1261, podchecker

53.11 AUTHOR

Sean M. Burke

54 perlpodstyle

54.1 NAME

perlpodstyle - Perl POD style guide

54.2 DESCRIPTION

These are general guidelines for how to write POD documentation for Perl scripts and
modules, based on general guidelines for writing good UNIX man pages. All of these
guidelines are, of course, optional, but following them will make your documentation more
consistent with other documentation on the system.

The name of the program being documented is conventionally written in bold (using
B<>) wherever it occurs, as are all program options. Arguments should be written in
italics (I<>). Function names are traditionally written in italics; if you write a function
as function(), Pod::Man will take care of this for you. Literal code or commands should
be in C<>. References to other man pages should be in the form manpage(section) or
L<manpage(section)>, and Pod::Man will automatically format those appropriately. The
second form, with L<>, is used to request that a POD formatter make a link to the man
page if possible. As an exception, one normally omits the section when referring to mod-
ule documentation since it’s not clear what section module documentation will be in; use
L<Module::Name> for module references instead.

References to other programs or functions are normally in the form of man page ref-
erences so that cross-referencing tools can provide the user with links and the like. It’s
possible to overdo this, though, so be careful not to clutter your documentation with too
much markup. References to other programs that are not given as man page references
should be enclosed in B<>.

The major headers should be set out using a =head1 directive, and are historically written
in the rather startling ALL UPPER CASE format; this is not mandatory, but it’s strongly
recommended so that sections have consistent naming across different software packages.
Minor headers may be included using =head2, and are typically in mixed case.

The standard sections of a manual page are:

NAME

Mandatory section; should be a comma-separated list of programs or functions
documented by this POD page, such as:

foo, bar - programs to do something

Manual page indexers are often extremely picky about the format of this sec-
tion, so don’t put anything in it except this line. Every program or function
documented by this POD page should be listed, separated by a comma and
a space. For a Perl module, just give the module name. A single dash, and
only a single dash, should separate the list of programs or functions from the
description. Do not use any markup such as C<> or B<> anywhere in this line.
Functions should not be qualified with () or the like. The description should
ideally fit on a single line, even if a man program replaces the dash with a few
tabs.

SYNOPSIS
A short usage summary for programs and functions. This section is mandatory
for section 3 pages. For Perl module documentation, it’s usually convenient
to have the contents of this section be a verbatim block showing some (brief)
examples of typical ways the module is used.

DESCRIPTION
Extended description and discussion of the program or functions, or the body of
the documentation for man pages that document something else. If particularly
long, it’s a good idea to break this up into subsections =head2 directives like:

=head2 Normal Usage

=head2 Advanced Features

=head2 Writing Configuration Files

or whatever is appropriate for your documentation.

For a module, this is generally where the documentation of the interfaces pro-
vided by the module goes, usually in the form of a list with an =item for each in-
terface. Depending on how many interfaces there are, you may want to put that
documentation in separate METHODS, FUNCTIONS, CLASS METHODS, or
INSTANCE METHODS sections instead and save the DESCRIPTION section
for an overview.

OPTIONS
Detailed description of each of the command-line options taken by the pro-
gram. This should be separate from the description for the use of parsers like
Pod-Usage. This is normally presented as a list, with each option as a separate
=item. The specific option string should be enclosed in B<>. Any values that
the option takes should be enclosed in I<>. For example, the section for the
option –section=manext would be introduced with:

=item B<--section>=I<manext>

Synonymous options (like both the short and long forms) are separated by a
comma and a space on the same =item line, or optionally listed as their own
item with a reference to the canonical name. For example, since –section can
also be written as -s, the above would be:

=item B<-s> I<manext>, B<--section>=I<manext>

Writing the short option first is recommended because it’s easier to read. The
long option is long enough to draw the eye to it anyway and the short option
can otherwise get lost in visual noise.

RETURN VALUE
What the program or function returns, if successful. This section can be omitted
for programs whose precise exit codes aren’t important, provided they return 0
on success and non-zero on failure as is standard. It should always be present
for functions. For modules, it may be useful to summarize return values from
the module interface here, or it may be more useful to discuss return values
separately in the documentation of each function or method the module pro-
vides.

ERRORS

Exceptions, error return codes, exit statuses, and errno settings. Typically
used for function or module documentation; program documentation uses DI-
AGNOSTICS instead. The general rule of thumb is that errors printed to
STDOUT or STDERR and intended for the end user are documented in DIAGNOS-
TICS while errors passed internal to the calling program and intended for other
programmers are documented in ERRORS. When documenting a function that
sets errno, a full list of the possible errno values should be given here.

DIAGNOSTICS
All possible messages the program can print out and what they mean. You
may wish to follow the same documentation style as the Perl documentation;
see perldiag(1) for more details (and look at the POD source as well).

If applicable, please include details on what the user should do to correct the
error; documenting an error as indicating "the input buffer is too small" without
telling the user how to increase the size of the input buffer (or at least telling
them that it isn’t possible) aren’t very useful.

EXAMPLES
Give some example uses of the program or function. Don’t skimp; users often
find this the most useful part of the documentation. The examples are generally
given as verbatim paragraphs.

Don’t just present an example without explaining what it does. Adding a short
paragraph saying what the example will do can increase the value of the example
immensely.

ENVIRONMENT
Environment variables that the program cares about, normally presented as a
list using =over, =item, and =back. For example:

=over 6

=item HOME

Used to determine the user’s home directory. F<.foorc> in this

directory is read for configuration details, if it exists.

=back

Since environment variables are normally in all uppercase, no additional special
formatting is generally needed; they’re glaring enough as it is.

FILES

All files used by the program or function, normally presented as a list, and
what it uses them for. File names should be enclosed in F<>. It’s particularly
important to document files that will be potentially modified.

CAVEATS
Things to take special care with, sometimes called WARNINGS.

BUGS

Things that are broken or just don’t work quite right.

RESTRICTIONS
Bugs you don’t plan to fix. :-)

NOTES

Miscellaneous commentary.

AUTHOR

Who wrote it (use AUTHORS for multiple people). It’s a good idea to include
your current e-mail address (or some e-mail address to which bug reports should
be sent) or some other contact information so that users have a way of contacting
you. Remember that program documentation tends to roam the wild for far
longer than you expect and pick a contact method that’s likely to last.

HISTORY

Programs derived from other sources sometimes have this. Some people keep a
modification log here, but that usually gets long and is normally better main-
tained in a separate file.

COPYRIGHT AND LICENSE
For copyright

Copyright YEAR(s) YOUR NAME(s)

(No, (C) is not needed. No, "all rights reserved" is not needed.)

For licensing the easiest way is to use the same licensing as Perl itself:

This library is free software; you may redistribute it and/or

modify it under the same terms as Perl itself.

This makes it easy for people to use your module with Perl. Note that this
licensing example is neither an endorsement or a requirement, you are of course
free to choose any licensing.

SEE ALSO
Other man pages to check out, like man(1), man(7), makewhatis(8), or cat-
man(8). Normally a simple list of man pages separated by commas, or a para-
graph giving the name of a reference work. Man page references, if they use
the standard name(section) form, don’t have to be enclosed in L<> (although
it’s recommended), but other things in this section probably should be when
appropriate.

If the package has a mailing list, include a URL or subscription instructions
here.

If the package has a web site, include a URL here.

Documentation of object-oriented libraries or modules may want to use CONSTRUC-
TORS and METHODS sections, or CLASS METHODS and INSTANCE METHODS sec-
tions, for detailed documentation of the parts of the library and save the DESCRIPTION
section for an overview. Large modules with a function interface may want to use FUNC-
TIONS for similar reasons. Some people use OVERVIEW to summarize the description if
it’s quite long.

Section ordering varies, although NAME must always be the first section (you’ll break
some man page systems otherwise), and NAME, SYNOPSIS, DESCRIPTION, and OP-
TIONS generally always occur first and in that order if present. In general, SEE ALSO,
AUTHOR, and similar material should be left for last. Some systems also move WARN-
INGS and NOTES to last. The order given above should be reasonable for most purposes.

Some systems use CONFORMING TO to note conformance to relevant standards and
MT-LEVEL to note safeness for use in threaded programs or signal handlers. These head-
ings are primarily useful when documenting parts of a C library.

Finally, as a general note, try not to use an excessive amount of markup. As documented
here and in Pod-Man, you can safely leave Perl variables, function names, man page refer-
ences, and the like unadorned by markup and the POD translators will figure it out for
you. This makes it much easier to later edit the documentation. Note that many existing
translators will do the wrong thing with e-mail addresses when wrapped in L<>, so don’t
do that.

54.3 SEE ALSO

For additional information that may be more accurate for your specific system, see either
man(5) or man(7) depending on your system manual section numbering conventions.

This documentation is maintained as part of the podlators distribution. The current ver-
sion is always available from its web site at <http://www.eyrie.org/~eagle/software/podlators/>.

54.4 AUTHOR

Russ Allbery <rra@stanford.edu>, with large portions of this documentation taken from
the documentation of the original pod2man implementation by Larry Wall and Tom Chris-
tiansen.

54.5 COPYRIGHT AND LICENSE

Copyright 1999, 2000, 2001, 2004, 2006, 2008, 2010 Russ Allbery <rra@stanford.edu>.

This documentation is free software; you may redistribute it and/or modify it under the
same terms as Perl itself.

http://man.he.net/man5/man
http://man.he.net/man7/man

55 perlpolicy

55.1 NAME

perlpolicy - Various and sundry policies and commitments related to the Perl core

55.2 DESCRIPTION

This document is the master document which records all written policies about how the
Perl 5 Porters collectively develop and maintain the Perl core.

55.3 GOVERNANCE

55.3.1 Perl 5 Porters

Subscribers to perl5-porters (the porters themselves) come in several flavours. Some are
quiet curious lurkers, who rarely pitch in and instead watch the ongoing development to
ensure they’re forewarned of new changes or features in Perl. Some are representatives
of vendors, who are there to make sure that Perl continues to compile and work on their
platforms. Some patch any reported bug that they know how to fix, some are actively
patching their pet area (threads, Win32, the regexp -engine), while others seem to do
nothing but complain. In other words, it’s your usual mix of technical people.

Over this group of porters presides Larry Wall. He has the final word in what does and
does not change in any of the Perl programming languages. These days, Larry spends most
of his time on Perl 6, while Perl 5 is shepherded by a "pumpking", a porter responsible for
deciding what goes into each release and ensuring that releases happen on a regular basis.

Larry sees Perl development along the lines of the US government: there’s the Legislature
(the porters), the Executive branch (the -pumpking), and the Supreme Court (Larry). The
legislature can discuss and submit patches to the executive branch all they like, but the
executive branch is free to veto them. Rarely, the Supreme Court will side with the executive
branch over the legislature, or the legislature over the executive branch. Mostly, however,
the legislature and the executive branch are supposed to get along and work out their
differences without impeachment or court cases.

You might sometimes see reference to Rule 1 and Rule 2. Larry’s power as Supreme
Court is expressed in The Rules:

1. Larry is always by definition right about how Perl should behave. This means he has
final veto power on the core functionality.

2. Larry is allowed to change his mind about any matter at a later date, regardless of
whether he previously invoked Rule 1.

Got that? Larry is always right, even when he was wrong. It’s rare to see either Rule
exercised, but they are often alluded to.

55.4 MAINTENANCE AND SUPPORT

Perl 5 is developed by a community, not a corporate entity. Every change contributed to
the Perl core is the result of a donation. Typically, these donations are contributions of

code or time by individual members of our community. On occasion, these donations come
in the form of corporate or organizational sponsorship of a particular individual or project.

As a volunteer organization, the commitments we make are heavily dependent on the
goodwill and hard work of individuals who have no obligation to contribute to Perl.

That being said, we value Perl’s stability and security and have long had an unwritten
covenant with the broader Perl community to support and maintain releases of Perl.

This document codifies the support and maintenance commitments that the Perl com-
munity should expect from Perl’s developers:

• We "officially" support the two most recent stable release series. 5.16.x and earlier are
now out of support. As of the release of 5.22.0, we will "officially" end support for Perl
5.18.x, other than providing security updates as described below.

• To the best of our ability, we will attempt to fix critical issues in the two most recent
stable 5.x release series. Fixes for the current release series take precedence over fixes
for the previous release series.

• To the best of our ability, we will provide "critical" security patches / releases for any
major version of Perl whose 5.x.0 release was within the past three years. We can only
commit to providing these for the most recent .y release in any 5.x.y series.

• We will not provide security updates or bug fixes for development releases of Perl.

• We encourage vendors to ship the most recent supported release of Perl at the time of
their code freeze.

• As a vendor, you may have a requirement to backport security fixes beyond our 3 year
support commitment. We can provide limited support and advice to you as you do so
and, where possible will try to apply those patches to the relevant -maint branches in
git, though we may or may not choose to make numbered releases or "official" patches
available. Contact us at <perl5-security-report@perl.org> to begin that process.

55.5 BACKWARD COMPATIBILITY AND
DEPRECATION

Our community has a long-held belief that backward-compatibility is a virtue, even when
the functionality in question is a design flaw.

We would all love to unmake some mistakes we’ve made over the past decades. Living
with every design error we’ve ever made can lead to painful stagnation. Unwinding our
mistakes is very, very difficult. Doing so without actively harming our users is nearly
impossible.

Lately, ignoring or actively opposing compatibility with earlier versions of Perl has come
into vogue. Sometimes, a change is proposed which wants to usurp syntax which previously
had another meaning. Sometimes, a change wants to improve previously-crazy semantics.

Down this road lies madness.

Requiring end-user programmers to change just a few language constructs, even language
constructs which no well-educated developer would ever intentionally use is tantamount to
saying "you should not upgrade to a new release of Perl unless you have 100% test coverage
and can do a full manual audit of your codebase." If we were to have tools capable of
reliably upgrading Perl source code from one version of Perl to another, this concern could
be significantly mitigated.

We want to ensure that Perl continues to grow and flourish in the coming years and
decades, but not at the expense of our user community.

Existing syntax and semantics should only be marked for destruction in very limited
circumstances. If they are believed to be very rarely used, stand in the way of actual
improvement to the Perl language or perl interpreter, and if affected code can be easily
updated to continue working, they may be considered for removal. When in doubt, caution
dictates that we will favor backward compatibility. When a feature is deprecated, a state-
ment of reasoning describing the decision process will be posted, and a link to it will be
provided in the relevant perldelta documents.

Using a lexical pragma to enable or disable legacy behavior should be considered when
appropriate, and in the absence of any pragma legacy behavior should be enabled. Which
backward-incompatible changes are controlled implicitly by a ’use v5.x.y’ is a decision which
should be made by the pumpking in consultation with the community.

Historically, we’ve held ourselves to a far higher standard than backward-compatibility
– bugward-compatibility. Any accident of implementation or unintentional side-effect of
running some bit of code has been considered to be a feature of the language to be defended
with the same zeal as any other feature or functionality. No matter how frustrating these
unintentional features may be to us as we continue to improve Perl, these unintentional
features often deserve our protection. It is very important that existing software written in
Perl continue to work correctly. If end-user developers have adopted a bug as a feature, we
need to treat it as such.

New syntax and semantics which don’t break existing language constructs and syntax
have a much lower bar. They merely need to prove themselves to be useful, elegant, well
designed, and well tested. In most cases, these additions will be marked as experimental
for some time. See below for more on that.

55.5.1 Terminology

To make sure we’re talking about the same thing when we discuss the removal of features
or functionality from the Perl core, we have specific definitions for a few words and phrases.

experimental
If something in the Perl core is marked as experimental, we may change its
behaviour, deprecate or remove it without notice. While we’ll always do our
best to smooth the transition path for users of experimental features, you should
contact the perl5-porters mailinglist if you find an experimental feature useful
and want to help shape its future.

Experimental features must be experimental in two stable releases before being
marked non-experimental. Experimental features will only have their experi-
mental status revoked when they no longer have any design-changing bugs open
against them and when they have remained unchanged in behavior for the en-
tire length of a development cycle. In other words, a feature present in v5.20.0
may be marked no longer experimental in v5.22.0 if and only if its behavior is
unchanged throughout all of v5.21.

deprecated
If something in the Perl core is marked as deprecated, we may remove it from
the core in the future, though we might not. Generally, backward incompati-

ble changes will have deprecation warnings for two release cycles before being
removed, but may be removed after just one cycle if the risk seems quite low
or the benefits quite high.

As of Perl 5.12, deprecated features and modules warn the user as they’re used.
When a module is deprecated, it will also be made available on CPAN. Installing
it from CPAN will silence deprecation warnings for that module.

If you use a deprecated feature or module and believe that its removal from
the Perl core would be a mistake, please contact the perl5-porters mailinglist
and plead your case. We don’t deprecate things without a good reason, but
sometimes there’s a counterargument we haven’t considered. Historically, we
did not distinguish between "deprecated" and "discouraged" features.

discouraged
From time to time, we may mark language constructs and features which we
consider to have been mistakes as discouraged. Discouraged features aren’t
currently candidates for removal, but we may later deprecate them if they’re
found to stand in the way of a significant improvement to the Perl core.

removed

Once a feature, construct or module has been marked as deprecated, we may
remove it from the Perl core. Unsurprisingly, we say we’ve removed these things.
When a module is removed, it will no longer ship with Perl, but will continue
to be available on CPAN.

55.6 MAINTENANCE BRANCHES

New releases of maintenance branches should only contain changes that fall into one of the
"acceptable" categories set out below, but must not contain any changes that fall into one of
the "unacceptable" categories. (For example, a fix for a crashing bug must not be included
if it breaks binary compatibility.)

It is not necessary to include every change meeting these criteria, and in general the
focus should be on addressing security issues, crashing bugs, regressions and serious instal-
lation issues. The temptation to include a plethora of minor changes that don’t affect the
installation or execution of perl (e.g. spelling corrections in documentation) should be re-
sisted in order to reduce the overall risk of overlooking something. The intention is to create
maintenance releases which are both worthwhile and which users can have full confidence in
the stability of. (A secondary concern is to avoid burning out the maint-pumpking or over-
whelming other committers voting on changes to be included (see Section 55.6.1 [Getting
changes into a maint branch], page 947 below).)

The following types of change may be considered acceptable, as long as they do not also
fall into any of the "unacceptable" categories set out below:

• Patches that fix CVEs or security issues. These changes should be run through the
perl5-security-report@perl.org mailing list rather than applied directly.

• Patches that fix crashing bugs, assertion failures and memory corruption but which do
not otherwise change perl’s functionality or negatively impact performance.

• Patches that fix regressions in perl’s behavior relative to previous releases, no matter
how old the regression, since some people may upgrade from very old versions of perl
to the latest version.

• Patches that fix anything which prevents or seriously impacts the build or installation
of perl.

• Portability fixes, such as changes to Configure and the files in the hints/ folder.

• Minimal patches that fix platform-specific test failures.

• Documentation updates that correct factual errors, explain significant bugs or deficien-
cies in the current implementation, or fix broken markup.

• Updates to dual-life modules should consist of minimal patches to fix crashing bugs or
security issues (as above). Any changes made to dual-life modules for which CPAN is
canonical should be coordinated with the upstream author.

The following types of change are NOT acceptable:

• Patches that break binary compatibility. (Please talk to a pumpking.)

• Patches that add or remove features.

• Patches that add new warnings or errors or deprecate features.

• Ports of Perl to a new platform, architecture or OS release that involve changes to the
implementation.

• New versions of dual-life modules should NOT be imported into maint. Those belong
in the next stable series.

If there is any question about whether a given patch might merit inclusion in a maint
release, then it almost certainly should not be included.

55.6.1 Getting changes into a maint branch

Historically, only the pumpking cherry-picked changes from bleadperl into maintperl. This
has scaling problems. At the same time, maintenance branches of stable versions of Perl
need to be treated with great care. To that end, as of Perl 5.12, we have a new process for
maint branches.

Any committer may cherry-pick any commit from blead to a maint branch if they send
mail to perl5-porters announcing their intent to cherry-pick a specific commit along with
a rationale for doing so and at least two other committers respond to the list giving their
assent. (This policy applies to current and former pumpkings, as well as other committers.)

Other voting mechanisms may be used instead, as long as the same number of votes is
gathered in a transparent manner. Specifically, proposals of which changes to cherry-pick
must be visible to everyone on perl5-porters so that the views of everyone interested may
be heard.

It is not necessary for voting to be held on cherry-picking perldelta entries associated with
changes that have already been cherry-picked, nor for the maint-pumpking to obtain votes
on changes required by the Porting/release_managers_guide.pod where such changes
can be applied by the means of cherry-picking from blead.

55.7 CONTRIBUTED MODULES

55.7.1 A Social Contract about Artistic Control

What follows is a statement about artistic control, defined as the ability of authors of
packages to guide the future of their code and maintain control over their work. It is a
recognition that authors should have control over their work, and that it is a responsibility
of the rest of the Perl community to ensure that they retain this control. It is an attempt
to document the standards to which we, as Perl developers, intend to hold ourselves. It
is an attempt to write down rough guidelines about the respect we owe each other as Perl
developers.

This statement is not a legal contract. This statement is not a legal document in any
way, shape, or form. Perl is distributed under the GNU Public License and under the
Artistic License; those are the precise legal terms. This statement isn’t about the law or
licenses. It’s about community, mutual respect, trust, and good-faith cooperation.

We recognize that the Perl core, defined as the software distributed with the heart of
Perl itself, is a joint project on the part of all of us. From time to time, a script, module,
or set of modules (hereafter referred to simply as a "module") will prove so widely useful
and/or so integral to the correct functioning of Perl itself that it should be distributed with
the Perl core. This should never be done without the author’s explicit consent, and a clear
recognition on all parts that this means the module is being distributed under the same
terms as Perl itself. A module author should realize that inclusion of a module into the
Perl core will necessarily mean some loss of control over it, since changes may occasionally
have to be made on short notice or for consistency with the rest of Perl.

Once a module has been included in the Perl core, however, everyone involved in main-
taining Perl should be aware that the module is still the property of the original author
unless the original author explicitly gives up their ownership of it. In particular:

• The version of the module in the Perl core should still be considered the work of the
original author. All patches, bug reports, and so forth should be fed back to them.
Their development directions should be respected whenever possible.

• Patches may be applied by the pumpkin holder without the explicit cooperation of the
module author if and only if they are very minor, time-critical in some fashion (such
as urgent security fixes), or if the module author cannot be reached. Those patches
must still be given back to the author when possible, and if the author decides on an
alternate fix in their version, that fix should be strongly preferred unless there is a
serious problem with it. Any changes not endorsed by the author should be marked as
such, and the contributor of the change acknowledged.

• The version of the module distributed with Perl should, whenever possible, be the latest
version of the module as distributed by the author (the latest non-beta version in the
case of public Perl releases), although the pumpkin holder may hold off on upgrading
the version of the module distributed with Perl to the latest version until the latest
version has had sufficient testing.

In other words, the author of a module should be considered to have final say on modifi-
cations to their module whenever possible (bearing in mind that it’s expected that everyone
involved will work together and arrive at reasonable compromises when there are disagree-
ments).

As a last resort, however:

If the author’s vision of the future of their module is sufficiently different from the vision
of the pumpkin holder and perl5-porters as a whole so as to cause serious problems for Perl,
the pumpkin holder may choose to formally fork the version of the module in the Perl core
from the one maintained by the author. This should not be done lightly and should always
if at all possible be done only after direct input from Larry. If this is done, it must then
be made explicit in the module as distributed with the Perl core that it is a forked version
and that while it is based on the original author’s work, it is no longer maintained by them.
This must be noted in both the documentation and in the comments in the source of the
module.

Again, this should be a last resort only. Ideally, this should never happen, and every
possible effort at cooperation and compromise should be made before doing this. If it does
prove necessary to fork a module for the overall health of Perl, proper credit must be given
to the original author in perpetuity and the decision should be constantly re-evaluated to
see if a remerging of the two branches is possible down the road.

In all dealings with contributed modules, everyone maintaining Perl should keep in mind
that the code belongs to the original author, that they may not be on perl5-porters at any
given time, and that a patch is not official unless it has been integrated into the author’s copy
of the module. To aid with this, and with points #1, #2, and #3 above, contact information
for the authors of all contributed modules should be kept with the Perl distribution.

Finally, the Perl community as a whole recognizes that respect for ownership of code,
respect for artistic control, proper credit, and active effort to prevent unintentional code
skew or communication gaps is vital to the health of the community and Perl itself. Members
of a community should not normally have to resort to rules and laws to deal with each other,
and this document, although it contains rules so as to be clear, is about an attitude and
general approach. The first step in any dispute should be open communication, respect for
opposing views, and an attempt at a compromise. In nearly every circumstance nothing
more will be necessary, and certainly no more drastic measure should be used until every
avenue of communication and discussion has failed.

55.8 DOCUMENTATION

Perl’s documentation is an important resource for our users. It’s incredibly important
for Perl’s documentation to be reasonably coherent and to accurately reflect the current
implementation.

Just as P5P collectively maintains the codebase, we collectively maintain the documen-
tation. Writing a particular bit of documentation doesn’t give an author control of the
future of that documentation. At the same time, just as source code changes should match
the style of their surrounding blocks, so should documentation changes.

Examples in documentation should be illustrative of the concept they’re explaining.
Sometimes, the best way to show how a language feature works is with a small program the
reader can run without modification. More often, examples will consist of a snippet of code
containing only the "important" bits. The definition of "important" varies from snippet to
snippet. Sometimes it’s important to declare use strict and use warnings, initialize all
variables and fully catch every error condition. More often than not, though, those things
obscure the lesson the example was intended to teach.

As Perl is developed by a global team of volunteers, our documentation often contains
spellings which look funny to somebody. Choice of American/British/Other spellings is left
as an exercise for the author of each bit of documentation. When patching documentation,
try to emulate the documentation around you, rather than changing the existing prose.

In general, documentation should describe what Perl does "now" rather than what it
used to do. It’s perfectly reasonable to include notes in documentation about how behaviour
has changed from previous releases, but, with very few exceptions, documentation isn’t
"dual-life" – it doesn’t need to fully describe how all old versions used to work.

55.9 STANDARDS OF CONDUCT

The official forum for the development of perl is the perl5-porters mailing list, mentioned
above, and its bugtracker at rt.perl.org. All participants in discussion there are expected
to adhere to a standard of conduct.

• Always be civil.

• Heed the moderators.

Civility is simple: stick to the facts while avoiding demeaning remarks and sarcasm. It
is not enough to be factual. You must also be civil. Responding in kind to incivility is not
acceptable.

If the list moderators tell you that you are not being civil, carefully consider how your
words have appeared before responding in any way. You may protest, but repeated protest
in the face of a repeatedly reaffirmed decision is not acceptable.

Unacceptable behavior will result in a public and clearly identified warning. Repeated
unacceptable behavior will result in removal from the mailing list and revocation of rights
to update rt.perl.org. The first removal is for one month. Subsequent removals will double
in length. After six months with no warning, a user’s ban length is reset. Removals, like
warnings, are public.

The list of moderators will be public knowledge. At present, it is: Aaron Crane, Andy
Dougherty, Ricardo Signes, Steffen Müller.

55.10 CREDITS

"Social Contract about Contributed Modules" originally by Russ Allbery
<rra@stanford.edu> and the perl5-porters.

56 perlport

56.1 NAME

perlport - Writing portable Perl

56.2 DESCRIPTION

Perl runs on numerous operating systems. While most of them share much in common,
they also have their own unique features.

This document is meant to help you to find out what constitutes portable Perl code.
That way once you make a decision to write portably, you know where the lines are drawn,
and you can stay within them.

There is a tradeoff between taking full advantage of one particular type of computer and
taking advantage of a full range of them. Naturally, as you broaden your range and become
more diverse, the common factors drop, and you are left with an increasingly smaller area
of common ground in which you can operate to accomplish a particular task. Thus, when
you begin attacking a problem, it is important to consider under which part of the tradeoff
curve you want to operate. Specifically, you must decide whether it is important that the
task that you are coding has the full generality of being portable, or whether to just get the
job done right now. This is the hardest choice to be made. The rest is easy, because Perl
provides many choices, whichever way you want to approach your problem.

Looking at it another way, writing portable code is usually about willfully limiting your
available choices. Naturally, it takes discipline and sacrifice to do that. The product of
portability and convenience may be a constant. You have been warned.

Be aware of two important points:

Not all Perl programs have to be portable
There is no reason you should not use Perl as a language to glue Unix tools
together, or to prototype a Macintosh application, or to manage the Windows
registry. If it makes no sense to aim for portability for one reason or another
in a given program, then don’t bother.

Nearly all of Perl already is portable
Don’t be fooled into thinking that it is hard to create portable Perl code. It
isn’t. Perl tries its level-best to bridge the gaps between what’s available on
different platforms, and all the means available to use those features. Thus
almost all Perl code runs on any machine without modification. But there are
some significant issues in writing portable code, and this document is entirely
about those issues.

Here’s the general rule: When you approach a task commonly done using a whole range
of platforms, think about writing portable code. That way, you don’t sacrifice much by way
of the implementation choices you can avail yourself of, and at the same time you can give
your users lots of platform choices. On the other hand, when you have to take advantage of
some unique feature of a particular platform, as is often the case with systems programming
(whether for Unix, Windows, VMS, etc.), consider writing platform-specific code.

When the code will run on only two or three operating systems, you may need to consider
only the differences of those particular systems. The important thing is to decide where the
code will run and to be deliberate in your decision.

The material below is separated into three main sections: main issues of portability
(Section 56.3 [ISSUES], page 952), platform-specific issues (Section 56.5 [PLATFORMS],
page 963), and built-in Perl functions that behave differently on various ports (Section 56.6
[FUNCTION IMPLEMENTATIONS], page 971).

This information should not be considered complete; it includes possibly transient in-
formation about idiosyncrasies of some of the ports, almost all of which are in a state of
constant evolution. Thus, this material should be considered a perpetual work in progress
().

56.3 ISSUES

56.3.1 Newlines

In most operating systems, lines in files are terminated by newlines. Just what is used as
a newline may vary from OS to OS. Unix traditionally uses \012, one type of DOSish I/O
uses \015\012, Mac OS uses \015, and z/OS uses \025.

Perl uses \n to represent the "logical" newline, where what is logical may depend on
the platform in use. In MacPerl, \n always means \015. On EBCDIC platforms, \n could
be \025 or \045. In DOSish perls, \n usually means \012, but when accessing a file in
"text" mode, perl uses the :crlf layer that translates it to (or from) \015\012, depending
on whether you’re reading or writing. Unix does the same thing on ttys in canonical mode.
\015\012 is commonly referred to as CRLF.

To trim trailing newlines from text lines use chomp(). With default settings that function
looks for a trailing \n character and thus trims in a portable way.

When dealing with binary files (or text files in binary mode) be sure to explicitly set $/
to the appropriate value for your file format before using chomp().

Because of the "text" mode translation, DOSish perls have limitations in using seek

and tell on a file accessed in "text" mode. Stick to seek-ing to locations you got from
tell (and no others), and you are usually free to use seek and tell even in "text" mode.
Using seek or tell or other file operations may be non-portable. If you use binmode on a
file, however, you can usually seek and tell with arbitrary values safely.

A common misconception in socket programming is that \n eq \012 everywhere. When
using protocols such as common Internet protocols, \012 and \015 are called for specifically,
and the values of the logical \n and \r (carriage return) are not reliable.

print SOCKET "Hi there, client!\r\n"; # WRONG

print SOCKET "Hi there, client!\015\012"; # RIGHT

However, using \015\012 (or \cM\cJ, or \x0D\x0A) can be tedious and unsightly, as
well as confusing to those maintaining the code. As such, the Socket module supplies the
Right Thing for those who want it.

use Socket qw(:DEFAULT :crlf);

print SOCKET "Hi there, client!$CRLF" # RIGHT

When reading from a socket, remember that the default input record separator $/ is \n,
but robust socket code will recognize as either \012 or \015\012 as end of line:

while (<SOCKET>) { # NOT ADVISABLE!

...

}

Because both CRLF and LF end in LF, the input record separator can be set to LF and
any CR stripped later. Better to write:

use Socket qw(:DEFAULT :crlf);

local($/) = LF; # not needed if $/ is already \012

while (<SOCKET>) {

s/$CR?$LF/\n/; # not sure if socket uses LF or CRLF, OK

s/\015?\012/\n/; # same thing

}

This example is preferred over the previous one–even for Unix platforms–because now
any \015’s (\cM’s) are stripped out (and there was much rejoicing).

Similarly, functions that return text data–such as a function that fetches a web page–
should sometimes translate newlines before returning the data, if they’ve not yet been
translated to the local newline representation. A single line of code will often suffice:

$data =~ s/\015?\012/\n/g;

return $data;

Some of this may be confusing. Here’s a handy reference to the ASCII CR and LF
characters. You can print it out and stick it in your wallet.

LF eq \012 eq \x0A eq \cJ eq chr(10) eq ASCII 10

CR eq \015 eq \x0D eq \cM eq chr(13) eq ASCII 13

| Unix | DOS | Mac |

\n | LF | LF | CR |

\r | CR | CR | LF |

\n * | LF | CRLF | CR |

\r * | CR | CR | LF |

* text-mode STDIO

The Unix column assumes that you are not accessing a serial line (like a tty) in canonical
mode. If you are, then CR on input becomes "\n", and "\n" on output becomes CRLF.

These are just the most common definitions of \n and \r in Perl. There may well be
others. For example, on an EBCDIC implementation such as z/OS (OS/390) or OS/400
(using the ILE, the PASE is ASCII-based) the above material is similar to "Unix" but the
code numbers change:

LF eq \025 eq \x15 eq \cU eq chr(21) eq CP-1047 21

LF eq \045 eq \x25 eq chr(37) eq CP-0037 37

CR eq \015 eq \x0D eq \cM eq chr(13) eq CP-1047 13

CR eq \015 eq \x0D eq \cM eq chr(13) eq CP-0037 13

| z/OS | OS/400 |

\n | LF | LF |

\r | CR | CR |

\n * | LF | LF |

\r * | CR | CR |

* text-mode STDIO

56.3.2 Numbers endianness and Width

Different CPUs store integers and floating point numbers in different orders (called endi-
anness) and widths (32-bit and 64-bit being the most common today). This affects your
programs when they attempt to transfer numbers in binary format from one CPU architec-
ture to another, usually either "live" via network connection, or by storing the numbers to
secondary storage such as a disk file or tape.

Conflicting storage orders make an utter mess out of the numbers. If a little-endian
host (Intel, VAX) stores 0x12345678 (305419896 in decimal), a big-endian host (Motorola,
Sparc, PA) reads it as 0x78563412 (2018915346 in decimal). Alpha and MIPS can be either:
Digital/Compaq used/uses them in little-endian mode; SGI/Cray uses them in big-endian
mode. To avoid this problem in network (socket) connections use the pack and unpack

formats n and N, the "network" orders. These are guaranteed to be portable.

As of Perl 5.10.0, you can also use the > and < modifiers to force big- or little-endian
byte-order. This is useful if you want to store signed integers or 64-bit integers, for example.

You can explore the endianness of your platform by unpacking a data structure packed
in native format such as:

print unpack("h*", pack("s2", 1, 2)), "\n";

’10002000’ on e.g. Intel x86 or Alpha 21064 in little-endian mode

’00100020’ on e.g. Motorola 68040

If you need to distinguish between endian architectures you could use either of the
variables set like so:

$is_big_endian = unpack("h*", pack("s", 1)) =~ /01/;

$is_little_endian = unpack("h*", pack("s", 1)) =~ /^1/;

Differing widths can cause truncation even between platforms of equal endianness. The
platform of shorter width loses the upper parts of the number. There is no good solution
for this problem except to avoid transferring or storing raw binary numbers.

One can circumnavigate both these problems in two ways. Either transfer and store
numbers always in text format, instead of raw binary, or else consider using modules like
Data::Dumper and Storable (included as of Perl 5.8). Keeping all data as text significantly
simplifies matters.

The v-strings are portable only up to v2147483647 (0x7FFF FFFF), that’s how far
EBCDIC, or more precisely UTF-EBCDIC will go.

56.3.3 Files and Filesystems

Most platforms these days structure files in a hierarchical fashion. So, it is reasonably safe
to assume that all platforms support the notion of a "path" to uniquely identify a file on
the system. How that path is really written, though, differs considerably.

Although similar, file path specifications differ between Unix, Windows, Mac OS, OS/2,
VMS, VOS, RISC OS, and probably others. Unix, for example, is one of the few OSes that
has the elegant idea of a single root directory.

DOS, OS/2, VMS, VOS, and Windows can work similarly to Unix with / as path sepa-
rator, or in their own idiosyncratic ways (such as having several root directories and various
"unrooted" device files such NIL: and LPT:).

Mac OS 9 and earlier used : as a path separator instead of /.

The filesystem may support neither hard links (link) nor symbolic links (symlink,
readlink, lstat).

The filesystem may support neither access timestamp nor change timestamp (meaning
that about the only portable timestamp is the modification timestamp), or one second
granularity of any timestamps (e.g. the FAT filesystem limits the time granularity to two
seconds).

The "inode change timestamp" (the -C filetest) may really be the "creation timestamp"
(which it is not in Unix).

VOS perl can emulate Unix filenames with / as path separator. The native pathname
characters greater-than, less-than, number-sign, and percent-sign are always accepted.

RISC OS perl can emulate Unix filenames with / as path separator, or go native and
use . for path separator and : to signal filesystems and disk names.

Don’t assume Unix filesystem access semantics: that read, write, and execute are all
the permissions there are, and even if they exist, that their semantics (for example what
do "r", "w", and "x" mean on a directory) are the Unix ones. The various Unix/POSIX
compatibility layers usually try to make interfaces like chmod() work, but sometimes there
simply is no good mapping.

If all this is intimidating, have no (well, maybe only a little) fear. There are modules that
can help. The File::Spec modules provide methods to do the Right Thing on whatever
platform happens to be running the program.

use File::Spec::Functions;

chdir(updir()); # go up one directory

my $file = catfile(curdir(), ’temp’, ’file.txt’);

on Unix and Win32, ’./temp/file.txt’

on Mac OS Classic, ’:temp:file.txt’

on VMS, ’[.temp]file.txt’

File::Spec is available in the standard distribution as of version 5.004 05.
File::Spec::Functions is only in File::Spec 0.7 and later, and some versions of Perl
come with version 0.6. If File::Spec is not updated to 0.7 or later, you must use the
object-oriented interface from File::Spec (or upgrade File::Spec).

In general, production code should not have file paths hardcoded. Making them user-
supplied or read from a configuration file is better, keeping in mind that file path syntax
varies on different machines.

This is especially noticeable in scripts like Makefiles and test suites, which often assume
/ as a path separator for subdirectories.

Also of use is File::Basename from the standard distribution, which splits a pathname
into pieces (base filename, full path to directory, and file suffix).

Even when on a single platform (if you can call Unix a single platform), remember not
to count on the existence or the contents of particular system-specific files or directories,
like /etc/passwd, /etc/sendmail.conf, /etc/resolv.conf, or even /tmp/. For example,
/etc/passwd may exist but not contain the encrypted passwords, because the system is
using some form of enhanced security. Or it may not contain all the accounts, because the
system is using NIS. If code does need to rely on such a file, include a description of the file
and its format in the code’s documentation, then make it easy for the user to override the
default location of the file.

Don’t assume a text file will end with a newline. They should, but people forget.

Do not have two files or directories of the same name with different case, like test.pl

and Test.pl, as many platforms have case-insensitive (or at least case-forgiving) filenames.
Also, try not to have non-word characters (except for .) in the names, and keep them to
the 8.3 convention, for maximum portability, onerous a burden though this may appear.

Likewise, when using the AutoSplit module, try to keep your functions to 8.3 naming
and case-insensitive conventions; or, at the least, make it so the resulting files have a unique
(case-insensitively) first 8 characters.

Whitespace in filenames is tolerated on most systems, but not all, and even on systems
where it might be tolerated, some utilities might become confused by such whitespace.

Many systems (DOS, VMS ODS-2) cannot have more than one . in their filenames.

Don’t assume > won’t be the first character of a filename. Always use < explicitly to
open a file for reading, or even better, use the three-arg version of open, unless you want
the user to be able to specify a pipe open.

open my $fh, ’<’, $existing_file) or die $!;

If filenames might use strange characters, it is safest to open it with sysopen instead of
open. open is magic and can translate characters like >, <, and |, which may be the wrong
thing to do. (Sometimes, though, it’s the right thing.) Three-arg open can also help protect
against this translation in cases where it is undesirable.

Don’t use : as a part of a filename since many systems use that for their own seman-
tics (Mac OS Classic for separating pathname components, many networking schemes and
utilities for separating the nodename and the pathname, and so on). For the same reasons,
avoid @, ; and |.

Don’t assume that in pathnames you can collapse two leading slashes // into one: some
networking and clustering filesystems have special semantics for that. Let the operating
system sort it out.

The portable filename characters as defined by ANSI C are

a b c d e f g h i j k l m n o p q r t u v w x y z

A B C D E F G H I J K L M N O P Q R T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

. _ -

and the "-" shouldn’t be the first character. If you want to be hypercorrect, stay case-
insensitive and within the 8.3 naming convention (all the files and directories have to be
unique within one directory if their names are lowercased and truncated to eight characters
before the ., if any, and to three characters after the ., if any). (And do not use .s in
directory names.)

56.3.4 System Interaction

Not all platforms provide a command line. These are usually platforms that rely primarily
on a Graphical User Interface (GUI) for user interaction. A program requiring a command
line interface might not work everywhere. This is probably for the user of the program to
deal with, so don’t stay up late worrying about it.

Some platforms can’t delete or rename files held open by the system, this limitation
may also apply to changing filesystem metainformation like file permissions or owners.
Remember to close files when you are done with them. Don’t unlink or rename an open
file. Don’t tie or open a file already tied or opened; untie or close it first.

Don’t open the same file more than once at a time for writing, as some operating systems
put mandatory locks on such files.

Don’t assume that write/modify permission on a directory gives the right to add or
delete files/directories in that directory. That is filesystem specific: in some filesystems you
need write/modify permission also (or even just) in the file/directory itself. In some filesys-
tems (AFS, DFS) the permission to add/delete directory entries is a completely separate
permission.

Don’t assume that a single unlink completely gets rid of the file: some filesystems (most
notably the ones in VMS) have versioned filesystems, and unlink() removes only the most
recent one (it doesn’t remove all the versions because by default the native tools on those
platforms remove just the most recent version, too). The portable idiom to remove all the
versions of a file is

1 while unlink "file";

This will terminate if the file is undeleteable for some reason (protected, not there, and
so on).

Don’t count on a specific environment variable existing in %ENV. Don’t count on %ENV

entries being case-sensitive, or even case-preserving. Don’t try to clear %ENV by saying %ENV

= ();, or, if you really have to, make it conditional on $^O ne ’VMS’ since in VMS the %ENV
table is much more than a per-process key-value string table.

On VMS, some entries in the %ENV hash are dynamically created when their key is
used on a read if they did not previously exist. The values for $ENV{HOME}, $ENV{TERM},
$ENV{PATH}, and $ENV{USER}, are known to be dynamically generated. The specific names
that are dynamically generated may vary with the version of the C library on VMS, and
more may exist than are documented.

On VMS by default, changes to the %ENV hash persist after perl exits. Subsequent
invocations of perl in the same process can inadvertently inherit environment settings that
were meant to be temporary.

Don’t count on signals or %SIG for anything.

Don’t count on filename globbing. Use opendir, readdir, and closedir instead.

Don’t count on per-program environment variables, or per-program current directories.

Don’t count on specific values of $!, neither numeric nor especially the string values.
Users may switch their locales causing error messages to be translated into their languages.
If you can trust a POSIXish environment, you can portably use the symbols defined by the
Errno module, like ENOENT. And don’t trust on the values of $! at all except immediately
after a failed system call.

56.3.5 Command names versus file pathnames

Don’t assume that the name used to invoke a command or program with system or exec
can also be used to test for the existence of the file that holds the executable code for that
command or program. First, many systems have "internal" commands that are built-in to
the shell or OS and while these commands can be invoked, there is no corresponding file.
Second, some operating systems (e.g., Cygwin, DJGPP, OS/2, and VOS) have required
suffixes for executable files; these suffixes are generally permitted on the command name
but are not required. Thus, a command like "perl" might exist in a file named "perl",
"perl.exe", or "perl.pm", depending on the operating system. The variable "_exe" in
the Config module holds the executable suffix, if any. Third, the VMS port carefully sets
up $^X and $Config{perlpath} so that no further processing is required. This is just as
well, because the matching regular expression used below would then have to deal with a
possible trailing version number in the VMS file name.

To convert $^X to a file pathname, taking account of the requirements of the various
operating system possibilities, say:

use Config;

my $thisperl = $^X;

if ($^O ne ’VMS’)

{$thisperl .= $Config{_exe} unless $thisperl =~ m/$Config{_exe}$/i;}

To convert $Config{perlpath} to a file pathname, say:

use Config;

my $thisperl = $Config{perlpath};

if ($^O ne ’VMS’)

{$thisperl .= $Config{_exe} unless $thisperl =~ m/$Config{_exe}$/i;}

56.3.6 Networking

Don’t assume that you can reach the public Internet.

Don’t assume that there is only one way to get through firewalls to the public Internet.

Don’t assume that you can reach outside world through any other port than 80, or some
web proxy. ftp is blocked by many firewalls.

Don’t assume that you can send email by connecting to the local SMTP port.

Don’t assume that you can reach yourself or any node by the name ’localhost’. The
same goes for ’127.0.0.1’. You will have to try both.

Don’t assume that the host has only one network card, or that it can’t bind to many
virtual IP addresses.

Don’t assume a particular network device name.

Don’t assume a particular set of ioctl()s will work.

Don’t assume that you can ping hosts and get replies.

Don’t assume that any particular port (service) will respond.

Don’t assume that Sys::Hostname (or any other API or command) returns either a fully
qualified hostname or a non-qualified hostname: it all depends on how the system had been
configured. Also remember that for things such as DHCP and NAT, the hostname you get
back might not be very useful.

All the above "don’t":s may look daunting, and they are, but the key is to degrade
gracefully if one cannot reach the particular network service one wants. Croaking or hanging
do not look very professional.

56.3.7 Interprocess Communication (IPC)

In general, don’t directly access the system in code meant to be portable. That means, no
system, exec, fork, pipe, ‘‘, qx//, open with a |, nor any of the other things that makes
being a Perl hacker worth being.

Commands that launch external processes are generally supported on most platforms
(though many of them do not support any type of forking). The problem with using them
arises from what you invoke them on. External tools are often named differently on different
platforms, may not be available in the same location, might accept different arguments, can
behave differently, and often present their results in a platform-dependent way. Thus, you
should seldom depend on them to produce consistent results. (Then again, if you’re calling
netstat -a, you probably don’t expect it to run on both Unix and CP/M.)

One especially common bit of Perl code is opening a pipe to sendmail:

open(MAIL, ’|/usr/lib/sendmail -t’)

or die "cannot fork sendmail: $!";

This is fine for systems programming when sendmail is known to be available. But it is
not fine for many non-Unix systems, and even some Unix systems that may not have send-
mail installed. If a portable solution is needed, see the various distributions on CPAN that
deal with it. Mail::Mailer and Mail::Send in the MailTools distribution are commonly
used, and provide several mailing methods, including mail, sendmail, and direct SMTP
(via Net::SMTP) if a mail transfer agent is not available. Mail::Sendmail is a standalone
module that provides simple, platform-independent mailing.

The Unix System V IPC (msg*(), sem*(), shm*()) is not available even on all Unix
platforms.

Do not use either the bare result of pack("N", 10, 20, 30, 40) or bare v-strings (such
as v10.20.30.40) to represent IPv4 addresses: both forms just pack the four bytes into
network order. That this would be equal to the C language in_addr struct (which is what
the socket code internally uses) is not guaranteed. To be portable use the routines of the
Socket extension, such as inet_aton(), inet_ntoa(), and sockaddr_in().

The rule of thumb for portable code is: Do it all in portable Perl, or use a module (that
may internally implement it with platform-specific code, but exposes a common interface).

56.3.8 External Subroutines (XS)

XS code can usually be made to work with any platform, but dependent libraries, header
files, etc., might not be readily available or portable, or the XS code itself might be platform-

specific, just as Perl code might be. If the libraries and headers are portable, then it is
normally reasonable to make sure the XS code is portable, too.

A different type of portability issue arises when writing XS code: availability of a C
compiler on the end-user’s system. C brings with it its own portability issues, and writing
XS code will expose you to some of those. Writing purely in Perl is an easier way to achieve
portability.

56.3.9 Standard Modules

In general, the standard modules work across platforms. Notable exceptions are the CPAN

module (which currently makes connections to external programs that may not be available),
platform-specific modules (like ExtUtils::MM_VMS), and DBM modules.

There is no one DBM module available on all platforms. SDBM_File and the others are
generally available on all Unix and DOSish ports, but not in MacPerl, where only NDBM_File
and DB_File are available.

The good news is that at least some DBM module should be available, and AnyDBM_File

will use whichever module it can find. Of course, then the code needs to be fairly strict,
dropping to the greatest common factor (e.g., not exceeding 1K for each record), so that it
will work with any DBM module. See AnyDBM_File for more details.

56.3.10 Time and Date

The system’s notion of time of day and calendar date is controlled in widely different ways.
Don’t assume the timezone is stored in $ENV{TZ}, and even if it is, don’t assume that you
can control the timezone through that variable. Don’t assume anything about the three-
letter timezone abbreviations (for example that MST would be the Mountain Standard
Time, it’s been known to stand for Moscow Standard Time). If you need to use timezones,
express them in some unambiguous format like the exact number of minutes offset from
UTC, or the POSIX timezone format.

Don’t assume that the epoch starts at 00:00:00, January 1, 1970, because that is OS-
and implementation-specific. It is better to store a date in an unambiguous representa-
tion. The ISO 8601 standard defines YYYY-MM-DD as the date format, or YYYY-MM-
DDTHH:MM:SS (that’s a literal "T" separating the date from the time). Please do use the
ISO 8601 instead of making us guess what date 02/03/04 might be. ISO 8601 even sorts
nicely as-is. A text representation (like "1987-12-18") can be easily converted into an OS-
specific value using a module like Date::Parse. An array of values, such as those returned
by localtime, can be converted to an OS-specific representation using Time::Local.

When calculating specific times, such as for tests in time or date modules, it may be
appropriate to calculate an offset for the epoch.

require Time::Local;

my $offset = Time::Local::timegm(0, 0, 0, 1, 0, 70);

The value for $offset in Unix will be 0, but in Mac OS Classic will be some large
number. $offset can then be added to a Unix time value to get what should be the proper
value on any system.

56.3.11 Character sets and character encoding

Assume very little about character sets.

Assume nothing about numerical values (ord, chr) of characters. Do not use explicit code
point ranges (like \xHH-\xHH). However, starting in Perl v5.22, regular expression pattern
bracketed character class ranges specified like qr/[\N{U+HH}-\N{U+HH}]/ are portable. You
can portably use symbolic character classes like [:print:].

Do not assume that the alphabetic characters are encoded contiguously (in the numeric
sense). There may be gaps. Special coding in Perl, however, guarantees that all subsets of
qr/[A-Z]/, qr/[a-z]/, and qr/[0-9]/ behave as expected. tr/// behaves the same for
these ranges. In patterns, any ranges specified with end points using the \N{...} notations
ensures character set portability, but it is a bug in Perl v5.22, that this isn’t true of tr///.

Do not assume anything about the ordering of the characters. The lowercase letters may
come before or after the uppercase letters; the lowercase and uppercase may be interlaced
so that both "a" and "A" come before "b"; the accented and other international characters
may be interlaced so that ä comes before "b". Unicode-Collate can be used to sort this
all out.

56.3.12 Internationalisation

If you may assume POSIX (a rather large assumption), you may read more about the
POSIX locale system from Section 38.1 [perllocale NAME], page 701. The locale system at
least attempts to make things a little bit more portable, or at least more convenient and
native-friendly for non-English users. The system affects character sets and encoding, and
date and time formatting–amongst other things.

If you really want to be international, you should consider Unicode. See Section 83.1
[perluniintro NAME], page 1352 and Section 81.1 [perlunicode NAME], page 1317 for more
information.

If you want to use non-ASCII bytes (outside the bytes 0x00..0x7f) in the "source code"
of your code, to be portable you have to be explicit about what bytes they are. Someone
might for example be using your code under a UTF-8 locale, in which case random native
bytes might be illegal ("Malformed UTF-8 ...") This means that for example embedding
ISO 8859-1 bytes beyond 0x7f into your strings might cause trouble later. If the bytes are
native 8-bit bytes, you can use the bytes pragma. If the bytes are in a string (regular
expressions being curious strings), you can often also use the \xHH or more portably, the
\N{U+HH} notations instead of embedding the bytes as-is. If you want to write your code
in UTF-8, you can use utf8.

56.3.13 System Resources

If your code is destined for systems with severely constrained (or missing!) virtual memory
systems then you want to be especially mindful of avoiding wasteful constructs such as:

my @lines = <$very_large_file>; # bad

while (<$fh>) {$file .= $_} # sometimes bad

my $file = join(’’, <$fh>); # better

The last two constructs may appear unintuitive to most people. The first repeatedly
grows a string, whereas the second allocates a large chunk of memory in one go. On some
systems, the second is more efficient than the first.

56.3.14 Security

Most multi-user platforms provide basic levels of security, usually implemented at the filesys-
tem level. Some, however, unfortunately do not. Thus the notion of user id, or "home"
directory, or even the state of being logged-in, may be unrecognizable on many platforms.
If you write programs that are security-conscious, it is usually best to know what type of
system you will be running under so that you can write code explicitly for that platform
(or class of platforms).

Don’t assume the Unix filesystem access semantics: the operating system or the filesys-
tem may be using some ACL systems, which are richer languages than the usual rwx. Even
if the rwx exist, their semantics might be different.

(From the security viewpoint, testing for permissions before attempting to do something
is silly anyway: if one tries this, there is potential for race conditions. Someone or something
might change the permissions between the permissions check and the actual operation. Just
try the operation.)

Don’t assume the Unix user and group semantics: especially, don’t expect $< and $> (or
$(and $)) to work for switching identities (or memberships).

Don’t assume set-uid and set-gid semantics. (And even if you do, think twice: set-uid
and set-gid are a known can of security worms.)

56.3.15 Style

For those times when it is necessary to have platform-specific code, consider keeping the
platform-specific code in one place, making porting to other platforms easier. Use the
Config module and the special variable $^O to differentiate platforms, as described in
Section 56.5 [PLATFORMS], page 963.

Be careful in the tests you supply with your module or programs. Module code may be
fully portable, but its tests might not be. This often happens when tests spawn off other
processes or call external programs to aid in the testing, or when (as noted above) the
tests assume certain things about the filesystem and paths. Be careful not to depend on a
specific output style for errors, such as when checking $! after a failed system call. Using
$! for anything else than displaying it as output is doubtful (though see the Errno module
for testing reasonably portably for error value). Some platforms expect a certain output
format, and Perl on those platforms may have been adjusted accordingly. Most specifically,
don’t anchor a regex when testing an error value.

56.4 CPAN Testers

Modules uploaded to CPAN are tested by a variety of volunteers on different platforms.
These CPAN testers are notified by mail of each new upload, and reply to the list with
PASS, FAIL, NA (not applicable to this platform), or UNKNOWN (unknown), along with
any relevant notations.

The purpose of the testing is twofold: one, to help developers fix any problems in their
code that crop up because of lack of testing on other platforms; two, to provide users with
information about whether a given module works on a given platform.

Also see:

• Mailing list: cpan-testers-discuss@perl.org

• Testing results: http://www.cpantesters.org/

56.5 PLATFORMS

Perl is built with a $^O variable that indicates the operating system it was built on. This was
implemented to help speed up code that would otherwise have to use Config and use the
value of $Config{osname}. Of course, to get more detailed information about the system,
looking into %Config is certainly recommended.

%Config cannot always be trusted, however, because it was built at compile time. If perl
was built in one place, then transferred elsewhere, some values may be wrong. The values
may even have been edited after the fact.

56.5.1 Unix

Perl works on a bewildering variety of Unix and Unix-like platforms (see e.g. most of the
files in the hints/ directory in the source code kit). On most of these systems, the value
of $^O (hence $Config{’osname’}, too) is determined either by lowercasing and stripping
punctuation from the first field of the string returned by typing uname -a (or a similar
command) at the shell prompt or by testing the file system for the presence of uniquely
named files such as a kernel or header file. Here, for example, are a few of the more popular
Unix flavors:

uname $^O $Config{’archname’}

--

AIX aix aix

BSD/OS bsdos i386-bsdos

Darwin darwin darwin

DYNIX/ptx dynixptx i386-dynixptx

FreeBSD freebsd freebsd-i386

Haiku haiku BePC-haiku

Linux linux arm-linux

Linux linux armv5tel-linux

Linux linux i386-linux

Linux linux i586-linux

Linux linux ppc-linux

HP-UX hpux PA-RISC1.1

IRIX irix irix

Mac OS X darwin darwin

NeXT 3 next next-fat

NeXT 4 next OPENSTEP-Mach

openbsd openbsd i386-openbsd

OSF1 dec_osf alpha-dec_osf

reliantunix-n svr4 RM400-svr4

SCO_SV sco_sv i386-sco_sv

SINIX-N svr4 RM400-svr4

sn4609 unicos CRAY_C90-unicos

sn6521 unicosmk t3e-unicosmk

sn9617 unicos CRAY_J90-unicos

SunOS solaris sun4-solaris

http://www.cpantesters.org/

SunOS solaris i86pc-solaris

SunOS4 sunos sun4-sunos

Because the value of $Config{archname} may depend on the hardware architecture, it
can vary more than the value of $^O.

56.5.2 DOS and Derivatives

Perl has long been ported to Intel-style microcomputers running under systems like PC-
DOS, MS-DOS, OS/2, and most Windows platforms you can bring yourself to mention
(except for Windows CE, if you count that). Users familiar with COMMAND.COM or
CMD.EXE style shells should be aware that each of these file specifications may have
subtle differences:

my $filespec0 = "c:/foo/bar/file.txt";

my $filespec1 = "c:\\foo\\bar\\file.txt";

my $filespec2 = ’c:\foo\bar\file.txt’;

my $filespec3 = ’c:\\foo\\bar\\file.txt’;

System calls accept either / or \ as the path separator. However, many command-line
utilities of DOS vintage treat / as the option prefix, so may get confused by filenames
containing /. Aside from calling any external programs, / will work just fine, and probably
better, as it is more consistent with popular usage, and avoids the problem of remembering
what to backwhack and what not to.

The DOS FAT filesystem can accommodate only "8.3" style filenames. Under the "case-
insensitive, but case-preserving" HPFS (OS/2) and NTFS (NT) filesystems you may have
to be careful about case returned with functions like readdir or used with functions like
open or opendir.

DOS also treats several filenames as special, such as AUX, PRN, NUL, CON, COM1,
LPT1, LPT2, etc. Unfortunately, sometimes these filenames won’t even work if you include
an explicit directory prefix. It is best to avoid such filenames, if you want your code to be
portable to DOS and its derivatives. It’s hard to know what these all are, unfortunately.

Users of these operating systems may also wish to make use of scripts such as pl2bat.bat
or pl2cmd to put wrappers around your scripts.

Newline (\n) is translated as \015\012 by STDIO when reading from and writing to files
(see Section 56.3.1 [Newlines], page 952). binmode(FILEHANDLE) will keep \n translated as
\012 for that filehandle. Since it is a no-op on other systems, binmode should be used for
cross-platform code that deals with binary data. That’s assuming you realize in advance
that your data is in binary. General-purpose programs should often assume nothing about
their data.

The $^O variable and the $Config{archname} values for various DOSish perls are as
follows:

OS $^O $Config{archname} ID Version

--

MS-DOS dos ?

PC-DOS dos ?

OS/2 os2 ?

Windows 3.1 ? ? 0 3 01

Windows 95 MSWin32 MSWin32-x86 1 4 00

Windows 98 MSWin32 MSWin32-x86 1 4 10

Windows ME MSWin32 MSWin32-x86 1 ?

Windows NT MSWin32 MSWin32-x86 2 4 xx

Windows NT MSWin32 MSWin32-ALPHA 2 4 xx

Windows NT MSWin32 MSWin32-ppc 2 4 xx

Windows 2000 MSWin32 MSWin32-x86 2 5 00

Windows XP MSWin32 MSWin32-x86 2 5 01

Windows 2003 MSWin32 MSWin32-x86 2 5 02

Windows Vista MSWin32 MSWin32-x86 2 6 00

Windows 7 MSWin32 MSWin32-x86 2 6 01

Windows 7 MSWin32 MSWin32-x64 2 6 01

Windows 2008 MSWin32 MSWin32-x86 2 6 01

Windows 2008 MSWin32 MSWin32-x64 2 6 01

Windows CE MSWin32 ? 3

Cygwin cygwin cygwin

The various MSWin32 Perl’s can distinguish the OS they are running on via the value
of the fifth element of the list returned from Win32::GetOSVersion(). For example:

if ($^O eq ’MSWin32’) {

my @os_version_info = Win32::GetOSVersion();

print +(’3.1’,’95’,’NT’)[$os_version_info[4]],"\n";

}

There are also Win32::IsWinNT() and Win32::IsWin95(); try perldoc Win32, and as
of libwin32 0.19 (not part of the core Perl distribution) Win32::GetOSName(). The very
portable POSIX::uname() will work too:

c:\> perl -MPOSIX -we "print join ’|’, uname"

Windows NT|moonru|5.0|Build 2195 (Service Pack 2)|x86

Also see:

• The djgpp environment for DOS, http://www.delorie.com/djgpp/ and perldos.

• The EMX environment for DOS, OS/2, etc. emx@iaehv.nl, ftp://hobbes.nmsu.edu/
pub/os2/dev/emx/ Also perlos2.

• Build instructions for Win32 in perlwin32, or under the Cygnus environment in
perlcygwin.

• The Win32::* modules in Win32.

• The ActiveState Pages, http://www.activestate.com/

• The Cygwin environment for Win32; README.cygwin (installed as perlcygwin),
http://www.cygwin.com/

• The U/WIN environment for Win32, http://www.research.att.com/sw/tools/
uwin/

• Build instructions for OS/2, perlos2

56.5.3 VMS

Perl on VMS is discussed in Section 87.1 [perlvms NAME], page 1409 in the Perl distribu-
tion.

The official name of VMS as of this writing is OpenVMS.

http://www.delorie.com/djgpp/
ftp://hobbes.nmsu.edu/pub/os2/dev/emx/
ftp://hobbes.nmsu.edu/pub/os2/dev/emx/
http://www.activestate.com/
http://www.cygwin.com/
http://www.research.att.com/sw/tools/uwin/
http://www.research.att.com/sw/tools/uwin/

Interacting with Perl from the Digital Command Language (DCL) shell often requires a
different set of quotation marks than Unix shells do. For example:

$ perl -e "print ""Hello, world.\n"""

Hello, world.

There are several ways to wrap your Perl scripts in DCL .COM files, if you are so inclined.
For example:

$ write sys$output "Hello from DCL!"

$ if p1 .eqs. ""

$ then perl -x ’f$environment("PROCEDURE")

$ else perl -x - ’p1 ’p2 ’p3 ’p4 ’p5 ’p6 ’p7 ’p8

$ deck/dollars="__END__"

#!/usr/bin/perl

print "Hello from Perl!\n";

__END__

$ endif

Do take care with $ ASSIGN/nolog/user SYS$COMMAND: SYS$INPUT if your Perl-in-DCL
script expects to do things like $read = <STDIN>;.

The VMS operating system has two filesystems, designated by their on-disk structure
(ODS) level: ODS-2 and its successor ODS-5. The initial port of Perl to VMS pre-dates
ODS-5, but all current testing and development assumes ODS-5 and its capabilities, in-
cluding case preservation, extended characters in filespecs, and names up to 8192 bytes
long.

Perl on VMS can accept either VMS- or Unix-style file specifications as in either of the
following:

$ perl -ne "print if /perl_setup/i" SYS$LOGIN:LOGIN.COM

$ perl -ne "print if /perl_setup/i" /sys$login/login.com

but not a mixture of both as in:

$ perl -ne "print if /perl_setup/i" sys$login:/login.com

Can’t open sys$login:/login.com: file specification syntax error

In general, the easiest path to portability is always to specify filenames in Unix format
unless they will need to be processed by native commands or utilities. Because of this
latter consideration, the File::Spec module by default returns native format specifications
regardless of input format. This default may be reversed so that filenames are always
reported in Unix format by specifying the DECC$FILENAME_UNIX_REPORT feature logical in
the environment.

The file type, or extension, is always present in a VMS-format file specification even if
it’s zero-length. This means that, by default, readdir will return a trailing dot on a file
with no extension, so where you would see "a" on Unix you’ll see "a." on VMS. However,
the trailing dot may be suppressed by enabling the DECC$READDIR_DROPDOTNOTYPE feature
in the environment (see the CRTL documentation on feature logical names).

What \n represents depends on the type of file opened. It usually represents \012

but it could also be \015, \012, \015\012, \000, \040, or nothing depending on the file

organization and record format. The VMS::Stdio module provides access to the special
fopen() requirements of files with unusual attributes on VMS.

The value of $^O on OpenVMS is "VMS". To determine the architecture that you are
running on refer to $Config{’archname’}.

On VMS, perl determines the UTC offset from the SYS$TIMEZONE_DIFFERENTIAL logical
name. Although the VMS epoch began at 17-NOV-1858 00:00:00.00, calls to localtime

are adjusted to count offsets from 01-JAN-1970 00:00:00.00, just like Unix.

Also see:

• README.vms (installed as README_vms), Section 87.1 [perlvms NAME], page 1409

• vmsperl list, vmsperl-subscribe@perl.org

• vmsperl on the web, http://www.sidhe.org/vmsperl/index.html

• VMS Software Inc. web site, http://www.vmssoftware.com

56.5.4 VOS

Perl on VOS (also known as OpenVOS) is discussed in README.vos in the Perl distribution
(installed as perlvos). Perl on VOS can accept either VOS- or Unix-style file specifications
as in either of the following:

$ perl -ne "print if /perl_setup/i" >system>notices

$ perl -ne "print if /perl_setup/i" /system/notices

or even a mixture of both as in:

$ perl -ne "print if /perl_setup/i" >system/notices

Even though VOS allows the slash character to appear in object names, because the
VOS port of Perl interprets it as a pathname delimiting character, VOS files, directories,
or links whose names contain a slash character cannot be processed. Such files must be
renamed before they can be processed by Perl.

Older releases of VOS (prior to OpenVOS Release 17.0) limit file names to 32 or fewer
characters, prohibit file names from starting with a - character, and prohibit file names
from containing any character matching tr/ !#%&’()*;<=>?//.

Newer releases of VOS (OpenVOS Release 17.0 or later) support a feature known as
extended names. On these releases, file names can contain up to 255 characters, are pro-
hibited from starting with a - character, and the set of prohibited characters is reduced to
any character matching tr/#%*<>?//. There are restrictions involving spaces and apostro-
phes: these characters must not begin or end a name, nor can they immediately precede
or follow a period. Additionally, a space must not immediately precede another space
or hyphen. Specifically, the following character combinations are prohibited: space-space,
space-hyphen, period-space, space-period, period-apostrophe, apostrophe-period, leading or
trailing space, and leading or trailing apostrophe. Although an extended file name is limited
to 255 characters, a path name is still limited to 256 characters.

The value of $^O on VOS is "vos". To determine the architecture that you are running
on without resorting to loading all of %Config you can examine the content of the @INC

array like so:

if ($^O =~ /vos/) {

print "I’m on a Stratus box!\n";

http://www.sidhe.org/vmsperl/index.html
http://www.vmssoftware.com

} else {

print "I’m not on a Stratus box!\n";

die;

}

Also see:

• README.vos (installed as perlvos)

• The VOS mailing list.

There is no specific mailing list for Perl on VOS. You can contact the Stratus Tech-
nologies Customer Assistance Center (CAC) for your region, or you can use the contact
information located in the distribution files on the Stratus Anonymous FTP site.

• Stratus Technologies on the web at http://www.stratus.com

• VOS Open-Source Software on the web at http://ftp.stratus.com/pub/vos/vos.
html

56.5.5 EBCDIC Platforms

v5.22 core Perl runs on z/OS (formerly OS/390). Theoretically it could run on the suc-
cessors of OS/400 on AS/400 minicomputers as well as VM/ESA, and BS2000 for S/390
Mainframes. Such computers use EBCDIC character sets internally (usually Character
Code Set ID 0037 for OS/400 and either 1047 or POSIX-BC for S/390 systems).

The rest of this section may need updating, but we don’t know what it should say. Please
email comments to perlbug@perl.org (mailto:perlbug@perl.org).

On the mainframe Perl currently works under the "Unix system services for OS/390"
(formerly known as OpenEdition), VM/ESA OpenEdition, or the BS200 POSIX-BC system
(BS2000 is supported in Perl 5.6 and greater). See perlos390 for details. Note that for
OS/400 there is also a port of Perl 5.8.1/5.10.0 or later to the PASE which is ASCII-based
(as opposed to ILE which is EBCDIC-based), see perlos400.

As of R2.5 of USS for OS/390 and Version 2.3 of VM/ESA these Unix sub-systems do
not support the #! shebang trick for script invocation. Hence, on OS/390 and VM/ESA
Perl scripts can be executed with a header similar to the following simple script:

: # use perl

eval ’exec /usr/local/bin/perl -S $0 ${1+"$@"}’

if 0;

#!/usr/local/bin/perl # just a comment really

print "Hello from perl!\n";

OS/390 will support the #! shebang trick in release 2.8 and beyond. Calls to system

and backticks can use POSIX shell syntax on all S/390 systems.

On the AS/400, if PERL5 is in your library list, you may need to wrap your Perl scripts
in a CL procedure to invoke them like so:

BEGIN

CALL PGM(PERL5/PERL) PARM(’/QOpenSys/hello.pl’)

ENDPGM

This will invoke the Perl script hello.pl in the root of the QOpenSys file system. On
the AS/400 calls to system or backticks must use CL syntax.

http://www.stratus.com
http://ftp.stratus.com/pub/vos/vos.html
http://ftp.stratus.com/pub/vos/vos.html
mailto:perlbug@perl.org

On these platforms, bear in mind that the EBCDIC character set may have an effect
on what happens with some Perl functions (such as chr, pack, print, printf, ord, sort,
sprintf, unpack), as well as bit-fiddling with ASCII constants using operators like ^, &
and |, not to mention dealing with socket interfaces to ASCII computers (see Section 56.3.1
[Newlines], page 952).

Fortunately, most web servers for the mainframe will correctly translate the \n in the
following statement to its ASCII equivalent (\r is the same under both Unix and z/OS):

print "Content-type: text/html\r\n\r\n";

The values of $^O on some of these platforms includes:

uname $^O $Config{’archname’}

--

OS/390 os390 os390

OS400 os400 os400

POSIX-BC posix-bc BS2000-posix-bc

Some simple tricks for determining if you are running on an EBCDIC platform could
include any of the following (perhaps all):

if ("\t" eq "\005") { print "EBCDIC may be spoken here!\n"; }

if (ord(’A’) == 193) { print "EBCDIC may be spoken here!\n"; }

if (chr(169) eq ’z’) { print "EBCDIC may be spoken here!\n"; }

One thing you may not want to rely on is the EBCDIC encoding of punctuation char-
acters since these may differ from code page to code page (and once your module or script
is rumoured to work with EBCDIC, folks will want it to work with all EBCDIC character
sets).

Also see:

• perlos390, perlos400, perlbs2000, Section 19.1 [perlebcdic NAME], page 266.

• The perl-mvs@perl.org list is for discussion of porting issues as well as general usage
issues for all EBCDIC Perls. Send a message body of "subscribe perl-mvs" to major-
domo@perl.org.

• AS/400 Perl information at http://as400.rochester.ibm.com/ as well as on CPAN
in the ports/ directory.

56.5.6 Acorn RISC OS

Because Acorns use ASCII with newlines (\n) in text files as \012 like Unix, and because
Unix filename emulation is turned on by default, most simple scripts will probably work "out
of the box". The native filesystem is modular, and individual filesystems are free to be case-
sensitive or insensitive, and are usually case-preserving. Some native filesystems have name
length limits, which file and directory names are silently truncated to fit. Scripts should be
aware that the standard filesystem currently has a name length limit of 10 characters, with
up to 77 items in a directory, but other filesystems may not impose such limitations.

Native filenames are of the form

Filesystem#Special_Field::DiskName.$.Directory.Directory.File

where

http://as400.rochester.ibm.com/

Special_Field is not usually present, but may contain . and $.

Filesystem =~ m|[A-Za-z0-9_]|

DsicName =~ m|[A-Za-z0-9_/]|

$ represents the root directory

. is the path separator

@ is the current directory (per filesystem but machine global)

^ is the parent directory

Directory and File =~ m|[^\0- "\.\$\%\&:\@\\^\|\177]+|

The default filename translation is roughly tr|/.|./|;

Note that "ADFS::HardDisk.$.File" ne ’ADFS::HardDisk.$.File’ and that the sec-
ond stage of $ interpolation in regular expressions will fall foul of the $. if scripts are not
careful.

Logical paths specified by system variables containing comma-separated search lists
are also allowed; hence System:Modules is a valid filename, and the filesystem will
prefix Modules with each section of System$Path until a name is made that points to
an object on disk. Writing to a new file System:Modules would be allowed only if
System$Path contains a single item list. The filesystem will also expand system variables
in filenames if enclosed in angle brackets, so <System$Dir>.Modules would look for the file
$ENV{’System$Dir’} . ’Modules’. The obvious implication of this is that fully qualified
filenames can start with <> and should be protected when open is used for input.

Because . was in use as a directory separator and filenames could not be assumed to
be unique after 10 characters, Acorn implemented the C compiler to strip the trailing .c

.h .s and .o suffix from filenames specified in source code and store the respective files in
subdirectories named after the suffix. Hence files are translated:

foo.h h.foo

C:foo.h C:h.foo (logical path variable)

sys/os.h sys.h.os (C compiler groks Unix-speak)

10charname.c c.10charname

10charname.o o.10charname

11charname_.c c.11charname (assuming filesystem truncates at 10)

The Unix emulation library’s translation of filenames to native assumes that this sort
of translation is required, and it allows a user-defined list of known suffixes that it will
transpose in this fashion. This may seem transparent, but consider that with these rules
foo/bar/baz.h and foo/bar/h/baz both map to foo.bar.h.baz, and that readdir and
glob cannot and do not attempt to emulate the reverse mapping. Other .’s in filenames
are translated to /.

As implied above, the environment accessed through %ENV is global, and the convention is
that program specific environment variables are of the form Program$Name. Each filesystem
maintains a current directory, and the current filesystem’s current directory is the global
current directory. Consequently, sociable programs don’t change the current directory but
rely on full pathnames, and programs (and Makefiles) cannot assume that they can spawn
a child process which can change the current directory without affecting its parent (and
everyone else for that matter).

Because native operating system filehandles are global and are currently allocated down
from 255, with 0 being a reserved value, the Unix emulation library emulates Unix filehan-
dles. Consequently, you can’t rely on passing STDIN, STDOUT, or STDERR to your children.

The desire of users to express filenames of the form <Foo$Dir>.Bar on the command
line unquoted causes problems, too: ‘‘ command output capture has to perform a guessing
game. It assumes that a string <[^<>]+\$[^<>]> is a reference to an environment variable,
whereas anything else involving < or > is redirection, and generally manages to be 99% right.
Of course, the problem remains that scripts cannot rely on any Unix tools being available,
or that any tools found have Unix-like command line arguments.

Extensions and XS are, in theory, buildable by anyone using free tools. In practice,
many don’t, as users of the Acorn platform are used to binary distributions. MakeMaker
does run, but no available make currently copes with MakeMaker’s makefiles; even if and
when this should be fixed, the lack of a Unix-like shell will cause problems with makefile
rules, especially lines of the form cd sdbm && make all, and anything using quoting.

"RISC OS" is the proper name for the operating system, but the value in $^O is "riscos"
(because we don’t like shouting).

56.5.7 Other perls

Perl has been ported to many platforms that do not fit into any of the categories listed
above. Some, such as AmigaOS, QNX, Plan 9, and VOS, have been well-integrated into
the standard Perl source code kit. You may need to see the ports/ directory on CPAN
for information, and possibly binaries, for the likes of: aos, Atari ST, lynxos, riscos, Novell
Netware, Tandem Guardian, etc. (Yes, we know that some of these OSes may fall under
the Unix category, but we are not a standards body.)

Some approximate operating system names and their $^O values in the "OTHER" cat-
egory include:

OS $^O $Config{’archname’}

--

Amiga DOS amigaos m68k-amigos

See also:

• Amiga, README.amiga (installed as perlamiga).

• A free perl5-based PERL.NLM for Novell Netware is available in precompiled binary
and source code form from http://www.novell.com/ as well as from CPAN.

• Plan 9, README.plan9

56.6 FUNCTION IMPLEMENTATIONS

Listed below are functions that are either completely unimplemented or else have been
implemented differently on various platforms. Following each description will be, in paren-
theses, a list of platforms that the description applies to.

The list may well be incomplete, or even wrong in some places. When in doubt, con-
sult the platform-specific README files in the Perl source distribution, and any other
documentation resources accompanying a given port.

Be aware, moreover, that even among Unix-ish systems there are variations.

http://www.novell.com/

For many functions, you can also query %Config, exported by default from the Config

module. For example, to check whether the platform has the lstat call, check $Config{d_

lstat}. See Config for a full description of available variables.

56.6.1 Alphabetical Listing of Perl Functions

-X

-w only inspects the read-only file attribute (FILE ATTRIBUTE READONLY),
which determines whether the directory can be deleted, not whether it can be
written to. Directories always have read and write access unless denied by
discretionary access control lists (DACLs). (Win32)

-r, -w, -x, and -o tell whether the file is accessible, which may not reflect
UIC-based file protections. (VMS)

-s by name on an open file will return the space reserved on disk, rather than the
current extent. -s on an open filehandle returns the current size. (RISC OS)

-R, -W, -X, -O are indistinguishable from -r, -w, -x, -o. (Win32, VMS,
RISC OS)

-g, -k, -l, -u, -A are not particularly meaningful. (Win32, VMS, RISC OS)

-p is not particularly meaningful. (VMS, RISC OS)

-d is true if passed a device spec without an explicit directory. (VMS)

-x (or -X) determine if a file ends in one of the executable suffixes. -S is
meaningless. (Win32)

-x (or -X) determine if a file has an executable file type. (RISC OS)

alarm

Emulated using timers that must be explicitly polled whenever Perl wants to
dispatch "safe signals" and therefore cannot interrupt blocking system calls.
(Win32)

atan2

Due to issues with various CPUs, math libraries, compilers, and standards,
results for atan2() may vary depending on any combination of the above.
Perl attempts to conform to the Open Group/IEEE standards for the results
returned from atan2(), but cannot force the issue if the system Perl is run on
does not allow it. (Tru64, HP-UX 10.20)

The current version of the standards for atan2() is available at http://www.
opengroup.org/onlinepubs/009695399/functions/atan2.html.

binmode

Meaningless. (RISC OS)

Reopens file and restores pointer; if function fails, underlying filehandle may be
closed, or pointer may be in a different position. (VMS)

The value returned by tell may be affected after the call, and the filehandle
may be flushed. (Win32)

chmod

http://www.opengroup.org/onlinepubs/009695399/functions/atan2.html
http://www.opengroup.org/onlinepubs/009695399/functions/atan2.html

Only good for changing "owner" read-write access, "group", and "other" bits
are meaningless. (Win32)

Only good for changing "owner" and "other" read-write access. (RISC OS)

Access permissions are mapped onto VOS access-control list changes. (VOS)

The actual permissions set depend on the value of the CYGWIN in the SYSTEM
environment settings. (Cygwin)

Setting the exec bit on some locations (generally /sdcard) will return true but
not actually set the bit. (Android)

chown

Not implemented. (Win32, Plan 9, RISC OS)

Does nothing, but won’t fail. (Win32)

A little funky, because VOS’s notion of ownership is a little funky (VOS).

chroot

Not implemented. (Win32, VMS, Plan 9, RISC OS, VOS)

crypt

May not be available if library or source was not provided when building perl.
(Win32)

Not implemented. (Android)

dbmclose

Not implemented. (VMS, Plan 9, VOS)

dbmopen

Not implemented. (VMS, Plan 9, VOS)

dump

Not useful. (RISC OS)

Not supported. (Cygwin, Win32)

Invokes VMS debugger. (VMS)

exec

exec LIST without the use of indirect object syntax (exec PROGRAM LIST) may
fall back to trying the shell if the first spawn() fails. (Win32)

Does not automatically flush output handles on some platforms. (SunOS, So-
laris, HP-UX)

Not supported. (Symbian OS)

exit

Emulates Unix exit() (which considers exit 1 to indicate an error) by mapping
the 1 to SS$_ABORT (44). This behavior may be overridden with the pragma use
vmsish ’exit’. As with the CRTL’s exit() function, exit 0 is also mapped
to an exit status of SS$_NORMAL (1); this mapping cannot be overridden. Any
other argument to exit() is used directly as Perl’s exit status. On VMS, unless
the future POSIX EXIT mode is enabled, the exit code should always be a valid

VMS exit code and not a generic number. When the POSIX EXIT mode is
enabled, a generic number will be encoded in a method compatible with the
C library POSIX EXIT macro so that it can be decoded by other programs,
particularly ones written in C, like the GNV package. (VMS)

exit() resets file pointers, which is a problem when called from a child process
(created by fork()) in BEGIN. A workaround is to use POSIX::_exit. (Solaris)

exit unless $Config{archname} =~ /\bsolaris\b/;

require POSIX and POSIX::_exit(0);

fcntl

Not implemented. (Win32)

Some functions available based on the version of VMS. (VMS)

flock

Not implemented (VMS, RISC OS, VOS).

fork

Not implemented. (AmigaOS, RISC OS, VMS)

Emulated using multiple interpreters. See Section 23.1 [perlfork NAME],
page 337. (Win32)

Does not automatically flush output handles on some platforms. (SunOS, So-
laris, HP-UX)

getlogin

Not implemented. (RISC OS)

getpgrp

Not implemented. (Win32, VMS, RISC OS)

getppid

Not implemented. (Win32, RISC OS)

getpriority

Not implemented. (Win32, VMS, RISC OS, VOS)

getpwnam

Not implemented. (Win32)

Not useful. (RISC OS)

getgrnam

Not implemented. (Win32, VMS, RISC OS)

getnetbyname
Not implemented. (Android, Win32, Plan 9)

getpwuid

Not implemented. (Win32)

Not useful. (RISC OS)

getgrgid

Not implemented. (Win32, VMS, RISC OS)

getnetbyaddr
Not implemented. (Android, Win32, Plan 9)

getprotobynumber
Not implemented. (Android)

getservbyport
getpwent

Not implemented. (Android, Win32)

getgrent

Not implemented. (Android, Win32, VMS)

gethostbyname
gethostbyname(’localhost’) does not work everywhere: you may have to
use gethostbyname(’127.0.0.1’). (Irix 5)

gethostent

Not implemented. (Win32)

getnetent

Not implemented. (Android, Win32, Plan 9)

getprotoent
Not implemented. (Android, Win32, Plan 9)

getservent

Not implemented. (Win32, Plan 9)

seekdir

Not implemented. (Android)

sethostent

Not implemented. (Android, Win32, Plan 9, RISC OS)

setnetent

Not implemented. (Win32, Plan 9, RISC OS)

setprotoent
Not implemented. (Android, Win32, Plan 9, RISC OS)

setservent

Not implemented. (Plan 9, Win32, RISC OS)

endpwent

Not implemented. (Win32)

Either not implemented or a no-op. (Android)

endgrent

Not implemented. (Android, RISC OS, VMS, Win32)

endhostent
Not implemented. (Android, Win32)

endnetent

Not implemented. (Android, Win32, Plan 9)

endprotoent
Not implemented. (Android, Win32, Plan 9)

endservent
Not implemented. (Plan 9, Win32)

getsockopt SOCKET,LEVEL,OPTNAME
Not implemented. (Plan 9)

glob

This operator is implemented via the File::Glob extension on most platforms.
See File-Glob for portability information.

gmtime

In theory, gmtime() is reliable from -2**63 to 2**63-1. However, because work
arounds in the implementation use floating point numbers, it will become inac-
curate as the time gets larger. This is a bug and will be fixed in the future.

On VOS, time values are 32-bit quantities.

ioctl FILEHANDLE,FUNCTION,SCALAR
Not implemented. (VMS)

Available only for socket handles, and it does what the ioctlsocket() call in
the Winsock API does. (Win32)

Available only for socket handles. (RISC OS)

kill

Not implemented, hence not useful for taint checking. (RISC OS)

kill() doesn’t have the semantics of raise(), i.e. it doesn’t send a signal
to the identified process like it does on Unix platforms. Instead kill($sig,

$pid) terminates the process identified by $pid, and makes it exit immediately
with exit status $sig. As in Unix, if $sig is 0 and the specified process exists, it
returns true without actually terminating it. (Win32)

kill(-9, $pid) will terminate the process specified by $pid and recursively all
child processes owned by it. This is different from the Unix semantics, where
the signal will be delivered to all processes in the same process group as the
process specified by $pid. (Win32)

Is not supported for process identification number of 0 or negative numbers.
(VMS)

link

Not implemented. (RISC OS, VOS)

Link count not updated because hard links are not quite that hard (They are
sort of half-way between hard and soft links). (AmigaOS)

Hard links are implemented on Win32 under NTFS only. They are natively
supported on Windows 2000 and later. On Windows NT they are implemented
using the Windows POSIX subsystem support and the Perl process will need
Administrator or Backup Operator privileges to create hard links.

Available on 64 bit OpenVMS 8.2 and later. (VMS)

localtime

localtime() has the same range as [gmtime], page 976, but because time zone
rules change its accuracy for historical and future times may degrade but usually
by no more than an hour.

lstat

Not implemented. (RISC OS)

Return values (especially for device and inode) may be bogus. (Win32)

msgctl

msgget

msgsnd

msgrcv

Not implemented. (Android, Win32, VMS, Plan 9, RISC OS, VOS)

open

open to |- and -| are unsupported. (Win32, RISC OS)

Opening a process does not automatically flush output handles on some plat-
forms. (SunOS, Solaris, HP-UX)

readlink

Not implemented. (Win32, VMS, RISC OS)

rename

Can’t move directories between directories on different logical volumes. (Win32)

rewinddir

Will not cause readdir() to re-read the directory stream. The entries already
read before the rewinddir() call will just be returned again from a cache buffer.
(Win32)

select

Only implemented on sockets. (Win32, VMS)

Only reliable on sockets. (RISC OS)

Note that the select FILEHANDLE form is generally portable.

semctl

semget

semop

Not implemented. (Android, Win32, VMS, RISC OS)

setgrent

Not implemented. (Android, VMS, Win32, RISC OS)

setpgrp

Not implemented. (Win32, VMS, RISC OS, VOS)

setpriority

Not implemented. (Win32, VMS, RISC OS, VOS)

setpwent

Not implemented. (Android, Win32, RISC OS)

setsockopt

Not implemented. (Plan 9)

shmctl

shmget

shmread

shmwrite

Not implemented. (Android, Win32, VMS, RISC OS)

sleep

Emulated using synchronization functions such that it can be interrupted by
alarm(), and limited to a maximum of 4294967 seconds, approximately 49
days. (Win32)

sockatmark
A relatively recent addition to socket functions, may not be implemented even
in Unix platforms.

socketpair

Not implemented. (RISC OS)

Available on 64 bit OpenVMS 8.2 and later. (VMS)

stat

Platforms that do not have rdev, blksize, or blocks will return these as ”, so
numeric comparison or manipulation of these fields may cause ’not numeric’
warnings.

ctime not supported on UFS (Mac OS X).

ctime is creation time instead of inode change time (Win32).

device and inode are not meaningful. (Win32)

device and inode are not necessarily reliable. (VMS)

mtime, atime and ctime all return the last modification time. Device and inode
are not necessarily reliable. (RISC OS)

dev, rdev, blksize, and blocks are not available. inode is not meaningful and
will differ between stat calls on the same file. (os2)

some versions of cygwin when doing a stat("foo") and if not finding it may
then attempt to stat("foo.exe") (Cygwin)

On Win32 stat() needs to open the file to determine the link count and update
attributes that may have been changed through hard links. Setting ${^WIN32_

SLOPPY_STAT} to a true value speeds up stat() by not performing this opera-
tion. (Win32)

symlink

Not implemented. (Win32, RISC OS)

Implemented on 64 bit VMS 8.3. VMS requires the symbolic link to be in Unix
syntax if it is intended to resolve to a valid path.

syscall

Not implemented. (Win32, VMS, RISC OS, VOS)

sysopen

The traditional "0", "1", and "2" MODEs are implemented with different nu-
meric values on some systems. The flags exported by Fcntl (O RDONLY,
O WRONLY, O RDWR) should work everywhere though. (Mac OS, OS/390)

system

As an optimization, may not call the command shell specified in
$ENV{PERL5SHELL}. system(1, @args) spawns an external process and
immediately returns its process designator, without waiting for it to terminate.
Return value may be used subsequently in wait or waitpid. Failure to
spawn() a subprocess is indicated by setting $? to "255 << 8". $? is set in a
way compatible with Unix (i.e. the exitstatus of the subprocess is obtained by
"$? 8">>, as described in the documentation). (Win32)

There is no shell to process metacharacters, and the native standard is to pass
a command line terminated by "\n" "\r" or "\0" to the spawned program.
Redirection such as > foo is performed (if at all) by the run time library of
the spawned program. system list will call the Unix emulation library’s exec
emulation, which attempts to provide emulation of the stdin, stdout, stderr in
force in the parent, providing the child program uses a compatible version of the
emulation library. scalar will call the native command line direct and no such
emulation of a child Unix program will exists. Mileage will vary. (RISC OS)

system LIST without the use of indirect object syntax (system PROGRAM LIST)
may fall back to trying the shell if the first spawn() fails. (Win32)

Does not automatically flush output handles on some platforms. (SunOS, So-
laris, HP-UX)

The return value is POSIX-like (shifted up by 8 bits), which only allows room
for a made-up value derived from the severity bits of the native 32-bit condition
code (unless overridden by use vmsish ’status’). If the native condition code
is one that has a POSIX value encoded, the POSIX value will be decoded to
extract the expected exit value. For more details see [perlvms $?], page 1424.
(VMS)

telldir

Not implemented. (Android)

times

"cumulative" times will be bogus. On anything other than Windows NT or
Windows 2000, "system" time will be bogus, and "user" time is actually the
time returned by the clock() function in the C runtime library. (Win32)

Not useful. (RISC OS)

truncate

Not implemented. (Older versions of VMS)

Truncation to same-or-shorter lengths only. (VOS)

If a FILEHANDLE is supplied, it must be writable and opened in append mode
(i.e., use open(FH, ’>>filename’) or sysopen(FH,...,O_APPEND|O_RDWR). If
a filename is supplied, it should not be held open elsewhere. (Win32)

umask

Returns undef where unavailable.

umask works but the correct permissions are set only when the file is finally
closed. (AmigaOS)

utime

Only the modification time is updated. (VMS, RISC OS)

May not behave as expected. Behavior depends on the C runtime library’s
implementation of utime(), and the filesystem being used. The FAT filesystem
typically does not support an "access time" field, and it may limit timestamps
to a granularity of two seconds. (Win32)

wait

waitpid

Can only be applied to process handles returned for processes spawned using
system(1, ...) or pseudo processes created with fork(). (Win32)

Not useful. (RISC OS)

56.7 Supported Platforms

The following platforms are known to build Perl 5.12 (as of April 2010, its release date)
from the standard source code distribution available at http://www.cpan.org/src

Linux (x86, ARM, IA64)
HP-UX

AIX

Win32

http://www.cpan.org/src

Windows 2000
Windows XP
Windows Server 2003
Windows Vista
Windows Server 2008
Windows 7

Cygwin

Some tests are known to fail:

• ext/XS-APItes/t/call_checker.t - see https://rt.perl.org/Ticket/
Display.html?id=78502

• dist/I18N-Collate/t/I18N-Collate.t

• ext/Win32CORE/t/win32core.t - may fail on recent cygwin installs.

Solaris (x86, SPARC)
OpenVMS

Alpha (7.2 and later)
I64 (8.2 and later)

Symbian

NetBSD

FreeBSD

Debian GNU/kFreeBSD
Haiku

Irix (6.5. What else?)
OpenBSD

Dragonfly BSD
Midnight BSD
QNX Neutrino RTOS (6.5.0)
MirOS BSD
Stratus OpenVOS (17.0 or later)

Caveats:

time t issues that may or may not be fixed

Symbian (Series 60 v3, 3.2 and 5 - what else?)
Stratus VOS / OpenVOS
AIX

Android

FreeMINT

Perl now builds with FreeMiNT/Atari. It fails a few tests, that needs some
investigation.

The FreeMiNT port uses GNU dld for loadable module capabilities. So ensure
you have that library installed when building perl.

https://rt.perl.org/Ticket/Display.html?id=78502
https://rt.perl.org/Ticket/Display.html?id=78502

56.8 EOL Platforms

56.8.1 (Perl 5.20)

The following platforms were supported by a previous version of Perl but have been officially
removed from Perl’s source code as of 5.20:

AT&T 3b1

56.8.2 (Perl 5.14)

The following platforms were supported up to 5.10. They may still have worked in 5.12,
but supporting code has been removed for 5.14:

Windows 95
Windows 98
Windows ME
Windows NT4

56.8.3 (Perl 5.12)

The following platforms were supported by a previous version of Perl but have been officially
removed from Perl’s source code as of 5.12:

Atari MiNT
Apollo Domain/OS
Apple Mac OS 8/9
Tenon Machten

56.9 Supported Platforms (Perl 5.8)

As of July 2002 (the Perl release 5.8.0), the following platforms were able to build Perl from
the standard source code distribution available at http://www.cpan.org/src/

AIX

BeOS

BSD/OS (BSDi)

Cygwin

DG/UX

DOS DJGPP 1)

DYNIX/ptx

EPOC R5

FreeBSD

HI-UXMPP (Hitachi) (5.8.0 worked but we didn’t know it)

HP-UX

IRIX

Linux

Mac OS Classic

Mac OS X (Darwin)

MPE/iX

NetBSD

NetWare

NonStop-UX

http://www.cpan.org/src/

ReliantUNIX (formerly SINIX)

OpenBSD

OpenVMS (formerly VMS)

Open UNIX (Unixware) (since Perl 5.8.1/5.9.0)

OS/2

OS/400 (using the PASE) (since Perl 5.8.1/5.9.0)

PowerUX

POSIX-BC (formerly BS2000)

QNX

Solaris

SunOS 4

SUPER-UX (NEC)

Tru64 UNIX (formerly DEC OSF/1, Digital UNIX)

UNICOS

UNICOS/mk

UTS

VOS / OpenVOS

Win95/98/ME/2K/XP 2)

WinCE

z/OS (formerly OS/390)

VM/ESA

1) in DOS mode either the DOS or OS/2 ports can be used

2) compilers: Borland, MinGW (GCC), VC6

The following platforms worked with the previous releases (5.6 and 5.7), but we did not
manage either to fix or to test these in time for the 5.8.0 release. There is a very good
chance that many of these will work fine with the 5.8.0.

BSD/OS

DomainOS

Hurd

LynxOS

MachTen

PowerMAX

SCO SV

SVR4

Unixware

Windows 3.1

Known to be broken for 5.8.0 (but 5.6.1 and 5.7.2 can be used):

AmigaOS

The following platforms have been known to build Perl from source in the past (5.005 03
and earlier), but we haven’t been able to verify their status for the current release, either
because the hardware/software platforms are rare or because we don’t have an active cham-
pion on these platforms–or both. They used to work, though, so go ahead and try compiling
them, and let perlbug@perl.org of any trouble.

3b1

A/UX

ConvexOS

CX/UX

DC/OSx

DDE SMES

DOS EMX

Dynix

EP/IX

ESIX

FPS

GENIX

Greenhills

ISC

MachTen 68k

MPC

NEWS-OS

NextSTEP

OpenSTEP

Opus

Plan 9

RISC/os

SCO ODT/OSR

Stellar

SVR2

TI1500

TitanOS

Ultrix

Unisys Dynix

The following platforms have their own source code distributions and binaries available
via http://www.cpan.org/ports/

Perl release

OS/400 (ILE) 5.005_02

Tandem Guardian 5.004

The following platforms have only binaries available via http://www.cpan.org/ports/

index.html :

Perl release

Acorn RISCOS 5.005_02

AOS 5.002

LynxOS 5.004_02

Although we do suggest that you always build your own Perl from the source code,
both for maximal configurability and for security, in case you are in a hurry you can check
http://www.cpan.org/ports/index.html for binary distributions.

http://www.cpan.org/ports/
http://www.cpan.org/ports/index.html
http://www.cpan.org/ports/index.html
http://www.cpan.org/ports/index.html

56.10 SEE ALSO

perlaix, perlamiga, perlbs2000, perlce, perlcygwin, perldos, Section 19.1 [perlebcdic
NAME], page 266, perlfreebsd, perlhurd, perlhpux, perlirix, perlmacos, perlmacosx,
perlnetware, perlos2, perlos390, perlos400, perlplan9, perlqnx, perlsolaris,
perltru64, Section 81.1 [perlunicode NAME], page 1317, Section 87.1 [perlvms NAME],
page 1409, perlvos, perlwin32, and Win32.

56.11 AUTHORS / CONTRIBUTORS

Abigail <abigail@foad.org>, Charles Bailey <bailey@newman.upenn.edu>, Graham
Barr <gbarr@pobox.com>, Tom Christiansen <tchrist@perl.com>, Nicholas Clark
<nick@ccl4.org>, Thomas Dorner <Thomas.Dorner@start.de>, Andy Dougherty
<doughera@lafayette.edu>, Dominic Dunlop <domo@computer.org>, Neale Fer-
guson <neale@vma.tabnsw.com.au>, David J. Fiander <davidf@mks.com>, Paul
Green <Paul.Green@stratus.com>, M.J.T. Guy <mjtg@cam.ac.uk>, Jarkko Hi-
etaniemi <jhi@iki.fi>, Luther Huffman <lutherh@stratcom.com>, Nick Ing-Simmons
<nick@ing-simmons.net>, Andreas J. König <a.koenig@mind.de>, Markus Laker
<mlaker@contax.co.uk>, Andrew M. Langmead <aml@world.std.com>, Larry Moore
<ljmoore@freespace.net>, Paul Moore <Paul.Moore@uk.origin-it.com>, Chris Nandor
<pudge@pobox.com>, Matthias Neeracher <neeracher@mac.com>, Philip New-
ton <pne@cpan.org>, Gary Ng <71564.1743@CompuServe.COM>, Tom Phoenix
<rootbeer@teleport.com>, André Pirard <A.Pirard@ulg.ac.be>, Peter Prymmer
<pvhp@forte.com>, Hugo van der Sanden <hv@crypt0.demon.co.uk>, Gurusamy
Sarathy <gsar@activestate.com>, Paul J. Schinder <schinder@pobox.com>, Michael G
Schwern <schwern@pobox.com>, Dan Sugalski <dan@sidhe.org>, Nathan Torkington
<gnat@frii.com>, John Malmberg <wb8tyw@qsl.net>

57 perlpragma

57.1 NAME

perlpragma - how to write a user pragma

57.2 DESCRIPTION

A pragma is a module which influences some aspect of the compile time or run time be-
haviour of Perl, such as strict or warnings. With Perl 5.10 you are no longer limited to
the built in pragmata; you can now create user pragmata that modify the behaviour of user
functions within a lexical scope.

57.3 A basic example

For example, say you need to create a class implementing overloaded mathematical oper-
ators, and would like to provide your own pragma that functions much like use integer;

You’d like this code

use MyMaths;

my $l = MyMaths->new(1.2);

my $r = MyMaths->new(3.4);

print "A: ", $l + $r, "\n";

use myint;

print "B: ", $l + $r, "\n";

{

no myint;

print "C: ", $l + $r, "\n";

}

print "D: ", $l + $r, "\n";

no myint;

print "E: ", $l + $r, "\n";

to give the output

A: 4.6

B: 4

C: 4.6

D: 4

E: 4.6

i.e., where use myint; is in effect, addition operations are forced to integer, whereas by
default they are not, with the default behaviour being restored via no myint;

The minimal implementation of the package MyMaths would be something like this:

package MyMaths;

use warnings;

use strict;

use myint();

use overload ’+’ => sub {

my ($l, $r) = @_;

Pass 1 to check up one call level from here

if (myint::in_effect(1)) {

int($$l) + int($$r);

} else {

$$l + $$r;

}

};

sub new {

my ($class, $value) = @_;

bless \$value, $class;

}

1;

Note how we load the user pragma myint with an empty list () to prevent its import
being called.

The interaction with the Perl compilation happens inside package myint:

package myint;

use strict;

use warnings;

sub import {

$^H{"myint/in_effect"} = 1;

}

sub unimport {

$^H{"myint/in_effect"} = 0;

}

sub in_effect {

my $level = shift // 0;

my $hinthash = (caller($level))[10];

return $hinthash->{"myint/in_effect"};

}

1;

As pragmata are implemented as modules, like any other module, use myint; becomes

BEGIN {

require myint;

myint->import();

}

and no myint; is

BEGIN {

require myint;

myint->unimport();

}

Hence the import and unimport routines are called at compile time for the user’s code.

User pragmata store their state by writing to the magical hash %^H, hence these two
routines manipulate it. The state information in %^H is stored in the optree, and can be
retrieved read-only at runtime with caller(), at index 10 of the list of returned results. In
the example pragma, retrieval is encapsulated into the routine in_effect(), which takes
as parameter the number of call frames to go up to find the value of the pragma in the
user’s script. This uses caller() to determine the value of $^H{"myint/in_effect"} when
each line of the user’s script was called, and therefore provide the correct semantics in the
subroutine implementing the overloaded addition.

57.4 Key naming

There is only a single %^H, but arbitrarily many modules that want to use its scoping
semantics. To avoid stepping on each other’s toes, they need to be sure to use different
keys in the hash. It is therefore conventional for a module to use only keys that begin
with the module’s name (the name of its main package) and a "/" character. After this
module-identifying prefix, the rest of the key is entirely up to the module: it may include
any characters whatsoever. For example, a module Foo::Bar should use keys such as
Foo::Bar/baz and Foo::Bar/$%/_!. Modules following this convention all play nicely
with each other.

The Perl core uses a handful of keys in %^H which do not follow this convention, because
they predate it. Keys that follow the convention won’t conflict with the core’s historical
keys.

57.5 Implementation details

The optree is shared between threads. This means there is a possibility that the optree
will outlive the particular thread (and therefore the interpreter instance) that created it,
so true Perl scalars cannot be stored in the optree. Instead a compact form is used, which
can only store values that are integers (signed and unsigned), strings or undef - references
and floating point values are stringified. If you need to store multiple values or complex
structures, you should serialise them, for example with pack. The deletion of a hash key
from %^H is recorded, and as ever can be distinguished from the existence of a key with
value undef with exists.

Don’t attempt to store references to data structures as integers which are retrieved
via caller and converted back, as this will not be threadsafe. Accesses would be to the
structure without locking (which is not safe for Perl’s scalars), and either the structure has
to leak, or it has to be freed when its creating thread terminates, which may be before the
optree referencing it is deleted, if other threads outlive it.

58 perlre

58.1 NAME

perlre - Perl regular expressions

58.2 DESCRIPTION

This page describes the syntax of regular expressions in Perl.

If you haven’t used regular expressions before, a quick-start introduction is available in
Section 66.1 [perlrequick NAME], page 1116, and a longer tutorial introduction is available
in Section 68.1 [perlretut NAME], page 1131.

For reference on how regular expressions are used in matching operations, plus various
examples of the same, see discussions of m//, s///, qr// and ?? in Section 48.2.30 [perlop
Regexp Quote-Like Operators], page 823.

New in v5.22, Section “’strict’ mode” in re applies stricter rules than otherwise when
compiling regular expression patterns. It can find things that, while legal, may not be what
you intended.

58.2.1 Modifiers

Matching operations can have various modifiers. Modifiers that relate to the interpretation
of the regular expression inside are listed below. Modifiers that alter the way a regular
expression is used by Perl are detailed in Section 48.2.30 [perlop Regexp Quote-Like Op-
erators], page 823 and Section 48.2.32 [perlop Gory details of parsing quoted constructs],
page 839.

m

Treat string as multiple lines. That is, change "^" and "$" from matching the
start of the string’s first line and the end of its last line to matching the start
and end of each line within the string.

s

Treat string as single line. That is, change "." to match any character whatso-
ever, even a newline, which normally it would not match.

Used together, as /ms, they let the "." match any character whatsoever, while
still allowing "^" and "$" to match, respectively, just after and just before
newlines within the string.

i

Do case-insensitive pattern matching.

If locale matching rules are in effect, the case map is taken from the current
locale for code points less than 255, and from Unicode rules for larger code
points. However, matches that would cross the Unicode rules/non-Unicode
rules boundary (ords 255/256) will not succeed. See Section 38.1 [perllocale
NAME], page 701.

There are a number of Unicode characters that match multiple characters under
/i. For example, LATIN SMALL LIGATURE FI should match the sequence fi.

Perl is not currently able to do this when the multiple characters are in the
pattern and are split between groupings, or when one or more are quantified.
Thus

"\N{LATIN SMALL LIGATURE FI}" =~ /fi/i; # Matches

"\N{LATIN SMALL LIGATURE FI}" =~ /[fi][fi]/i; # Doesn’t match!

"\N{LATIN SMALL LIGATURE FI}" =~ /fi*/i; # Doesn’t match!

The below doesn’t match, and it isn’t clear what $1 and $2 would

be even if it did!!

"\N{LATIN SMALL LIGATURE FI}" =~ /(f)(i)/i; # Doesn’t match!

Perl doesn’t match multiple characters in a bracketed character class unless
the character that maps to them is explicitly mentioned, and it doesn’t match
them at all if the character class is inverted, which otherwise could be highly
confusing. See Section 61.2.3 [perlrecharclass Bracketed Character Classes],
page 1065, and Section 61.2.3.3 [perlrecharclass Negation], page 1068.

x

Extend your pattern’s legibility by permitting whitespace and comments. De-
tails in Section 58.2.1.1 [/x], page 991

p

Preserve the string matched such that ${^PREMATCH}, ${^MATCH}, and
${^POSTMATCH} are available for use after matching.

In Perl 5.20 and higher this is ignored. Due to a new copy-on-write mechanism,
${^PREMATCH}, ${^MATCH}, and ${^POSTMATCH} will be available af-
ter the match regardless of the modifier.

a, d, l and u
These modifiers, all new in 5.14, affect which character-set rules (Unicode,
etc.) are used, as described below in Section 58.2.1.2 [Character set modifiers],
page 992.

n

Prevent the grouping metacharacters () from capturing. This modifier, new in
5.22, will stop $1, $2, etc... from being filled in.

"hello" =~ /(hi|hello)/; # $1 is "hello"

"hello" =~ /(hi|hello)/n; # $1 is undef

This is equivalent to putting ?: at the beginning of every capturing group:

"hello" =~ /(?:hi|hello)/; # $1 is undef

/n can be negated on a per-group basis. Alternatively, named captures may
still be used.

"hello" =~ /(?-n:(hi|hello))/n; # $1 is "hello"

"hello" =~ /(?<greet>hi|hello)/n; # $1 is "hello", $+{greet} is

"hello"

Other Modifiers
There are a number of flags that can be found at the end of regular expression
constructs that are not generic regular expression flags, but apply to the opera-
tion being performed, like matching or substitution (m// or s/// respectively).

Flags described further in Section 68.3.15 [perlretut Using regular expressions
in Perl], page 1153 are:

c - keep the current position during repeated matching

g - globally match the pattern repeatedly in the string

Substitution-specific modifiers described in

[perlop s/PATTERN/REPLACEMENT/msixpodualngcer], page 830 are:

e - evaluate the right-hand side as an expression

ee - evaluate the right side as a string then eval the result

o - pretend to optimize your code, but actually introduce bugs

r - perform non-destructive substitution and return the new value

Regular expression modifiers are usually written in documentation as e.g., "the /x mod-
ifier", even though the delimiter in question might not really be a slash. The modifiers
/imsxadlup may also be embedded within the regular expression itself using the (?...)

construct, see Section 58.2.4 [Extended Patterns], page 1004 below.

58.2.1.1 /x

/x tells the regular expression parser to ignore most whitespace that is neither backslashed
nor within a bracketed character class. You can use this to break up your regular expression
into (slightly) more readable parts. Also, the # character is treated as a metacharacter
introducing a comment that runs up to the pattern’s closing delimiter, or to the end of
the current line if the pattern extends onto the next line. Hence, this is very much like an
ordinary Perl code comment. (You can include the closing delimiter within the comment
only if you precede it with a backslash, so be careful!)

Use of /x means that if you want real whitespace or # characters in the pattern (outside
a bracketed character class, which is unaffected by /x), then you’ll either have to escape
them (using backslashes or \Q...\E) or encode them using octal, hex, or \N{} escapes. It
is ineffective to try to continue a comment onto the next line by escaping the \n with a
backslash or \Q.

You can use [(?#text)], page 1005 to create a comment that ends earlier than the end
of the current line, but text also can’t contain the closing delimiter unless escaped with a
backslash.

Taken together, these features go a long way towards making Perl’s regular expressions
more readable. Here’s an example:

Delete (most) C comments.

$program =~ s {

/* # Match the opening delimiter.

.*? # Match a minimal number of characters.

*/ # Match the closing delimiter.

} []gsx;

Note that anything inside a \Q...\E stays unaffected by /x. And note that /x doesn’t af-
fect space interpretation within a single multi-character construct. For example in \x{...},

regardless of the /x modifier, there can be no spaces. Same for a Section 58.2.2.2 [quanti-
fier], page 997 such as {3} or {5,}. Similarly, (?:...) can’t have a space between the (,
?, and :. Within any delimiters for such a construct, allowed spaces are not affected by /x,
and depend on the construct. For example, \x{...} can’t have spaces because hexadec-
imal numbers don’t have spaces in them. But, Unicode properties can have spaces, so in
\p{...} there can be spaces that follow the Unicode rules, for which see Section “Properties
accessible through \p{} and \P{}” in perluniprops.

The set of characters that are deemed whitespace are those that Unicode calls "Pattern
White Space", namely:

U+0009 CHARACTER TABULATION

U+000A LINE FEED

U+000B LINE TABULATION

U+000C FORM FEED

U+000D CARRIAGE RETURN

U+0020 SPACE

U+0085 NEXT LINE

U+200E LEFT-TO-RIGHT MARK

U+200F RIGHT-TO-LEFT MARK

U+2028 LINE SEPARATOR

U+2029 PARAGRAPH SEPARATOR

58.2.1.2 Character set modifiers

/d, /u, /a, and /l, available starting in 5.14, are called the character set modifiers; they
affect the character set rules used for the regular expression.

The /d, /u, and /l modifiers are not likely to be of much use to you, and so you need not
worry about them very much. They exist for Perl’s internal use, so that complex regular
expression data structures can be automatically serialized and later exactly reconstituted,
including all their nuances. But, since Perl can’t keep a secret, and there may be rare
instances where they are useful, they are documented here.

The /a modifier, on the other hand, may be useful. Its purpose is to allow code that is
to work mostly on ASCII data to not have to concern itself with Unicode.

Briefly, /l sets the character set to that of whatever Locale is in effect at the time of the
execution of the pattern match.

/u sets the character set to Unicode.

/a also sets the character set to Unicode, BUT adds several restrictions for ASCII-safe
matching.

/d is the old, problematic, pre-5.14 Default character set behavior. Its only use is to
force that old behavior.

At any given time, exactly one of these modifiers is in effect. Their existence allows Perl
to keep the originally compiled behavior of a regular expression, regardless of what rules
are in effect when it is actually executed. And if it is interpolated into a larger regex, the
original’s rules continue to apply to it, and only it.

The /l and /u modifiers are automatically selected for regular expressions compiled
within the scope of various pragmas, and we recommend that in general, you use those

pragmas instead of specifying these modifiers explicitly. For one thing, the modifiers affect
only pattern matching, and do not extend to even any replacement done, whereas using
the pragmas give consistent results for all appropriate operations within their scopes. For
example,

s/foo/\Ubar/il

will match "foo" using the locale’s rules for case-insensitive matching, but the /l does
not affect how the \U operates. Most likely you want both of them to use locale rules. To
do this, instead compile the regular expression within the scope of use locale. This both
implicitly adds the /l, and applies locale rules to the \U. The lesson is to use locale, and
not /l explicitly.

Similarly, it would be better to use use feature ’unicode_strings’ instead of,

s/foo/\Lbar/iu

to get Unicode rules, as the \L in the former (but not necessarily the latter) would also
use Unicode rules.

More detail on each of the modifiers follows. Most likely you don’t need to know this
detail for /l, /u, and /d, and can skip ahead to Section 58.2.1.6 [/a], page 995.

58.2.1.3 /l

means to use the current locale’s rules (see Section 38.1 [perllocale NAME], page 701) when
pattern matching. For example, \w will match the "word" characters of that locale, and
"/i" case-insensitive matching will match according to the locale’s case folding rules. The
locale used will be the one in effect at the time of execution of the pattern match. This may
not be the same as the compilation-time locale, and can differ from one match to another
if there is an intervening call of the Section 38.5.2 [setlocale() function], page 705.

The only non-single-byte locale Perl supports is (starting in v5.20) UTF-8. This means
that code points above 255 are treated as Unicode no matter what locale is in effect (since
UTF-8 implies Unicode).

Under Unicode rules, there are a few case-insensitive matches that cross the 255/256
boundary. Except for UTF-8 locales in Perls v5.20 and later, these are disallowed under /l.
For example, 0xFF (on ASCII platforms) does not caselessly match the character at 0x178,
LATIN CAPITAL LETTER Y WITH DIAERESIS, because 0xFF may not be LATIN SMALL LETTER

Y WITH DIAERESIS in the current locale, and Perl has no way of knowing if that character
even exists in the locale, much less what code point it is.

In a UTF-8 locale in v5.20 and later, the only visible difference between locale and
non-locale in regular expressions should be tainting (see Section 70.1 [perlsec NAME],
page 1198).

This modifier may be specified to be the default by use locale, but see Section 58.2.1.7
[Which character set modifier is in effect?], page 996.

58.2.1.4 /u

means to use Unicode rules when pattern matching. On ASCII platforms, this means that
the code points between 128 and 255 take on their Latin-1 (ISO-8859-1) meanings (which
are the same as Unicode’s). (Otherwise Perl considers their meanings to be undefined.)
Thus, under this modifier, the ASCII platform effectively becomes a Unicode platform; and
hence, for example, \w will match any of the more than 100 000 word characters in Unicode.

Unlike most locales, which are specific to a language and country pair, Unicode classifies
all the characters that are letters somewhere in the world as \w. For example, your locale
might not think that LATIN SMALL LETTER ETH is a letter (unless you happen to speak
Icelandic), but Unicode does. Similarly, all the characters that are decimal digits somewhere
in the world will match \d; this is hundreds, not 10, possible matches. And some of those
digits look like some of the 10 ASCII digits, but mean a different number, so a human
could easily think a number is a different quantity than it really is. For example, BENGALI
DIGIT FOUR (U+09EA) looks very much like an ASCII DIGIT EIGHT (U+0038). And, \d+,
may match strings of digits that are a mixture from different writing systems, creating a
security issue. Section “num()” in Unicode-UCD can be used to sort this out. Or the /a

modifier can be used to force \d to match just the ASCII 0 through 9.

Also, under this modifier, case-insensitive matching works on the full set of Unicode
characters. The KELVIN SIGN, for example matches the letters "k" and "K"; and LATIN

SMALL LIGATURE FF matches the sequence "ff", which, if you’re not prepared, might make
it look like a hexadecimal constant, presenting another potential security issue. See http://
unicode.org/reports/tr36 for a detailed discussion of Unicode security issues.

This modifier may be specified to be the default by use feature ’unicode_strings,
use locale ’:not_characters’, or [use 5.012], page 479 (or higher), but see
Section 58.2.1.7 [Which character set modifier is in effect?], page 996.

58.2.1.5 /d

This modifier means to use the "Default" native rules of the platform except when there is
cause to use Unicode rules instead, as follows:

1. the target string is encoded in UTF-8; or

2. the pattern is encoded in UTF-8; or

3. the pattern explicitly mentions a code point that is above 255 (say by \x{100}); or

4. the pattern uses a Unicode name (\N{...}); or

5. the pattern uses a Unicode property (\p{...} or \P{...}); or

6. the pattern uses a Unicode break (\b{...} or \B{...}); or

7. the pattern uses [(?[])], page 1017

Another mnemonic for this modifier is "Depends", as the rules actually used depend on
various things, and as a result you can get unexpected results. See Section 81.2.17 [per-
lunicode The "Unicode Bug"], page 1340. The Unicode Bug has become rather infamous,
leading to yet another (printable) name for this modifier, "Dodgy".

Unless the pattern or string are encoded in UTF-8, only ASCII characters can match
positively.

Here are some examples of how that works on an ASCII platform:

$str = "\xDF"; # $str is not in UTF-8 format.

$str =~ /^\w/; # No match, as $str isn’t in UTF-8 format.

$str .= "\x{0e0b}"; # Now $str is in UTF-8 format.

$str =~ /^\w/; # Match! $str is now in UTF-8 format.

chop $str;

$str =~ /^\w/; # Still a match! $str remains in UTF-8 format.

http://unicode.org/reports/tr36
http://unicode.org/reports/tr36

This modifier is automatically selected by default when none of the others are, so yet
another name for it is "Default".

Because of the unexpected behaviors associated with this modifier, you probably should
only use it to maintain weird backward compatibilities.

58.2.1.6 /a (and /aa)

This modifier stands for ASCII-restrict (or ASCII-safe). This modifier, unlike the others,
may be doubled-up to increase its effect.

When it appears singly, it causes the sequences \d, \s, \w, and the Posix character classes
to match only in the ASCII range. They thus revert to their pre-5.6, pre-Unicode meanings.
Under /a, \d always means precisely the digits "0" to "9"; \s means the five characters [
\f\n\r\t], and starting in Perl v5.18, the vertical tab; \w means the 63 characters [A-Za-
z0-9_]; and likewise, all the Posix classes such as [[:print:]] match only the appropriate
ASCII-range characters.

This modifier is useful for people who only incidentally use Unicode, and who do not
wish to be burdened with its complexities and security concerns.

With /a, one can write \d with confidence that it will only match ASCII characters,
and should the need arise to match beyond ASCII, you can instead use \p{Digit} (or
\p{Word} for \w). There are similar \p{...} constructs that can match beyond ASCII
both white space (see Section 61.2.2.4 [perlrecharclass Whitespace], page 1062), and Posix
classes (see Section 61.2.3.5 [perlrecharclass POSIX Character Classes], page 1069). Thus,
this modifier doesn’t mean you can’t use Unicode, it means that to get Unicode matching
you must explicitly use a construct (\p{}, \P{}) that signals Unicode.

As you would expect, this modifier causes, for example, \D to mean the same thing as
[^0-9]; in fact, all non-ASCII characters match \D, \S, and \W. \b still means to match at
the boundary between \w and \W, using the /a definitions of them (similarly for \B).

Otherwise, /a behaves like the /u modifier, in that case-insensitive matching uses Uni-
code rules; for example, "k" will match the Unicode \N{KELVIN SIGN} under /i matching,
and code points in the Latin1 range, above ASCII will have Unicode rules when it comes
to case-insensitive matching.

To forbid ASCII/non-ASCII matches (like "k" with \N{KELVIN SIGN}), specify the "a"
twice, for example /aai or /aia. (The first occurrence of "a" restricts the \d, etc., and the
second occurrence adds the /i restrictions.) But, note that code points outside the ASCII
range will use Unicode rules for /i matching, so the modifier doesn’t really restrict things
to just ASCII; it just forbids the intermixing of ASCII and non-ASCII.

To summarize, this modifier provides protection for applications that don’t wish to be
exposed to all of Unicode. Specifying it twice gives added protection.

This modifier may be specified to be the default by use re ’/a’ or use re ’/aa’. If
you do so, you may actually have occasion to use the /u modifier explicitly if there are a
few regular expressions where you do want full Unicode rules (but even here, it’s best if
everything were under feature "unicode_strings", along with the use re ’/aa’). Also
see Section 58.2.1.7 [Which character set modifier is in effect?], page 996.

58.2.1.7 Which character set modifier is in effect?

Which of these modifiers is in effect at any given point in a regular expression depends
on a fairly complex set of interactions. These have been designed so that in general you
don’t have to worry about it, but this section gives the gory details. As explained below in
Section 58.2.4 [Extended Patterns], page 1004 it is possible to explicitly specify modifiers
that apply only to portions of a regular expression. The innermost always has priority over
any outer ones, and one applying to the whole expression has priority over any of the default
settings that are described in the remainder of this section.

The Section ‘‘’/flags’ mode’’ in re pragma can be used to set default modifiers
(including these) for regular expressions compiled within its scope. This pragma has prece-
dence over the other pragmas listed below that also change the defaults.

Otherwise, Section 38.1 [use locale], page 701 sets the default modifier to /l; and
feature, or [use 5.012], page 479 (or higher) set the default to /u when not in the same
scope as either Section 38.1 [use locale], page 701 or bytes. (Section 38.10 [use

locale ’:not_characters’], page 721 also sets the default to /u, overriding any plain
use locale.) Unlike the mechanisms mentioned above, these affect operations besides reg-
ular expressions pattern matching, and so give more consistent results with other operators,
including using \U, \l, etc. in substitution replacements.

If none of the above apply, for backwards compatibility reasons, the /d modifier is the
one in effect by default. As this can lead to unexpected results, it is best to specify which
other rule set should be used.

58.2.1.8 Character set modifier behavior prior to Perl 5.14

Prior to 5.14, there were no explicit modifiers, but /l was implied for regexes compiled
within the scope of use locale, and /d was implied otherwise. However, interpolating a
regex into a larger regex would ignore the original compilation in favor of whatever was
in effect at the time of the second compilation. There were a number of inconsistencies
(bugs) with the /d modifier, where Unicode rules would be used when inappropriate, and
vice versa. \p{} did not imply Unicode rules, and neither did all occurrences of \N{}, until
5.12.

58.2.2 Regular Expressions

58.2.2.1 Metacharacters

The patterns used in Perl pattern matching evolved from those supplied in the Version 8
regex routines. (The routines are derived (distantly) from Henry Spencer’s freely redis-
tributable reimplementation of the V8 routines.) See Section 58.2.7 [Version 8 Regular
Expressions], page 1024 for details.

In particular the following metacharacters have their standard egrep-ish meanings:

\ Quote the next metacharacter

^ Match the beginning of the line

. Match any character (except newline)

$ Match the end of the string (or before newline at the end

of the string)

| Alternation

() Grouping

[] Bracketed Character class

By default, the "^" character is guaranteed to match only the beginning of the string,
the "$" character only the end (or before the newline at the end), and Perl does certain
optimizations with the assumption that the string contains only one line. Embedded new-
lines will not be matched by "^" or "$". You may, however, wish to treat a string as a
multi-line buffer, such that the "^" will match after any newline within the string (except if
the newline is the last character in the string), and "$" will match before any newline. At
the cost of a little more overhead, you can do this by using the /m modifier on the pattern
match operator. (Older programs did this by setting $*, but this option was removed in
perl 5.10.)

To simplify multi-line substitutions, the "." character never matches a newline unless
you use the /s modifier, which in effect tells Perl to pretend the string is a single line–even
if it isn’t.

58.2.2.2 Quantifiers

The following standard quantifiers are recognized:

* Match 0 or more times

+ Match 1 or more times

? Match 1 or 0 times

{n} Match exactly n times

{n,} Match at least n times

{n,m} Match at least n but not more than m times

(If a curly bracket occurs in any other context and does not form part of a backslashed
sequence like \x{...}, it is treated as a regular character. However, a deprecation warning
is raised for all such occurrences, and in Perl v5.26, literal uses of a curly bracket will be
required to be escaped, say by preceding them with a backslash ("\{") or enclosing them
within square brackets ("[{]"). This change will allow for future syntax extensions (like
making the lower bound of a quantifier optional), and better error checking of quantifiers.)

The "*" quantifier is equivalent to {0,}, the "+" quantifier to {1,}, and the "?" quan-
tifier to {0,1}. n and m are limited to non-negative integral values less than a preset limit
defined when perl is built. This is usually 32766 on the most common platforms. The actual
limit can be seen in the error message generated by code such as this:

$_ **= $_ , / {$_} / for 2 .. 42;

By default, a quantified subpattern is "greedy", that is, it will match as many times as
possible (given a particular starting location) while still allowing the rest of the pattern to
match. If you want it to match the minimum number of times possible, follow the quantifier
with a "?". Note that the meanings don’t change, just the "greediness":

*? Match 0 or more times, not greedily

+? Match 1 or more times, not greedily

?? Match 0 or 1 time, not greedily

{n}? Match exactly n times, not greedily (redundant)

{n,}? Match at least n times, not greedily

{n,m}? Match at least n but not more than m times, not greedily

Normally when a quantified subpattern does not allow the rest of the overall pattern to
match, Perl will backtrack. However, this behaviour is sometimes undesirable. Thus Perl
provides the "possessive" quantifier form as well.

*+ Match 0 or more times and give nothing back

++ Match 1 or more times and give nothing back

?+ Match 0 or 1 time and give nothing back

{n}+ Match exactly n times and give nothing back (redundant)

{n,}+ Match at least n times and give nothing back

{n,m}+ Match at least n but not more than m times and give nothing back

For instance,

’aaaa’ =~ /a++a/

will never match, as the a++ will gobble up all the a’s in the string and won’t leave any
for the remaining part of the pattern. This feature can be extremely useful to give perl
hints about where it shouldn’t backtrack. For instance, the typical "match a double-quoted
string" problem can be most efficiently performed when written as:

/"(?:[^"\\]++|\\.)*+"/

as we know that if the final quote does not match, backtracking will not help. See the
independent subexpression [(?>pattern)], page 1015 for more details; possessive quantifiers
are just syntactic sugar for that construct. For instance the above example could also be
written as follows:

/"(?>(?:(?>[^"\\]+)|\\.)*)"/

Note that the possessive quantifier modifier can not be be combined with the non-greedy
modifier. This is because it would make no sense. Consider the follow equivalency table:

Illegal Legal

------------ ------

X??+ X{0}

X+?+ X{1}

X{min,max}?+ X{min}

58.2.2.3 Escape sequences

Because patterns are processed as double-quoted strings, the following also work:

\t tab (HT, TAB)

\n newline (LF, NL)

\r return (CR)

\f form feed (FF)

\a alarm (bell) (BEL)

\e escape (think troff) (ESC)

\cK control char (example: VT)

\x{}, \x00 character whose ordinal is the given hexadecimal number

\N{name} named Unicode character or character sequence

\N{U+263D} Unicode character (example: FIRST QUARTER MOON)

\o{}, \000 character whose ordinal is the given octal number

\l lowercase next char (think vi)

\u uppercase next char (think vi)

\L lowercase until \E (think vi)

\U uppercase until \E (think vi)

\Q quote (disable) pattern metacharacters until \E

\E end either case modification or quoted section, think vi

Details are in Section 48.2.29 [perlop Quote and Quote-like Operators], page 818.

58.2.2.4 Character Classes and other Special Escapes

In addition, Perl defines the following:

Sequence Note Description

[...] [1] Match a character according to the rules of the

bracketed character class defined by the "...".

Example: [a-z] matches "a" or "b" or "c" ... or "z"

[[:...:]] [2] Match a character according to the rules of the POSIX

character class "..." within the outer bracketed

character class. Example: [[:upper:]] matches any

uppercase character.

(?[...]) [8] Extended bracketed character class

\w [3] Match a "word" character (alphanumeric plus "_", plus

other connector punctuation chars plus Unicode

marks)

\W [3] Match a non-"word" character

\s [3] Match a whitespace character

\S [3] Match a non-whitespace character

\d [3] Match a decimal digit character

\D [3] Match a non-digit character

\pP [3] Match P, named property. Use \p{Prop} for longer names

\PP [3] Match non-P

\X [4] Match Unicode "eXtended grapheme cluster"

\C Match a single C-language char (octet) even if that is

part of a larger UTF-8 character. Thus it breaks up

characters into their UTF-8 bytes, so you may end up

with malformed pieces of UTF-8. Unsupported in

lookbehind. (Deprecated.)

\1 [5] Backreference to a specific capture group or buffer.

’1’ may actually be any positive integer.

\g1 [5] Backreference to a specific or previous group,

\g{-1} [5] The number may be negative indicating a relative

previous group and may optionally be wrapped in

curly brackets for safer parsing.

\g{name} [5] Named backreference

\k<name> [5] Named backreference

\K [6] Keep the stuff left of the \K, don’t include it in $&

\N [7] Any character but \n. Not affected by /s modifier

\v [3] Vertical whitespace

\V [3] Not vertical whitespace

\h [3] Horizontal whitespace

\H [3] Not horizontal whitespace

\R [4] Linebreak

[1]

See Section 61.2.3 [perlrecharclass Bracketed Character Classes], page 1065 for
details.

[2]

See Section 61.2.3.5 [perlrecharclass POSIX Character Classes], page 1069 for
details.

[3]

See Section 61.2.2 [perlrecharclass Backslash sequences], page 1059 for details.

[4]

See Section 60.2.8 [perlrebackslash Misc], page 1056 for details.

[5]

See Section 58.2.2.6 [Capture groups], page 1001 below for details.

[6]

See Section 58.2.4 [Extended Patterns], page 1004 below for details.

[7]

Note that \N has two meanings. When of the form \N{NAME}, it matches the
character or character sequence whose name is NAME; and similarly when of the
form \N{U+hex}, it matches the character whose Unicode code point is hex.
Otherwise it matches any character but \n.

[8]

See Section 61.2.3.9 [perlrecharclass Extended Bracketed Character Classes],
page 1073 for details.

58.2.2.5 Assertions

Perl defines the following zero-width assertions:

\b{} Match at Unicode boundary of specified type

\B{} Match where corresponding \b{} doesn’t match

\b Match a word boundary

\B Match except at a word boundary

\A Match only at beginning of string

\Z Match only at end of string, or before newline at the end

\z Match only at end of string

\G Match only at pos() (e.g. at the end-of-match position

of prior m//g)

A Unicode boundary (\b{}), available starting in v5.22, is a spot between two characters,
or before the first character in the string, or after the final character in the string where
certain criteria defined by Unicode are met. See [perlrebackslash \b{}, \b, \B{}, \B],
page 1054 for details.

A word boundary (\b) is a spot between two characters that has a \w on one side of it
and a \W on the other side of it (in either order), counting the imaginary characters off the
beginning and end of the string as matching a \W. (Within character classes \b represents
backspace rather than a word boundary, just as it normally does in any double-quoted
string.) The \A and \Z are just like "^" and "$", except that they won’t match multiple
times when the /m modifier is used, while "^" and "$" will match at every internal line
boundary. To match the actual end of the string and not ignore an optional trailing newline,
use \z.

The \G assertion can be used to chain global matches (using m//g), as described in
Section 48.2.30 [perlop Regexp Quote-Like Operators], page 823. It is also useful when
writing lex-like scanners, when you have several patterns that you want to match against
consequent substrings of your string; see the previous reference. The actual location where
\G will match can also be influenced by using pos() as an lvalue: see [perlfunc pos], page 428.
Note that the rule for zero-length matches (see Section 58.2.9 [Repeated Patterns Matching
a Zero-length Substring], page 1026) is modified somewhat, in that contents to the left of
\G are not counted when determining the length of the match. Thus the following will not
match forever:

my $string = ’ABC’;

pos($string) = 1;

while ($string =~ /(.\G)/g) {

print $1;

}

It will print ’A’ and then terminate, as it considers the match to be zero-width, and thus
will not match at the same position twice in a row.

It is worth noting that \G improperly used can result in an infinite loop. Take care when
using patterns that include \G in an alternation.

Note also that s/// will refuse to overwrite part of a substitution that has already been
replaced; so for example this will stop after the first iteration, rather than iterating its way
backwards through the string:

$_ = "123456789";

pos = 6;

s/.(?=.\G)/X/g;

print; # prints 1234X6789, not XXXXX6789

58.2.2.6 Capture groups

The bracketing construct (...) creates capture groups (also referred to as capture buffers).
To refer to the current contents of a group later on, within the same pattern, use \g1 (or
\g{1}) for the first, \g2 (or \g{2}) for the second, and so on. This is called a backreference.

>>

There is no limit to the number of captured substrings that you may use.

Groups are numbered with the leftmost open parenthesis being number 1, etc. If

a group did not match, the associated backreference won’t match either. (This

can happen if the group is optional, or in a different branch of an

alternation.)

You can omit the C<"g">, and write C<"\1">, etc, but there are some issues with

this form, described below.

You can also refer to capture groups relatively, by using a negative number, so that \g-1
and \g{-1} both refer to the immediately preceding capture group, and \g-2 and \g{-2}

both refer to the group before it. For example:

/

(Y) # group 1

(# group 2

(X) # group 3

\g{-1} # backref to group 3

\g{-3} # backref to group 1

)

/x

would match the same as /(Y) ((X) \g3 \g1)/x. This allows you to interpolate regexes
into larger regexes and not have to worry about the capture groups being renumbered.

You can dispense with numbers altogether and create named capture groups. The nota-
tion is (?<name>...) to declare and \g{name} to reference. (To be compatible with .Net
regular expressions, \g{name} may also be written as \k{name}, \k<name> or \k’name’.)
name must not begin with a number, nor contain hyphens. When different groups within
the same pattern have the same name, any reference to that name assumes the leftmost
defined group. Named groups count in absolute and relative numbering, and so can also be
referred to by those numbers. (It’s possible to do things with named capture groups that
would otherwise require (??{}).)

Capture group contents are dynamically scoped and available to you outside the pattern
until the end of the enclosing block or until the next successful match, whichever comes
first. (See Section 74.2.6 [perlsyn Compound Statements], page 1252.) You can refer to
them by absolute number (using "$1" instead of "\g1", etc); or by name via the %+ hash,
using "$+{name}".

Braces are required in referring to named capture groups, but are optional for absolute
or relative numbered ones. Braces are safer when creating a regex by concatenating smaller
strings. For example if you have qr/ab/, and $a contained "\g1", and $b contained
"37", you would get /\g137/ which is probably not what you intended.

The \g and \k notations were introduced in Perl 5.10.0. Prior to that there were no
named nor relative numbered capture groups. Absolute numbered groups were referred to
using \1, \2, etc., and this notation is still accepted (and likely always will be). But it
leads to some ambiguities if there are more than 9 capture groups, as \10 could mean either
the tenth capture group, or the character whose ordinal in octal is 010 (a backspace in
ASCII). Perl resolves this ambiguity by interpreting \10 as a backreference only if at least
10 left parentheses have opened before it. Likewise \11 is a backreference only if at least
11 left parentheses have opened before it. And so on. \1 through \9 are always interpreted
as backreferences. There are several examples below that illustrate these perils. You can
avoid the ambiguity by always using \g{} or \g if you mean capturing groups; and for octal
constants always using \o{}, or for \077 and below, using 3 digits padded with leading
zeros, since a leading zero implies an octal constant.

The \digit notation also works in certain circumstances outside the pattern. See
Section 58.2.8 [Warning on \1 Instead of $1], page 1026 below for details.

Examples:

s/^([^]*) *([^]*)/$2 $1/; # swap first two words

/(.)\g1/ # find first doubled char

and print "’$1’ is the first doubled character\n";

/(?<char>.)\k<char>/ # ... a different way

and print "’$+{char}’ is the first doubled character\n";

/(?’char’.)\g1/ # ... mix and match

and print "’$1’ is the first doubled character\n";

if (/Time: (..):(..):(..)/) { # parse out values

$hours = $1;

$minutes = $2;

$seconds = $3;

}

/(.)(.)(.)(.)(.)(.)(.)(.)(.)\g10/ # \g10 is a backreference

/(.)(.)(.)(.)(.)(.)(.)(.)(.)\10/ # \10 is octal

/((.)(.)(.)(.)(.)(.)(.)(.)(.))\10/ # \10 is a backreference

/((.)(.)(.)(.)(.)(.)(.)(.)(.))\010/ # \010 is octal

$a = ’(.)\1’; # Creates problems when concatenated.

$b = ’(.)\g{1}’; # Avoids the problems.

"aa" =~ /${a}/; # True

"aa" =~ /${b}/; # True

"aa0" =~ /${a}0/; # False!

"aa0" =~ /${b}0/; # True

"aa\x08" =~ /${a}0/; # True!

"aa\x08" =~ /${b}0/; # False

Several special variables also refer back to portions of the previous match. $+ returns
whatever the last bracket match matched. $& returns the entire matched string. (At one
point $0 did also, but now it returns the name of the program.) $‘ returns everything before
the matched string. $’ returns everything after the matched string. And $^N contains
whatever was matched by the most-recently closed group (submatch). $^N can be used in
extended patterns (see below), for example to assign a submatch to a variable.

These special variables, like the %+ hash and the numbered match variables ($1, $2, $3,
etc.) are dynamically scoped until the end of the enclosing block or until the next suc-
cessful match, whichever comes first. (See Section 74.2.6 [perlsyn Compound Statements],
page 1252.)

NOTE: Failed matches in Perl do not reset the match variables, which makes it easier
to write code that tests for a series of more specific cases and remembers the best match.

WARNING: If your code is to run on Perl 5.16 or earlier, beware that once Perl sees
that you need one of $&, $‘, or $’ anywhere in the program, it has to provide them for
every pattern match. This may substantially slow your program.

Perl uses the same mechanism to produce $1, $2, etc, so you also pay a price for each
pattern that contains capturing parentheses. (To avoid this cost while retaining the grouping
behaviour, use the extended regular expression (?: ...) instead.) But if you never use
$&, $‘ or $’, then patterns without capturing parentheses will not be penalized. So avoid
$&, $’, and $‘ if you can, but if you can’t (and some algorithms really appreciate them),
once you’ve used them once, use them at will, because you’ve already paid the price.

Perl 5.16 introduced a slightly more efficient mechanism that notes separately whether
each of $‘, $&, and $’ have been seen, and thus may only need to copy part of the string.
Perl 5.20 introduced a much more efficient copy-on-write mechanism which eliminates any
slowdown.

As another workaround for this problem, Perl 5.10.0 introduced ${^PREMATCH},
${^MATCH} and ${^POSTMATCH}, which are equivalent to $‘, $& and $’, except that they
are only guaranteed to be defined after a successful match that was executed with the
/p (preserve) modifier. The use of these variables incurs no global performance penalty,
unlike their punctuation char equivalents, however at the trade-off that you have to tell
perl when you want to use them. As of Perl 5.20, these three variables are equivalent to
$‘, $& and $’, and /p is ignored.

58.2.3 Quoting metacharacters

Backslashed metacharacters in Perl are alphanumeric, such as \b, \w, \n. Unlike some other
regular expression languages, there are no backslashed symbols that aren’t alphanumeric.
So anything that looks like \\, \(, \), \[, \], \{, or \} is always interpreted as a literal
character, not a metacharacter. This was once used in a common idiom to disable or quote
the special meanings of regular expression metacharacters in a string that you want to use
for a pattern. Simply quote all non-"word" characters:

$pattern =~ s/(\W)/\\$1/g;

(If use locale is set, then this depends on the current locale.) Today it is more com-
mon to use the quotemeta() function or the \Q metaquoting escape sequence to disable all
metacharacters’ special meanings like this:

/$unquoted\Q$quoted\E$unquoted/

Beware that if you put literal backslashes (those not inside interpolated variables) be-
tween \Q and \E, double-quotish backslash interpolation may lead to confusing results. If
you need to use literal backslashes within \Q...\E, consult Section 48.2.32 [perlop Gory
details of parsing quoted constructs], page 839.

quotemeta() and \Q are fully described in [perlfunc quotemeta], page 430.

58.2.4 Extended Patterns

Perl also defines a consistent extension syntax for features not found in standard tools like
awk and lex. The syntax for most of these is a pair of parentheses with a question mark as
the first thing within the parentheses. The character after the question mark indicates the
extension.

The stability of these extensions varies widely. Some have been part of the core language
for many years. Others are experimental and may change without warning or be completely
removed. Check the documentation on an individual feature to verify its current status.

A question mark was chosen for this and for the minimal-matching construct because
1) question marks are rare in older regular expressions, and 2) whenever you see one, you
should stop and "question" exactly what is going on. That’s psychology....

(?#text)

A comment. The text is ignored. Note that Perl closes the comment as soon as
it sees a), so there is no way to put a literal) in the comment. The pattern’s
closing delimiter must be escaped by a backslash if it appears in the comment.

See Section 58.2.1.1 [/x], page 991 for another way to have comments in pat-
terns.

(?adlupimsx-imsx)

(?^alupimsx)

One or more embedded pattern-match modifiers, to be turned on (or turned
off, if preceded by -) for the remainder of the pattern or the remainder of the
enclosing pattern group (if any).

This is particularly useful for dynamic patterns, such as those read in from a
configuration file, taken from an argument, or specified in a table somewhere.
Consider the case where some patterns want to be case-sensitive and some do
not: The case-insensitive ones merely need to include (?i) at the front of the
pattern. For example:

$pattern = "foobar";

if (/$pattern/i) { }

more flexible:

$pattern = "(?i)foobar";

if (/$pattern/) { }

These modifiers are restored at the end of the enclosing group. For example,

((?i) blah) \s+ \g1

will match blah in any case, some spaces, and an exact (including the case!)
repetition of the previous word, assuming the /x modifier, and no /i modifier
outside this group.

These modifiers do not carry over into named subpatterns called in the enclosing
group. In other words, a pattern such as ((?i)(?&NAME)) does not change the
case-sensitivity of the "NAME" pattern.

Any of these modifiers can be set to apply globally to all regular expressions
compiled within the scope of a use re. See Section “’/flags’ mode” in re.

Starting in Perl 5.14, a "^" (caret or circumflex accent) immediately after the
"?" is a shorthand equivalent to d-imsx. Flags (except "d") may follow the
caret to override it. But a minus sign is not legal with it.

Note that the a, d, l, p, and u modifiers are special in that they can only be
enabled, not disabled, and the a, d, l, and u modifiers are mutually exclusive:
specifying one de-specifies the others, and a maximum of one (or two a’s) may
appear in the construct. Thus, for example, (?-p) will warn when compiled
under use warnings; (?-d:...) and (?dl:...) are fatal errors.

Note also that the pmodifier is special in that its presence anywhere in a pattern
has a global effect.

(?:pattern)

(?adluimsx-imsx:pattern)

(?^aluimsx:pattern)

This is for clustering, not capturing; it groups subexpressions like "()", but
doesn’t make backreferences as "()" does. So

@fields = split(/\b(?:a|b|c)\b/)

is like

@fields = split(/\b(a|b|c)\b/)

but doesn’t spit out extra fields. It’s also cheaper not to capture characters if
you don’t need to.

Any letters between ? and : act as flags modifiers as with (?adluimsx-imsx).
For example,

/(?s-i:more.*than).*million/i

is equivalent to the more verbose

/(?:(?s-i)more.*than).*million/i

Starting in Perl 5.14, a "^" (caret or circumflex accent) immediately after the
"?" is a shorthand equivalent to d-imsx. Any positive flags (except "d") may
follow the caret, so

(?^x:foo)

is equivalent to

(?x-ims:foo)

The caret tells Perl that this cluster doesn’t inherit the flags of any surrounding
pattern, but uses the system defaults (d-imsx), modified by any flags specified.

The caret allows for simpler stringification of compiled regular expressions.
These look like

(?^:pattern)

with any non-default flags appearing between the caret and the colon. A test
that looks at such stringification thus doesn’t need to have the system default
flags hard-coded in it, just the caret. If new flags are added to Perl, the meaning
of the caret’s expansion will change to include the default for those flags, so the
test will still work, unchanged.

Specifying a negative flag after the caret is an error, as the flag is redundant.

Mnemonic for (?^...): A fresh beginning since the usual use of a caret is to
match at the beginning.

(?|pattern)

This is the "branch reset" pattern, which has the special property that the
capture groups are numbered from the same starting point in each alternation
branch. It is available starting from perl 5.10.0.

Capture groups are numbered from left to right, but inside this construct the
numbering is restarted for each branch.

The numbering within each branch will be as normal, and any groups following
this construct will be numbered as though the construct contained only one
branch, that being the one with the most capture groups in it.

This construct is useful when you want to capture one of a number of alternative
matches.

Consider the following pattern. The numbers underneath show in which group
the captured content will be stored.

before ---------------branch-reset----------- after

/ (a) (?| x (y) z | (p (q) r) | (t) u (v)) (z) /x

1 2 2 3 2 3 4

Be careful when using the branch reset pattern in combination with named
captures. Named captures are implemented as being aliases to numbered groups
holding the captures, and that interferes with the implementation of the branch
reset pattern. If you are using named captures in a branch reset pattern, it’s
best to use the same names, in the same order, in each of the alternations:

/(?| (?<a> x) (? y)

| (?<a> z) (? w)) /x

Not doing so may lead to surprises:

"12" =~ /(?| (?<a> \d+) | (? \D+))/x;

say $+ {a}; # Prints ’12’

say $+ {b}; # *Also* prints ’12’.

The problem here is that both the group named a and the group named b are
aliases for the group belonging to $1.

Look-Around Assertions
Look-around assertions are zero-width patterns which match a specific pattern
without including it in $&. Positive assertions match when their subpattern
matches, negative assertions match when their subpattern fails. Look-behind
matches text up to the current match position, look-ahead matches text follow-
ing the current match position.

(?=pattern)

A zero-width positive look-ahead assertion. For example,
/\w+(?=\t)/ matches a word followed by a tab, without including
the tab in $&.

(?!pattern)

A zero-width negative look-ahead assertion. For example
/foo(?!bar)/ matches any occurrence of "foo" that isn’t followed
by "bar". Note however that look-ahead and look-behind are
NOT the same thing. You cannot use this for look-behind.

If you are looking for a "bar" that isn’t preceded by a "foo",
/(?!foo)bar/ will not do what you want. That’s because the
(?!foo) is just saying that the next thing cannot be "foo"–and
it’s not, it’s a "bar", so "foobar" will match. Use look-behind in-
stead (see below).

(?<=pattern) \K

A zero-width positive look-behind assertion. For example,
/(?<=\t)\w+/ matches a word that follows a tab, without
including the tab in $&. Works only for fixed-width look-behind.

There is a special form of this construct, called \K (available since
Perl 5.10.0), which causes the regex engine to "keep" everything it
had matched prior to the \K and not include it in $&. This effec-
tively provides variable-length look-behind. The use of \K inside
of another look-around assertion is allowed, but the behaviour is
currently not well defined.

For various reasons \K may be significantly more efficient than the
equivalent (?<=...) construct, and it is especially useful in sit-
uations where you want to efficiently remove something following
something else in a string. For instance

s/(foo)bar/$1/g;

can be rewritten as the much more efficient

s/foo\Kbar//g;

(?<!pattern)

A zero-width negative look-behind assertion. For example
/(?<!bar)foo/ matches any occurrence of "foo" that does not
follow "bar". Works only for fixed-width look-behind.

(?’NAME’pattern)

(?<NAME>pattern)) >>
A named capture group. Identical in every respect to normal capturing paren-
theses () but for the additional fact that the group can be referred to by name
in various regular expression constructs (like \g{NAME}) and can be accessed by
name after a successful match via %+ or %-. See Section 86.1 [perlvar NAME],
page 1375 for more details on the %+ and %- hashes.

If multiple distinct capture groups have the same name then the $+{NAME}
will refer to the leftmost defined group in the match.

The forms (?’NAME’pattern) and (?<NAME>pattern) are equivalent.

NOTE:While the notation of this construct is the same as the similar function in
.NET regexes, the behavior is not. In Perl the groups are numbered sequentially
regardless of being named or not. Thus in the pattern

/(x)(?<foo>y)(z)/

$+{foo} will be the same as $2, and $3 will contain ’z’ instead of the opposite
which is what a .NET regex hacker might expect.

Currently NAME is restricted to simple identifiers only. In other words, it must
match /^[_A-Za-z][_A-Za-z0-9]*\z/ or its Unicode extension (see utf8),
though it isn’t extended by the locale (see Section 38.1 [perllocale NAME],
page 701).

NOTE: In order to make things easier for programmers with experience with
the Python or PCRE regex engines, the pattern (?P<NAME>pattern) may be

used instead of (?<NAME>pattern); however this form does not support the use
of single quotes as a delimiter for the name.

\k<NAME>

\k’NAME’

Named backreference. Similar to numeric backreferences, except that the group
is designated by name and not number. If multiple groups have the same name
then it refers to the leftmost defined group in the current match.

It is an error to refer to a name not defined by a (?<NAME>) earlier in the
pattern.

Both forms are equivalent.

NOTE: In order to make things easier for programmers with experience with
the Python or PCRE regex engines, the pattern (?P=NAME)may be used instead
of \k<NAME>.

(?{ code })

WARNING: Using this feature safely requires that you understand its limita-
tions. Code executed that has side effects may not perform identically from
version to version due to the effect of future optimisations in the regex engine.
For more information on this, see Section 58.2.12 [Embedded Code Execution
Frequency], page 1030.

This zero-width assertion executes any embedded Perl code. It always succeeds,
and its return value is set as $^R.

In literal patterns, the code is parsed at the same time as the surrounding code.
While within the pattern, control is passed temporarily back to the perl parser,
until the logically-balancing closing brace is encountered. This is similar to the
way that an array index expression in a literal string is handled, for example

"abc$array[1 + f(’[’) + g()]def"

In particular, braces do not need to be balanced:

s/abc(?{ f(’{’); })/def/

Even in a pattern that is interpolated and compiled at run-time, literal
code blocks will be compiled once, at perl compile time; the following prints
"ABCD":

print "D";

my $qr = qr/(?{ BEGIN { print "A" } })/;

my $foo = "foo";

/fooqr(?{ BEGIN { print "B" } })/;

BEGIN { print "C" }

In patterns where the text of the code is derived from run-time information
rather than appearing literally in a source code /pattern/, the code is compiled
at the same time that the pattern is compiled, and for reasons of security, use
re ’eval’ must be in scope. This is to stop user-supplied patterns containing
code snippets from being executable.

In situations where you need to enable this with use re ’eval’, you should also
have taint checking enabled. Better yet, use the carefully constrained evaluation

within a Safe compartment. See Section 70.1 [perlsec NAME], page 1198 for
details about both these mechanisms.

From the viewpoint of parsing, lexical variable scope and closures,

/AAA(?{ BBB })CCC/

behaves approximately like

/AAA/ && do { BBB } && /CCC/

Similarly,

qr/AAA(?{ BBB })CCC/

behaves approximately like

sub { /AAA/ && do { BBB } && /CCC/ }

In particular:

{ my $i = 1; $r = qr/(?{ print $i })/ }

my $i = 2;

/$r/; # prints "1"

Inside a (?{...}) block, $_ refers to the string the regular expression is match-
ing against. You can also use pos() to know what is the current position of
matching within this string.

The code block introduces a new scope from the perspective of lexical variable
declarations, but not from the perspective of local and similar localizing be-
haviours. So later code blocks within the same pattern will still see the values
which were localized in earlier blocks. These accumulated localizations are un-
done either at the end of a successful match, or if the assertion is backtracked
(compare Section 58.2.6 [Backtracking], page 1021). For example,

$_ = ’a’ x 8;

m<

(?{ $cnt = 0 }) # Initialize $cnt.

(

a

(?{

local $cnt = $cnt + 1; # Update $cnt,

backtracking-safe.

})

)*

aaaa

(?{ $res = $cnt }) # On success copy to

non-localized location.

>x;

will initially increment $cnt up to 8; then during backtracking, its value will
be unwound back to 4, which is the value assigned to $res. At the end of the
regex execution, $cnt will be wound back to its initial value of 0.

This assertion may be used as the condition in a

(?(condition)yes-pattern|no-pattern)

switch. If not used in this way, the result of evaluation of code is put into the
special variable $^R. This happens immediately, so $^R can be used from other
(?{ code }) assertions inside the same regular expression.

The assignment to $^R above is properly localized, so the old value of $^R is
restored if the assertion is backtracked; compare Section 58.2.6 [Backtracking],
page 1021.

Note that the special variable $^N is particularly useful with code blocks to
capture the results of submatches in variables without having to keep track of
the number of nested parentheses. For example:

$_ = "The brown fox jumps over the lazy dog";

/the (\S+)(?{ $color = $^N }) (\S+)(?{ $animal = $^N })/i;

print "color = $color, animal = $animal\n";

(??{ code })

WARNING: Using this feature safely requires that you understand its limita-
tions. Code executed that has side effects may not perform identically from
version to version due to the effect of future optimisations in the regex engine.
For more information on this, see Section 58.2.12 [Embedded Code Execution
Frequency], page 1030.

This is a "postponed" regular subexpression. It behaves in exactly the same
way as a (?{ code }) code block as described above, except that its return
value, rather than being assigned to $^R, is treated as a pattern, compiled if
it’s a string (or used as-is if its a qr// object), then matched as if it were inserted
instead of this construct.

During the matching of this sub-pattern, it has its own set of captures which are
valid during the sub-match, but are discarded once control returns to the main
pattern. For example, the following matches, with the inner pattern capturing
"B" and matching "BB", while the outer pattern captures "A";

my $inner = ’(.)\1’;

"ABBA" =~ /^(.)(??{ $inner })\1/;

print $1; # prints "A";

Note that this means that there is no way for the inner pattern to refer to a
capture group defined outside. (The code block itself can use $1, etc., to refer
to the enclosing pattern’s capture groups.) Thus, although

(’a’ x 100)=~/(??{’(.)’ x 100})/

will match, it will not set $1 on exit.

The following pattern matches a parenthesized group:

$re = qr{

\(

(?:

(?> [^()]+) # Non-parens without backtracking

|

(??{ $re }) # Group with matching parens

)*

\)

}x;

See also [(?PARNO)], page 1012 for a different, more efficient way to accomplish
the same task.

Executing a postponed regular expression 50 times without consuming any
input string will result in a fatal error. The maximum depth is compiled into
perl, so changing it requires a custom build.

(?PARNO) (?-PARNO) (?+PARNO) (?R) (?0)

Recursive subpattern. Treat the contents of a given capture buffer in the current
pattern as an independent subpattern and attempt to match it at the current
position in the string. Information about capture state from the caller for things
like backreferences is available to the subpattern, but capture buffers set by the
subpattern are not visible to the caller.

Similar to (??{ code }) except that it does not involve executing any code or
potentially compiling a returned pattern string; instead it treats the part of the
current pattern contained within a specified capture group as an independent
pattern that must match at the current position. Also different is the treatment
of capture buffers, unlike (??{ code }) recursive patterns have access to their
callers match state, so one can use backreferences safely.

PARNO is a sequence of digits (not starting with 0) whose value reflects the
paren-number of the capture group to recurse to. (?R) recurses to the beginning
of the whole pattern. (?0) is an alternate syntax for (?R). If PARNO is
preceded by a plus or minus sign then it is assumed to be relative, with negative
numbers indicating preceding capture groups and positive ones following. Thus
(?-1) refers to the most recently declared group, and (?+1) indicates the next
group to be declared. Note that the counting for relative recursion differs
from that of relative backreferences, in that with recursion unclosed groups are
included.

The following pattern matches a function foo() which may contain balanced
parentheses as the argument.

$re = qr{ (# paren group 1 (full function)

foo

(# paren group 2 (parens)

\(

(# paren group 3 (contents of parens)

(?:

(?> [^()]+) # Non-parens without backtracking

|

(?2) # Recurse to start of paren group 2

)*

)

\)

)

)

}x;

If the pattern was used as follows

’foo(bar(baz)+baz(bop))’=~/$re/

and print "\$1 = $1\n",

"\$2 = $2\n",

"\$3 = $3\n";

the output produced should be the following:

$1 = foo(bar(baz)+baz(bop))

$2 = (bar(baz)+baz(bop))

$3 = bar(baz)+baz(bop)

If there is no corresponding capture group defined, then it is a fatal error.
Recursing deeper than 50 times without consuming any input string will also
result in a fatal error. The maximum depth is compiled into perl, so changing
it requires a custom build.

The following shows how using negative indexing can make it easier to embed
recursive patterns inside of a qr// construct for later use:

my $parens = qr/(\((?:[^()]++|(?-1))*+\))/;

if (/foo $parens \s+ \+ \s+ bar $parens/x) {

do something here...

}

Note that this pattern does not behave the same way as the equivalent PCRE
or Python construct of the same form. In Perl you can backtrack into a recursed
group, in PCRE and Python the recursed into group is treated as atomic. Also,
modifiers are resolved at compile time, so constructs like (?i:(?1)) or (?:(?i)(?1))
do not affect how the sub-pattern will be processed.

(?&NAME)

Recurse to a named subpattern. Identical to (?PARNO) except that the paren-
thesis to recurse to is determined by name. If multiple parentheses have the
same name, then it recurses to the leftmost.

It is an error to refer to a name that is not declared somewhere in the pattern.

NOTE: In order to make things easier for programmers with experience with
the Python or PCRE regex engines the pattern (?P>NAME) may be used instead
of (?&NAME).

(?(condition)yes-pattern|no-pattern)

(?(condition)yes-pattern)

Conditional expression. Matches yes-pattern if condition yields a true value,
matches no-pattern otherwise. A missing pattern always matches.

(condition) should be one of: 1) an integer in parentheses (which is valid
if the corresponding pair of parentheses matched); 2) a look-ahead/look-
behind/evaluate zero-width assertion; 3) a name in angle brackets or single
quotes (which is valid if a group with the given name matched); or 4)
the special symbol (R) (true when evaluated inside of recursion or eval).
Additionally the R may be followed by a number, (which will be true when
evaluated when recursing inside of the appropriate group), or by &NAME, in
which case it will be true only when evaluated during recursion in the named
group.

Here’s a summary of the possible predicates:

(1) (2) ...

Checks if the numbered capturing group has matched something.

(<NAME>) (’NAME’)
Checks if a group with the given name has matched something.

(?=...) (?!...) (?<=...) (?<!...)
Checks whether the pattern matches (or does not match, for the ’ !’
variants).

(?{ CODE })
Treats the return value of the code block as the condition.

(R)

Checks if the expression has been evaluated inside of recursion.

(R1) (R2) ...
Checks if the expression has been evaluated while executing directly
inside of the n-th capture group. This check is the regex equivalent
of

if ((caller(0))[3] eq ’subname’) { ... }

In other words, it does not check the full recursion stack.

(R&NAME)
Similar to (R1), this predicate checks to see if we’re executing di-
rectly inside of the leftmost group with a given name (this is the
same logic used by (?&NAME) to disambiguate). It does not check
the full stack, but only the name of the innermost active recursion.

(DEFINE)
In this case, the yes-pattern is never directly executed, and no no-
pattern is allowed. Similar in spirit to (?{0}) but more efficient.
See below for details.

For example:

m{ (\()?

[^()]+

(?(1) \))

}x

matches a chunk of non-parentheses, possibly included in parentheses them-
selves.

A special form is the (DEFINE) predicate, which never executes its yes-pattern
directly, and does not allow a no-pattern. This allows one to define subpatterns
which will be executed only by the recursion mechanism. This way, you can
define a set of regular expression rules that can be bundled into any pattern
you choose.

It is recommended that for this usage you put the DEFINE block at the end of
the pattern, and that you name any subpatterns defined within it.

Also, it’s worth noting that patterns defined this way probably will not be as
efficient, as the optimizer is not very clever about handling them.

An example of how this might be used is as follows:

/(?<NAME>(?&NAME_PAT))(?<ADDR>(?&ADDRESS_PAT))

(?(DEFINE)

(?<NAME_PAT>....)

(?<ADDRESS_PAT>....)

)/x

Note that capture groups matched inside of recursion are not accessible after
the recursion returns, so the extra layer of capturing groups is necessary. Thus
$+{NAME_PAT} would not be defined even though $+{NAME} would be.

Finally, keep in mind that subpatterns created inside a DEFINE block count
towards the absolute and relative number of captures, so this:

my @captures = "a" =~ /(.) # First capture

(?(DEFINE)

(?<EXAMPLE> 1) # Second capture

)/x;

say scalar @captures;

Will output 2, not 1. This is particularly important if you intend to compile
the definitions with the qr// operator, and later interpolate them in another
pattern.

(?>pattern)

An "independent" subexpression, one which matches the substring that a stand-
alone pattern would match if anchored at the given position, and it matches
nothing other than this substring. This construct is useful for optimizations of
what would otherwise be "eternal" matches, because it will not backtrack (see
Section 58.2.6 [Backtracking], page 1021). It may also be useful in places where
the "grab all you can, and do not give anything back" semantic is desirable.

For example: ^(?>a*)ab will never match, since (?>a*) (anchored at the be-
ginning of string, as above) will match all characters a at the beginning of
string, leaving no a for ab to match. In contrast, a*ab will match the same as
a+b, since the match of the subgroup a* is influenced by the following group ab

(see Section 58.2.6 [Backtracking], page 1021). In particular, a* inside a*ab will
match fewer characters than a standalone a*, since this makes the tail match.

(?>pattern) does not disable backtracking altogether once it has matched.
It is still possible to backtrack past the construct, but not into it. So
((?>a*)|(?>b*))ar will still match "bar".

An effect similar to (?>pattern) may be achieved by writing
(?=(pattern))\g{-1}. This matches the same substring as a standalone
a+, and the following \g{-1} eats the matched string; it therefore makes a
zero-length assertion into an analogue of (?>...). (The difference between
these two constructs is that the second one uses a capturing group, thus
shifting ordinals of backreferences in the rest of a regular expression.)

Consider this pattern:

m{ \(

(

[^()]+ # x+

|

\([^()]* \)

)+

\)

}x

That will efficiently match a nonempty group with matching parentheses two
levels deep or less. However, if there is no such group, it will take virtually
forever on a long string. That’s because there are so many different ways to
split a long string into several substrings. This is what (.+)+ is doing, and
(.+)+ is similar to a subpattern of the above pattern. Consider how the pattern
above detects no-match on ((()aaaaaaaaaaaaaaaaaa in several seconds, but
that each extra letter doubles this time. This exponential performance will
make it appear that your program has hung. However, a tiny change to this
pattern

m{ \(

(

(?> [^()]+) # change x+ above to (?> x+)

|

\([^()]* \)

)+

\)

}x

which uses (?>...) matches exactly when the one above does (verifying this
yourself would be a productive exercise), but finishes in a fourth the time when
used on a similar string with 1000000 as. Be aware, however, that, when this
construct is followed by a quantifier, it currently triggers a warning message
under the use warnings pragma or -w switch saying it "matches null string

many times in regex".

On simple groups, such as the pattern (?> [^()]+), a comparable effect may
be achieved by negative look-ahead, as in [^()]+ (?! [^()]). This was only
4 times slower on a string with 1000000 as.

The "grab all you can, and do not give anything back" semantic is desirable
in many situations where on the first sight a simple ()* looks like the correct
solution. Suppose we parse text with comments being delimited by # followed
by some optional (horizontal) whitespace. Contrary to its appearance, #[\t]*

is not the correct subexpression to match the comment delimiter, because it
may "give up" some whitespace if the remainder of the pattern can be made to
match that way. The correct answer is either one of these:

(?>#[\t]*)

#[\t]*(?![\t])

For example, to grab non-empty comments into $1, one should use either one
of these:

/ (?> \# [\t]*) (.+) /x;

/ \# [\t]* ([^ \t] .*) /x;

Which one you pick depends on which of these expressions better reflects the
above specification of comments.

In some literature this construct is called "atomic matching" or "possessive
matching".

Possessive quantifiers are equivalent to putting the item they are applied to
inside of one of these constructs. The following equivalences apply:

Quantifier Form Bracketing Form

--------------- ---------------

PAT*+ (?>PAT*)

PAT++ (?>PAT+)

PAT?+ (?>PAT?)

PAT{min,max}+ (?>PAT{min,max})

(?[])

See Section 61.2.3.9 [perlrecharclass Extended Bracketed Character Classes],
page 1073.

58.2.5 Special Backtracking Control Verbs

These special patterns are generally of the form (*VERB:ARG). Unless otherwise stated the
ARG argument is optional; in some cases, it is forbidden.

Any pattern containing a special backtracking verb that allows an argument has the
special behaviour that when executed it sets the current package’s $REGERROR and $REGMARK

variables. When doing so the following rules apply:

On failure, the $REGERROR variable will be set to the ARG value of the verb pattern,
if the verb was involved in the failure of the match. If the ARG part of the pattern was
omitted, then $REGERROR will be set to the name of the last (*MARK:NAME) pattern executed,
or to TRUE if there was none. Also, the $REGMARK variable will be set to FALSE.

On a successful match, the $REGERROR variable will be set to FALSE, and the $REGMARK
variable will be set to the name of the last (*MARK:NAME) pattern executed. See the expla-
nation for the (*MARK:NAME) verb below for more details.

NOTE: $REGERROR and $REGMARK are not magic variables like $1 and most other regex-
related variables. They are not local to a scope, nor readonly, but instead are volatile
package variables similar to $AUTOLOAD. Use local to localize changes to them to a specific
scope if necessary.

If a pattern does not contain a special backtracking verb that allows an argument, then
$REGERROR and $REGMARK are not touched at all.

Verbs that take an argument

(*PRUNE) (*PRUNE:NAME)

This zero-width pattern prunes the backtracking tree at the cur-
rent point when backtracked into on failure. Consider the pattern
A (*PRUNE) B, where A and B are complex patterns. Until the
(*PRUNE) verb is reached, A may backtrack as necessary to match.

Once it is reached, matching continues in B, which may also back-
track as necessary; however, should B not match, then no further
backtracking will take place, and the pattern will fail outright at
the current starting position.

The following example counts all the possible matching strings in
a pattern (without actually matching any of them).

’aaab’ =~ /a+b?(?{print "$&\n"; $count++})(*FAIL)/;

print "Count=$count\n";

which produces:

aaab

aaa

aa

a

aab

aa

a

ab

a

Count=9

If we add a (*PRUNE) before the count like the following

’aaab’ =~ /a+b?(*PRUNE)(?{print "$&\n"; $count++})(*FAIL)/;

print "Count=$count\n";

we prevent backtracking and find the count of the longest matching
string at each matching starting point like so:

aaab

aab

ab

Count=3

Any number of (*PRUNE) assertions may be used in a pattern.

See also (?>pattern) and possessive quantifiers for other ways to
control backtracking. In some cases, the use of (*PRUNE) can be re-
placed with a (?>pattern) with no functional difference; however,
(*PRUNE) can be used to handle cases that cannot be expressed
using a (?>pattern) alone.

(*SKIP) (*SKIP:NAME)

This zero-width pattern is similar to (*PRUNE), except that on fail-
ure it also signifies that whatever text that was matched leading
up to the (*SKIP) pattern being executed cannot be part of any
match of this pattern. This effectively means that the regex engine
"skips" forward to this position on failure and tries to match again,
(assuming that there is sufficient room to match).

The name of the (*SKIP:NAME) pattern has special significance. If
a (*MARK:NAME) was encountered while matching, then it is that
position which is used as the "skip point". If no (*MARK) of that

name was encountered, then the (*SKIP) operator has no effect.
When used without a name the "skip point" is where the match
point was when executing the (*SKIP) pattern.

Compare the following to the examples in (*PRUNE); note the string
is twice as long:

’aaabaaab’ =~ /a+b?(*SKIP)(?{print "$&\n"; $count++})(*FAIL)/;

print "Count=$count\n";

outputs

aaab

aaab

Count=2

Once the ’aaab’ at the start of the string has matched, and the
(*SKIP) executed, the next starting point will be where the cursor
was when the (*SKIP) was executed.

(*MARK:NAME) (*:NAME)

This zero-width pattern can be used to mark the point reached
in a string when a certain part of the pattern has been success-
fully matched. This mark may be given a name. A later (*SKIP)
pattern will then skip forward to that point if backtracked into
on failure. Any number of (*MARK) patterns are allowed, and the
NAME portion may be duplicated.

In addition to interacting with the (*SKIP) pattern, (*MARK:NAME)
can be used to "label" a pattern branch, so that after matching, the
program can determine which branches of the pattern were involved
in the match.

When a match is successful, the $REGMARK variable will be set to
the name of the most recently executed (*MARK:NAME) that was
involved in the match.

This can be used to determine which branch of a pattern was
matched without using a separate capture group for each branch,
which in turn can result in a performance improvement, as perl can-
not optimize /(?:(x)|(y)|(z))/ as efficiently as something like
/(?:x(*MARK:x)|y(*MARK:y)|z(*MARK:z))/.

When a match has failed, and unless another verb has been involved
in failing the match and has provided its own name to use, the
$REGERROR variable will be set to the name of the most recently
executed (*MARK:NAME).

See 〈undefined〉 [(*SKIP)], page 〈undefined〉 for more details.

As a shortcut (*MARK:NAME) can be written (*:NAME).

(*THEN) (*THEN:NAME)

This is similar to the "cut group" operator :: from Perl 6. Like
(*PRUNE), this verb always matches, and when backtracked into on
failure, it causes the regex engine to try the next alternation in the

innermost enclosing group (capturing or otherwise) that has alter-
nations. The two branches of a (?(condition)yes-pattern|no-

pattern) do not count as an alternation, as far as (*THEN) is con-
cerned.

Its name comes from the observation that this operation combined
with the alternation operator (|) can be used to create what is
essentially a pattern-based if/then/else block:

(COND (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ)

Note that if this operator is used and NOT inside of an alternation
then it acts exactly like the (*PRUNE) operator.

/ A (*PRUNE) B /

is the same as

/ A (*THEN) B /

but

/ (A (*THEN) B | C) /

is not the same as

/ (A (*PRUNE) B | C) /

as after matching the A but failing on the B the (*THEN) verb will
backtrack and try C; but the (*PRUNE) verb will simply fail.

Verbs without an argument

(*COMMIT)

This is the Perl 6 "commit pattern" <commit> or :::. It’s a zero-
width pattern similar to (*SKIP), except that when backtracked
into on failure it causes the match to fail outright. No further
attempts to find a valid match by advancing the start pointer will
occur again. For example,

’aaabaaab’ =~ /a+b?(*COMMIT)(?{print "$&\n"; $count++})(*FAIL)/;

print "Count=$count\n";

outputs

aaab

Count=1

In other words, once the (*COMMIT) has been entered, and if the
pattern does not match, the regex engine will not try any further
matching on the rest of the string.

(*FAIL) (*F)

This pattern matches nothing and always fails. It can be used to
force the engine to backtrack. It is equivalent to (?!), but easier
to read. In fact, (?!) gets optimised into (*FAIL) internally.

It is probably useful only when combined with (?{}) or (??{}).

(*ACCEPT)

This pattern matches nothing and causes the end of successful
matching at the point at which the (*ACCEPT) pattern was en-
countered, regardless of whether there is actually more to match in

the string. When inside of a nested pattern, such as recursion, or in
a subpattern dynamically generated via (??{}), only the innermost
pattern is ended immediately.

If the (*ACCEPT) is inside of capturing groups then the groups
are marked as ended at the point at which the (*ACCEPT) was
encountered. For instance:

’AB’ =~ /(A (A|B(*ACCEPT)|C) D)(E)/x;

will match, and $1 will be AB and $2 will be B, $3 will not be set.
If another branch in the inner parentheses was matched, such as in
the string ’ACDE’, then the D and E would have to be matched as
well.

58.2.6 Backtracking

NOTE: This section presents an abstract approximation of regular expression behavior. For
a more rigorous (and complicated) view of the rules involved in selecting a match among
possible alternatives, see Section 58.2.10 [Combining RE Pieces], page 1027.

A fundamental feature of regular expression matching involves the notion called back-
tracking, which is currently used (when needed) by all regular non-possessive expression
quantifiers, namely *, *?, +, +?, {n,m}, and {n,m}?. Backtracking is often optimized inter-
nally, but the general principle outlined here is valid.

For a regular expression to match, the entire regular expression must match, not just
part of it. So if the beginning of a pattern containing a quantifier succeeds in a way that
causes later parts in the pattern to fail, the matching engine backs up and recalculates the
beginning part–that’s why it’s called backtracking.

Here is an example of backtracking: Let’s say you want to find the word following "foo"
in the string "Food is on the foo table.":

$_ = "Food is on the foo table.";

if (/\b(foo)\s+(\w+)/i) {

print "$2 follows $1.\n";

}

When the match runs, the first part of the regular expression (\b(foo)) finds a possible
match right at the beginning of the string, and loads up $1 with "Foo". However, as soon
as the matching engine sees that there’s no whitespace following the "Foo" that it had
saved in $1, it realizes its mistake and starts over again one character after where it had
the tentative match. This time it goes all the way until the next occurrence of "foo". The
complete regular expression matches this time, and you get the expected output of "table
follows foo."

Sometimes minimal matching can help a lot. Imagine you’d like to match everything
between "foo" and "bar". Initially, you write something like this:

$_ = "The food is under the bar in the barn.";

if (/foo(.*)bar/) {

print "got <$1>\n";

}

Which perhaps unexpectedly yields:

got <d is under the bar in the >

That’s because .* was greedy, so you get everything between the first "foo" and the
last "bar". Here it’s more effective to use minimal matching to make sure you get the text
between a "foo" and the first "bar" thereafter.

if (/foo(.*?)bar/) { print "got <$1>\n" }

got <d is under the >

Here’s another example. Let’s say you’d like to match a number at the end of a string,
and you also want to keep the preceding part of the match. So you write this:

$_ = "I have 2 numbers: 53147";

if (/(.*)(\d*)/) { # Wrong!

print "Beginning is <$1>, number is <$2>.\n";

}

That won’t work at all, because .* was greedy and gobbled up the whole string. As \d*
can match on an empty string the complete regular expression matched successfully.

Beginning is <I have 2 numbers: 53147>, number is <>.

Here are some variants, most of which don’t work:

$_ = "I have 2 numbers: 53147";

@pats = qw{

(.*)(\d*)

(.*)(\d+)

(.*?)(\d*)

(.*?)(\d+)

(.*)(\d+)$

(.*?)(\d+)$

(.*)\b(\d+)$

(.*\D)(\d+)$

};

for $pat (@pats) {

printf "%-12s ", $pat;

if (/$pat/) {

print "<$1> <$2>\n";

} else {

print "FAIL\n";

}

}

That will print out:

(.*)(\d*) <I have 2 numbers: 53147> <>

(.*)(\d+) <I have 2 numbers: 5314> <7>

(.*?)(\d*) <> <>

(.*?)(\d+) <I have > <2>

(.*)(\d+)$ <I have 2 numbers: 5314> <7>

(.*?)(\d+)$ <I have 2 numbers: > <53147>

(.*)\b(\d+)$ <I have 2 numbers: > <53147>

(.*\D)(\d+)$ <I have 2 numbers: > <53147>

As you see, this can be a bit tricky. It’s important to realize that a regular expression is
merely a set of assertions that gives a definition of success. There may be 0, 1, or several
different ways that the definition might succeed against a particular string. And if there
are multiple ways it might succeed, you need to understand backtracking to know which
variety of success you will achieve.

When using look-ahead assertions and negations, this can all get even trickier. Imagine
you’d like to find a sequence of non-digits not followed by "123". You might try to write
that as

$_ = "ABC123";

if (/^\D*(?!123)/) { # Wrong!

print "Yup, no 123 in $_\n";

}

But that isn’t going to match; at least, not the way you’re hoping. It claims that there
is no 123 in the string. Here’s a clearer picture of why that pattern matches, contrary to
popular expectations:

$x = ’ABC123’;

$y = ’ABC445’;

print "1: got $1\n" if $x =~ /^(ABC)(?!123)/;

print "2: got $1\n" if $y =~ /^(ABC)(?!123)/;

print "3: got $1\n" if $x =~ /^(\D*)(?!123)/;

print "4: got $1\n" if $y =~ /^(\D*)(?!123)/;

This prints

2: got ABC

3: got AB

4: got ABC

You might have expected test 3 to fail because it seems to a more general purpose version
of test 1. The important difference between them is that test 3 contains a quantifier (\D*)
and so can use backtracking, whereas test 1 will not. What’s happening is that you’ve asked
"Is it true that at the start of $x, following 0 or more non-digits, you have something that’s
not 123?" If the pattern matcher had let \D* expand to "ABC", this would have caused
the whole pattern to fail.

The search engine will initially match \D* with "ABC". Then it will try to match
(?!123) with "123", which fails. But because a quantifier (\D*) has been used in the
regular expression, the search engine can backtrack and retry the match differently in the
hope of matching the complete regular expression.

The pattern really, really wants to succeed, so it uses the standard pattern back-off-and-
retry and lets \D* expand to just "AB" this time. Now there’s indeed something following
"AB" that is not "123". It’s "C123", which suffices.

We can deal with this by using both an assertion and a negation. We’ll say that the first
part in $1 must be followed both by a digit and by something that’s not "123". Remember
that the look-aheads are zero-width expressions–they only look, but don’t consume any of
the string in their match. So rewriting this way produces what you’d expect; that is, case
5 will fail, but case 6 succeeds:

print "5: got $1\n" if $x =~ /^(\D*)(?=\d)(?!123)/;

print "6: got $1\n" if $y =~ /^(\D*)(?=\d)(?!123)/;

6: got ABC

In other words, the two zero-width assertions next to each other work as though they’re
ANDed together, just as you’d use any built-in assertions: /^$/ matches only if you’re at
the beginning of the line AND the end of the line simultaneously. The deeper underlying
truth is that juxtaposition in regular expressions always means AND, except when you
write an explicit OR using the vertical bar. /ab/ means match "a" AND (then) match
"b", although the attempted matches are made at different positions because "a" is not a
zero-width assertion, but a one-width assertion.

WARNING: Particularly complicated regular expressions can take exponential time to
solve because of the immense number of possible ways they can use backtracking to try
for a match. For example, without internal optimizations done by the regular expression
engine, this will take a painfully long time to run:

’aaaaaaaaaaaa’ =~ /((a{0,5}){0,5})*[c]/

And if you used *’s in the internal groups instead of limiting them to 0 through 5
matches, then it would take forever–or until you ran out of stack space. Moreover, these
internal optimizations are not always applicable. For example, if you put {0,5} instead of
* on the external group, no current optimization is applicable, and the match takes a long
time to finish.

A powerful tool for optimizing such beasts is what is known as an "independent group",
which does not backtrack (see [(?>pattern)], page 1015). Note also that zero-length look-
ahead/look-behind assertions will not backtrack to make the tail match, since they are
in "logical" context: only whether they match is considered relevant. For an example
where side-effects of look-aheadmight have influenced the following match, see [(?>pattern)],
page 1015.

58.2.7 Version 8 Regular Expressions

In case you’re not familiar with the "regular" Version 8 regex routines, here are the pattern-
matching rules not described above.

Any single character matches itself, unless it is a metacharacter with a special meaning
described here or above. You can cause characters that normally function as metacharacters
to be interpreted literally by prefixing them with a "\" (e.g., "\." matches a ".", not any
character; "\\" matches a "\"). This escape mechanism is also required for the character
used as the pattern delimiter.

A series of characters matches that series of characters in the target string, so the pattern
blurfl would match "blurfl" in the target string.

You can specify a character class, by enclosing a list of characters in [], which will match
any character from the list. If the first character after the "[" is "^", the class matches
any character not in the list. Within a list, the "-" character specifies a range, so that a-z
represents all characters between "a" and "z", inclusive. If you want either "-" or "]" itself
to be a member of a class, put it at the start of the list (possibly after a "^"), or escape
it with a backslash. "-" is also taken literally when it is at the end of the list, just before
the closing "]". (The following all specify the same class of three characters: [-az], [az-],

and [a\-z]. All are different from [a-z], which specifies a class containing twenty-six
characters, even on EBCDIC-based character sets.) Also, if you try to use the character
classes \w, \W, \s, \S, \d, or \D as endpoints of a range, the "-" is understood literally.

Note also that the whole range idea is rather unportable between character sets, ex-
cept for four situations that Perl handles specially. Any subset of the ranges [A-Z],
[a-z], and [0-9] are guaranteed to match the expected subset of ASCII characters, no
matter what character set the platform is running. The fourth portable way to specify
ranges is to use the \N{...} syntax to specify either end point of the range. For exam-
ple, [\N{U+04}-\N{U+07}] means to match the Unicode code points \N{U+04}, \N{U+05},
\N{U+06}, and \N{U+07}, whatever their native values may be on the platform. Under
Section “’strict’ mode” in re or within a [(?[])], page 1017, a warning is raised, if enabled,
and the other end point of a range which has a \N{...} endpoint is not portably specified.
For example,

[\N{U+00}-\x06] # Warning under "use re ’strict’".

It is hard to understand without digging what exactly matches ranges other than subsets
of [A-Z], [a-z], and [0-9]. A sound principle is to use only ranges that begin from and
end at either alphabetics of equal case ([a-e], [A-E]), or digits ([0-9]). Anything else is unsafe
or unclear. If in doubt, spell out the range in full.

Characters may be specified using a metacharacter syntax much like that used in C:
"\n" matches a newline, "\t" a tab, "\r" a carriage return, "\f" a form feed, etc. More
generally, \nnn, where nnn is a string of three octal digits, matches the character whose
coded character set value is nnn. Similarly, \xnn, where nn are hexadecimal digits, matches
the character whose ordinal is nn. The expression \cx matches the character control-x.
Finally, the "." metacharacter matches any character except "\n" (unless you use /s).

You can specify a series of alternatives for a pattern using "|" to separate them, so
that fee|fie|foe will match any of "fee", "fie", or "foe" in the target string (as would
f(e|i|o)e). The first alternative includes everything from the last pattern delimiter ("(",
"(?:", etc. or the beginning of the pattern) up to the first "|", and the last alternative
contains everything from the last "|" to the next closing pattern delimiter. That’s why it’s
common practice to include alternatives in parentheses: to minimize confusion about where
they start and end.

Alternatives are tried from left to right, so the first alternative found for which the
entire expression matches, is the one that is chosen. This means that alternatives are not
necessarily greedy. For example: when matching foo|foot against "barefoot", only the
"foo" part will match, as that is the first alternative tried, and it successfully matches the
target string. (This might not seem important, but it is important when you are capturing
matched text using parentheses.)

Also remember that "|" is interpreted as a literal within square brackets, so if you write
[fee|fie|foe] you’re really only matching [feio|].

Within a pattern, you may designate subpatterns for later reference by enclosing them
in parentheses, and you may refer back to the nth subpattern later in the pattern using
the metacharacter \n or \gn. Subpatterns are numbered based on the left to right or-
der of their opening parenthesis. A backreference matches whatever actually matched the
subpattern in the string being examined, not the rules for that subpattern. Therefore,

(0|0x)\d*\s\g1\d* will match "0x1234 0x4321", but not "0x1234 01234", because sub-
pattern 1 matched "0x", even though the rule 0|0x could potentially match the leading 0
in the second number.

58.2.8 Warning on \1 Instead of $1

Some people get too used to writing things like:

$pattern =~ s/(\W)/\\\1/g;

This is grandfathered (for \1 to \9) for the RHS of a substitute to avoid shocking the
sed addicts, but it’s a dirty habit to get into. That’s because in PerlThink, the righthand
side of an s/// is a double-quoted string. \1 in the usual double-quoted string means a
control-A. The customary Unix meaning of \1 is kludged in for s///. However, if you get
into the habit of doing that, you get yourself into trouble if you then add an /e modifier.

s/(\d+)/ \1 + 1 /eg; # causes warning under -w

Or if you try to do

s/(\d+)/\1000/;

You can’t disambiguate that by saying \{1}000, whereas you can fix it with ${1}000.
The operation of interpolation should not be confused with the operation of matching a
backreference. Certainly they mean two different things on the left side of the s///.

58.2.9 Repeated Patterns Matching a Zero-length Substring

WARNING: Difficult material (and prose) ahead. This section needs a rewrite.

Regular expressions provide a terse and powerful programming language. As with most
other power tools, power comes together with the ability to wreak havoc.

A common abuse of this power stems from the ability to make infinite loops using regular
expressions, with something as innocuous as:

’foo’ =~ m{ (o?)* }x;

The o? matches at the beginning of ’foo’, and since the position in the string is not
moved by the match, o? would match again and again because of the * quantifier. Another
common way to create a similar cycle is with the looping modifier //g:

@matches = (’foo’ =~ m{ o? }xg);

or

print "match: <$&>\n" while ’foo’ =~ m{ o? }xg;

or the loop implied by split().

However, long experience has shown that many programming tasks may be significantly
simplified by using repeated subexpressions that may match zero-length substrings. Here’s
a simple example being:

@chars = split //, $string; # // is not magic in split

($whitewashed = $string) =~ s/()/ /g; # parens avoid magic s// /

Thus Perl allows such constructs, by forcefully breaking the infinite loop. The rules for
this are different for lower-level loops given by the greedy quantifiers *+{}, and for higher-
level ones like the /g modifier or split() operator.

The lower-level loops are interrupted (that is, the loop is broken) when Perl detects that
a repeated expression matched a zero-length substring. Thus

m{ (?: NON_ZERO_LENGTH | ZERO_LENGTH)* }x;

is made equivalent to

m{ (?: NON_ZERO_LENGTH)* (?: ZERO_LENGTH)? }x;

For example, this program

#!perl -l

"aaaaab" =~ /

(?:

a # non-zero

| # or

(?{print "hello"}) # print hello whenever this

branch is tried

(?=(b)) # zero-width assertion

)* # any number of times

/x;

print $&;

print $1;

prints

hello

aaaaa

b

Notice that "hello" is only printed once, as when Perl sees that the sixth iteration of the
outermost (?:)* matches a zero-length string, it stops the *.

The higher-level loops preserve an additional state between iterations: whether the last
match was zero-length. To break the loop, the following match after a zero-length match
is prohibited to have a length of zero. This prohibition interacts with backtracking (see
Section 58.2.6 [Backtracking], page 1021), and so the second best match is chosen if the best
match is of zero length.

For example:

$_ = ’bar’;

s/\w??/<$&>/g;

results in <><><a><><r><>. At each position of the string the best match given by
non-greedy ?? is the zero-length match, and the second best match is what is matched by
\w. Thus zero-length matches alternate with one-character-long matches.

Similarly, for repeated m/()/g the second-best match is the match at the position one
notch further in the string.

The additional state of being matched with zero-length is associated with the matched
string, and is reset by each assignment to pos(). Zero-length matches at the end of the
previous match are ignored during split.

58.2.10 Combining RE Pieces

Each of the elementary pieces of regular expressions which were described before (such as ab
or \Z) could match at most one substring at the given position of the input string. However,
in a typical regular expression these elementary pieces are combined into more complicated

patterns using combining operators ST, S|T, S* etc. (in these examples S and T are regular
subexpressions).

Such combinations can include alternatives, leading to a problem of choice: if we match a
regular expression a|ab against "abc", will it match substring "a" or "ab"? One way to de-
scribe which substring is actually matched is the concept of backtracking (see Section 58.2.6
[Backtracking], page 1021). However, this description is too low-level and makes you think
in terms of a particular implementation.

Another description starts with notions of "better"/"worse". All the substrings which
may be matched by the given regular expression can be sorted from the "best" match to the
"worst" match, and it is the "best" match which is chosen. This substitutes the question
of "what is chosen?" by the question of "which matches are better, and which are worse?".

Again, for elementary pieces there is no such question, since at most one match at a
given position is possible. This section describes the notion of better/worse for combining
operators. In the description below S and T are regular subexpressions.

ST

Consider two possible matches, AB and A’B’, A and A’ are substrings which can
be matched by S, B and B’ are substrings which can be matched by T.

If A is a better match for S than A’, AB is a better match than A’B’.

If A and A’ coincide: AB is a better match than AB’ if B is a better match for T
than B’.

S|T

When S can match, it is a better match than when only T can match.

Ordering of two matches for S is the same as for S. Similar for two matches for
T.

S{REPEAT_COUNT}

Matches as SSS...S (repeated as many times as necessary).

S{min,max}

Matches as S{max}|S{max-1}|...|S{min+1}|S{min}.

S{min,max}?

Matches as S{min}|S{min+1}|...|S{max-1}|S{max}.

S?, S*, S+

Same as S{0,1}, S{0,BIG_NUMBER}, S{1,BIG_NUMBER} respectively.

S??, S*?, S+?
Same as S{0,1}?, S{0,BIG_NUMBER}?, S{1,BIG_NUMBER}? respectively.

(?>S)

Matches the best match for S and only that.

(?=S), (?<=S)
Only the best match for S is considered. (This is important only if S has
capturing parentheses, and backreferences are used somewhere else in the whole
regular expression.)

(?!S), (?<!S)
For this grouping operator there is no need to describe the ordering, since only
whether or not S can match is important.

(??{ EXPR }), (?PARNO)
The ordering is the same as for the regular expression which is the result of
EXPR, or the pattern contained by capture group PARNO.

(?(condition)yes-pattern|no-pattern)

Recall that which of yes-pattern or no-pattern actually matches is already
determined. The ordering of the matches is the same as for the chosen subex-
pression.

The above recipes describe the ordering of matches at a given position. One more rule is
needed to understand how a match is determined for the whole regular expression: a match
at an earlier position is always better than a match at a later position.

58.2.11 Creating Custom RE Engines

As of Perl 5.10.0, one can create custom regular expression engines. This is not for the
faint of heart, as they have to plug in at the C level. See Section 59.1 [perlreapi NAME],
page 1032 for more details.

As an alternative, overloaded constants (see overload) provide a simple way to extend
the functionality of the RE engine, by substituting one pattern for another.

Suppose that we want to enable a new RE escape-sequence \Y| which matches at
a boundary between whitespace characters and non-whitespace characters. Note that
(?=\S)(?<!\S)|(?!\S)(?<=\S) matches exactly at these positions, so we want to have
each \Y| in the place of the more complicated version. We can create a module customre

to do this:

package customre;

use overload;

sub import {

shift;

die "No argument to customre::import allowed" if @_;

overload::constant ’qr’ => \&convert;

}

sub invalid { die "/$_[0]/: invalid escape ’\\$_[1]’"}

We must also take care of not escaping the legitimate \\Y|

sequence, hence the presence of ’\\’ in the conversion rules.

my %rules = (’\\’ => ’\\\\’,

’Y|’ => qr/(?=\S)(?<!\S)|(?!\S)(?<=\S)/);

sub convert {

my $re = shift;

$re =~ s{

\\ (\\ | Y .)

}

{ $rules{$1} or invalid($re,$1) }sgex;

return $re;

}

Now use customre enables the new escape in constant regular expressions, i.e., those
without any runtime variable interpolations. As documented in overload, this conversion
will work only over literal parts of regular expressions. For \Y|$re\Y| the variable part of
this regular expression needs to be converted explicitly (but only if the special meaning of
\Y| should be enabled inside $re):

use customre;

$re = <>;

chomp $re;

$re = customre::convert $re;

/\Y|$re\Y|/;

58.2.12 Embedded Code Execution Frequency

The exact rules for how often (??{}) and (?{}) are executed in a pattern are unspecified.
In the case of a successful match you can assume that they DWIM and will be executed in
left to right order the appropriate number of times in the accepting path of the pattern as
would any other meta-pattern. How non-accepting pathways and match failures affect the
number of times a pattern is executed is specifically unspecified and may vary depending
on what optimizations can be applied to the pattern and is likely to change from version to
version.

For instance in

"aaabcdeeeee"=~/a(?{print "a"})b(?{print "b"})cde/;

the exact number of times "a" or "b" are printed out is unspecified for failure, but you
may assume they will be printed at least once during a successful match, additionally you
may assume that if "b" is printed, it will be preceded by at least one "a".

In the case of branching constructs like the following:

/a(b|(?{ print "a" }))c(?{ print "c" })/;

you can assume that the input "ac" will output "ac", and that "abc" will output only
"c".

When embedded code is quantified, successful matches will call the code once for each
matched iteration of the quantifier. For example:

"good" =~ /g(?:o(?{print "o"}))*d/;

will output "o" twice.

58.2.13 PCRE/Python Support

As of Perl 5.10.0, Perl supports several Python/PCRE-specific extensions to the regex syn-
tax. While Perl programmers are encouraged to use the Perl-specific syntax, the following
are also accepted:

(?P<NAME>pattern)

Define a named capture group. Equivalent to (?<NAME>pattern).

(?P=NAME)

Backreference to a named capture group. Equivalent to \g{NAME}.

(?P>NAME)

Subroutine call to a named capture group. Equivalent to (?&NAME).

58.3 BUGS

Many regular expression constructs don’t work on EBCDIC platforms.

There are a number of issues with regard to case-insensitive matching in Unicode rules.
See i under Section 58.2.1 [Modifiers], page 989 above.

This document varies from difficult to understand to completely and utterly opaque.
The wandering prose riddled with jargon is hard to fathom in several places.

This document needs a rewrite that separates the tutorial content from the reference
content.

58.4 SEE ALSO

Section 66.1 [perlrequick NAME], page 1116.

Section 68.1 [perlretut NAME], page 1131.

Section 48.2.30 [perlop Regexp Quote-Like Operators], page 823.

Section 48.2.32 [perlop Gory details of parsing quoted constructs], page 839.

perlfaq6.

[perlfunc pos], page 428.

Section 38.1 [perllocale NAME], page 701.

Section 19.1 [perlebcdic NAME], page 266.

Mastering Regular Expressions by Jeffrey Friedl, published by O’Reilly and Associates.

59 perlreapi

59.1 NAME

perlreapi - Perl regular expression plugin interface

59.2 DESCRIPTION

As of Perl 5.9.5 there is a new interface for plugging and using regular expression engines
other than the default one.

Each engine is supposed to provide access to a constant structure of the following format:

typedef struct regexp_engine {

REGEXP* (*comp) (pTHX_

const SV * const pattern, const U32 flags);

I32 (*exec) (pTHX_

REGEXP * const rx,

char* stringarg,

char* strend, char* strbeg,

SSize_t minend, SV* sv,

void* data, U32 flags);

char* (*intuit) (pTHX_

REGEXP * const rx, SV *sv,

const char * const strbeg,

char *strpos, char *strend, U32 flags,

struct re_scream_pos_data_s *data);

SV* (*checkstr) (pTHX_ REGEXP * const rx);

void (*free) (pTHX_ REGEXP * const rx);

void (*numbered_buff_FETCH) (pTHX_

REGEXP * const rx,

const I32 paren,

SV * const sv);

void (*numbered_buff_STORE) (pTHX_

REGEXP * const rx,

const I32 paren,

SV const * const value);

I32 (*numbered_buff_LENGTH) (pTHX_

REGEXP * const rx,

const SV * const sv,

const I32 paren);

SV* (*named_buff) (pTHX_

REGEXP * const rx,

SV * const key,

SV * const value,

U32 flags);

SV* (*named_buff_iter) (pTHX_

REGEXP * const rx,

const SV * const lastkey,

const U32 flags);

SV* (*qr_package)(pTHX_ REGEXP * const rx);

#ifdef USE_ITHREADS

void* (*dupe) (pTHX_ REGEXP * const rx, CLONE_PARAMS *param);

#endif

REGEXP* (*op_comp) (...);

When a regexp is compiled, its engine field is then set to point at the appropriate
structure, so that when it needs to be used Perl can find the right routines to do so.

In order to install a new regexp handler, $^H{regcomp} is set to an integer which (when
casted appropriately) resolves to one of these structures. When compiling, the comp method
is executed, and the resulting regexp structure’s engine field is expected to point back at
the same structure.

The pTHX symbol in the definition is a macro used by Perl under threading to provide
an extra argument to the routine holding a pointer back to the interpreter that is executing
the regexp. So under threading all routines get an extra argument.

59.3 Callbacks

59.3.1 comp

REGEXP* comp(pTHX_ const SV * const pattern, const U32 flags);

Compile the pattern stored in pattern using the given flags and return a pointer to a
prepared REGEXP structure that can perform the match. See Section 59.4 [The REGEXP
structure], page 1041 below for an explanation of the individual fields in the REGEXP
struct.

The pattern parameter is the scalar that was used as the pattern. Previous versions
of Perl would pass two char* indicating the start and end of the stringified pattern; the
following snippet can be used to get the old parameters:

STRLEN plen;

char* exp = SvPV(pattern, plen);

char* xend = exp + plen;

Since any scalar can be passed as a pattern, it’s possible to implement an engine that
does something with an array ("ook" =~ [qw/ eek hlagh /]) or with the non-stringified
form of a compiled regular expression ("ook" =~ qr/eek/). Perl’s own engine will always
stringify everything using the snippet above, but that doesn’t mean other engines have to.

The flags parameter is a bitfield which indicates which of the msixpn flags the regex
was compiled with. It also contains additional info, such as if use locale is in effect.

The eogc flags are stripped out before being passed to the comp routine. The regex
engine does not need to know if any of these are set, as those flags should only affect what
Perl does with the pattern and its match variables, not how it gets compiled and executed.

By the time the comp callback is called, some of these flags have already had effect (noted
below where applicable). However most of their effect occurs after the comp callback has
run, in routines that read the rx->extflags field which it populates.

In general the flags should be preserved in rx->extflags after compilation, although the
regex engine might want to add or delete some of them to invoke or disable some special
behavior in Perl. The flags along with any special behavior they cause are documented
below:

The pattern modifiers:

/m - RXf PMf MULTILINE
If this is in rx->extflags it will be passed to Perl_fbm_instr by pp_split

which will treat the subject string as a multi-line string.

/s - RXf PMf SINGLELINE
/i - RXf PMf FOLD
/x - RXf PMf EXTENDED

If present on a regex, "#" comments will be handled differently by the tokenizer
in some cases.

TODO: Document those cases.

/p - RXf PMf KEEPCOPY
TODO: Document this

Character set
The character set rules are determined by an enum that is contained in this
field. This is still experimental and subject to change, but the current interface
returns the rules by use of the in-line function get_regex_charset(const

U32 flags). The only currently documented value returned from it is
REGEX LOCALE CHARSET, which is set if use locale is in effect. If
present in rx->extflags, split will use the locale dependent definition of
whitespace when RXf SKIPWHITE or RXf WHITE is in effect. ASCII
whitespace is defined as per Section “isSPACE” in perlapi, and by the
internal macros is_utf8_space under UTF-8, and isSPACE_LC under use

locale.

Additional flags:

RXf SPLIT
This flag was removed in perl 5.18.0. split ’ ’ is now special-cased solely in
the parser. RXf SPLIT is still #defined, so you can test for it. This is how it
used to work:

If split is invoked as split ’ ’ or with no arguments (which really means
split(’ ’, $_), see [split], page 453), Perl will set this flag. The regex engine
can then check for it and set the SKIPWHITE and WHITE extflags. To do
this, the Perl engine does:

if (flags & RXf_SPLIT && r->prelen == 1 && r->precomp[0] == ’ ’)

r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);

These flags can be set during compilation to enable optimizations in the split operator.

RXf SKIPWHITE
This flag was removed in perl 5.18.0. It is still #defined, so you can set it, but
doing so will have no effect. This is how it used to work:

If the flag is present in rx->extflags split will delete whitespace from the
start of the subject string before it’s operated on. What is considered white-
space depends on if the subject is a UTF-8 string and if the RXf_PMf_LOCALE

flag is set.

If RXf WHITE is set in addition to this flag, split will behave like split " "

under the Perl engine.

RXf START ONLY
Tells the split operator to split the target string on newlines (\n) without in-
voking the regex engine.

Perl’s engine sets this if the pattern is /^/ (plen == 1 && *exp == ’^’), even
under /^/s; see Section 25.1 [split], page 351. Of course a different regex engine
might want to use the same optimizations with a different syntax.

RXf WHITE
Tells the split operator to split the target string on whitespace without invoking
the regex engine. The definition of whitespace varies depending on if the target
string is a UTF-8 string and on if RXf PMf LOCALE is set.

Perl’s engine sets this flag if the pattern is \s+.

RXf NULL
Tells the split operator to split the target string on characters. The definition
of character varies depending on if the target string is a UTF-8 string.

Perl’s engine sets this flag on empty patterns, this optimization makes split
// much faster than it would otherwise be. It’s even faster than unpack.

RXf NO INPLACE SUBST
Added in perl 5.18.0, this flag indicates that a regular expression might per-
form an operation that would interfere with inplace substitution. For instance
it might contain lookbehind, or assign to non-magical variables (such as $REG-
MARK and $REGERROR) during matching. s/// will skip certain optimisa-
tions when this is set.

59.3.2 exec

I32 exec(pTHX_ REGEXP * const rx,

char *stringarg, char* strend, char* strbeg,

SSize_t minend, SV* sv,

void* data, U32 flags);

Execute a regexp. The arguments are

rx

The regular expression to execute.

sv

This is the SV to be matched against. Note that the actual char array to be
matched against is supplied by the arguments described below; the SV is just
used to determine UTF8ness, pos() etc.

strbeg

Pointer to the physical start of the string.

strend

Pointer to the character following the physical end of the string (i.e. the \0, if
any).

stringarg

Pointer to the position in the string where matching should start; it might not
be equal to strbeg (for example in a later iteration of /.../g).

minend

Minimum length of string (measured in bytes from stringarg) that must
match; if the engine reaches the end of the match but hasn’t reached this
position in the string, it should fail.

data

Optimisation data; subject to change.

flags

Optimisation flags; subject to change.

59.3.3 intuit

char* intuit(pTHX_

REGEXP * const rx,

SV *sv,

const char * const strbeg,

char *strpos,

char *strend,

const U32 flags,

struct re_scream_pos_data_s *data);

Find the start position where a regex match should be attempted, or possibly if the regex
engine should not be run because the pattern can’t match. This is called, as appropriate,
by the core, depending on the values of the extflags member of the regexp structure.

Arguments:

rx: the regex to match against

sv: the SV being matched: only used for utf8 flag; the string

itself is accessed via the pointers below. Note that on

something like an overloaded SV, SvPOK(sv) may be false

and the string pointers may point to something unrelated to

the SV itself.

strbeg: real beginning of string

strpos: the point in the string at which to begin matching

strend: pointer to the byte following the last char of the string

flags currently unused; set to 0

data: currently unused; set to NULL

59.3.4 checkstr

SV* checkstr(pTHX_ REGEXP * const rx);

Return a SV containing a string that must appear in the pattern. Used by split for
optimising matches.

59.3.5 free

void free(pTHX_ REGEXP * const rx);

Called by Perl when it is freeing a regexp pattern so that the engine can release any resources
pointed to by the pprivate member of the regexp structure. This is only responsible
for freeing private data; Perl will handle releasing anything else contained in the regexp

structure.

59.3.6 Numbered capture callbacks

Called to get/set the value of $‘, $’, $& and their named equivalents, ${^PREMATCH},
${^POSTMATCH} and ${^MATCH}, as well as the numbered capture groups ($1, $2, ...).

The paren parameter will be 1 for $1, 2 for $2 and so forth, and have these symbolic
values for the special variables:

${^PREMATCH} RX_BUFF_IDX_CARET_PREMATCH

${^POSTMATCH} RX_BUFF_IDX_CARET_POSTMATCH

${^MATCH} RX_BUFF_IDX_CARET_FULLMATCH

$‘ RX_BUFF_IDX_PREMATCH

$’ RX_BUFF_IDX_POSTMATCH

$& RX_BUFF_IDX_FULLMATCH

Note that in Perl 5.17.3 and earlier, the last three constants were also used for the caret
variants of the variables.

The names have been chosen by analogy with Tie-Scalar methods names with an
additional LENGTH callback for efficiency. However named capture variables are currently
not tied internally but implemented via magic.

59.3.6.1 numbered buff FETCH

void numbered_buff_FETCH(pTHX_ REGEXP * const rx, const I32 paren,

SV * const sv);

Fetch a specified numbered capture. sv should be set to the scalar to return, the scalar
is passed as an argument rather than being returned from the function because when it’s
called Perl already has a scalar to store the value, creating another one would be redundant.
The scalar can be set with sv_setsv, sv_setpvn and friends, see perlapi.

This callback is where Perl untaints its own capture variables under taint mode (see
Section 70.1 [perlsec NAME], page 1198). See the Perl_reg_numbered_buff_fetch func-
tion in regcomp.c for how to untaint capture variables if that’s something you’d like your
engine to do as well.

59.3.6.2 numbered buff STORE

void (*numbered_buff_STORE) (pTHX_

REGEXP * const rx,

const I32 paren,

SV const * const value);

Set the value of a numbered capture variable. value is the scalar that is to be used as the
new value. It’s up to the engine to make sure this is used as the new value (or reject it).

Example:

if ("ook" =~ /(o*)/) {

’paren’ will be ’1’ and ’value’ will be ’ee’

$1 =~ tr/o/e/;

}

Perl’s own engine will croak on any attempt to modify the capture variables, to do this in
another engine use the following callback (copied from Perl_reg_numbered_buff_store):

void

Example_reg_numbered_buff_store(pTHX_

REGEXP * const rx,

const I32 paren,

SV const * const value)

{

PERL_UNUSED_ARG(rx);

PERL_UNUSED_ARG(paren);

PERL_UNUSED_ARG(value);

if (!PL_localizing)

Perl_croak(aTHX_ PL_no_modify);

}

Actually Perl will not always croak in a statement that looks like it would modify a
numbered capture variable. This is because the STORE callback will not be called if Perl
can determine that it doesn’t have to modify the value. This is exactly how tied variables
behave in the same situation:

package CaptureVar;

use parent ’Tie::Scalar’;

sub TIESCALAR { bless [] }

sub FETCH { undef }

sub STORE { die "This doesn’t get called" }

package main;

tie my $sv => "CaptureVar";

$sv =~ y/a/b/;

Because $sv is undef when the y/// operator is applied to it, the transliteration won’t
actually execute and the program won’t die. This is different to how 5.8 and earlier versions
behaved since the capture variables were READONLY variables then; now they’ll just die
when assigned to in the default engine.

59.3.6.3 numbered buff LENGTH

I32 numbered_buff_LENGTH (pTHX_

REGEXP * const rx,

const SV * const sv,

const I32 paren);

Get the length of a capture variable. There’s a special callback for this so that Perl doesn’t
have to do a FETCH and run length on the result, since the length is (in Perl’s case) known
from an offset stored in rx->offs, this is much more efficient:

I32 s1 = rx->offs[paren].start;

I32 s2 = rx->offs[paren].end;

I32 len = t1 - s1;

This is a little bit more complex in the case of UTF-8, see what Perl_reg_numbered_
buff_length does with Section “is utf8 string loclen” in perlapi.

59.3.7 Named capture callbacks

Called to get/set the value of %+ and %-, as well as by some utility functions in re.

There are two callbacks, named_buff is called in all the cases the FETCH, STORE,
DELETE, CLEAR, EXISTS and SCALAR Tie-Hash callbacks would be on changes to %+

and %- and named_buff_iter in the same cases as FIRSTKEY and NEXTKEY.

The flags parameter can be used to determine which of these operations the callbacks
should respond to. The following flags are currently defined:

Which Tie-Hash operation is being performed from the Perl level on %+ or %+, if any:

RXapif_FETCH

RXapif_STORE

RXapif_DELETE

RXapif_CLEAR

RXapif_EXISTS

RXapif_SCALAR

RXapif_FIRSTKEY

RXapif_NEXTKEY

If %+ or %- is being operated on, if any.

RXapif_ONE /* %+ */

RXapif_ALL /* %- */

If this is being called as re::regname, re::regnames or re::regnames_count, if any.
The first two will be combined with RXapif_ONE or RXapif_ALL.

RXapif_REGNAME

RXapif_REGNAMES

RXapif_REGNAMES_COUNT

Internally %+ and %- are implemented with a real tied interface via
Tie-Hash-NamedCapture. The methods in that package will call back into these
functions. However the usage of Tie-Hash-NamedCapture for this purpose might change
in future releases. For instance this might be implemented by magic instead (would need
an extension to mgvtbl).

59.3.7.1 named buff

SV* (*named_buff) (pTHX_ REGEXP * const rx, SV * const key,

SV * const value, U32 flags);

59.3.7.2 named buff iter

SV* (*named_buff_iter) (pTHX_

REGEXP * const rx,

const SV * const lastkey,

const U32 flags);

59.3.8 qr package

SV* qr_package(pTHX_ REGEXP * const rx);

The package the qr// magic object is blessed into (as seen by ref qr//). It is recom-
mended that engines change this to their package name for identification regardless of if
they implement methods on the object.

The package this method returns should also have the internal Regexp package in its
@ISA. qr//->isa("Regexp") should always be true regardless of what engine is being used.

Example implementation might be:

SV*

Example_qr_package(pTHX_ REGEXP * const rx)

{

PERL_UNUSED_ARG(rx);

return newSVpvs("re::engine::Example");

}

Any method calls on an object created with qr// will be dispatched to the package as
a normal object.

use re::engine::Example;

my $re = qr//;

$re->meth; # dispatched to re::engine::Example::meth()

To retrieve the REGEXP object from the scalar in an XS function use the SvRX macro, see
Section “REGEXP Functions” in perlapi.

void meth(SV * rv)

PPCODE:

REGEXP * re = SvRX(sv);

59.3.9 dupe

void* dupe(pTHX_ REGEXP * const rx, CLONE_PARAMS *param);

On threaded builds a regexp may need to be duplicated so that the pattern can be used
by multiple threads. This routine is expected to handle the duplication of any private data
pointed to by the pprivate member of the regexp structure. It will be called with the
preconstructed new regexp structure as an argument, the pprivate member will point at
the old private structure, and it is this routine’s responsibility to construct a copy and return
a pointer to it (which Perl will then use to overwrite the field as passed to this routine.)

This allows the engine to dupe its private data but also if necessary modify the final
structure if it really must.

On unthreaded builds this field doesn’t exist.

59.3.10 op comp

This is private to the Perl core and subject to change. Should be left null.

59.4 The REGEXP structure

The REGEXP struct is defined in regexp.h. All regex engines must be able to correctly
build such a structure in their Section 59.3.1 [comp], page 1033 routine.

The REGEXP structure contains all the data that Perl needs to be aware of to properly
work with the regular expression. It includes data about optimisations that Perl can use to
determine if the regex engine should really be used, and various other control info that is
needed to properly execute patterns in various contexts, such as if the pattern anchored in
some way, or what flags were used during the compile, or if the program contains special
constructs that Perl needs to be aware of.

In addition it contains two fields that are intended for the private use of the regex engine
that compiled the pattern. These are the intflags and pprivate members. pprivate is
a void pointer to an arbitrary structure, whose use and management is the responsibility of
the compiling engine. Perl will never modify either of these values.

typedef struct regexp {

/* what engine created this regexp? */

const struct regexp_engine* engine;

/* what re is this a lightweight copy of? */

struct regexp* mother_re;

/* Information about the match that the Perl core uses to manage

* things */

U32 extflags; /* Flags used both externally and internally */

I32 minlen; /* mininum possible number of chars in */

string to match */

I32 minlenret; /* mininum possible number of chars in $& */

U32 gofs; /* chars left of pos that we search from */

/* substring data about strings that must appear

in the final match, used for optimisations */

struct reg_substr_data *substrs;

U32 nparens; /* number of capture groups */

/* private engine specific data */

U32 intflags; /* Engine Specific Internal flags */

void *pprivate; /* Data private to the regex engine which

created this object. */

/* Data about the last/current match. These are modified during

* matching*/

U32 lastparen; /* highest close paren matched ($+) */

U32 lastcloseparen; /* last close paren matched ($^N) */

regexp_paren_pair *swap; /* Swap copy of *offs */

regexp_paren_pair *offs; /* Array of offsets for (@-) and

(@+) */

char *subbeg; /* saved or original string so \digit works

forever. */

SV_SAVED_COPY /* If non-NULL, SV which is COW from original */

I32 sublen; /* Length of string pointed by subbeg */

I32 suboffset; /* byte offset of subbeg from logical start of

str */

I32 subcoffset; /* suboffset equiv, but in chars (for @-/@+) */

/* Information about the match that isn’t often used */

I32 prelen; /* length of precomp */

const char *precomp; /* pre-compilation regular expression */

char *wrapped; /* wrapped version of the pattern */

I32 wraplen; /* length of wrapped */

I32 seen_evals; /* number of eval groups in the pattern - for

security checks */

HV *paren_names; /* Optional hash of paren names */

/* Refcount of this regexp */

I32 refcnt; /* Refcount of this regexp */

} regexp;

The fields are discussed in more detail below:

59.4.1 engine

This field points at a regexp_engine structure which contains pointers to the subroutines
that are to be used for performing a match. It is the compiling routine’s responsibility to
populate this field before returning the regexp object.

Internally this is set to NULL unless a custom engine is specified in $^H{regcomp}, Perl’s
own set of callbacks can be accessed in the struct pointed to by RE_ENGINE_PTR.

59.4.2 mother_re

TODO, see http://www.mail-archive.com/perl5-changes@perl.org/msg17328.html

59.4.3 extflags

This will be used by Perl to see what flags the regexp was compiled with, this will normally
be set to the value of the flags parameter by the Section 59.3.1 [comp], page 1033 callback.
See the Section 59.3.1 [comp], page 1033 documentation for valid flags.

http://www.mail-archive.com/perl5-changes@perl.org/msg17328.html

59.4.4 minlen minlenret

The minimum string length (in characters) required for the pattern to match. This is used
to prune the search space by not bothering to match any closer to the end of a string than
would allow a match. For instance there is no point in even starting the regex engine if the
minlen is 10 but the string is only 5 characters long. There is no way that the pattern can
match.

minlenret is the minimum length (in characters) of the string that would be found in
$& after a match.

The difference between minlen and minlenret can be seen in the following pattern:

/ns(?=\d)/

where the minlen would be 3 but minlenret would only be 2 as the \d is required to
match but is not actually included in the matched content. This distinction is particu-
larly important as the substitution logic uses the minlenret to tell if it can do in-place
substitutions (these can result in considerable speed-up).

59.4.5 gofs

Left offset from pos() to start match at.

59.4.6 substrs

Substring data about strings that must appear in the final match. This is currently only used
internally by Perl’s engine, but might be used in the future for all engines for optimisations.

59.4.7 nparens, lastparen, and lastcloseparen

These fields are used to keep track of how many paren groups could be matched in the
pattern, which was the last open paren to be entered, and which was the last close paren
to be entered.

59.4.8 intflags

The engine’s private copy of the flags the pattern was compiled with. Usually this is the
same as extflags unless the engine chose to modify one of them.

59.4.9 pprivate

A void* pointing to an engine-defined data structure. The Perl engine uses the regexp_

internal structure (see Section 64.5.2 [perlreguts Base Structures], page 1112) but a custom
engine should use something else.

59.4.10 swap

Unused. Left in for compatibility with Perl 5.10.0.

59.4.11 offs

A regexp_paren_pair structure which defines offsets into the string being matched which
correspond to the $& and $1, $2 etc. captures, the regexp_paren_pair struct is defined as
follows:

typedef struct regexp_paren_pair {

I32 start;

I32 end;

} regexp_paren_pair;

If ->offs[num].start or ->offs[num].end is -1 then that capture group did not match.
->offs[0].start/end represents $& (or ${^MATCH} under //p) and ->offs[paren].end

matches $$paren where $paren = 1>.

59.4.12 precomp prelen

Used for optimisations. precomp holds a copy of the pattern that was compiled and prelen

its length. When a new pattern is to be compiled (such as inside a loop) the internal
regcomp operator checks if the last compiled REGEXP’s precomp and prelen are equivalent
to the new one, and if so uses the old pattern instead of compiling a new one.

The relevant snippet from Perl_pp_regcomp:

if (!re || !re->precomp || re->prelen != (I32)len ||

memNE(re->precomp, t, len))

/* Compile a new pattern */

59.4.13 paren_names

This is a hash used internally to track named capture groups and their offsets. The keys
are the names of the buffers the values are dualvars, with the IV slot holding the number of
buffers with the given name and the pv being an embedded array of I32. The values may
also be contained independently in the data array in cases where named backreferences are
used.

59.4.14 substrs

Holds information on the longest string that must occur at a fixed offset from the start of
the pattern, and the longest string that must occur at a floating offset from the start of the
pattern. Used to do Fast-Boyer-Moore searches on the string to find out if its worth using
the regex engine at all, and if so where in the string to search.

59.4.15 subbeg sublen saved_copy suboffset subcoffset

Used during the execution phase for managing search and replace patterns, and for providing
the text for $&, $1 etc. subbeg points to a buffer (either the original string, or a copy in
the case of RX_MATCH_COPIED(rx)), and sublen is the length of the buffer. The RX_OFFS

start and end indices index into this buffer.

In the presence of the REXEC_COPY_STR flag, but with the addition of the REXEC_COPY_

SKIP_PRE or REXEC_COPY_SKIP_POST flags, an engine can choose not to copy the full buffer
(although it must still do so in the presence of RXf_PMf_KEEPCOPY or the relevant bits being
set in PL_sawampersand). In this case, it may set suboffset to indicate the number of
bytes from the logical start of the buffer to the physical start (i.e. subbeg). It should also
set subcoffset, the number of characters in the offset. The latter is needed to support @-
and @+ which work in characters, not bytes.

59.4.16 wrapped wraplen

Stores the string qr// stringifies to. The Perl engine for example stores (?^:eek) in the
case of qr/eek/.

When using a custom engine that doesn’t support the (?:) construct for inline modifiers,
it’s probably best to have qr// stringify to the supplied pattern, note that this will create
undesired patterns in cases such as:

my $x = qr/a|b/; # "a|b"

my $y = qr/c/i; # "c"

my $z = qr/$x$y/; # "a|bc"

There’s no solution for this problem other than making the custom engine understand
a construct like (?:).

59.4.17 seen_evals

This stores the number of eval groups in the pattern. This is used for security purposes
when embedding compiled regexes into larger patterns with qr//.

59.4.18 refcnt

The number of times the structure is referenced. When this falls to 0, the regexp is auto-
matically freed by a call to pregfree. This should be set to 1 in each engine’s Section 59.3.1
[comp], page 1033 routine.

59.5 HISTORY

Originally part of Section 64.1 [perlreguts NAME], page 1100.

59.6 AUTHORS

Originally written by Yves Orton, expanded by Ævar Arnfjörð Bjarmason.

59.7 LICENSE

Copyright 2006 Yves Orton and 2007 Ævar Arnfjörð Bjarmason.

This program is free software; you can redistribute it and/or modify it under the same
terms as Perl itself.

60 perlrebackslash

60.1 NAME

perlrebackslash - Perl Regular Expression Backslash Sequences and Escapes

60.2 DESCRIPTION

The top level documentation about Perl regular expressions is found in Section 58.1 [perlre
NAME], page 989.

This document describes all backslash and escape sequences. After explaining the role
of the backslash, it lists all the sequences that have a special meaning in Perl regular
expressions (in alphabetical order), then describes each of them.

Most sequences are described in detail in different documents; the primary purpose of this
document is to have a quick reference guide describing all backslash and escape sequences.

60.2.1 The backslash

In a regular expression, the backslash can perform one of two tasks: it either takes away
the special meaning of the character following it (for instance, \| matches a vertical bar,
it’s not an alternation), or it is the start of a backslash or escape sequence.

The rules determining what it is are quite simple: if the character following the backslash
is an ASCII punctuation (non-word) character (that is, anything that is not a letter, digit,
or underscore), then the backslash just takes away any special meaning of the character
following it.

If the character following the backslash is an ASCII letter or an ASCII digit, then the
sequence may be special; if so, it’s listed below. A few letters have not been used yet, so
escaping them with a backslash doesn’t change them to be special. A future version of Perl
may assign a special meaning to them, so if you have warnings turned on, Perl issues a
warning if you use such a sequence. [1].

It is however guaranteed that backslash or escape sequences never have a punctuation
character following the backslash, not now, and not in a future version of Perl 5. So it is
safe to put a backslash in front of a non-word character.

Note that the backslash itself is special; if you want to match a backslash, you have to
escape the backslash with a backslash: /\\/ matches a single backslash.

[1]

There is one exception. If you use an alphanumeric character as the delimiter
of your pattern (which you probably shouldn’t do for readability reasons), you
have to escape the delimiter if you want to match it. Perl won’t warn then. See
also Section 48.2.32 [perlop Gory details of parsing quoted constructs], page 839.

60.2.2 All the sequences and escapes

Those not usable within a bracketed character class (like [\da-z]) are marked as Not in

[].

\000 Octal escape sequence. See also \o{}.

\1 Absolute backreference. Not in [].

\a Alarm or bell.

\A Beginning of string. Not in [].

\b{}, \b Boundary. (\b is a backspace in []).

\B{}, \B Not a boundary. Not in [].

\cX Control-X.

\C Single octet, even under UTF-8. Not in [].

(Deprecated)

\d Character class for digits.

\D Character class for non-digits.

\e Escape character.

\E Turn off \Q, \L and \U processing. Not in [].

\f Form feed.

\F Foldcase till \E. Not in [].

\g{}, \g1 Named, absolute or relative backreference.

Not in [].

\G Pos assertion. Not in [].

\h Character class for horizontal whitespace.

\H Character class for non horizontal whitespace.

\k{}, \k<>, \k’’ Named backreference. Not in [].

\K Keep the stuff left of \K. Not in [].

\l Lowercase next character. Not in [].

\L Lowercase till \E. Not in [].

\n (Logical) newline character.

\N Any character but newline. Not in [].

\N{} Named or numbered (Unicode) character or sequence.

\o{} Octal escape sequence.

\p{}, \pP Character with the given Unicode property.

\P{}, \PP Character without the given Unicode property.

\Q Quote (disable) pattern metacharacters till \E. Not

in [].

\r Return character.

\R Generic new line. Not in [].

\s Character class for whitespace.

\S Character class for non whitespace.

\t Tab character.

\u Titlecase next character. Not in [].

\U Uppercase till \E. Not in [].

\v Character class for vertical whitespace.

\V Character class for non vertical whitespace.

\w Character class for word characters.

\W Character class for non-word characters.

\x{}, \x00 Hexadecimal escape sequence.

\X Unicode "extended grapheme cluster". Not in [].

\z End of string. Not in [].

\Z End of string. Not in [].

60.2.3 Character Escapes

60.2.3.1 Fixed characters

A handful of characters have a dedicated character escape. The following table shows
them, along with their ASCII code points (in decimal and hex), their ASCII name, the
control escape on ASCII platforms and a short description. (For EBCDIC platforms, see
Section 19.7 [perlebcdic OPERATOR DIFFERENCES], page 286.)

Seq. Code Point ASCII Cntrl Description.

Dec Hex

\a 7 07 BEL \cG alarm or bell

\b 8 08 BS \cH backspace [1]

\e 27 1B ESC \c[escape character

\f 12 0C FF \cL form feed

\n 10 0A LF \cJ line feed [2]

\r 13 0D CR \cM carriage return

\t 9 09 TAB \cI tab

[1]

\b is the backspace character only inside a character class. Outside a character
class, \b alone is a word-character/non-word-character boundary, and \b{} is
some other type of boundary.

[2]

\n matches a logical newline. Perl converts between \n and your OS’s native
newline character when reading from or writing to text files.

60.2.3.2 Example

$str =~ /\t/; # Matches if $str contains a (horizontal) tab.

60.2.3.3 Control characters

\c is used to denote a control character; the character following \c determines the value of
the construct. For example the value of \cA is chr(1), and the value of \cb is chr(2), etc.
The gory details are in Section 48.2.30 [perlop Regexp Quote-Like Operators], page 823. A
complete list of what chr(1), etc. means for ASCII and EBCDIC platforms is in Section 19.7
[perlebcdic OPERATOR DIFFERENCES], page 286.

Note that \c\ alone at the end of a regular expression (or doubled-quoted string) is not
valid. The backslash must be followed by another character. That is, \c\X means chr(28)
. ’X’ for all characters X.

To write platform-independent code, you must use \N{NAME} instead, like \N{ESCAPE}

or \N{U+001B}, see charnames.

Mnemonic: control character.

60.2.3.4 Example

$str =~ /\cK/; # Matches if $str contains a vertical tab (control-K).

60.2.3.5 Named or numbered characters and character sequences

Unicode characters have a Unicode name and numeric code point (ordinal) value. Use
the \N{} construct to specify a character by either of these values. Certain sequences of
characters also have names.

To specify by name, the name of the character or character sequence goes between the
curly braces.

To specify a character by Unicode code point, use the form \N{U+code point}, where
code point is a number in hexadecimal that gives the code point that Unicode has assigned
to the desired character. It is customary but not required to use leading zeros to pad the
number to 4 digits. Thus \N{U+0041} means LATIN CAPITAL LETTER A, and you will rarely
see it written without the two leading zeros. \N{U+0041} means "A" even on EBCDIC
machines (where the ordinal value of "A" is not 0x41).

It is even possible to give your own names to characters and character sequences. For
details, see charnames.

(There is an expanded internal form that you may see in debug output: \N{U+code

point.code point...}. The ... means any number of these code points separated by
dots. This represents the sequence formed by the characters. This is an internal form only,
subject to change, and you should not try to use it yourself.)

Mnemonic: N amed character.

Note that a character or character sequence expressed as a named or numbered character
is considered a character without special meaning by the regex engine, and will match "as
is".

60.2.3.6 Example

$str =~ /\N{THAI CHARACTER SO SO}/; # Matches the Thai SO SO character

use charnames ’Cyrillic’; # Loads Cyrillic names.

$str =~ /\N{ZHE}\N{KA}/; # Match "ZHE" followed by "KA".

60.2.3.7 Octal escapes

There are two forms of octal escapes. Each is used to specify a character by its code point
specified in octal notation.

One form, available starting in Perl 5.14 looks like \o{...}, where the dots represent
one or more octal digits. It can be used for any Unicode character.

It was introduced to avoid the potential problems with the other form, available in
all Perls. That form consists of a backslash followed by three octal digits. One problem
with this form is that it can look exactly like an old-style backreference (see Section 60.2.3.9
[Disambiguation rules between old-style octal escapes and backreferences], page 1050 below.)
You can avoid this by making the first of the three digits always a zero, but that makes
\077 the largest code point specifiable.

In some contexts, a backslash followed by two or even one octal digits may be interpreted
as an octal escape, sometimes with a warning, and because of some bugs, sometimes with
surprising results. Also, if you are creating a regex out of smaller snippets concatenated

together, and you use fewer than three digits, the beginning of one snippet may be inter-
preted as adding digits to the ending of the snippet before it. See Section 60.2.6.1 [Absolute
referencing], page 1052 for more discussion and examples of the snippet problem.

Note that a character expressed as an octal escape is considered a character without
special meaning by the regex engine, and will match "as is".

To summarize, the \o{} form is always safe to use, and the other form is safe to use for
code points through \077 when you use exactly three digits to specify them.

Mnemonic: 0 ctal or octal.

60.2.3.8 Examples (assuming an ASCII platform)

$str = "Perl";

$str =~ /\o{120}/; # Match, "\120" is "P".

$str =~ /\120/; # Same.

$str =~ /\o{120}+/; # Match, "\120" is "P",

it’s repeated at least once.

$str =~ /\120+/; # Same.

$str =~ /P\053/; # No match, "\053" is "+" and taken literally.

/\o{23073}/ # Black foreground, white background smiling face.

/\o{4801234567}/ # Raises a warning, and yields chr(4).

60.2.3.9 Disambiguation rules between old-style octal escapes and
backreferences

Octal escapes of the \000 form outside of bracketed character classes potentially clash
with old-style backreferences (see Section 60.2.6.1 [Absolute referencing], page 1052 below).
They both consist of a backslash followed by numbers. So Perl has to use heuristics to
determine whether it is a backreference or an octal escape. Perl uses the following rules to
disambiguate:

1. If the backslash is followed by a single digit, it’s a backreference.

2. If the first digit following the backslash is a 0, it’s an octal escape.

3. If the number following the backslash is N (in decimal), and Perl already has seen N
capture groups, Perl considers this a backreference. Otherwise, it considers it an octal
escape. If N has more than three digits, Perl takes only the first three for the octal
escape; the rest are matched as is.

my $pat = "(" x 999;

$pat .= "a";

$pat .= ")" x 999;

/^($pat)\1000$/; # Matches ’aa’; there are 1000 capture groups.

/^$pat\1000$/; # Matches ’a@0’; there are 999 capture groups

and \1000 is seen as \100 (a ’@’) and a ’0’.

You can force a backreference interpretation always by using the \g{...} form. You
can the force an octal interpretation always by using the \o{...} form, or for numbers up
through \077 (= 63 decimal), by using three digits, beginning with a "0".

60.2.3.10 Hexadecimal escapes

Like octal escapes, there are two forms of hexadecimal escapes, but both start with the
sequence \x. This is followed by either exactly two hexadecimal digits forming a number,
or a hexadecimal number of arbitrary length surrounded by curly braces. The hexadecimal
number is the code point of the character you want to express.

Note that a character expressed as one of these escapes is considered a character without
special meaning by the regex engine, and will match "as is".

Mnemonic: hexadecimal.

60.2.3.11 Examples (assuming an ASCII platform)

$str = "Perl";

$str =~ /\x50/; # Match, "\x50" is "P".

$str =~ /\x50+/; # Match, "\x50" is "P", it is repeated at least once

$str =~ /P\x2B/; # No match, "\x2B" is "+" and taken literally.

/\x{2603}\x{2602}/ # Snowman with an umbrella.

The Unicode character 2603 is a snowman,

the Unicode character 2602 is an umbrella.

/\x{263B}/ # Black smiling face.

/\x{263b}/ # Same, the hex digits A - F are case insensitive.

60.2.4 Modifiers

A number of backslash sequences have to do with changing the character, or characters
following them. \l will lowercase the character following it, while \u will uppercase (or,
more accurately, titlecase) the character following it. They provide functionality similar to
the functions lcfirst and ucfirst.

To uppercase or lowercase several characters, one might want to use \L or \U, which
will lowercase/uppercase all characters following them, until either the end of the pattern
or the next occurrence of \E, whichever comes first. They provide functionality similar to
what the functions lc and uc provide.

\Q is used to quote (disable) pattern metacharacters, up to the next \E or the end of
the pattern. \Q adds a backslash to any character that could have special meaning to Perl.
In the ASCII range, it quotes every character that isn’t a letter, digit, or underscore. See
[perlfunc quotemeta], page 430 for details on what gets quoted for non-ASCII code points.
Using this ensures that any character between \Q and \E will be matched literally, not
interpreted as a metacharacter by the regex engine.

\F can be used to casefold all characters following, up to the next \E or the end of the
pattern. It provides the functionality similar to the fc function.

Mnemonic: Lowercase, Uppercase, Fold-case, Quotemeta, End.

60.2.4.1 Examples

$sid = "sid";

$greg = "GrEg";

$miranda = "(Miranda)";

$str =~ /\u$sid/; # Matches ’Sid’

$str =~ /\L$greg/; # Matches ’greg’

$str =~ /\Q$miranda\E/; # Matches ’(Miranda)’, as if the pattern

had been written as /\(Miranda\)/

60.2.5 Character classes

Perl regular expressions have a large range of character classes. Some of the character
classes are written as a backslash sequence. We will briefly discuss those here; full details
of character classes can be found in Section 61.1 [perlrecharclass NAME], page 1059.

\w is a character class that matches any single word character (letters, digits, Unicode
marks, and connector punctuation (like the underscore)). \d is a character class that
matches any decimal digit, while the character class \s matches any whitespace character.
New in perl 5.10.0 are the classes \h and \v which match horizontal and vertical whitespace
characters.

The exact set of characters matched by \d, \s, and \w varies depending on various
pragma and regular expression modifiers. It is possible to restrict the match to the ASCII
range by using the /a regular expression modifier. See Section 61.1 [perlrecharclass NAME],
page 1059.

The uppercase variants (\W, \D, \S, \H, and \V) are character classes that match, respec-
tively, any character that isn’t a word character, digit, whitespace, horizontal whitespace,
or vertical whitespace.

Mnemonics: word, d igit, space, horizontal, vertical.

60.2.5.1 Unicode classes

\pP (where P is a single letter) and \p{Property} are used to match a character that
matches the given Unicode property; properties include things like "letter", or "thai charac-
ter". Capitalizing the sequence to \PP and \P{Property} make the sequence match a char-
acter that doesn’t match the given Unicode property. For more details, see Section 61.2.2
[perlrecharclass Backslash sequences], page 1059 and Section 81.2.5 [perlunicode Unicode
Character Properties], page 1321.

Mnemonic: property.

60.2.6 Referencing

If capturing parenthesis are used in a regular expression, we can refer to the part of the
source string that was matched, and match exactly the same thing. There are three ways
of referring to such backreference: absolutely, relatively, and by name.

60.2.6.1 Absolute referencing

Either \gN (starting in Perl 5.10.0), or \N (old-style) where N is a positive (unsigned)
decimal number of any length is an absolute reference to a capturing group.

N refers to the Nth set of parentheses, so \gN refers to whatever has been matched by
that set of parentheses. Thus \g1 refers to the first capture group in the regex.

The \gN form can be equivalently written as \g{N} which avoids ambiguity when building
a regex by concatenating shorter strings. Otherwise if you had a regex qr/ab/, and $a

contained "\g1", and $b contained "37", you would get /\g137/ which is probably not
what you intended.

In the \N form, N must not begin with a "0", and there must be at least N capturing
groups, or else N is considered an octal escape (but something like \18 is the same as \0018;
that is, the octal escape "\001" followed by a literal digit "8").

Mnemonic: group.

60.2.6.2 Examples

/(\w+) \g1/; # Finds a duplicated word, (e.g. "cat cat").

/(\w+) \1/; # Same thing; written old-style.

/(.)(.)\g2\g1/; # Match a four letter palindrome (e.g. "ABBA").

60.2.6.3 Relative referencing

\g-N (starting in Perl 5.10.0) is used for relative addressing. (It can be written as \g{-N.)
It refers to the N th group before the \g{-N}.

The big advantage of this form is that it makes it much easier to write patterns with
references that can be interpolated in larger patterns, even if the larger pattern also contains
capture groups.

60.2.6.4 Examples

/(A) # Group 1

(# Group 2

(B) # Group 3

\g{-1} # Refers to group 3 (B)

\g{-3} # Refers to group 1 (A)

)

/x; # Matches "ABBA".

my $qr = qr /(.)(.)\g{-2}\g{-1}/; # Matches ’abab’, ’cdcd’, etc.

/qrqr/ # Matches ’ababcdcd’.

60.2.6.5 Named referencing

\g{name} (starting in Perl 5.10.0) can be used to back refer to a named capture group,
dispensing completely with having to think about capture buffer positions.

To be compatible with .Net regular expressions, \g{name} may also be written as
\k{name}, \k<name> or \k’name’.

To prevent any ambiguity, name must not start with a digit nor contain a hyphen.

60.2.6.6 Examples

/(?<word>\w+) \g{word}/ # Finds duplicated word, (e.g. "cat cat")

/(?<word>\w+) \k{word}/ # Same.

/(?<word>\w+) \k<word>/ # Same.

/(?<letter1>.)(?<letter2>.)\g{letter2}\g{letter1}/

Match a four letter palindrome (e.g. "ABBA")

60.2.7 Assertions

Assertions are conditions that have to be true; they don’t actually match parts of the
substring. There are six assertions that are written as backslash sequences.

\A

\A only matches at the beginning of the string. If the /m modifier isn’t used,
then /\A/ is equivalent to /^/. However, if the /m modifier is used, then /^/

matches internal newlines, but the meaning of /\A/ isn’t changed by the /m

modifier. \A matches at the beginning of the string regardless whether the /m

modifier is used.

\z, \Z

\z and \Z match at the end of the string. If the /m modifier isn’t used, then
/\Z/ is equivalent to /$/; that is, it matches at the end of the string, or one
before the newline at the end of the string. If the /m modifier is used, then /$/

matches at internal newlines, but the meaning of /\Z/ isn’t changed by the /m
modifier. \Z matches at the end of the string (or just before a trailing newline)
regardless whether the /m modifier is used.

\z is just like \Z, except that it does not match before a trailing newline. \z

matches at the end of the string only, regardless of the modifiers used, and not
just before a newline. It is how to anchor the match to the true end of the
string under all conditions.

\G

\G is usually used only in combination with the /g modifier. If the /g modifier
is used and the match is done in scalar context, Perl remembers where in the
source string the last match ended, and the next time, it will start the match
from where it ended the previous time.

\G matches the point where the previous match on that string ended, or the
beginning of that string if there was no previous match.

Mnemonic: G lobal.

\b{}, \b, \B{}, \B
\b{...}, available starting in v5.22, matches a boundary (between two char-
acters, or before the first character of the string, or after the final character of
the string) based on the Unicode rules for the boundary type specified inside
the braces. The currently known boundary types are given a few paragraphs
below. \B{...} matches at any place between characters where \b{...} of the
same type doesn’t match.

\b when not immediately followed by a "{" matches at any place between a
word (something matched by \w) and a non-word character (\W); \B when not
immediately followed by a "{" matches at any place between characters where
\b doesn’t match. To get better word matching of natural language text, see
bwb below.

\b and \B assume there’s a non-word character before the beginning and after
the end of the source string; so \b will match at the beginning (or end) of
the source string if the source string begins (or ends) with a word character.
Otherwise, \B will match.

Do not use something like \b=head\d\b and expect it to match the beginning
of a line. It can’t, because for there to be a boundary before the non-word
"=", there must be a word character immediately previous. All plain \b and

\B boundary determinations look for word characters alone, not for non-word
characters nor for string ends. It may help to understand how <\b> and <\B>
work by equating them as follows:

\b really means (?:(?<=\w)(?!\w)|(?<!\w)(?=\w))

\B really means (?:(?<=\w)(?=\w)|(?<!\w)(?!\w))

In contrast, \b{...} and \B{...} may or may not match at the beginning and
end of the line, depending on the boundary type. These implement the Unicode
default boundaries, specified in http://www.unicode.org/reports/tr29/.
The boundary types currently available are:

\b{gcb} or \b{g}
This matches a Unicode "Grapheme Cluster Boundary". (Actu-
ally Perl always uses the improved "extended" grapheme cluster").
These are explained below under [\X], page 1057. In fact, \X is
another way to get the same functionality. It is equivalent to
/.+?\b{gcb}/. Use whichever is most convenient for your situ-
ation.

\b{sb}

This matches a Unicode "Sentence Boundary". This is an aid to
parsing natural language sentences. It gives good, but imperfect
results. For example, it thinks that "Mr. Smith" is two sentences.
More details are at http://www.unicode.org/reports/tr29/.
Note also that it thinks that anything matching [\R], page 1057
(except form feed and vertical tab) is a sentence boundary. \b{sb}
works with text designed for word-processors which wrap lines au-
tomatically for display, but hard-coded line boundaries are consid-
ered to be essentially the ends of text blocks (paragraphs really),
and hence the ends of sententces. \b{sb} doesn’t do well with text
containing embedded newlines, like the source text of the docu-
ment you are reading. Such text needs to be preprocessed to get
rid of the line separators before looking for sentence boundaries.
Some people view this as a bug in the Unicode standard, and this
behavior is quite subject to change in future Perl versions.

\b{wb}

This matches a Unicode "Word Boundary". This gives better
(though not perfect) results for natural language processing than
plain \b (without braces) does. For example, it understands that
apostrophes can be in the middle of words and that parentheses
aren’t (see the examples below). More details are at http://www.
unicode.org/reports/tr29/.

It is important to realize when you use these Unicode boundaries, that you
are taking a risk that a future version of Perl which contains a later version
of the Unicode Standard will not work precisely the same way as it did when
your code was written. These rules are not considered stable and have been
somewhat more subject to change than the rest of the Standard. Unicode

http://www.unicode.org/reports/tr29/
http://www.unicode.org/reports/tr29/
http://www.unicode.org/reports/tr29/
http://www.unicode.org/reports/tr29/

reserves the right to change them at will, and Perl reserves the right to update
its implementation to Unicode’s new rules. In the past, some changes have been
because new characters have been added to the Standard which have different
characteristics than all previous characters, so new rules are formulated for
handling them. These should not cause any backward compatibility issues.
But some changes have changed the treatment of existing characters because
the Unicode Technical Committee has decided that the change is warranted
for whatever reason. This could be to fix a bug, or because they think better
results are obtained with the new rule.

It is also important to realize that these are default boundary definitions, and
that implementations may wish to tailor the results for particular purposes and
locales.

Unicode defines a fourth boundary type, accessible through the
Unicode-LineBreak module.

Mnemonic: boundary.

60.2.7.1 Examples

"cat" =~ /\Acat/; # Match.

"cat" =~ /cat\Z/; # Match.

"cat\n" =~ /cat\Z/; # Match.

"cat\n" =~ /cat\z/; # No match.

"cat" =~ /\bcat\b/; # Matches.

"cats" =~ /\bcat\b/; # No match.

"cat" =~ /\bcat\B/; # No match.

"cats" =~ /\bcat\B/; # Match.

while ("cat dog" =~ /(\w+)/g) {

print $1; # Prints ’catdog’

}

while ("cat dog" =~ /\G(\w+)/g) {

print $1; # Prints ’cat’

}

my $s = "He said, \"Is pi 3.14? (I’m not sure).\"";

print join("|", $s =~ m/ (.+? \b) /xg), "\n";

print join("|", $s =~ m/ (.+? \b{wb}) /xg), "\n";

prints

He| |said|, "|Is| |pi| |3|.|14|? (|I|’|m| |not| |sure

He| |said|,| |"|Is| |pi| |3.14|?| |(|I’m| |not| |sure|)|.|"

60.2.8 Misc

Here we document the backslash sequences that don’t fall in one of the categories above.
These are:

\C

(Deprecated.) \C always matches a single octet, even if the source string is
encoded in UTF-8 format, and the character to be matched is a multi-octet
character. This is very dangerous, because it violates the logical character
abstraction and can cause UTF-8 sequences to become malformed.

Use utf8::encode() instead.

Mnemonic: oC tet.

\K

This appeared in perl 5.10.0. Anything matched left of \K is not included in
$&, and will not be replaced if the pattern is used in a substitution. This lets
you write s/PAT1 \K PAT2/REPL/x instead of s/(PAT1) PAT2/${1}REPL/x or
s/(?<=PAT1) PAT2/REPL/x.

Mnemonic: K eep.

\N

This feature, available starting in v5.12, matches any character that is not a
newline. It is a short-hand for writing [^\n], and is identical to the . meta-
symbol, except under the /s flag, which changes the meaning of ., but not
\N.

Note that \N{...} can mean a Section 60.2.3.5 [named or numbered character
], page 1049.

Mnemonic: Complement of \n.

\R

\R matches a generic newline; that is, anything considered a linebreak se-
quence by Unicode. This includes all characters matched by \v (vertical white-
space), and the multi character sequence "\x0D\x0A" (carriage return followed
by a line feed, sometimes called the network newline; it’s the end of line se-
quence used in Microsoft text files opened in binary mode). \R is equivalent
to (?>\x0D\x0A|\v). (The reason it doesn’t backtrack is that the sequence is
considered inseparable. That means that

"\x0D\x0A" =~ /^\R\x0A$/ # No match

fails, because the \R matches the entire string, and won’t backtrack to match
just the "\x0D".) Since \R can match a sequence of more than one character,
it cannot be put inside a bracketed character class; /[\R]/ is an error; use \v

instead. \R was introduced in perl 5.10.0.

Note that this does not respect any locale that might be in effect; it matches
according to the platform’s native character set.

Mnemonic: none really. \R was picked because PCRE already uses \R, and more
importantly because Unicode recommends such a regular expression metachar-
acter, and suggests \R as its notation.

\X

This matches a Unicode extended grapheme cluster.

\X matches quite well what normal (non-Unicode-programmer) usage would
consider a single character. As an example, consider a G with some sort of

diacritic mark, such as an arrow. There is no such single character in Unicode,
but one can be composed by using a G followed by a Unicode "COMBINING
UPWARDS ARROW BELOW", and would be displayed by Unicode-aware
software as if it were a single character.

The match is greedy and non-backtracking, so that the cluster is never broken
up into smaller components.

See also [\b{gcb}], page 1054.

Mnemonic: eX tended Unicode character.

60.2.8.1 Examples

$str =~ s/foo\Kbar/baz/g; # Change any ’bar’ following a ’foo’ to ’baz’

$str =~ s/(.)\K\g1//g; # Delete duplicated characters.

"\n" =~ /^\R$/; # Match, \n is a generic newline.

"\r" =~ /^\R$/; # Match, \r is a generic newline.

"\r\n" =~ /^\R$/; # Match, \r\n is a generic newline.

"P\x{307}" =~ /^\X$/ # \X matches a P with a dot above.

61 perlrecharclass

61.1 NAME

perlrecharclass - Perl Regular Expression Character Classes

61.2 DESCRIPTION

The top level documentation about Perl regular expressions is found in Section 58.1 [perlre
NAME], page 989.

This manual page discusses the syntax and use of character classes in Perl regular ex-
pressions.

A character class is a way of denoting a set of characters in such a way that one character
of the set is matched. It’s important to remember that: matching a character class consumes
exactly one character in the source string. (The source string is the string the regular
expression is matched against.)

There are three types of character classes in Perl regular expressions: the dot, backslash
sequences, and the form enclosed in square brackets. Keep in mind, though, that often
the term "character class" is used to mean just the bracketed form. Certainly, most Perl
documentation does that.

61.2.1 The dot

The dot (or period), . is probably the most used, and certainly the most well-known charac-
ter class. By default, a dot matches any character, except for the newline. That default can
be changed to add matching the newline by using the single line modifier: either for the en-
tire regular expression with the /s modifier, or locally with (?s). (The Section 61.2.2.1

[\N], page 1060 backslash sequence, described below, matches any character except new-
line without regard to the single line modifier.)

Here are some examples:

"a" =~ /./ # Match

"." =~ /./ # Match

"" =~ /./ # No match (dot has to match a character)

"\n" =~ /./ # No match (dot does not match a newline)

"\n" =~ /./s # Match (global ’single line’ modifier)

"\n" =~ /(?s:.)/ # Match (local ’single line’ modifier)

"ab" =~ /^.$/ # No match (dot matches one character)

61.2.2 Backslash sequences

A backslash sequence is a sequence of characters, the first one of which is a backslash. Perl
ascribes special meaning to many such sequences, and some of these are character classes.
That is, they match a single character each, provided that the character belongs to the
specific set of characters defined by the sequence.

Here’s a list of the backslash sequences that are character classes. They are discussed
in more detail below. (For the backslash sequences that aren’t character classes, see
Section 60.1 [perlrebackslash NAME], page 1046.)

\d Match a decimal digit character.

\D Match a non-decimal-digit character.

\w Match a "word" character.

\W Match a non-"word" character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\h Match a horizontal whitespace character.

\H Match a character that isn’t horizontal whitespace.

\v Match a vertical whitespace character.

\V Match a character that isn’t vertical whitespace.

\N Match a character that isn’t a newline.

\pP, \p{Prop} Match a character that has the given Unicode property.

\PP, \P{Prop} Match a character that doesn’t have the Unicode property

61.2.2.1 \N

\N, available starting in v5.12, like the dot, matches any character that is not a newline.
The difference is that \N is not influenced by the single line regular expression modifier
(see Section 61.2.1 [The dot], page 1059 above). Note that the form \N{...} may mean
something completely different. When the {...} is a Section 58.2.2.2 [quantifier], page 997,
it means to match a non-newline character that many times. For example, \N{3} means to
match 3 non-newlines; \N{5,} means to match 5 or more non-newlines. But if {...} is not
a legal quantifier, it is presumed to be a named character. See charnames for those. For
example, none of \N{COLON}, \N{4F}, and \N{F4} contain legal quantifiers, so Perl will try
to find characters whose names are respectively COLON, 4F, and F4.

61.2.2.2 Digits

\d matches a single character considered to be a decimal digit. If the /a regular expression
modifier is in effect, it matches [0-9]. Otherwise, it matches anything that is matched
by \p{Digit}, which includes [0-9]. (An unlikely possible exception is that under locale
matching rules, the current locale might not have [0-9] matched by \d, and/or might
match other characters whose code point is less than 256. The only such locale definitions
that are legal would be to match [0-9] plus another set of 10 consecutive digit characters;
anything else would be in violation of the C language standard, but Perl doesn’t currently
assume anything in regard to this.)

What this means is that unless the /a modifier is in effect \d not only matches the digits
’0’ - ’9’, but also Arabic, Devanagari, and digits from other languages. This may cause
some confusion, and some security issues.

Some digits that \d matches look like some of the [0-9] ones, but have different values.
For example, BENGALI DIGIT FOUR (U+09EA) looks very much like an ASCII DIGIT
EIGHT (U+0038). An application that is expecting only the ASCII digits might be misled,
or if the match is \d+, the matched string might contain a mixture of digits from different
writing systems that look like they signify a number different than they actually do. Section
“num()” in Unicode-UCD can be used to safely calculate the value, returning undef if the
input string contains such a mixture.

What \p{Digit} means (and hence \d except under the /a modifier) is \p{General_

Category=Decimal_Number}, or synonymously, \p{General_Category=Digit}.

Starting with Unicode version 4.1, this is the same set of characters matched by
\p{Numeric_Type=Decimal}. But Unicode also has a different property with a similar
name, \p{Numeric_Type=Digit}, which matches a completely different set of characters.
These characters are things such as CIRCLED DIGIT ONE or subscripts, or are from writing
systems that lack all ten digits.

The design intent is for \d to exactly match the set of characters that can safely be used
with "normal" big-endian positional decimal syntax, where, for example 123 means one
’hundred’, plus two ’tens’, plus three ’ones’. This positional notation does not necessarily
apply to characters that match the other type of "digit", \p{Numeric_Type=Digit}, and
so \d doesn’t match them.

The Tamil digits (U+0BE6 - U+0BEF) can also legally be used in old-style Tamil numbers
in which they would appear no more than one in a row, separated by characters that mean
"times 10", "times 100", etc. (See http://www.unicode.org/notes/tn21.)

Any character not matched by \d is matched by \D.

61.2.2.3 Word characters

A \w matches a single alphanumeric character (an alphabetic character, or a decimal digit);
or a connecting punctuation character, such as an underscore (" "); or a "mark" character
(like some sort of accent) that attaches to one of those. It does not match a whole word.
To match a whole word, use \w+. This isn’t the same thing as matching an English word,
but in the ASCII range it is the same as a string of Perl-identifier characters.

If the /a modifier is in effect ...
\w matches the 63 characters [a-zA-Z0-9].

otherwise ...

For code points above 255 ...
\w matches the same as \p{Word} matches in this range. That
is, it matches Thai letters, Greek letters, etc. This includes con-
nector punctuation (like the underscore) which connect two words
together, or diacritics, such as a COMBINING TILDE and the modi-
fier letters, which are generally used to add auxiliary markings to
letters.

For code points below 256 ...

if locale rules are in effect ...
\w matches the platform’s native underscore character
plus whatever the locale considers to be alphanumeric.

if Unicode rules are in effect ...
\w matches exactly what \p{Word} matches.

otherwise ...
\w matches [a-zA-Z0-9].

Which rules apply are determined as described in Section 58.2.1.7 [perlre Which character
set modifier is in effect?], page 996.

There are a number of security issues with the full Unicode list of word characters. See
http://unicode.org/reports/tr36.

http://www.unicode.org/notes/tn21
http://unicode.org/reports/tr36

Also, for a somewhat finer-grained set of characters that are in programming language
identifiers beyond the ASCII range, you may wish to instead use the more customized
Section 61.2.2.5 [Unicode Properties], page 1064, \p{ID_Start}, \p{ID_Continue},
\p{XID_Start}, and \p{XID_Continue}. See http://unicode.org/reports/tr31.

Any character not matched by \w is matched by \W.

61.2.2.4 Whitespace

\s matches any single character considered whitespace.

If the /a modifier is in effect ...
In all Perl versions, \s matches the 5 characters [\t\n\f\r]; that is, the horizon-
tal tab, the newline, the form feed, the carriage return, and the space. Starting
in Perl v5.18, it also matches the vertical tab, \cK. See note [1] below for a
discussion of this.

otherwise ...

For code points above 255 ...
\s matches exactly the code points above 255 shown with an "s"
column in the table below.

For code points below 256 ...

if locale rules are in effect ...
\s matches whatever the locale considers to be white-
space.

if Unicode rules are in effect ...
\s matches exactly the characters shown with an "s"
column in the table below.

otherwise ...
\s matches [\t\n\f\r] and, starting in Perl v5.18, the
vertical tab, \cK. (See note [1] below for a discussion
of this.) Note that this list doesn’t include the non-
breaking space.

Which rules apply are determined as described in Section 58.2.1.7 [perlre Which character
set modifier is in effect?], page 996.

Any character not matched by \s is matched by \S.

\h matches any character considered horizontal whitespace; this includes the platform’s
space and tab characters and several others listed in the table below. \H matches any
character not considered horizontal whitespace. They use the platform’s native character
set, and do not consider any locale that may otherwise be in use.

\v matches any character considered vertical whitespace; this includes the platform’s
carriage return and line feed characters (newline) plus several other characters, all listed in
the table below. \V matches any character not considered vertical whitespace. They use
the platform’s native character set, and do not consider any locale that may otherwise be
in use.

\R matches anything that can be considered a newline under Unicode rules. It can
match a multi-character sequence. It cannot be used inside a bracketed character class;

http://unicode.org/reports/tr31

use \v instead (vertical whitespace). It uses the platform’s native character set, and does
not consider any locale that may otherwise be in use. Details are discussed in Section 60.1
[perlrebackslash NAME], page 1046.

Note that unlike \s (and \d and \w), \h and \v always match the same characters,
without regard to other factors, such as the active locale or whether the source string is in
UTF-8 format.

One might think that \s is equivalent to [\h\v]. This is indeed true starting in Perl
v5.18, but prior to that, the sole difference was that the vertical tab ("\cK") was not
matched by \s.

The following table is a complete listing of characters matched by \s, \h and \v as of
Unicode 6.3.

The first column gives the Unicode code point of the character (in hex format), the
second column gives the (Unicode) name. The third column indicates by which class(es)
the character is matched (assuming no locale is in effect that changes the \s matching).

0x0009 CHARACTER TABULATION h s

0x000a LINE FEED (LF) vs

0x000b LINE TABULATION vs [1]

0x000c FORM FEED (FF) vs

0x000d CARRIAGE RETURN (CR) vs

0x0020 SPACE h s

0x0085 NEXT LINE (NEL) vs [2]

0x00a0 NO-BREAK SPACE h s [2]

0x1680 OGHAM SPACE MARK h s

0x2000 EN QUAD h s

0x2001 EM QUAD h s

0x2002 EN SPACE h s

0x2003 EM SPACE h s

0x2004 THREE-PER-EM SPACE h s

0x2005 FOUR-PER-EM SPACE h s

0x2006 SIX-PER-EM SPACE h s

0x2007 FIGURE SPACE h s

0x2008 PUNCTUATION SPACE h s

0x2009 THIN SPACE h s

0x200a HAIR SPACE h s

0x2028 LINE SEPARATOR vs

0x2029 PARAGRAPH SEPARATOR vs

0x202f NARROW NO-BREAK SPACE h s

0x205f MEDIUM MATHEMATICAL SPACE h s

0x3000 IDEOGRAPHIC SPACE h s

[1]

Prior to Perl v5.18, \s did not match the vertical tab. [^\S\cK] (obscurely)
matches what \s traditionally did.

[2]

NEXT LINE and NO-BREAK SPACE may or may not match \s depending on
the rules in effect. See Section 61.2.2.4 [the beginning of this section], page 1062.

61.2.2.5 Unicode Properties

\pP and \p{Prop} are character classes to match characters that fit given Unicode prop-
erties. One letter property names can be used in the \pP form, with the property name
following the \p, otherwise, braces are required. When using braces, there is a single form,
which is just the property name enclosed in the braces, and a compound form which looks
like \p{name=value}, which means to match if the property "name" for the character has
that particular "value". For instance, a match for a number can be written as /\pN/ or as
/\p{Number}/, or as /\p{Number=True}/. Lowercase letters are matched by the property
Lowercase Letter which has the short form Ll. They need the braces, so are written as
/\p{Ll}/ or /\p{Lowercase_Letter}/, or /\p{General_Category=Lowercase_Letter}/
(the underscores are optional). /\pLl/ is valid, but means something different. It matches
a two character string: a letter (Unicode property \pL), followed by a lowercase l.

If locale rules are not in effect, the use of a Unicode property will force the regular
expression into using Unicode rules, if it isn’t already.

Note that almost all properties are immune to case-insensitive matching. That is, adding
a /i regular expression modifier does not change what they match. There are two sets
that are affected. The first set is Uppercase_Letter, Lowercase_Letter, and Titlecase_

Letter, all of which match Cased_Letter under /imatching. The second set is Uppercase,
Lowercase, and Titlecase, all of which match Cased under /i matching. (The difference
between these sets is that some things, such as Roman numerals, come in both upper and
lower case, so they are Cased, but aren’t considered to be letters, so they aren’t Cased_

Letters. They’re actually Letter_Numbers.) This set also includes its subsets PosixUpper
and PosixLower, both of which under /i match PosixAlpha.

For more details on Unicode properties, see Section 81.2.5 [perlunicode Unicode Charac-
ter Properties], page 1321; for a complete list of possible properties, see Section “Properties
accessible through \p{} and \P{}” in perluniprops, which notes all forms that have /i dif-
ferences. It is also possible to define your own properties. This is discussed in Section 81.2.6
[perlunicode User-Defined Character Properties], page 1329.

Unicode properties are defined (surprise!) only on Unicode code points. Starting in
v5.20, when matching against \p and \P, Perl treats non-Unicode code points (those above
the legal Unicode maximum of 0x10FFFF) as if they were typical unassigned Unicode code
points.

Prior to v5.20, Perl raised a warning and made all matches fail on non-Unicode code
points. This could be somewhat surprising:

chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Fails on Perls < v5.20.

chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Also fails on Perls

< v5.20

Even though these two matches might be thought of as complements, until v5.20 they
were so only on Unicode code points.

61.2.2.6 Examples

"a" =~ /\w/ # Match, "a" is a ’word’ character.

"7" =~ /\w/ # Match, "7" is a ’word’ character as well.

"a" =~ /\d/ # No match, "a" isn’t a digit.

"7" =~ /\d/ # Match, "7" is a digit.

" " =~ /\s/ # Match, a space is whitespace.

"a" =~ /\D/ # Match, "a" is a non-digit.

"7" =~ /\D/ # No match, "7" is not a non-digit.

" " =~ /\S/ # No match, a space is not non-whitespace.

" " =~ /\h/ # Match, space is horizontal whitespace.

" " =~ /\v/ # No match, space is not vertical whitespace.

"\r" =~ /\v/ # Match, a return is vertical whitespace.

"a" =~ /\pL/ # Match, "a" is a letter.

"a" =~ /\p{Lu}/ # No match, /\p{Lu}/ matches upper case letters.

"\x{0e0b}" =~ /\p{Thai}/ # Match, \x{0e0b} is the character

’THAI CHARACTER SO SO’, and that’s in

Thai Unicode class.

"a" =~ /\P{Lao}/ # Match, as "a" is not a Laotian character.

It is worth emphasizing that \d, \w, etc, match single characters, not complete numbers or
words. To match a number (that consists of digits), use \d+; to match a word, use \w+.
But be aware of the security considerations in doing so, as mentioned above.

61.2.3 Bracketed Character Classes

The third form of character class you can use in Perl regular expressions is the bracketed
character class. In its simplest form, it lists the characters that may be matched, surrounded
by square brackets, like this: [aeiou]. This matches one of a, e, i, o or u. Like the other
character classes, exactly one character is matched.* To match a longer string consisting of
characters mentioned in the character class, follow the character class with a Section 58.2.2.2
[quantifier], page 997. For instance, [aeiou]+ matches one or more lowercase English
vowels.

Repeating a character in a character class has no effect; it’s considered to be in the set
only once.

Examples:

"e" =~ /[aeiou]/ # Match, as "e" is listed in the class.

"p" =~ /[aeiou]/ # No match, "p" is not listed in the class.

"ae" =~ /^[aeiou]$/ # No match, a character class only matches

a single character.

"ae" =~ /^[aeiou]+$/ # Match, due to the quantifier.

* There are two exceptions to a bracketed character class matching a single character
only. Each requires special handling by Perl to make things work:

• When the class is to match caselessly under /i matching rules, and a character that is
explicitly mentioned inside the class matches a multiple-character sequence caselessly
under Unicode rules, the class will also match that sequence. For example, Unicode
says that the letter LATIN SMALL LETTER SHARP S should match the sequence ss under
/i rules. Thus,

’ss’ =~ /\A\N{LATIN SMALL LETTER SHARP S}\z/i # Matches

’ss’ =~ /\A[aeioust\N{LATIN SMALL LETTER SHARP S}]\z/i # Matches

For this to happen, the class must not be inverted (see Section 61.2.3.3 [Negation],
page 1068) and the character must be explicitly specified, and not be part of a multi-
character range (not even as one of its endpoints). (Section 61.2.3.2 [Character Ranges],
page 1067 will be explained shortly.) Therefore,

’ss’ =~ /\A[\0-\x{ff}]\z/ui # Doesn’t match

’ss’ =~ /\A[\0-\N{LATIN SMALL LETTER SHARP S}]\z/ui # No match

’ss’ =~ /\A[\xDF-\xDF]\z/ui # Matches on ASCII platforms, since

\xDF is LATIN SMALL LETTER SHARP S,

and the range is just a single

element

Note that it isn’t a good idea to specify these types of ranges anyway.

• Some names known to \N{...} refer to a sequence of multiple characters, instead of the
usual single character. When one of these is included in the class, the entire sequence
is matched. For example,

"\N{TAMIL LETTER KA}\N{TAMIL VOWEL SIGN AU}"

=~ / ^ [\N{TAMIL SYLLABLE KAU}] $ /x;

matches, because \N{TAMIL SYLLABLE KAU} is a named sequence consisting of the two
characters matched against. Like the other instance where a bracketed class can match
multiple characters, and for similar reasons, the class must not be inverted, and the
named sequence may not appear in a range, even one where it is both endpoints. If these
happen, it is a fatal error if the character class is within an extended Section 61.2.3.9
[(?[...])], page 1073 class; and only the first code point is used (with a regexp-type
warning raised) otherwise.

61.2.3.1 Special Characters Inside a Bracketed Character Class

Most characters that are meta characters in regular expressions (that is, characters that
carry a special meaning like ., *, or () lose their special meaning and can be used inside
a character class without the need to escape them. For instance, [()] matches either an
opening parenthesis, or a closing parenthesis, and the parens inside the character class don’t
group or capture.

Characters that may carry a special meaning inside a character class are: \, ^, -, [
and], and are discussed below. They can be escaped with a backslash, although this is
sometimes not needed, in which case the backslash may be omitted.

The sequence \b is special inside a bracketed character class. While outside the character
class, \b is an assertion indicating a point that does not have either two word characters
or two non-word characters on either side, inside a bracketed character class, \b matches a
backspace character.

The sequences \a, \c, \e, \f, \n, \N{NAME}, \N{U+hex char}, \r, \t, and \x are also
special and have the same meanings as they do outside a bracketed character class.

Also, a backslash followed by two or three octal digits is considered an octal number.

A [is not special inside a character class, unless it’s the start of a POSIX character
class (see Section 61.2.3.5 [POSIX Character Classes], page 1069 below). It normally does
not need escaping.

A] is normally either the end of a POSIX character class (see Section 61.2.3.5 [POSIX
Character Classes], page 1069 below), or it signals the end of the bracketed character class.
If you want to include a] in the set of characters, you must generally escape it.

However, if the] is the first (or the second if the first character is a caret) character of
a bracketed character class, it does not denote the end of the class (as you cannot have an
empty class) and is considered part of the set of characters that can be matched without
escaping.

Examples:

"+" =~ /[+?*]/ # Match, "+" in a character class is not special.

"\cH" =~ /[\b]/ # Match, \b inside in a character class

is equivalent to a backspace.

"]" =~ /[][]/ # Match, as the character class contains

both [and].

"[]" =~ /[[]]/ # Match, the pattern contains a character class

containing just [, and the character class is

followed by a].

61.2.3.2 Character Ranges

It is not uncommon to want to match a range of characters. Luckily, instead of listing all
characters in the range, one may use the hyphen (-). If inside a bracketed character class
you have two characters separated by a hyphen, it’s treated as if all characters between the
two were in the class. For instance, [0-9] matches any ASCII digit, and [a-m] matches
any lowercase letter from the first half of the ASCII alphabet.

Note that the two characters on either side of the hyphen are not necessarily both letters
or both digits. Any character is possible, although not advisable. [’-?] contains a range
of characters, but most people will not know which characters that means. Furthermore,
such ranges may lead to portability problems if the code has to run on a platform that uses
a different character set, such as EBCDIC.

If a hyphen in a character class cannot syntactically be part of a range, for instance
because it is the first or the last character of the character class, or if it immediately follows
a range, the hyphen isn’t special, and so is considered a character to be matched literally.
If you want a hyphen in your set of characters to be matched and its position in the class
is such that it could be considered part of a range, you must escape that hyphen with a
backslash.

Examples:

[a-z] # Matches a character that is a lower case ASCII letter.

[a-fz] # Matches any letter between ’a’ and ’f’ (inclusive) or

the letter ’z’.

[-z] # Matches either a hyphen (’-’) or the letter ’z’.

[a-f-m] # Matches any letter between ’a’ and ’f’ (inclusive), the

hyphen (’-’), or the letter ’m’.

[’-?] # Matches any of the characters ’()*+,-./0123456789:;<=>?

(But not on an EBCDIC platform).

[\N{APOSTROPHE}-\N{QUESTION MARK}]

Matches any of the characters ’()*+,-./0123456789:;<=>?

even on an EBCDIC platform.

[\N{U+27}-\N{U+3F}] # Same. (U+27 is "’", and U+3F is "?")

As the final two examples above show, you can achieve portablity to non-ASCII platforms
by using the \N{...} form for the range endpoints. These indicate that the specified
range is to be interpreted using Unicode values, so [\N{U+27}-\N{U+3F}] means to match
\N{U+27}, \N{U+28}, \N{U+29}, ..., \N{U+3D}, \N{U+3E}, and \N{U+3F}, whatever the
native code point versions for those are. These are called "Unicode" ranges. If either end
is of the \N{...} form, the range is considered Unicode. A regexp warning is raised under
"use re ’strict’" if the other endpoint is specified non-portably:

[\N{U+00}-\x09] # Warning under re ’strict’; \x09 is non-portable

[\N{U+00}-\t] # No warning;

Both of the above match the characters \N{U+00} \N{U+01}, ... \N{U+08}, \N{U+09},
but the \x09 looks like it could be a mistake so the warning is raised (under re ’strict’)
for it.

Perl also guarantees that the ranges A-Z, a-z, 0-9, and any subranges of these match
what an English-only speaker would expect them to match on any platform. That is, [A-Z]
matches the 26 ASCII uppercase letters; [a-z] matches the 26 lowercase letters; and [0-9]

matches the 10 digits. Subranges, like [h-k], match correspondingly, in this case just the
four letters "h", "i", "j", and "k". This is the natural behavior on ASCII platforms where
the code points (ordinal values) for "h" through "k" are consecutive integers (0x68 through
0x6B). But special handling to achieve this may be needed on platforms with a non-ASCII
native character set. For example, on EBCDIC platforms, the code point for "h" is 0x88,
"i" is 0x89, "j" is 0x91, and "k" is 0x92. Perl specially treats [h-k] to exclude the seven
code points in the gap: 0x8A through 0x90. This special handling is only invoked when the
range is a subrange of one of the ASCII uppercase, lowercase, and digit ranges, AND each
end of the range is expressed either as a literal, like "A", or as a named character (\N{...},
including the \N{U+... form).

EBCDIC Examples:

[i-j] # Matches either "i" or "j"

[i-\N{LATIN SMALL LETTER J}] # Same

[i-\N{U+6A}] # Same

[\N{U+69}-\N{U+6A}] # Same

[\x{89}-\x{91}] # Matches 0x89 ("i"), 0x8A .. 0x90, 0x91 ("j")

[i-\x{91}] # Same

[\x{89}-j] # Same

[i-J] # Matches, 0x89 ("i") .. 0xC1 ("J"); special

handling doesn’t apply because range is mixed

case

61.2.3.3 Negation

It is also possible to instead list the characters you do not want to match. You can do so by
using a caret (^) as the first character in the character class. For instance, [^a-z] matches
any character that is not a lowercase ASCII letter, which therefore includes more than a
million Unicode code points. The class is said to be "negated" or "inverted".

This syntax make the caret a special character inside a bracketed character class, but
only if it is the first character of the class. So if you want the caret as one of the characters
to match, either escape the caret or else don’t list it first.

In inverted bracketed character classes, Perl ignores the Unicode rules that normally say
that named sequence, and certain characters should match a sequence of multiple charac-
ters use under caseless /i matching. Following those rules could lead to highly confusing
situations:

"ss" =~ /^[^\xDF]+$/ui; # Matches!

This should match any sequences of characters that aren’t \xDF nor what \xDF matches
under /i. "s" isn’t \xDF, but Unicode says that "ss" is what \xDF matches under /i. So
which one "wins"? Do you fail the match because the string has ss or accept it because
it has an s followed by another s? Perl has chosen the latter. (See note in Section 61.2.3
[Bracketed Character Classes], page 1065 above.)

Examples:

"e" =~ /[^aeiou]/ # No match, the ’e’ is listed.

"x" =~ /[^aeiou]/ # Match, as ’x’ isn’t a lowercase vowel.

"^" =~ /[^^]/ # No match, matches anything that isn’t a caret.

"^" =~ /[x^]/ # Match, caret is not special here.

61.2.3.4 Backslash Sequences

You can put any backslash sequence character class (with the exception of \N and \R) inside
a bracketed character class, and it will act just as if you had put all characters matched
by the backslash sequence inside the character class. For instance, [a-f\d] matches any
decimal digit, or any of the lowercase letters between ’a’ and ’f’ inclusive.

\N within a bracketed character class must be of the forms \N{name} or \N{U+hex char},
and NOT be the form that matches non-newlines, for the same reason that a dot . inside
a bracketed character class loses its special meaning: it matches nearly anything, which
generally isn’t what you want to happen.

Examples:

/[\p{Thai}\d]/ # Matches a character that is either a Thai

character, or a digit.

/[^\p{Arabic}()]/ # Matches a character that is neither an Arabic

character, nor a parenthesis.

Backslash sequence character classes cannot form one of the endpoints of a range. Thus,
you can’t say:

/[\p{Thai}-\d]/ # Wrong!

61.2.3.5 POSIX Character Classes

POSIX character classes have the form [:class:], where class is the name, and the [:

and :] delimiters. POSIX character classes only appear inside bracketed character classes,
and are a convenient and descriptive way of listing a group of characters.

Be careful about the syntax,

Correct:

$string =~ /[[:alpha:]]/

Incorrect (will warn):

$string =~ /[:alpha:]/

The latter pattern would be a character class consisting of a colon, and the letters a, l,
p and h.

POSIX character classes can be part of a larger bracketed character class. For example,

[01[:alpha:]%]

is valid and matches ’0’, ’1’, any alphabetic character, and the percent sign.

Perl recognizes the following POSIX character classes:

alpha Any alphabetical character ("[A-Za-z]").

alnum Any alphanumeric character ("[A-Za-z0-9]").

ascii Any character in the ASCII character set.

blank A GNU extension, equal to a space or a horizontal tab ("\t").

cntrl Any control character. See Note [2] below.

digit Any decimal digit ("[0-9]"), equivalent to "\d".

graph Any printable character, excluding a space. See Note [3] below.

lower Any lowercase character ("[a-z]").

print Any printable character, including a space. See Note [4] below.

punct Any graphical character excluding "word" characters. Note [5].

space Any whitespace character. "\s" including the vertical tab

("\cK").

upper Any uppercase character ("[A-Z]").

word A Perl extension ("[A-Za-z0-9_]"), equivalent to "\w".

xdigit Any hexadecimal digit ("[0-9a-fA-F]").

Like the Section 61.2.2.5 [Unicode properties], page 1064, most of the POSIX properties
match the same regardless of whether case-insensitive (/i) matching is in effect or not. The
two exceptions are [:upper:] and [:lower:]. Under /i, they each match the union of
[:upper:] and [:lower:].

Most POSIX character classes have two Unicode-style \p property counterparts. (They
are not official Unicode properties, but Perl extensions derived from official Unicode prop-
erties.) The table below shows the relation between POSIX character classes and these
counterparts.

One counterpart, in the column labelled "ASCII-range Unicode" in the table, matches
only characters in the ASCII character set.

The other counterpart, in the column labelled "Full-range Unicode", matches any ap-
propriate characters in the full Unicode character set. For example, \p{Alpha} matches not
just the ASCII alphabetic characters, but any character in the entire Unicode character set
considered alphabetic. An entry in the column labelled "backslash sequence" is a (short)
equivalent.

[[:...:]] ASCII-range Full-range backslash Note

Unicode Unicode sequence

alpha \p{PosixAlpha} \p{XPosixAlpha}

alnum \p{PosixAlnum} \p{XPosixAlnum}

ascii \p{ASCII}

blank \p{PosixBlank} \p{XPosixBlank} \h [1]

or \p{HorizSpace} [1]

cntrl \p{PosixCntrl} \p{XPosixCntrl} [2]

digit \p{PosixDigit} \p{XPosixDigit} \d

graph \p{PosixGraph} \p{XPosixGraph} [3]

lower \p{PosixLower} \p{XPosixLower}

print \p{PosixPrint} \p{XPosixPrint} [4]

punct \p{PosixPunct} \p{XPosixPunct} [5]

\p{PerlSpace} \p{XPerlSpace} \s [6]

space \p{PosixSpace} \p{XPosixSpace} [6]

upper \p{PosixUpper} \p{XPosixUpper}

word \p{PosixWord} \p{XPosixWord} \w

xdigit \p{PosixXDigit} \p{XPosixXDigit}

[1]

\p{Blank} and \p{HorizSpace} are synonyms.

[2]

Control characters don’t produce output as such, but instead usually control the
terminal somehow: for example, newline and backspace are control characters.
On ASCII platforms, in the ASCII range, characters whose code points are
between 0 and 31 inclusive, plus 127 (DEL) are control characters; on EBCDIC
platforms, their counterparts are control characters.

[3]

Any character that is graphical, that is, visible. This class consists of all al-
phanumeric characters and all punctuation characters.

[4]

All printable characters, which is the set of all graphical characters plus those
whitespace characters which are not also controls.

[5]

\p{PosixPunct} and [[:punct:]] in the ASCII range match all non-controls,
non-alphanumeric, non-space characters: [-!"#$%&’()*+,./:;<=>?@[\\\]^_

‘{|}~] (although if a locale is in effect, it could alter the behavior of
[[:punct:]]).

The similarly named property, \p{Punct}, matches a somewhat different set
in the ASCII range, namely [-!"#%&’()*,./:;?@[\\\]_{}]. That is, it is
missing the nine characters [$+<=>^‘|~]. This is because Unicode splits what
POSIX considers to be punctuation into two categories, Punctuation and Sym-
bols.

\p{XPosixPunct} and (under Unicode rules) [[:punct:]], match what
\p{PosixPunct} matches in the ASCII range, plus what \p{Punct} matches.
This is different than strictly matching according to \p{Punct}. Another
way to say it is that if Unicode rules are in effect, [[:punct:]] matches
all characters that Unicode considers punctuation, plus all ASCII-range
characters that Unicode considers symbols.

[6]

\p{XPerlSpace} and \p{Space} match identically starting with Perl
v5.18. In earlier versions, these differ only in that in non-locale matching,
\p{XPerlSpace} did not match the vertical tab, \cK. Same for the two
ASCII-only range forms.

There are various other synonyms that can be used besides the names listed in the table.
For example, \p{PosixAlpha} can be written as \p{Alpha}. All are listed in Section
“Properties accessible through \p{} and \P{}” in perluniprops.

Both the \p counterparts always assume Unicode rules are in effect. On ASCII platforms,
this means they assume that the code points from 128 to 255 are Latin-1, and that means
that using them under locale rules is unwise unless the locale is guaranteed to be Latin-1
or UTF-8. In contrast, the POSIX character classes are useful under locale rules. They are
affected by the actual rules in effect, as follows:

If the /a modifier, is in effect ...
Each of the POSIX classes matches exactly the same as their ASCII-range
counterparts.

otherwise ...

For code points above 255 ...
The POSIX class matches the same as its Full-range counterpart.

For code points below 256 ...

if locale rules are in effect ...
The POSIX class matches according to the locale, ex-
cept:

word

also includes the platform’s native under-
score character, no matter what the locale
is.

ascii

on platforms that don’t have the POSIX
ascii extension, this matches just the
platform’s native ASCII-range characters.

blank

on platforms that don’t have the POSIX
blank extension, this matches just
the platform’s native tab and space
characters.

if Unicode rules are in effect ...
The POSIX class matches the same as the Full-range
counterpart.

otherwise ...
The POSIX class matches the same as the ASCII range
counterpart.

Which rules apply are determined as described in Section 58.2.1.7 [perlre Which character
set modifier is in effect?], page 996.

It is proposed to change this behavior in a future release of Perl so that whether or not
Unicode rules are in effect would not change the behavior: Outside of locale, the POSIX
classes would behave like their ASCII-range counterparts. If you wish to comment on this
proposal, send email to perl5-porters@perl.org.

61.2.3.6 Negation of POSIX character classes

A Perl extension to the POSIX character class is the ability to negate it. This is done by
prefixing the class name with a caret (^). Some examples:

POSIX ASCII-range Full-range backslash

Unicode Unicode sequence

[[:^digit:]] \P{PosixDigit} \P{XPosixDigit} \D

[[:^space:]] \P{PosixSpace} \P{XPosixSpace}

\P{PerlSpace} \P{XPerlSpace} \S

[[:^word:]] \P{PerlWord} \P{XPosixWord} \W

The backslash sequence can mean either ASCII- or Full-range Unicode, depending on
various factors as described in Section 58.2.1.7 [perlre Which character set modifier is in
effect?], page 996.

61.2.3.7 [= =] and [. .]

Perl recognizes the POSIX character classes [=class=] and [.class.], but does not (yet?)
support them. Any attempt to use either construct raises an exception.

61.2.3.8 Examples

/[[:digit:]]/ # Matches a character that is a digit.

/[01[:lower:]]/ # Matches a character that is either a

lowercase letter, or ’0’ or ’1’.

/[[:digit:][:^xdigit:]]/ # Matches a character that can be anything

except the letters ’a’ to ’f’ and ’A’ to

’F’. This is because the main character

class is composed of two POSIX character

classes that are ORed together, one that

matches any digit, and the other that

matches anything that isn’t a hex digit.

The OR adds the digits, leaving only the

letters ’a’ to ’f’ and ’A’ to ’F’ excluded.

61.2.3.9 Extended Bracketed Character Classes

This is a fancy bracketed character class that can be used for more readable and less error-
prone classes, and to perform set operations, such as intersection. An example is

/(?[\p{Thai} & \p{Digit}])/

This will match all the digit characters that are in the Thai script.

This is an experimental feature available starting in 5.18, and is subject to change as we
gain field experience with it. Any attempt to use it will raise a warning, unless disabled via

no warnings "experimental::regex_sets";

Comments on this feature are welcome; send email to perl5-porters@perl.org.

We can extend the example above:

/(?[(\p{Thai} + \p{Lao}) & \p{Digit}])/

This matches digits that are in either the Thai or Laotian scripts.

Notice the white space in these examples. This construct always has the /x modifier
turned on within it.

The available binary operators are:

& intersection

+ union

| another name for ’+’, hence means union

- subtraction (the result matches the set consisting of those

code points matched by the first operand, excluding any that

are also matched by the second operand)

^ symmetric difference (the union minus the intersection). This

is like an exclusive or, in that the result is the set of code

points that are matched by either, but not both, of the

operands.

There is one unary operator:

! complement

All the binary operators left associate; "&" is higher precedence than the others, which
all have equal precedence. The unary operator right associates, and has highest precedence.
Thus this follows the normal Perl precedence rules for logical operators. Use parentheses
to override the default precedence and associativity.

The main restriction is that everything is a metacharacter. Thus, you cannot refer to
single characters by doing something like this:

/(?[a + b])/ # Syntax error!

The easiest way to specify an individual typable character is to enclose it in brackets:

/(?[[a] + [b]])/

(This is the same thing as [ab].) You could also have said the equivalent:

/(?[[a b]])/

(You can, of course, specify single characters by using, \x{...}, \N{...}, etc.)

This last example shows the use of this construct to specify an ordinary bracketed char-
acter class without additional set operations. Note the white space within it; /x is turned
on even within bracketed character classes, except you can’t have comments inside them.
Hence,

(?[[#]])

matches the literal character "#". To specify a literal white space character, you can
escape it with a backslash, like:

/(?[[a e i o u \]])/

This matches the English vowels plus the SPACE character. All the other escapes
accepted by normal bracketed character classes are accepted here as well; but unrecognized
escapes that generate warnings in normal classes are fatal errors here.

All warnings from these class elements are fatal, as well as some practices that don’t
currently warn. For example you cannot say

/(?[[\xF]])/ # Syntax error!

You have to have two hex digits after a braceless \x (use a leading zero to make two).
These restrictions are to lower the incidence of typos causing the class to not match what
you thought it would.

If a regular bracketed character class contains a \p{} or \P{} and is matched against a
non-Unicode code point, a warning may be raised, as the result is not Unicode-defined. No
such warning will come when using this extended form.

The final difference between regular bracketed character classes and these, is that it is
not possible to get these to match a multi-character fold. Thus,

/(?[[\xDF]])/iu

does not match the string ss.

You don’t have to enclose POSIX class names inside double brackets, hence both of the
following work:

/(?[[:word:] - [:lower:]])/

/(?[[[:word:]] - [[:lower:]]])/

Any contained POSIX character classes, including things like \w and \D respect the /a

(and /aa) modifiers.

(?[]) is a regex-compile-time construct. Any attempt to use something which isn’t
knowable at the time the containing regular expression is compiled is a fatal error. In
practice, this means just three limitations:

1. This construct cannot be used within the scope of use locale (or the /l regex modi-
fier).

2. Any Section 81.2.6 [user-defined property], page 1329 used must be already defined by
the time the regular expression is compiled (but note that this construct can be used
instead of such properties).

3. A regular expression that otherwise would compile using /d rules, and which uses this
construct will instead use /u. Thus this construct tells Perl that you don’t want /d

rules for the entire regular expression containing it.

Note that skipping white space applies only to the interior of this construct. There must
not be any space between any of the characters that form the initial (?[. Nor may there
be space between the closing]) characters.

Just as in all regular expressions, the pattern can be built up by including variables that
are interpolated at regex compilation time. Care must be taken to ensure that you are
getting what you expect. For example:

my $thai_or_lao = ’\p{Thai} + \p{Lao}’;

...

qr/(?[\p{Digit} & $thai_or_lao])/;

compiles to

qr/(?[\p{Digit} & \p{Thai} + \p{Lao}])/;

But this does not have the effect that someone reading the code would likely expect, as
the intersection applies just to \p{Thai}, excluding the Laotian. Pitfalls like this can be
avoided by parenthesizing the component pieces:

my $thai_or_lao = ’(\p{Thai} + \p{Lao})’;

But any modifiers will still apply to all the components:

my $lower = ’\p{Lower} + \p{Digit}’;

qr/(?[\p{Greek} & $lower])/i;

matches upper case things. You can avoid surprises by making the components into
instances of this construct by compiling them:

my $thai_or_lao = qr/(?[\p{Thai} + \p{Lao}])/;

my $lower = qr/(?[\p{Lower} + \p{Digit}])/;

When these are embedded in another pattern, what they match does not change, re-
gardless of parenthesization or what modifiers are in effect in that outer pattern.

Due to the way that Perl parses things, your parentheses and brackets may need to be
balanced, even including comments. If you run into any examples, please send them to
perlbug@perl.org, so that we can have a concrete example for this man page.

We may change it so that things that remain legal uses in normal bracketed character
classes might become illegal within this experimental construct. One proposal, for example,
is to forbid adjacent uses of the same character, as in (?[[aa]]). The motivation for such
a change is that this usage is likely a typo, as the second "a" adds nothing.

62 perlref

62.1 NAME

perlref - Perl references and nested data structures

62.2 NOTE

This is complete documentation about all aspects of references. For a shorter, tutorial
introduction to just the essential features, see Section 63.1 [perlreftut NAME], page 1092.

62.3 DESCRIPTION

Before release 5 of Perl it was difficult to represent complex data structures, because all
references had to be symbolic–and even then it was difficult to refer to a variable instead
of a symbol table entry. Perl now not only makes it easier to use symbolic references to
variables, but also lets you have "hard" references to any piece of data or code. Any scalar
may hold a hard reference. Because arrays and hashes contain scalars, you can now easily
build arrays of arrays, arrays of hashes, hashes of arrays, arrays of hashes of functions, and
so on.

Hard references are smart–they keep track of reference counts for you, automatically
freeing the thing referred to when its reference count goes to zero. (Reference counts for
values in self-referential or cyclic data structures may not go to zero without a little help;
see Section 62.3.3 [Circular References], page 1084 for a detailed explanation.) If that
thing happens to be an object, the object is destructed. See Section 46.1 [perlobj NAME],
page 769 for more about objects. (In a sense, everything in Perl is an object, but we usually
reserve the word for references to objects that have been officially "blessed" into a class
package.)

Symbolic references are names of variables or other objects, just as a symbolic link in a
Unix filesystem contains merely the name of a file. The *glob notation is something of a
symbolic reference. (Symbolic references are sometimes called "soft references", but please
don’t call them that; references are confusing enough without useless synonyms.)

In contrast, hard references are more like hard links in a Unix file system: They are used
to access an underlying object without concern for what its (other) name is. When the
word "reference" is used without an adjective, as in the following paragraph, it is usually
talking about a hard reference.

References are easy to use in Perl. There is just one overriding principle: in general,
Perl does no implicit referencing or dereferencing. When a scalar is holding a reference,
it always behaves as a simple scalar. It doesn’t magically start being an array or hash or
subroutine; you have to tell it explicitly to do so, by dereferencing it.

That said, be aware that Perl version 5.14 introduces an exception to the rule, for
syntactic convenience. Experimental array and hash container function behavior allows
array and hash references to be handled by Perl as if they had been explicitly syntactically
dereferenced. See Section “Syntactical Enhancements” in perl5140delta and Section 25.1
[perlfunc NAME], page 351 for details.

62.3.1 Making References

References can be created in several ways.

1. By using the backslash operator on a variable, subroutine, or value. (This works much
like the & (address-of) operator in C.) This typically creates another reference to a
variable, because there’s already a reference to the variable in the symbol table. But
the symbol table reference might go away, and you’ll still have the reference that the
backslash returned. Here are some examples:

$scalarref = \$foo;

$arrayref = \@ARGV;

$hashref = \%ENV;

$coderef = \&handler;

$globref = *foo;

It isn’t possible to create a true reference to an IO handle (filehandle or dirhandle)
using the backslash operator. The most you can get is a reference to a typeglob, which
is actually a complete symbol table entry. But see the explanation of the *foo{THING}
syntax below. However, you can still use type globs and globrefs as though they were
IO handles.

2. A reference to an anonymous array can be created using square brackets:

$arrayref = [1, 2, [’a’, ’b’, ’c’]];

Here we’ve created a reference to an anonymous array of three elements whose final
element is itself a reference to another anonymous array of three elements. (The mul-
tidimensional syntax described later can be used to access this. For example, after the
above, $arrayref->[2][1] would have the value "b".)

Taking a reference to an enumerated list is not the same as using square brackets–
instead it’s the same as creating a list of references!

@list = (\$a, \@b, \%c);

@list = \($a, @b, %c); # same thing!

As a special case, \(@foo) returns a list of references to the contents of @foo, not a
reference to @foo itself. Likewise for %foo, except that the key references are to copies
(since the keys are just strings rather than full-fledged scalars).

3. A reference to an anonymous hash can be created using curly brackets:

$hashref = {

’Adam’ => ’Eve’,

’Clyde’ => ’Bonnie’,

};

Anonymous hash and array composers like these can be intermixed freely to produce
as complicated a structure as you want. The multidimensional syntax described below
works for these too. The values above are literals, but variables and expressions would
work just as well, because assignment operators in Perl (even within local() or my())
are executable statements, not compile-time declarations.

Because curly brackets (braces) are used for several other things including BLOCKs,
you may occasionally have to disambiguate braces at the beginning of a statement by
putting a + or a return in front so that Perl realizes the opening brace isn’t starting

a BLOCK. The economy and mnemonic value of using curlies is deemed worth this
occasional extra hassle.

For example, if you wanted a function to make a new hash and return a reference to
it, you have these options:

sub hashem { { @_ } } # silently wrong

sub hashem { +{ @_ } } # ok

sub hashem { return { @_ } } # ok

On the other hand, if you want the other meaning, you can do this:

sub showem { { @_ } } # ambiguous (currently ok,

but may change)

sub showem { {; @_ } } # ok

sub showem { { return @_ } } # ok

The leading +{ and {; always serve to disambiguate the expression to mean either the
HASH reference, or the BLOCK.

4. A reference to an anonymous subroutine can be created by using sub without a sub-
name:

$coderef = sub { print "Boink!\n" };

Note the semicolon. Except for the code inside not being immediately executed, a
sub {} is not so much a declaration as it is an operator, like do{} or eval{}. (How-
ever, no matter how many times you execute that particular line (unless you’re in an
eval("...")), $coderef will still have a reference to the same anonymous subroutine.)

Anonymous subroutines act as closures with respect to my() variables, that is, variables
lexically visible within the current scope. Closure is a notion out of the Lisp world that
says if you define an anonymous function in a particular lexical context, it pretends to
run in that context even when it’s called outside the context.

In human terms, it’s a funny way of passing arguments to a subroutine when you define
it as well as when you call it. It’s useful for setting up little bits of code to run later,
such as callbacks. You can even do object-oriented stuff with it, though Perl already
provides a different mechanism to do that–see Section 46.1 [perlobj NAME], page 769.

You might also think of closure as a way to write a subroutine template without using
eval(). Here’s a small example of how closures work:

sub newprint {

my $x = shift;

return sub { my $y = shift; print "$x, $y!\n"; };

}

$h = newprint("Howdy");

$g = newprint("Greetings");

Time passes...

&$h("world");

&$g("earthlings");

This prints

Howdy, world!

Greetings, earthlings!

Note particularly that $x continues to refer to the value passed into newprint() despite
"my $x" having gone out of scope by the time the anonymous subroutine runs. That’s
what a closure is all about.

This applies only to lexical variables, by the way. Dynamic variables continue to work
as they have always worked. Closure is not something that most Perl programmers
need trouble themselves about to begin with.

5. References are often returned by special subroutines called constructors. Perl objects
are just references to a special type of object that happens to know which package it’s
associated with. Constructors are just special subroutines that know how to create
that association. They do so by starting with an ordinary reference, and it remains an
ordinary reference even while it’s also being an object. Constructors are often named
new(). You can call them indirectly:

$objref = new Doggie(Tail => ’short’, Ears => ’long’);

But that can produce ambiguous syntax in certain cases, so it’s often better to use the
direct method invocation approach:

$objref = Doggie->new(Tail => ’short’, Ears => ’long’);

use Term::Cap;

$terminal = Term::Cap->Tgetent({ OSPEED => 9600 });

use Tk;

$main = MainWindow->new();

$menubar = $main->Frame(-relief => "raised",

-borderwidth => 2)

6. References of the appropriate type can spring into existence if you dereference them in
a context that assumes they exist. Because we haven’t talked about dereferencing yet,
we can’t show you any examples yet.

7. A reference can be created by using a special syntax, lovingly known as the
*foo{THING} syntax. *foo{THING} returns a reference to the THING slot in *foo
(which is the symbol table entry which holds everything known as foo).

$scalarref = *foo{SCALAR};

$arrayref = *ARGV{ARRAY};

$hashref = *ENV{HASH};

$coderef = *handler{CODE};

$ioref = *STDIN{IO};

$globref = *foo{GLOB};

$formatref = *foo{FORMAT};

$globname = *foo{NAME}; # "foo"

$pkgname = *foo{PACKAGE}; # "main"

Most of these are self-explanatory, but *foo{IO} deserves special attention. It returns
the IO handle, used for file handles (〈undefined〉 [perlfunc open], page 〈undefined〉),
sockets (〈undefined〉 [perlfunc socket], page 〈undefined〉 and 〈undefined〉 [perlfunc
socketpair], page 〈undefined〉), and directory handles (〈undefined〉 [perlfunc
opendir], page 〈undefined〉). For compatibility with previous versions of Perl,

*foo{FILEHANDLE} is a synonym for *foo{IO}, though it is deprecated as of 5.8.0. If
deprecation warnings are in effect, it will warn of its use.

*foo{THING} returns undef if that particular THING hasn’t been used yet, except in
the case of scalars. *foo{SCALAR} returns a reference to an anonymous scalar if $foo
hasn’t been used yet. This might change in a future release.

*foo{NAME} and *foo{PACKAGE} are the exception, in that they return strings, rather
than references. These return the package and name of the typeglob itself, rather
than one that has been assigned to it. So, after *foo=*Foo::bar, *foo will become
"*Foo::bar" when used as a string, but *foo{PACKAGE} and *foo{NAME} will continue
to produce "main" and "foo", respectively.

*foo{IO} is an alternative to the *HANDLE mechanism given in Section 11.2.10 [perldata
Typeglobs and Filehandles], page 85 for passing filehandles into or out of subroutines,
or storing into larger data structures. Its disadvantage is that it won’t create a new
filehandle for you. Its advantage is that you have less risk of clobbering more than
you want to with a typeglob assignment. (It still conflates file and directory handles,
though.) However, if you assign the incoming value to a scalar instead of a typeglob
as we do in the examples below, there’s no risk of that happening.

splutter(*STDOUT); # pass the whole glob

splutter(*STDOUT{IO}); # pass both file and dir handles

sub splutter {

my $fh = shift;

print $fh "her um well a hmmm\n";

}

$rec = get_rec(*STDIN); # pass the whole glob

$rec = get_rec(*STDIN{IO}); # pass both file and dir handles

sub get_rec {

my $fh = shift;

return scalar <$fh>;

}

62.3.2 Using References

That’s it for creating references. By now you’re probably dying to know how to use refer-
ences to get back to your long-lost data. There are several basic methods.

1. Anywhere you’d put an identifier (or chain of identifiers) as part of a variable or sub-
routine name, you can replace the identifier with a simple scalar variable containing a
reference of the correct type:

$bar = $$scalarref;

push(@$arrayref, $filename);

$$arrayref[0] = "January";

$$hashref{"KEY"} = "VALUE";

&$coderef(1,2,3);

print $globref "output\n";

It’s important to understand that we are specifically not dereferencing $arrayref[0]

or $hashref{"KEY"} there. The dereference of the scalar variable happens before it
does any key lookups. Anything more complicated than a simple scalar variable must
use methods 2 or 3 below. However, a "simple scalar" includes an identifier that itself
uses method 1 recursively. Therefore, the following prints "howdy".

$refrefref = \\\"howdy";

print $$$$refrefref;

2. Anywhere you’d put an identifier (or chain of identifiers) as part of a variable or sub-
routine name, you can replace the identifier with a BLOCK returning a reference of
the correct type. In other words, the previous examples could be written like this:

$bar = ${$scalarref};

push(@{$arrayref}, $filename);

${$arrayref}[0] = "January";

${$hashref}{"KEY"} = "VALUE";

&{$coderef}(1,2,3);

$globref->print("output\n"); # iff IO::Handle is loaded

Admittedly, it’s a little silly to use the curlies in this case, but the BLOCK can contain
any arbitrary expression, in particular, subscripted expressions:

&{ $dispatch{$index} }(1,2,3); # call correct routine

Because of being able to omit the curlies for the simple case of $$x, people often make
the mistake of viewing the dereferencing symbols as proper operators, and wonder
about their precedence. If they were, though, you could use parentheses instead of
braces. That’s not the case. Consider the difference below; case 0 is a short-hand
version of case 1, not case 2:

$$hashref{"KEY"} = "VALUE"; # CASE 0

${$hashref}{"KEY"} = "VALUE"; # CASE 1

${$hashref{"KEY"}} = "VALUE"; # CASE 2

${$hashref->{"KEY"}} = "VALUE"; # CASE 3

Case 2 is also deceptive in that you’re accessing a variable called %hashref, not deref-
erencing through $hashref to the hash it’s presumably referencing. That would be case
3.

3. Subroutine calls and lookups of individual array elements arise often enough that it
gets cumbersome to use method 2. As a form of syntactic sugar, the examples for
method 2 may be written:

$arrayref->[0] = "January"; # Array element

$hashref->{"KEY"} = "VALUE"; # Hash element

$coderef->(1,2,3); # Subroutine call

The left side of the arrow can be any expression returning a reference, including a
previous dereference. Note that $array[$x] is not the same thing as $array->[$x]
here:

$array[$x]->{"foo"}->[0] = "January";

This is one of the cases we mentioned earlier in which references could spring into
existence when in an lvalue context. Before this statement, $array[$x] may have been
undefined. If so, it’s automatically defined with a hash reference so that we can look up

{"foo"} in it. Likewise $array[$x]->{"foo"} will automatically get defined with an
array reference so that we can look up [0] in it. This process is called autovivification.

One more thing here. The arrow is optional between brackets subscripts, so you can
shrink the above down to

$array[$x]{"foo"}[0] = "January";

Which, in the degenerate case of using only ordinary arrays, gives you multidimensional
arrays just like C’s:

$score[$x][$y][$z] += 42;

Well, okay, not entirely like C’s arrays, actually. C doesn’t know how to grow its arrays
on demand. Perl does.

4. If a reference happens to be a reference to an object, then there are probably methods
to access the things referred to, and you should probably stick to those methods unless
you’re in the class package that defines the object’s methods. In other words, be nice,
and don’t violate the object’s encapsulation without a very good reason. Perl does not
enforce encapsulation. We are not totalitarians here. We do expect some basic civility
though.

Using a string or number as a reference produces a symbolic reference, as explained
above. Using a reference as a number produces an integer representing its storage location in
memory. The only useful thing to be done with this is to compare two references numerically
to see whether they refer to the same location.

if ($ref1 == $ref2) { # cheap numeric compare of references

print "refs 1 and 2 refer to the same thing\n";

}

Using a reference as a string produces both its referent’s type, including any package
blessing as described in Section 46.1 [perlobj NAME], page 769, as well as the numeric
address expressed in hex. The ref() operator returns just the type of thing the reference is
pointing to, without the address. See [perlfunc ref], page 435 for details and examples of
its use.

The bless() operator may be used to associate the object a reference points to with a
package functioning as an object class. See Section 46.1 [perlobj NAME], page 769.

A typeglob may be dereferenced the same way a reference can, because the dereference
syntax always indicates the type of reference desired. So ${*foo} and ${\$foo} both
indicate the same scalar variable.

Here’s a trick for interpolating a subroutine call into a string:

print "My sub returned @{[mysub(1,2,3)]} that time.\n";

The way it works is that when the @{...} is seen in the double-quoted string, it’s
evaluated as a block. The block creates a reference to an anonymous array containing the
results of the call to mysub(1,2,3). So the whole block returns a reference to an array, which
is then dereferenced by @{...} and stuck into the double-quoted string. This chicanery is
also useful for arbitrary expressions:

print "That yields @{[$n + 5]} widgets\n";

Similarly, an expression that returns a reference to a scalar can be dereferenced via
${...}. Thus, the above expression may be written as:

print "That yields ${\($n + 5)} widgets\n";

62.3.3 Circular References

It is possible to create a "circular reference" in Perl, which can lead to memory leaks. A
circular reference occurs when two references contain a reference to each other, like this:

my $foo = {};

my $bar = { foo => $foo };

$foo->{bar} = $bar;

You can also create a circular reference with a single variable:

my $foo;

$foo = \$foo;

In this case, the reference count for the variables will never reach 0, and the references
will never be garbage-collected. This can lead to memory leaks.

Because objects in Perl are implemented as references, it’s possible to have circular
references with objects as well. Imagine a TreeNode class where each node references its
parent and child nodes. Any node with a parent will be part of a circular reference.

You can break circular references by creating a "weak reference". A weak reference does
not increment the reference count for a variable, which means that the object can go out
of scope and be destroyed. You can weaken a reference with the weaken function exported
by the Scalar-Util module.

Here’s how we can make the first example safer:

use Scalar::Util ’weaken’;

my $foo = {};

my $bar = { foo => $foo };

$foo->{bar} = $bar;

weaken $foo->{bar};

The reference from $foo to $bar has been weakened. When the $bar variable goes out of
scope, it will be garbage-collected. The next time you look at the value of the $foo->{bar}
key, it will be undef.

This action at a distance can be confusing, so you should be careful with your use of
weaken. You should weaken the reference in the variable that will go out of scope first.
That way, the longer-lived variable will contain the expected reference until it goes out of
scope.

62.3.4 Symbolic references

We said that references spring into existence as necessary if they are undefined, but we
didn’t say what happens if a value used as a reference is already defined, but isn’t a hard
reference. If you use it as a reference, it’ll be treated as a symbolic reference. That is, the
value of the scalar is taken to be the name of a variable, rather than a direct link to a
(possibly) anonymous value.

People frequently expect it to work like this. So it does.

$name = "foo";

$$name = 1; # Sets $foo

${$name} = 2; # Sets $foo

${$name x 2} = 3; # Sets $foofoo

$name->[0] = 4; # Sets $foo[0]

@$name = (); # Clears @foo

&$name(); # Calls &foo()

$pack = "THAT";

${"${pack}::$name"} = 5; # Sets $THAT::foo without eval

This is powerful, and slightly dangerous, in that it’s possible to intend (with the utmost
sincerity) to use a hard reference, and accidentally use a symbolic reference instead. To
protect against that, you can say

use strict ’refs’;

and then only hard references will be allowed for the rest of the enclosing block. An
inner block may countermand that with

no strict ’refs’;

Only package variables (globals, even if localized) are visible to symbolic references.
Lexical variables (declared with my()) aren’t in a symbol table, and thus are invisible to
this mechanism. For example:

local $value = 10;

$ref = "value";

{

my $value = 20;

print $$ref;

}

This will still print 10, not 20. Remember that local() affects package variables, which
are all "global" to the package.

62.3.5 Not-so-symbolic references

Brackets around a symbolic reference can simply serve to isolate an identifier or variable
name from the rest of an expression, just as they always have within a string. For example,

$push = "pop on ";

print "${push}over";

has always meant to print "pop on over", even though push is a reserved word. This is
generalized to work the same without the enclosing double quotes, so that

print ${push} . "over";

and even

print ${ push } . "over";

will have the same effect. This construct is not considered to be a symbolic reference
when you’re using strict refs:

use strict ’refs’;

${ bareword }; # Okay, means $bareword.

${ "bareword" }; # Error, symbolic reference.

Similarly, because of all the subscripting that is done using single words, the same rule
applies to any bareword that is used for subscripting a hash. So now, instead of writing

$array{ "aaa" }{ "bbb" }{ "ccc" }

you can write just

$array{ aaa }{ bbb }{ ccc }

and not worry about whether the subscripts are reserved words. In the rare event that
you do wish to do something like

$array{ shift }

you can force interpretation as a reserved word by adding anything that makes it more
than a bareword:

$array{ shift() }

$array{ +shift }

$array{ shift @_ }

The use warnings pragma or the -w switch will warn you if it interprets a reserved word
as a string. But it will no longer warn you about using lowercase words, because the string
is effectively quoted.

62.3.6 Pseudo-hashes: Using an array as a hash

Pseudo-hashes have been removed from Perl. The ’fields’ pragma remains available.

62.3.7 Function Templates

As explained above, an anonymous function with access to the lexical variables visible
when that function was compiled, creates a closure. It retains access to those variables even
though it doesn’t get run until later, such as in a signal handler or a Tk callback.

Using a closure as a function template allows us to generate many functions that act
similarly. Suppose you wanted functions named after the colors that generated HTML font
changes for the various colors:

print "Be ", red("careful"), "with that ", green("light");

The red() and green() functions would be similar. To create these, we’ll assign a closure
to a typeglob of the name of the function we’re trying to build.

@colors = qw(red blue green yellow orange purple violet);

for my $name (@colors) {

no strict ’refs’; # allow symbol table manipulation

*$name = *{uc $name} = sub { "@_" };

}

Now all those different functions appear to exist independently. You can call red(),
RED(), blue(), BLUE(), green(), etc. This technique saves on both compile time and
memory use, and is less error-prone as well, since syntax checks happen at compile time.
It’s critical that any variables in the anonymous subroutine be lexicals in order to create a
proper closure. That’s the reasons for the my on the loop iteration variable.

This is one of the only places where giving a prototype to a closure makes much sense.
If you wanted to impose scalar context on the arguments of these functions (probably not
a wise idea for this particular example), you could have written it this way instead:

*$name = sub ($) { "$_[0]" };

However, since prototype checking happens at compile time, the assignment above hap-
pens too late to be of much use. You could address this by putting the whole loop of
assignments within a BEGIN block, forcing it to occur during compilation.

Access to lexicals that change over time–like those in the for loop above, basically
aliases to elements from the surrounding lexical scopes– only works with anonymous subs,
not with named subroutines. Generally said, named subroutines do not nest properly and
should only be declared in the main package scope.

This is because named subroutines are created at compile time so their lexical variables
get assigned to the parent lexicals from the first execution of the parent block. If a parent
scope is entered a second time, its lexicals are created again, while the nested subs still
reference the old ones.

Anonymous subroutines get to capture each time you execute the sub operator, as they
are created on the fly. If you are accustomed to using nested subroutines in other program-
ming languages with their own private variables, you’ll have to work at it a bit in Perl.
The intuitive coding of this type of thing incurs mysterious warnings about "will not stay
shared" due to the reasons explained above. For example, this won’t work:

sub outer {

my $x = $_[0] + 35;

sub inner { return $x * 19 } # WRONG

return $x + inner();

}

A work-around is the following:

sub outer {

my $x = $_[0] + 35;

local *inner = sub { return $x * 19 };

return $x + inner();

}

Now inner() can only be called from within outer(), because of the temporary assignments
of the anonymous subroutine. But when it does, it has normal access to the lexical variable
$x from the scope of outer() at the time outer is invoked.

This has the interesting effect of creating a function local to another function, something
not normally supported in Perl.

62.4 WARNING

You may not (usefully) use a reference as the key to a hash. It will be converted into a
string:

$x{ \$a } = $a;

If you try to dereference the key, it won’t do a hard dereference, and you won’t accomplish
what you’re attempting. You might want to do something more like

$r = \@a;

$x{ $r } = $r;

And then at least you can use the values(), which will be real refs, instead of the keys(),
which won’t.

The standard Tie::RefHash module provides a convenient workaround to this.

62.5 Postfix Dereference Syntax

Beginning in v5.20.0, a postfix syntax for using references is available. It behaves as de-
scribed in Section 62.3.2 [Using References], page 1081, but instead of a prefixed sigil, a
postfixed sigil-and-star is used.

For example:

$r = \@a;

@b = $r->@*; # equivalent to @$r or @{ $r }

$r = [1, [2, 3], 4];

$r->[1]->@*; # equivalent to @{ $r->[1] }

This syntax must be enabled with use feature ’postderef’. It is experimental, and
will warn by default unless no warnings ’experimental::postderef’ is in effect.

Postfix dereference should work in all circumstances where block (circumfix) dereference
worked, and should be entirely equivalent. This syntax allows dereferencing to be written
and read entirely left-to-right. The following equivalencies are defined:

$sref->$*; # same as ${ $sref }

$aref->@*; # same as @{ $aref }

$aref->$#*; # same as $#{ $aref }

$href->%*; # same as %{ $href }

$cref->&*; # same as &{ $cref }

$gref->**; # same as *{ $gref }

Note especially that $cref->&* is not equivalent to $cref->(), and can serve different
purposes.

Glob elements can be extracted through the postfix dereferencing feature:

$gref->*{SCALAR}; # same as *{ $gref }{SCALAR}

Postfix array and scalar dereferencing can be used in interpolating strings (double quotes
or the qq operator), but only if the additional postderef_qq feature is enabled.

62.5.1 Postfix Reference Slicing

Value slices of arrays and hashes may also be taken with postfix dereferencing notation,
with the following equivalencies:

$aref->@[...]; # same as @$aref[...]

$href->@{ ... }; # same as @$href{ ... }

Postfix key/value pair slicing, added in 5.20.0 and documented in Section 11.2.9.1 [the
Key/Value Hash Slices section of perldata], page 85, also behaves as expected:

$aref->%[...]; # same as %$aref[...]

$href->%{ ... }; # same as %$href{ ... }

As with postfix array, postfix value slice dereferencing can be used in interpolating strings
(double quotes or the qq operator), but only if the additional postderef_qq feature is
enabled.

62.6 Assigning to References

Beginning in v5.22.0, the referencing operator can be assigned to. It performs an aliasing
operation, so that the variable name referenced on the left-hand side becomes an alias for
the thing referenced on the right-hand side:

\$a = \$b; # $a and $b now point to the same scalar

\&foo = \&bar; # foo() now means bar()

This syntax must be enabled with use feature ’refaliasing’. It is experimental, and
will warn by default unless no warnings ’experimental::refaliasing’ is in effect.

These forms may be assigned to, and cause the right-hand side to be evaluated in scalar
context:

\$scalar

\@array

\%hash

\&sub

\my $scalar

\my @array

\my %hash

\state $scalar # or @array, etc.

\our $scalar # etc.

\local $scalar # etc.

\local our $scalar # etc.

\$some_array[$index]

\$some_hash{$key}

\local $some_array[$index]

\local $some_hash{$key}

condition ? \$this : \$that[0] # etc.

Slicing operations and parentheses cause the right-hand side to be evaluated in list
context:

\@array[5..7]

(\@array[5..7])

\(@array[5..7])

\@hash{’foo’,’bar’}

(\@hash{’foo’,’bar’})

\(@hash{’foo’,’bar’})

(\$scalar)

\($scalar)

\(my $scalar)

\my($scalar)

(\@array)

(\%hash)

(\&sub)

\(&sub)

\($foo, @bar, %baz)

(\$foo, \@bar, \%baz)

Each element on the right-hand side must be a reference to a datum of the right type.
Parentheses immediately surrounding an array (and possibly also my/state/our/local)
will make each element of the array an alias to the corresponding scalar referenced on the
right-hand side:

\(@a) = \(@b); # @a and @b now have the same elements

\my(@a) = \(@b); # likewise

\(my @a) = \(@b); # likewise

push @a, 3; # but now @a has an extra element that @b lacks

\(@a) = (\$a, \$b, \$c); # @a now contains $a, $b, and $c

Combining that form with local and putting parentheses immediately around a hash
are forbidden (because it is not clear what they should do):

\local(@array) = foo(); # WRONG

\(%hash) = bar(); # wRONG

Assignment to references and non-references may be combined in lists and conditional
ternary expressions, as long as the values on the right-hand side are the right type for each
element on the left, though this may make for obfuscated code:

(my $tom, \my $dick, \my @harry) = (\1, \2, [1..3]);

$tom is now \1

$dick is now 2 (read-only)

@harry is (1,2,3)

my $type = ref $thingy;

($type ? $type == ’ARRAY’ ? \@foo : \$bar : $baz) = $thingy;

The foreach loop can also take a reference constructor for its loop variable, though
the syntax is limited to one of the following, with an optional my, state, or our after the
backslash:

\$s

\@a

\%h

\&c

No parentheses are permitted. This feature is particularly useful for arrays-of-arrays, or
arrays-of-hashes:

foreach \my @a (@array_of_arrays) {

frobnicate($a[0], $a[-1]);

}

foreach \my %h (@array_of_hashes) {

$h{gelastic}++ if $h{type} == ’funny’;

}

CAVEAT: Aliasing does not work correctly with closures. If you try to alias lexical
variables from an inner subroutine or eval, the aliasing will only be visible within that
inner sub, and will not affect the outer subroutine where the variables are declared. This
bizarre behavior is subject to change.

62.7 SEE ALSO

Besides the obvious documents, source code can be instructive. Some pathological examples
of the use of references can be found in the t/op/ref.t regression test in the Perl source
directory.

See also Section 17.1 [perldsc NAME], page 246 and Section 39.1 [perllol NAME],
page 725 for how to use references to create complex data structures, and Section 47.1
[perlootut NAME], page 786 and Section 46.1 [perlobj NAME], page 769 for how to use
them to create objects.

63 perlreftut

63.1 NAME

perlreftut - Mark’s very short tutorial about references

63.2 DESCRIPTION

One of the most important new features in Perl 5 was the capability to manage complicated
data structures like multidimensional arrays and nested hashes. To enable these, Perl
5 introduced a feature called ’references’, and using references is the key to managing
complicated, structured data in Perl. Unfortunately, there’s a lot of funny syntax to learn,
and the main manual page can be hard to follow. The manual is quite complete, and
sometimes people find that a problem, because it can be hard to tell what is important and
what isn’t.

Fortunately, you only need to know 10% of what’s in the main page to get 90% of the
benefit. This page will show you that 10%.

63.3 Who Needs Complicated Data Structures?

One problem that comes up all the time is needing a hash whose values are lists. Perl has
hashes, of course, but the values have to be scalars; they can’t be lists.

Why would you want a hash of lists? Let’s take a simple example: You have a file of
city and country names, like this:

Chicago, USA

Frankfurt, Germany

Berlin, Germany

Washington, USA

Helsinki, Finland

New York, USA

and you want to produce an output like this, with each country mentioned once, and
then an alphabetical list of the cities in that country:

Finland: Helsinki.

Germany: Berlin, Frankfurt.

USA: Chicago, New York, Washington.

The natural way to do this is to have a hash whose keys are country names. Associated
with each country name key is a list of the cities in that country. Each time you read a line
of input, split it into a country and a city, look up the list of cities already known to be
in that country, and append the new city to the list. When you’re done reading the input,
iterate over the hash as usual, sorting each list of cities before you print it out.

If hash values couldn’t be lists, you lose. You’d probably have to combine all the cities
into a single string somehow, and then when time came to write the output, you’d have to
break the string into a list, sort the list, and turn it back into a string. This is messy and
error-prone. And it’s frustrating, because Perl already has perfectly good lists that would
solve the problem if only you could use them.

63.4 The Solution

By the time Perl 5 rolled around, we were already stuck with this design: Hash values must
be scalars. The solution to this is references.

A reference is a scalar value that refers to an entire array or an entire hash (or to just
about anything else). Names are one kind of reference that you’re already familiar with.
Think of the President of the United States: a messy, inconvenient bag of blood and bones.
But to talk about him, or to represent him in a computer program, all you need is the easy,
convenient scalar string "Barack Obama".

References in Perl are like names for arrays and hashes. They’re Perl’s private, internal
names, so you can be sure they’re unambiguous. Unlike "Barack Obama", a reference only
refers to one thing, and you always know what it refers to. If you have a reference to an
array, you can recover the entire array from it. If you have a reference to a hash, you can
recover the entire hash. But the reference is still an easy, compact scalar value.

You can’t have a hash whose values are arrays; hash values can only be scalars. We’re
stuck with that. But a single reference can refer to an entire array, and references are
scalars, so you can have a hash of references to arrays, and it’ll act a lot like a hash of
arrays, and it’ll be just as useful as a hash of arrays.

We’ll come back to this city-country problem later, after we’ve seen some syntax for
managing references.

63.5 Syntax

There are just two ways to make a reference, and just two ways to use it once you have it.

63.5.1 Making References

63.5.1.1 Make Rule 1

If you put a \ in front of a variable, you get a reference to that variable.

$aref = \@array; # $aref now holds a reference to @array

$href = \%hash; # $href now holds a reference to %hash

$sref = \$scalar; # $sref now holds a reference to $scalar

Once the reference is stored in a variable like $aref or $href, you can copy it or store it
just the same as any other scalar value:

$xy = $aref; # $xy now holds a reference to @array

$p[3] = $href; # $p[3] now holds a reference to %hash

$z = $p[3]; # $z now holds a reference to %hash

These examples show how to make references to variables with names. Sometimes you
want to make an array or a hash that doesn’t have a name. This is analogous to the way
you like to be able to use the string "\n" or the number 80 without having to store it in a
named variable first.

Make Rule 2

[ITEMS] makes a new, anonymous array, and returns a reference to that array. { ITEMS

} makes a new, anonymous hash, and returns a reference to that hash.

$aref = [1, "foo", undef, 13];

$aref now holds a reference to an array

$href = { APR => 4, AUG => 8 };

$href now holds a reference to a hash

The references you get from rule 2 are the same kind of references that you get from rule
1:

This:

$aref = [1, 2, 3];

Does the same as this:

@array = (1, 2, 3);

$aref = \@array;

The first line is an abbreviation for the following two lines, except that it doesn’t create
the superfluous array variable @array.

If you write just [], you get a new, empty anonymous array. If you write just {}, you
get a new, empty anonymous hash.

63.5.2 Using References

What can you do with a reference once you have it? It’s a scalar value, and we’ve seen that
you can store it as a scalar and get it back again just like any scalar. There are just two
more ways to use it:

63.5.2.1 Use Rule 1

You can always use an array reference, in curly braces, in place of the name of an array.
For example, @{$aref} instead of @array.

Here are some examples of that:

Arrays:

@a @{$aref} An array

reverse @a reverse @{$aref} Reverse the array

$a[3] ${$aref}[3] An element of the array

$a[3] = 17; ${$aref}[3] = 17 Assigning an element

On each line are two expressions that do the same thing. The left-hand versions operate
on the array @a. The right-hand versions operate on the array that is referred to by $aref.
Once they find the array they’re operating on, both versions do the same things to the
arrays.

Using a hash reference is exactly the same:

%h %{$href} A hash

keys %h keys %{$href} Get the keys from the hash

$h{’red’} ${$href}{’red’} An element of the hash

$h{’red’} = 17 ${$href}{’red’} = 17 Assigning an element

Whatever you want to do with a reference, Use Rule 1 tells you how to do it. You just
write the Perl code that you would have written for doing the same thing to a regular array
or hash, and then replace the array or hash name with {$reference}. "How do I loop over
an array when all I have is a reference?" Well, to loop over an array, you would write

for my $element (@array) {

...

}

so replace the array name, @array, with the reference:

for my $element (@{$aref}) {

...

}

"How do I print out the contents of a hash when all I have is a reference?" First write
the code for printing out a hash:

for my $key (keys %hash) {

print "$key => $hash{$key}\n";

}

And then replace the hash name with the reference:

for my $key (keys %{$href}) {

print "$key => ${$href}{$key}\n";

}

63.5.2.2 Use Rule 2

Use Rule 1 is all you really need, because it tells you how to do absolutely everything you
ever need to do with references. But the most common thing to do with an array or a hash
is to extract a single element, and the Use Rule 1 notation is cumbersome. So there is an
abbreviation.

${$aref}[3] is too hard to read, so you can write $aref->[3] instead.

${$href}{red} is too hard to read, so you can write $href->{red} instead.

If $aref holds a reference to an array, then $aref->[3] is the fourth element of the
array. Don’t confuse this with $aref[3], which is the fourth element of a totally different
array, one deceptively named @aref. $aref and @aref are unrelated the same way that
$item and @item are.

Similarly, $href->{’red’} is part of the hash referred to by the scalar variable $href,
perhaps even one with no name. $href{’red’} is part of the deceptively named %href

hash. It’s easy to forget to leave out the ->, and if you do, you’ll get bizarre results when
your program gets array and hash elements out of totally unexpected hashes and arrays
that weren’t the ones you wanted to use.

63.5.3 An Example

Let’s see a quick example of how all this is useful.

First, remember that [1, 2, 3] makes an anonymous array containing (1, 2, 3), and
gives you a reference to that array.

Now think about

@a = ([1, 2, 3],

[4, 5, 6],

[7, 8, 9]

);

@a is an array with three elements, and each one is a reference to another array.

$a[1] is one of these references. It refers to an array, the array containing (4, 5, 6),
and because it is a reference to an array, Use Rule 2 says that we can write $a[1]->[2] to
get the third element from that array. $a[1]->[2] is the 6. Similarly, $a[0]->[1] is the
2. What we have here is like a two-dimensional array; you can write $a[ROW]->[COLUMN]

to get or set the element in any row and any column of the array.

The notation still looks a little cumbersome, so there’s one more abbreviation:

63.5.4 Arrow Rule

In between two subscripts, the arrow is optional.

Instead of $a[1]->[2], we can write $a[1][2]; it means the same thing. Instead of
$a[0]->[1] = 23, we can write $a[0][1] = 23; it means the same thing.

Now it really looks like two-dimensional arrays!

You can see why the arrows are important. Without them, we would have had to
write ${$a[1]}[2] instead of $a[1][2]. For three-dimensional arrays, they let us write
$x[2][3][5] instead of the unreadable ${${$x[2]}[3]}[5].

63.6 Solution

Here’s the answer to the problem I posed earlier, of reformatting a file of city and country
names.

1 my %table;

2 while (<>) {

3 chomp;

4 my ($city, $country) = split /, /;

5 $table{$country} = [] unless exists $table{$country};

6 push @{$table{$country}}, $city;

7 }

8 foreach $country (sort keys %table) {

9 print "$country: ";

10 my @cities = @{$table{$country}};

11 print join ’, ’, sort @cities;

12 print ".\n";

13 }

The program has two pieces: Lines 2–7 read the input and build a data structure, and
lines 8-13 analyze the data and print out the report. We’re going to have a hash, %table,
whose keys are country names, and whose values are references to arrays of city names. The
data structure will look like this:

%table

+-------+---+

| | | +-----------+--------+

|Germany| *---->| Frankfurt | Berlin |

| | | +-----------+--------+

+-------+---+

| | | +----------+

|Finland| *---->| Helsinki |

| | | +----------+

+-------+---+

| | | +---------+------------+----------+

| USA | *---->| Chicago | Washington | New York |

| | | +---------+------------+----------+

+-------+---+

We’ll look at output first. Supposing we already have this structure, how do we print it
out?

8 foreach $country (sort keys %table) {

9 print "$country: ";

10 my @cities = @{$table{$country}};

11 print join ’, ’, sort @cities;

12 print ".\n";

13 }

%table is an ordinary hash, and we get a list of keys from it, sort the keys, and loop over
the keys as usual. The only use of references is in line 10. $table{$country} looks up the
key $country in the hash and gets the value, which is a reference to an array of cities in that
country. Use Rule 1 says that we can recover the array by saying @{$table{$country}}.
Line 10 is just like

@cities = @array;

except that the name array has been replaced by the reference {$table{$country}}.
The @ tells Perl to get the entire array. Having gotten the list of cities, we sort it, join it,
and print it out as usual.

Lines 2-7 are responsible for building the structure in the first place. Here they are
again:

2 while (<>) {

3 chomp;

4 my ($city, $country) = split /, /;

5 $table{$country} = [] unless exists $table{$country};

6 push @{$table{$country}}, $city;

7 }

Lines 2-4 acquire a city and country name. Line 5 looks to see if the country is already
present as a key in the hash. If it’s not, the program uses the [] notation (Make Rule 2)
to manufacture a new, empty anonymous array of cities, and installs a reference to it into
the hash under the appropriate key.

Line 6 installs the city name into the appropriate array. $table{$country} now holds
a reference to the array of cities seen in that country so far. Line 6 is exactly like

push @array, $city;

except that the name array has been replaced by the reference {$table{$country}}.
The push adds a city name to the end of the referred-to array.

There’s one fine point I skipped. Line 5 is unnecessary, and we can get rid of it.

2 while (<>) {

3 chomp;

4 my ($city, $country) = split /, /;

5 #### $table{$country} = [] unless exists $table{$country};

6 push @{$table{$country}}, $city;

7 }

If there’s already an entry in %table for the current $country, then nothing is different.
Line 6 will locate the value in $table{$country}, which is a reference to an array, and
push $city into the array. But what does it do when $country holds a key, say Greece,
that is not yet in %table?

This is Perl, so it does the exact right thing. It sees that you want to push Athens onto
an array that doesn’t exist, so it helpfully makes a new, empty, anonymous array for you,
installs it into %table, and then pushes Athens onto it. This is called ’autovivification’–
bringing things to life automatically. Perl saw that the key wasn’t in the hash, so it created
a new hash entry automatically. Perl saw that you wanted to use the hash value as an array,
so it created a new empty array and installed a reference to it in the hash automatically.
And as usual, Perl made the array one element longer to hold the new city name.

63.7 The Rest

I promised to give you 90% of the benefit with 10% of the details, and that means I left
out 90% of the details. Now that you have an overview of the important parts, it should
be easier to read the Section 62.1 [perlref NAME], page 1077 manual page, which discusses
100% of the details.

Some of the highlights of Section 62.1 [perlref NAME], page 1077:

• You can make references to anything, including scalars, functions, and other references.

• In Use Rule 1, you can omit the curly brackets whenever the thing inside them is an
atomic scalar variable like $aref. For example, @$aref is the same as @{$aref}, and
$$aref[1] is the same as ${$aref}[1]. If you’re just starting out, you may want to
adopt the habit of always including the curly brackets.

• This doesn’t copy the underlying array:

$aref2 = $aref1;

You get two references to the same array. If you modify $aref1->[23] and then look
at $aref2->[23] you’ll see the change.

To copy the array, use

$aref2 = [@{$aref1}];

This uses [...] notation to create a new anonymous array, and $aref2 is assigned a
reference to the new array. The new array is initialized with the contents of the array
referred to by $aref1.

Similarly, to copy an anonymous hash, you can use

$href2 = {%{$href1}};

• To see if a variable contains a reference, use the ref function. It returns true if its
argument is a reference. Actually it’s a little better than that: It returns HASH for hash
references and ARRAY for array references.

• If you try to use a reference like a string, you get strings like

ARRAY(0x80f5dec) or HASH(0x826afc0)

If you ever see a string that looks like this, you’ll know you printed out a reference by
mistake.

A side effect of this representation is that you can use eq to see if two references refer
to the same thing. (But you should usually use == instead because it’s much faster.)

• You can use a string as if it were a reference. If you use the string "foo" as an array
reference, it’s taken to be a reference to the array @foo. This is called a soft reference
or symbolic reference. The declaration use strict ’refs’ disables this feature, which
can cause all sorts of trouble if you use it by accident.

You might prefer to go on to Section 39.1 [perllol NAME], page 725 instead of Section 62.1
[perlref NAME], page 1077; it discusses lists of lists and multidimensional arrays in detail.
After that, you should move on to Section 17.1 [perldsc NAME], page 246; it’s a Data
Structure Cookbook that shows recipes for using and printing out arrays of hashes, hashes
of arrays, and other kinds of data.

63.8 Summary

Everyone needs compound data structures, and in Perl the way you get them is with refer-
ences. There are four important rules for managing references: Two for making references
and two for using them. Once you know these rules you can do most of the important
things you need to do with references.

63.9 Credits

Author: Mark Jason Dominus, Plover Systems (mjd-perl-ref+@plover.com)

This article originally appeared in The Perl Journal (http://www.tpj.com/) volume 3,
#2. Reprinted with permission.

The original title was Understand References Today.

63.9.1 Distribution Conditions

Copyright 1998 The Perl Journal.

This documentation is free; you can redistribute it and/or modify it under the same
terms as Perl itself.

Irrespective of its distribution, all code examples in these files are hereby placed into the
public domain. You are permitted and encouraged to use this code in your own programs
for fun or for profit as you see fit. A simple comment in the code giving credit would be
courteous but is not required.

64 perlreguts

64.1 NAME

perlreguts - Description of the Perl regular expression engine.

64.2 DESCRIPTION

This document is an attempt to shine some light on the guts of the regex engine and how it
works. The regex engine represents a significant chunk of the perl codebase, but is relatively
poorly understood. This document is a meagre attempt at addressing this situation. It is
derived from the author’s experience, comments in the source code, other papers on the
regex engine, feedback on the perl5-porters mail list, and no doubt other places as well.

NOTICE! It should be clearly understood that the behavior and structures discussed in
this represents the state of the engine as the author understood it at the time of writing.
It is NOT an API definition, it is purely an internals guide for those who want to hack
the regex engine, or understand how the regex engine works. Readers of this document are
expected to understand perl’s regex syntax and its usage in detail. If you want to learn
about the basics of Perl’s regular expressions, see Section 58.1 [perlre NAME], page 989.
And if you want to replace the regex engine with your own, see Section 59.1 [perlreapi
NAME], page 1032.

64.3 OVERVIEW

64.3.1 A quick note on terms

There is some debate as to whether to say "regexp" or "regex". In this document we will
use the term "regex" unless there is a special reason not to, in which case we will explain
why.

When speaking about regexes we need to distinguish between their source code form
and their internal form. In this document we will use the term "pattern" when we speak
of their textual, source code form, and the term "program" when we speak of their inter-
nal representation. These correspond to the terms S-regex and B-regex that Mark Jason
Dominus employs in his paper on "Rx" ([1] in Section 64.9 [REFERENCES], page 1114).

64.3.2 What is a regular expression engine?

A regular expression engine is a program that takes a set of constraints specified in a mini-
language, and then applies those constraints to a target string, and determines whether or
not the string satisfies the constraints. See Section 58.1 [perlre NAME], page 989 for a full
definition of the language.

In less grandiose terms, the first part of the job is to turn a pattern into something the
computer can efficiently use to find the matching point in the string, and the second part
is performing the search itself.

To do this we need to produce a program by parsing the text. We then need to execute
the program to find the point in the string that matches. And we need to do the whole
thing efficiently.

64.3.3 Structure of a Regexp Program

64.3.3.1 High Level

Although it is a bit confusing and some people object to the terminology, it is worth taking
a look at a comment that has been in regexp.h for years:

This is essentially a linear encoding of a nondeterministic finite-state machine (aka
syntax charts or "railroad normal form" in parsing technology).

The term "railroad normal form" is a bit esoteric, with "syntax diagram/charts", or
"railroad diagram/charts" being more common terms. Nevertheless it provides a useful
mental image of a regex program: each node can be thought of as a unit of track, with a
single entry and in most cases a single exit point (there are pieces of track that fork, but
statistically not many), and the whole forms a layout with a single entry and single exit
point. The matching process can be thought of as a car that moves along the track, with
the particular route through the system being determined by the character read at each
possible connector point. A car can fall off the track at any point but it may only proceed
as long as it matches the track.

Thus the pattern /foo(?:\w+|\d+|\s+)bar/ can be thought of as the following chart:

[start]

|

<foo>

|

+-----+-----+

| | |

<\w+> <\d+> <\s+>

| | |

+-----+-----+

|

<bar>

|

[end]

The truth of the matter is that perl’s regular expressions these days are much more
complex than this kind of structure, but visualising it this way can help when trying to get
your bearings, and it matches the current implementation pretty closely.

To be more precise, we will say that a regex program is an encoding of a graph. Each
node in the graph corresponds to part of the original regex pattern, such as a literal string
or a branch, and has a pointer to the nodes representing the next component to be matched.
Since "node" and "opcode" already have other meanings in the perl source, we will call the
nodes in a regex program "regops".

The program is represented by an array of regnode structures, one or more of which
represent a single regop of the program. Struct regnode is the smallest struct needed, and
has a field structure which is shared with all the other larger structures.

The "next" pointers of all regops except BRANCH implement concatenation; a "next"
pointer with a BRANCH on both ends of it is connecting two alternatives. [Here we have
one of the subtle syntax dependencies: an individual BRANCH (as opposed to a collection of
them) is never concatenated with anything because of operator precedence.]

The operand of some types of regop is a literal string; for others, it is a regop leading
into a sub-program. In particular, the operand of a BRANCH node is the first regop of the
branch.

NOTE: As the railroad metaphor suggests, this is not a tree structure: the tail of the
branch connects to the thing following the set of BRANCHes. It is a like a single line of railway
track that splits as it goes into a station or railway yard and rejoins as it comes out the
other side.

64.3.3.2 Regops

The base structure of a regop is defined in regexp.h as follows:

struct regnode {

U8 flags; /* Various purposes, sometimes overridden */

U8 type; /* Opcode value as specified by regnodes.h */

U16 next_off; /* Offset in size regnode */

};

Other larger regnode-like structures are defined in regcomp.h. They are almost like
subclasses in that they have the same fields as regnode, with possibly additional fields
following in the structure, and in some cases the specific meaning (and name) of some of
base fields are overridden. The following is a more complete description.

regnode_1

regnode_2

regnode_1 structures have the same header, followed by a single four-byte
argument; regnode_2 structures contain two two-byte arguments instead:

regnode_1 U32 arg1;

regnode_2 U16 arg1; U16 arg2;

regnode_string

regnode_string structures, used for literal strings, follow the header with a
one-byte length and then the string data. Strings are padded on the end with
zero bytes so that the total length of the node is a multiple of four bytes:

regnode_string char string[1];

U8 str_len; /* overrides flags */

regnode_charclass

Bracketed character classes are represented by regnode_charclass structures,
which have a four-byte argument and then a 32-byte (256-bit) bitmap indicating
which characters in the Latin1 range are included in the class.

regnode_charclass U32 arg1;

char bitmap[ANYOF_BITMAP_SIZE];

Various flags whose names begin with ANYOF_ are used for special situations.
Above Latin1 matches and things not known until run-time are stored in
Section 64.5.2.1 [Perl’s pprivate structure], page 1113.

regnode_charclass_posixl

There is also a larger form of a char class structure used to represent POSIX
char classes under /l matching, called regnode_charclass_posixl which has

an additional 32-bit bitmap indicating which POSIX char classes have been
included.

regnode_charclass_posixl U32 arg1;

char bitmap[ANYOF_BITMAP_SIZE];

U32 classflags;

regnodes.h defines an array called regarglen[] which gives the size of each opcode in
units of size regnode (4-byte). A macro is used to calculate the size of an EXACT node
based on its str_len field.

The regops are defined in regnodes.h which is generated from regcomp.sym by
regcomp.pl. Currently the maximum possible number of distinct regops is restricted to
256, with about a quarter already used.

A set of macros makes accessing the fields easier and more consistent. These include
OP(), which is used to determine the type of a regnode-like structure; NEXT_OFF(), which
is the offset to the next node (more on this later); ARG(), ARG1(), ARG2(), ARG_SET(),
and equivalents for reading and setting the arguments; and STR_LEN(), STRING() and
OPERAND() for manipulating strings and regop bearing types.

64.3.3.3 What regop is next?

There are three distinct concepts of "next" in the regex engine, and it is important to keep
them clear.

• There is the "next regnode" from a given regnode, a value which is rarely useful ex-
cept that sometimes it matches up in terms of value with one of the others, and that
sometimes the code assumes this to always be so.

• There is the "next regop" from a given regop/regnode. This is the regop physically
located after the current one, as determined by the size of the current regop. This
is often useful, such as when dumping the structure we use this order to traverse.
Sometimes the code assumes that the "next regnode" is the same as the "next regop",
or in other words assumes that the sizeof a given regop type is always going to be one
regnode large.

• There is the "regnext" from a given regop. This is the regop which is reached by
jumping forward by the value of NEXT_OFF(), or in a few cases for longer jumps by
the arg1 field of the regnode_1 structure. The subroutine regnext() handles this
transparently. This is the logical successor of the node, which in some cases, like that
of the BRANCH regop, has special meaning.

64.4 Process Overview

Broadly speaking, performing a match of a string against a pattern involves the following
steps:

A. Compilation

1. Parsing for size
2. Parsing for construction
3. Peep-hole optimisation and analysis

B. Execution

4. Start position and no-match optimisations
5. Program execution

Where these steps occur in the actual execution of a perl program is determined by
whether the pattern involves interpolating any string variables. If interpolation occurs,
then compilation happens at run time. If it does not, then compilation is performed at
compile time. (The /o modifier changes this, as does qr// to a certain extent.) The engine
doesn’t really care that much.

64.4.1 Compilation

This code resides primarily in regcomp.c, along with the header files regcomp.h, regexp.h
and regnodes.h.

Compilation starts with pregcomp(), which is mostly an initialisation wrapper which
farms work out to two other routines for the heavy lifting: the first is reg(), which is the
start point for parsing; the second, study_chunk(), is responsible for optimisation.

Initialisation in pregcomp() mostly involves the creation and data-filling of a special
structure, RExC_state_t (defined in regcomp.c). Almost all internally-used routines in
regcomp.h take a pointer to one of these structures as their first argument, with the name
pRExC_state. This structure is used to store the compilation state and contains many
fields. Likewise there are many macros which operate on this variable: anything that looks
like RExC_xxxx is a macro that operates on this pointer/structure.

64.4.1.1 Parsing for size

In this pass the input pattern is parsed in order to calculate how much space is needed for
each regop we would need to emit. The size is also used to determine whether long jumps
will be required in the program.

This stage is controlled by the macro SIZE_ONLY being set.

The parse proceeds pretty much exactly as it does during the construction phase, except
that most routines are short-circuited to change the size field RExC_size and not do anything
else.

64.4.1.2 Parsing for construction

Once the size of the program has been determined, the pattern is parsed again, but this
time for real. Now SIZE_ONLY will be false, and the actual construction can occur.

reg() is the start of the parse process. It is responsible for parsing an arbitrary chunk
of pattern up to either the end of the string, or the first closing parenthesis it encounters in
the pattern. This means it can be used to parse the top-level regex, or any section inside of
a grouping parenthesis. It also handles the "special parens" that perl’s regexes have. For
instance when parsing /x(?:foo)y/ reg() will at one point be called to parse from the "?"
symbol up to and including the ")".

Additionally, reg() is responsible for parsing the one or more branches from the pattern,
and for "finishing them off" by correctly setting their next pointers. In order to do the
parsing, it repeatedly calls out to regbranch(), which is responsible for handling up to the
first | symbol it sees.

regbranch() in turn calls regpiece() which handles "things" followed by a quantifier.
In order to parse the "things", regatom() is called. This is the lowest level routine, which
parses out constant strings, character classes, and the various special symbols like $. If
regatom() encounters a "(" character it in turn calls reg().

The routine regtail() is called by both reg() and regbranch() in order to "set the
tail pointer" correctly. When executing and we get to the end of a branch, we need to go
to the node following the grouping parens. When parsing, however, we don’t know where
the end will be until we get there, so when we do we must go back and update the offsets
as appropriate. regtail is used to make this easier.

A subtlety of the parsing process means that a regex like /foo/ is originally parsed into
an alternation with a single branch. It is only afterwards that the optimiser converts single
branch alternations into the simpler form.

64.4.1.3 Parse Call Graph and a Grammar

The call graph looks like this:

reg() # parse a top level regex, or inside of

parens

regbranch() # parse a single branch of an alternation

regpiece() # parse a pattern followed by a quantifier

regatom() # parse a simple pattern

regclass() # used to handle a class

reg() # used to handle a parenthesised

subpattern

....

...

regtail() # finish off the branch

...

regtail() # finish off the branch sequence. Tie each

branch’s tail to the tail of the

sequence

(NEW) In Debug mode this is

regtail_study().

A grammar form might be something like this:

atom : constant | class

quant : ’*’ | ’+’ | ’?’ | ’{min,max}’

_branch: piece

| piece _branch

| nothing

branch: _branch

| _branch ’|’ branch

group : ’(’ branch ’)’

_piece: atom | group

piece : _piece

| _piece quant

64.4.1.4 Parsing complications

The implication of the above description is that a pattern containing nested parentheses will
result in a call graph which cycles through reg(), regbranch(), regpiece(), regatom(),
reg(), regbranch() etc multiple times, until the deepest level of nesting is reached. All the
above routines return a pointer to a regnode, which is usually the last regnode added to the
program. However, one complication is that reg() returns NULL for parsing (?:) syntax for
embedded modifiers, setting the flag TRYAGAIN. The TRYAGAIN propagates upwards until it
is captured, in some cases by regatom(), but otherwise unconditionally by regbranch().
Hence it will never be returned by regbranch() to reg(). This flag permits patterns such
as (?i)+ to be detected as errors (Quantifier follows nothing in regex; marked by <– HERE
in m/(?i)+ <– HERE /).

Another complication is that the representation used for the program differs if it needs
to store Unicode, but it’s not always possible to know for sure whether it does until midway
through parsing. The Unicode representation for the program is larger, and cannot be
matched as efficiently. (See Section 64.5.1 [Unicode and Localisation Support], page 1112
below for more details as to why.) If the pattern contains literal Unicode, it’s obvious that
the program needs to store Unicode. Otherwise, the parser optimistically assumes that
the more efficient representation can be used, and starts sizing on this basis. However, if
it then encounters something in the pattern which must be stored as Unicode, such as an
\x{...} escape sequence representing a character literal, then this means that all previously
calculated sizes need to be redone, using values appropriate for the Unicode representation.
Currently, all regular expression constructions which can trigger this are parsed by code in
regatom().

To avoid wasted work when a restart is needed, the sizing pass is abandoned - regatom()
immediately returns NULL, setting the flag RESTART_UTF8. (This action is encapsulated
using the macro REQUIRE_UTF8.) This restart request is propagated up the call chain in a
similar fashion, until it is "caught" in Perl_re_op_compile(), which marks the pattern as
containing Unicode, and restarts the sizing pass. It is also possible for constructions within
run-time code blocks to turn out to need Unicode representation., which is signalled by
S_compile_runtime_code() returning false to Perl_re_op_compile().

The restart was previously implemented using a longjmp in regatom() back to a setjmp
in Perl_re_op_compile(), but this proved to be problematic as the latter is a large function
containing many automatic variables, which interact badly with the emergent control flow
of setjmp.

64.4.1.5 Debug Output

In the 5.9.x development version of perl you can use re Debug => ’PARSE’ to see some trace
information about the parse process. We will start with some simple patterns and build up
to more complex patterns.

So when we parse /foo/ we see something like the following table. The left shows what
is being parsed, and the number indicates where the next regop would go. The stuff on the

right is the trace output of the graph. The names are chosen to be short to make it less
dense on the screen. ’tsdy’ is a special form of regtail() which does some extra analysis.

>foo< 1 reg

brnc

piec

atom

>< 4 tsdy~ EXACT <foo> (EXACT) (1)

~ attach to END (3) offset to 2

The resulting program then looks like:

1: EXACT <foo>(3)

3: END(0)

As you can see, even though we parsed out a branch and a piece, it was ultimately only
an atom. The final program shows us how things work. We have an EXACT regop, followed
by an END regop. The number in parens indicates where the regnext of the node goes. The
regnext of an END regop is unused, as END regops mean we have successfully matched. The
number on the left indicates the position of the regop in the regnode array.

Now let’s try a harder pattern. We will add a quantifier, so now we have the pattern
/foo+/. We will see that regbranch() calls regpiece() twice.

>foo+< 1 reg

brnc

piec

atom

>o+< 3 piec

atom

>< 6 tail~ EXACT <fo> (1)

7 tsdy~ EXACT <fo> (EXACT) (1)

~ PLUS (END) (3)

~ attach to END (6) offset to 3

And we end up with the program:

1: EXACT <fo>(3)

3: PLUS(6)

4: EXACT <o>(0)

6: END(0)

Now we have a special case. The EXACT regop has a regnext of 0. This is because if it
matches it should try to match itself again. The PLUS regop handles the actual failure of
the EXACT regop and acts appropriately (going to regnode 6 if the EXACT matched at least
once, or failing if it didn’t).

Now for something much more complex: /x(?:foo*|b[a][rR])(foo|bar)$/

>x(?:foo*|b... 1 reg

brnc

piec

atom

>(?:foo*|b[... 3 piec

atom

>?:foo*|b[a... reg

>foo*|b[a][... brnc

piec

atom

>o*|b[a][rR... 5 piec

atom

>|b[a][rR])... 8 tail~ EXACT <fo> (3)

>b[a][rR])(... 9 brnc

10 piec

atom

>[a][rR])(f... 12 piec

atom

>a][rR])(fo... clas

>[rR])(foo|... 14 tail~ EXACT (10)

piec

atom

>rR])(foo|b... clas

>)(foo|bar)... 25 tail~ EXACT <a> (12)

tail~ BRANCH (3)

26 tsdy~ BRANCH (END) (9)

~ attach to TAIL (25) offset to 16

tsdy~ EXACT <fo> (EXACT) (4)

~ STAR (END) (6)

~ attach to TAIL (25) offset to 19

tsdy~ EXACT (EXACT) (10)

~ EXACT <a> (EXACT) (12)

~ ANYOF[Rr] (END) (14)

~ attach to TAIL (25) offset to 11

>(foo|bar)$< tail~ EXACT <x> (1)

piec

atom

>foo|bar)$< reg

28 brnc

piec

atom

>|bar)$< 31 tail~ OPEN1 (26)

>bar)$< brnc

32 piec

atom

>)$< 34 tail~ BRANCH (28)

36 tsdy~ BRANCH (END) (31)

~ attach to CLOSE1 (34) offset to 3

tsdy~ EXACT <foo> (EXACT) (29)

~ attach to CLOSE1 (34) offset to 5

tsdy~ EXACT <bar> (EXACT) (32)

~ attach to CLOSE1 (34) offset to 2

>$< tail~ BRANCH (3)

~ BRANCH (9)

~ TAIL (25)

piec

atom

>< 37 tail~ OPEN1 (26)

~ BRANCH (28)

~ BRANCH (31)

~ CLOSE1 (34)

38 tsdy~ EXACT <x> (EXACT) (1)

~ BRANCH (END) (3)

~ BRANCH (END) (9)

~ TAIL (END) (25)

~ OPEN1 (END) (26)

~ BRANCH (END) (28)

~ BRANCH (END) (31)

~ CLOSE1 (END) (34)

~ EOL (END) (36)

~ attach to END (37) offset to 1

Resulting in the program

1: EXACT <x>(3)

3: BRANCH(9)

4: EXACT <fo>(6)

6: STAR(26)

7: EXACT <o>(0)

9: BRANCH(25)

10: EXACT <ba>(14)

12: OPTIMIZED (2 nodes)

14: ANYOF[Rr](26)

25: TAIL(26)

26: OPEN1(28)

28: TRIE-EXACT(34)

[StS:1 Wds:2 Cs:6 Uq:5 #Sts:7 Mn:3 Mx:3 Stcls:bf]

<foo>

<bar>

30: OPTIMIZED (4 nodes)

34: CLOSE1(36)

36: EOL(37)

37: END(0)

Here we can see a much more complex program, with various optimisations in play. At
regnode 10 we see an example where a character class with only one character in it was
turned into an EXACT node. We can also see where an entire alternation was turned into a
TRIE-EXACT node. As a consequence, some of the regnodes have been marked as optimised
away. We can see that the $ symbol has been converted into an EOL regop, a special piece
of code that looks for \n or the end of the string.

The next pointer for BRANCHes is interesting in that it points at where execution should
go if the branch fails. When executing, if the engine tries to traverse from a branch to a

regnext that isn’t a branch then the engine will know that the entire set of branches has
failed.

64.4.1.6 Peep-hole Optimisation and Analysis

The regular expression engine can be a weighty tool to wield. On long strings and complex
patterns it can end up having to do a lot of work to find a match, and even more to decide
that no match is possible. Consider a situation like the following pattern.

’ababababababababababab’ =~ /(a|b)*z/

The (a|b)* part can match at every char in the string, and then fail every time because
there is no z in the string. So obviously we can avoid using the regex engine unless there is
a z in the string. Likewise in a pattern like:

/foo(\w+)bar/

In this case we know that the string must contain a foo which must be followed by bar.
We can use Fast Boyer-Moore matching as implemented in fbm_instr() to find the location
of these strings. If they don’t exist then we don’t need to resort to the much more expensive
regex engine. Even better, if they do exist then we can use their positions to reduce the
search space that the regex engine needs to cover to determine if the entire pattern matches.

There are various aspects of the pattern that can be used to facilitate optimisations
along these lines:

• anchored fixed strings

• floating fixed strings

• minimum and maximum length requirements

• start class

• Beginning/End of line positions

Another form of optimisation that can occur is the post-parse "peep-hole" optimisation,
where inefficient constructs are replaced by more efficient constructs. The TAIL regops which
are used during parsing to mark the end of branches and the end of groups are examples
of this. These regops are used as place-holders during construction and "always match" so
they can be "optimised away" by making the things that point to the TAIL point to the
thing that TAIL points to, thus "skipping" the node.

Another optimisation that can occur is that of "EXACT merging" which is where two
consecutive EXACT nodes are merged into a single regop. An even more aggressive form of
this is that a branch sequence of the form EXACT BRANCH ... EXACT can be converted into
a TRIE-EXACT regop.

All of this occurs in the routine study_chunk() which uses a special structure scan_

data_t to store the analysis that it has performed, and does the "peep-hole" optimisations
as it goes.

The code involved in study_chunk() is extremely cryptic. Be careful. :-)

64.4.2 Execution

Execution of a regex generally involves two phases, the first being finding the start point in
the string where we should match from, and the second being running the regop interpreter.

If we can tell that there is no valid start point then we don’t bother running the inter-
preter at all. Likewise, if we know from the analysis phase that we cannot detect a short-cut
to the start position, we go straight to the interpreter.

The two entry points are re_intuit_start() and pregexec(). These routines have a
somewhat incestuous relationship with overlap between their functions, and pregexec()

may even call re_intuit_start() on its own. Nevertheless other parts of the perl source
code may call into either, or both.

Execution of the interpreter itself used to be recursive, but thanks to the efforts of
Dave Mitchell in the 5.9.x development track, that has changed: now an internal stack is
maintained on the heap and the routine is fully iterative. This can make it tricky as the
code is quite conservative about what state it stores, with the result that two consecutive
lines in the code can actually be running in totally different contexts due to the simulated
recursion.

64.4.2.1 Start position and no-match optimisations

re_intuit_start() is responsible for handling start points and no-match optimisations
as determined by the results of the analysis done by study_chunk() (and described in
Section 64.4.1.6 [Peep-hole Optimisation and Analysis], page 1110).

The basic structure of this routine is to try to find the start- and/or end-points of
where the pattern could match, and to ensure that the string is long enough to match the
pattern. It tries to use more efficient methods over less efficient methods and may involve
considerable cross-checking of constraints to find the place in the string that matches. For
instance it may try to determine that a given fixed string must be not only present but a
certain number of chars before the end of the string, or whatever.

It calls several other routines, such as fbm_instr() which does Fast Boyer Moore match-
ing and find_byclass() which is responsible for finding the start using the first mandatory
regop in the program.

When the optimisation criteria have been satisfied, reg_try() is called to perform the
match.

64.4.2.2 Program execution

pregexec() is the main entry point for running a regex. It contains support for initialising
the regex interpreter’s state, running re_intuit_start() if needed, and running the inter-
preter on the string from various start positions as needed. When it is necessary to use the
regex interpreter pregexec() calls regtry().

regtry() is the entry point into the regex interpreter. It expects as arguments a pointer
to a regmatch_info structure and a pointer to a string. It returns an integer 1 for success
and a 0 for failure. It is basically a set-up wrapper around regmatch().

regmatch is the main "recursive loop" of the interpreter. It is basically a giant switch
statement that implements a state machine, where the possible states are the regops them-
selves, plus a number of additional intermediate and failure states. A few of the states are
implemented as subroutines but the bulk are inline code.

64.5 MISCELLANEOUS

64.5.1 Unicode and Localisation Support

When dealing with strings containing characters that cannot be represented using an eight-
bit character set, perl uses an internal representation that is a permissive version of Uni-
code’s UTF-8 encoding[2]. This uses single bytes to represent characters from the ASCII
character set, and sequences of two or more bytes for all other characters. (See Section 84.1
[perlunitut NAME], page 1367 for more information about the relationship between UTF-8
and perl’s encoding, utf8. The difference isn’t important for this discussion.)

No matter how you look at it, Unicode support is going to be a pain in a regex engine.
Tricks that might be fine when you have 256 possible characters often won’t scale to handle
the size of the UTF-8 character set. Things you can take for granted with ASCII may not
be true with Unicode. For instance, in ASCII, it is safe to assume that sizeof(char1)

== sizeof(char2), but in UTF-8 it isn’t. Unicode case folding is vastly more complex
than the simple rules of ASCII, and even when not using Unicode but only localised single
byte encodings, things can get tricky (for example, LATIN SMALL LETTER SHARP S
(U+00DF, ß) should match ’SS’ in localised case-insensitive matching).

Making things worse is that UTF-8 support was a later addition to the regex engine (as
it was to perl) and this necessarily made things a lot more complicated. Obviously it is
easier to design a regex engine with Unicode support in mind from the beginning than it is
to retrofit it to one that wasn’t.

Nearly all regops that involve looking at the input string have two cases, one for UTF-8,
and one not. In fact, it’s often more complex than that, as the pattern may be UTF-8 as
well.

Care must be taken when making changes to make sure that you handle UTF-8 properly,
both at compile time and at execution time, including when the string and pattern are
mismatched.

64.5.2 Base Structures

The regexp structure described in Section 59.1 [perlreapi NAME], page 1032 is common to
all regex engines. Two of its fields are intended for the private use of the regex engine that
compiled the pattern. These are the intflags and pprivate members. The pprivate is a
void pointer to an arbitrary structure whose use and management is the responsibility of
the compiling engine. perl will never modify either of these values. In the case of the stock
engine the structure pointed to by pprivate is called regexp_internal.

Its pprivate and intflags fields contain data specific to each engine.

There are two structures used to store a compiled regular expression. One, the regexp

structure described in Section 59.1 [perlreapi NAME], page 1032 is populated by the engine
currently being. used and some of its fields read by perl to implement things such as the
stringification of qr//.

The other structure is pointed to by the regexp struct’s pprivate and is in addition
to intflags in the same struct considered to be the property of the regex engine which
compiled the regular expression;

The regexp structure contains all the data that perl needs to be aware of to properly
work with the regular expression. It includes data about optimisations that perl can use
to determine if the regex engine should really be used, and various other control info that
is needed to properly execute patterns in various contexts such as is the pattern anchored

in some way, or what flags were used during the compile, or whether the program contains
special constructs that perl needs to be aware of.

In addition it contains two fields that are intended for the private use of the regex engine
that compiled the pattern. These are the intflags and pprivate members. The pprivate
is a void pointer to an arbitrary structure whose use and management is the responsibility
of the compiling engine. perl will never modify either of these values.

As mentioned earlier, in the case of the default engines, the pprivate will be a pointer
to a regexp internal structure which holds the compiled program and any additional data
that is private to the regex engine implementation.

64.5.2.1 Perl’s pprivate structure

The following structure is used as the pprivate struct by perl’s regex engine. Since it is
specific to perl it is only of curiosity value to other engine implementations.

typedef struct regexp_internal {

U32 *offsets; /* offset annotations 20001228 MJD

* data about mapping the program to

* the string*/

regnode *regstclass; /* Optional startclass as identified or

* constructed by the optimiser */

struct reg_data *data; /* Additional miscellaneous data used

* by the program. Used to make it

* easier to clone and free arbitrary

* data that the regops need. Often the

* ARG field of a regop is an index

* into this structure */

regnode program[1]; /* Unwarranted chumminess with

* compiler. */

} regexp_internal;

offsets

Offsets holds a mapping of offset in the program to offset in the precomp string.
This is only used by ActiveState’s visual regex debugger.

regstclass

Special regop that is used by re_intuit_start() to check if a pattern can
match at a certain position. For instance if the regex engine knows that the
pattern must start with a ’Z’ then it can scan the string until it finds one and
then launch the regex engine from there. The routine that handles this is called
find_by_class(). Sometimes this field points at a regop embedded in the
program, and sometimes it points at an independent synthetic regop that has
been constructed by the optimiser.

data

This field points at a reg_data structure, which is defined as follows

struct reg_data {

U32 count;

U8 *what;

void* data[1];

};

This structure is used for handling data structures that the regex engine needs to
handle specially during a clone or free operation on the compiled product. Each
element in the data array has a corresponding element in the what array. During
compilation regops that need special structures stored will add an element to
each array using the add data() routine and then store the index in the regop.

program

Compiled program. Inlined into the structure so the entire struct can be treated
as a single blob.

64.6 SEE ALSO

Section 59.1 [perlreapi NAME], page 1032

Section 58.1 [perlre NAME], page 989

Section 84.1 [perlunitut NAME], page 1367

64.7 AUTHOR

by Yves Orton, 2006.

With excerpts from Perl, and contributions and suggestions from Ronald J. Kimball,
Dave Mitchell, Dominic Dunlop, Mark Jason Dominus, Stephen McCamant, and David
Landgren.

64.8 LICENCE

Same terms as Perl.

64.9 REFERENCES

[1] http://perl.plover.com/Rx/paper/

[2] http://www.unicode.org

http://perl.plover.com/Rx/paper/
http://www.unicode.org

65 perlrepository

65.1 NAME

perlrepository - Links to current information on the Perl source repository

65.2 DESCRIPTION

Perl’s source code is stored in a Git repository.

See Section 29.1 [perlhack NAME], page 562 for an explanation of Perl development,
including the Section 29.3 [Super Quick Patch Guide], page 562 for making and submitting
a small patch.

See Section 26.1 [perlgit NAME], page 492 for detailed information about Perl’s Git
repository.

(The above documents supersede the information that was formerly here in perlreposi-
tory.)

66 perlrequick

66.1 NAME

perlrequick - Perl regular expressions quick start

66.2 DESCRIPTION

This page covers the very basics of understanding, creating and using regular expressions
(’regexes’) in Perl.

66.3 The Guide

66.3.1 Simple word matching

The simplest regex is simply a word, or more generally, a string of characters. A regex
consisting of a word matches any string that contains that word:

"Hello World" =~ /World/; # matches

In this statement, World is a regex and the // enclosing /World/ tells Perl to search a
string for a match. The operator =~ associates the string with the regex match and produces
a true value if the regex matched, or false if the regex did not match. In our case, World
matches the second word in "Hello World", so the expression is true. This idea has several
variations.

Expressions like this are useful in conditionals:

print "It matches\n" if "Hello World" =~ /World/;

The sense of the match can be reversed by using !~ operator:

print "It doesn’t match\n" if "Hello World" !~ /World/;

The literal string in the regex can be replaced by a variable:

$greeting = "World";

print "It matches\n" if "Hello World" =~ /$greeting/;

If you’re matching against $_, the $_ =~ part can be omitted:

$_ = "Hello World";

print "It matches\n" if /World/;

Finally, the // default delimiters for a match can be changed to arbitrary delimiters by
putting an ’m’ out front:

"Hello World" =~ m!World!; # matches, delimited by ’!’

"Hello World" =~ m{World}; # matches, note the matching ’{}’

"/usr/bin/perl" =~ m"/perl"; # matches after ’/usr/bin’,

’/’ becomes an ordinary char

Regexes must match a part of the string exactly in order for the statement to be true:

"Hello World" =~ /world/; # doesn’t match, case sensitive

"Hello World" =~ /o W/; # matches, ’ ’ is an ordinary char

"Hello World" =~ /World /; # doesn’t match, no ’ ’ at end

Perl will always match at the earliest possible point in the string:

"Hello World" =~ /o/; # matches ’o’ in ’Hello’

"That hat is red" =~ /hat/; # matches ’hat’ in ’That’

Not all characters can be used ’as is’ in a match. Some characters, called metacharacters,
are reserved for use in regex notation. The metacharacters are

{}[]()^$.|*+?\

A metacharacter can be matched by putting a backslash before it:

"2+2=4" =~ /2+2/; # doesn’t match, + is a metacharacter

"2+2=4" =~ /2\+2/; # matches, \+ is treated like an ordinary +

’C:\WIN32’ =~ /C:\\WIN/; # matches

"/usr/bin/perl" =~ /\/usr\/bin\/perl/; # matches

In the last regex, the forward slash ’/’ is also backslashed, because it is used to delimit
the regex.

Non-printable ASCII characters are represented by escape sequences. Common examples
are \t for a tab, \n for a newline, and \r for a carriage return. Arbitrary bytes are
represented by octal escape sequences, e.g., \033, or hexadecimal escape sequences, e.g.,
\x1B:

"1000\t2000" =~ m(0\t2) # matches

"cat" =~ /\143\x61\x74/ # matches in ASCII, but

a weird way to spell cat

Regexes are treated mostly as double-quoted strings, so variable substitution works:

$foo = ’house’;

’cathouse’ =~ /cat$foo/; # matches

’housecat’ =~ /${foo}cat/; # matches

With all of the regexes above, if the regex matched anywhere in the string, it was consid-
ered a match. To specify where it should match, we would use the anchor metacharacters
^ and $. The anchor ^ means match at the beginning of the string and the anchor $ means
match at the end of the string, or before a newline at the end of the string. Some examples:

"housekeeper" =~ /keeper/; # matches

"housekeeper" =~ /^keeper/; # doesn’t match

"housekeeper" =~ /keeper$/; # matches

"housekeeper\n" =~ /keeper$/; # matches

"housekeeper" =~ /^housekeeper$/; # matches

66.3.2 Using character classes

A character class allows a set of possible characters, rather than just a single character, to
match at a particular point in a regex. Character classes are denoted by brackets [...],
with the set of characters to be possibly matched inside. Here are some examples:

/cat/; # matches ’cat’

/[bcr]at/; # matches ’bat’, ’cat’, or ’rat’

"abc" =~ /[cab]/; # matches ’a’

In the last statement, even though ’c’ is the first character in the class, the earliest
point at which the regex can match is ’a’.

/[yY][eE][sS]/; # match ’yes’ in a case-insensitive way

’yes’, ’Yes’, ’YES’, etc.

/yes/i; # also match ’yes’ in a case-insensitive way

The last example shows a match with an ’i’ modifier, which makes the match case-
insensitive.

Character classes also have ordinary and special characters, but the sets of ordinary and
special characters inside a character class are different than those outside a character class.
The special characters for a character class are -]\^$ and are matched using an escape:

/[\]c]def/; # matches ’]def’ or ’cdef’

$x = ’bcr’;

/[$x]at/; # matches ’bat, ’cat’, or ’rat’

/[\$x]at/; # matches ’$at’ or ’xat’

/[\\$x]at/; # matches ’\at’, ’bat, ’cat’, or ’rat’

The special character ’-’ acts as a range operator within character classes, so that the
unwieldy [0123456789] and [abc...xyz] become the svelte [0-9] and [a-z]:

/item[0-9]/; # matches ’item0’ or ... or ’item9’

/[0-9a-fA-F]/; # matches a hexadecimal digit

If ’-’ is the first or last character in a character class, it is treated as an ordinary
character.

The special character ^ in the first position of a character class denotes a negated char-
acter class, which matches any character but those in the brackets. Both [...] and [^...]

must match a character, or the match fails. Then

/[^a]at/; # doesn’t match ’aat’ or ’at’, but matches

all other ’bat’, ’cat, ’0at’, ’%at’, etc.

/[^0-9]/; # matches a non-numeric character

/[a^]at/; # matches ’aat’ or ’^at’; here ’^’ is ordinary

Perl has several abbreviations for common character classes. (These definitions are those
that Perl uses in ASCII-safe mode with the /a modifier. Otherwise they could match many
more non-ASCII Unicode characters as well. See Section 61.2.2 [perlrecharclass Backslash
sequences], page 1059 for details.)

• \d is a digit and represents

[0-9]

• \s is a whitespace character and represents

[\ \t\r\n\f]

• \w is a word character (alphanumeric or) and represents

[0-9a-zA-Z_]

• \D is a negated \d; it represents any character but a digit

[^0-9]

• \S is a negated \s; it represents any non-whitespace character

[^\s]

• \W is a negated \w; it represents any non-word character

[^\w]

• The period ’.’ matches any character but "\n"

The \d\s\w\D\S\W abbreviations can be used both inside and outside of character
classes. Here are some in use:

/\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format

/[\d\s]/; # matches any digit or whitespace character

/\w\W\w/; # matches a word char, followed by a

non-word char, followed by a word char

/..rt/; # matches any two chars, followed by ’rt’

/end\./; # matches ’end.’

/end[.]/; # same thing, matches ’end.’

The word anchor \b matches a boundary between a word character and a non-word
character \w\W or \W\w:

$x = "Housecat catenates house and cat";

$x =~ /\bcat/; # matches cat in ’catenates’

$x =~ /cat\b/; # matches cat in ’housecat’

$x =~ /\bcat\b/; # matches ’cat’ at end of string

In the last example, the end of the string is considered a word boundary.

For natural language processing (so that, for example, apostrophes are included in
words), use instead \b{wb}

"don’t" =~ / .+? \b{wb} /x; # matches the whole string

66.3.3 Matching this or that

We can match different character strings with the alternation metacharacter ’|’. To match
dog or cat, we form the regex dog|cat. As before, Perl will try to match the regex at the
earliest possible point in the string. At each character position, Perl will first try to match
the first alternative, dog. If dog doesn’t match, Perl will then try the next alternative, cat.
If cat doesn’t match either, then the match fails and Perl moves to the next position in the
string. Some examples:

"cats and dogs" =~ /cat|dog|bird/; # matches "cat"

"cats and dogs" =~ /dog|cat|bird/; # matches "cat"

Even though dog is the first alternative in the second regex, cat is able to match earlier
in the string.

"cats" =~ /c|ca|cat|cats/; # matches "c"

"cats" =~ /cats|cat|ca|c/; # matches "cats"

At a given character position, the first alternative that allows the regex match to succeed
will be the one that matches. Here, all the alternatives match at the first string position,
so the first matches.

66.3.4 Grouping things and hierarchical matching

The grouping metacharacters () allow a part of a regex to be treated as a single unit. Parts
of a regex are grouped by enclosing them in parentheses. The regex house(cat|keeper)

means match house followed by either cat or keeper. Some more examples are

/(a|b)b/; # matches ’ab’ or ’bb’

/(^a|b)c/; # matches ’ac’ at start of string or ’bc’ anywhere

/house(cat|)/; # matches either ’housecat’ or ’house’

/house(cat(s|)|)/; # matches either ’housecats’ or ’housecat’ or

’house’. Note groups can be nested.

"20" =~ /(19|20|)\d\d/; # matches the null alternative ’()\d\d’,

because ’20\d\d’ can’t match

66.3.5 Extracting matches

The grouping metacharacters () also allow the extraction of the parts of a string that
matched. For each grouping, the part that matched inside goes into the special variables
$1, $2, etc. They can be used just as ordinary variables:

extract hours, minutes, seconds

$time =~ /(\d\d):(\d\d):(\d\d)/; # match hh:mm:ss format

$hours = $1;

$minutes = $2;

$seconds = $3;

In list context, a match /regex/ with groupings will return the list of matched values
($1,$2,...). So we could rewrite it as

($hours, $minutes, $second) = ($time =~ /(\d\d):(\d\d):(\d\d)/);

If the groupings in a regex are nested, $1 gets the group with the leftmost opening
parenthesis, $2 the next opening parenthesis, etc. For example, here is a complex regex and
the matching variables indicated below it:

/(ab(cd|ef)((gi)|j))/;

1 2 34

Associated with the matching variables $1, $2, ... are the backreferences \g1, \g2, ...
Backreferences are matching variables that can be used inside a regex:

/(\w\w\w)\s\g1/; # find sequences like ’the the’ in string

$1, $2, ... should only be used outside of a regex, and \g1, \g2, ... only inside a regex.

66.3.6 Matching repetitions

The quantifier metacharacters ?, *, +, and {} allow us to determine the number of repeats
of a portion of a regex we consider to be a match. Quantifiers are put immediately after
the character, character class, or grouping that we want to specify. They have the following
meanings:

• a? = match ’a’ 1 or 0 times

• a* = match ’a’ 0 or more times, i.e., any number of times

• a+ = match ’a’ 1 or more times, i.e., at least once

• a{n,m} = match at least n times, but not more than m times.

• a{n,} = match at least n or more times

• a{n} = match exactly n times

Here are some examples:

/[a-z]+\s+\d*/; # match a lowercase word, at least some space, and

any number of digits

/(\w+)\s+\g1/; # match doubled words of arbitrary length

$year =~ /^\d{2,4}$/; # make sure year is at least 2 but not more

than 4 digits

$year =~ /^\d{4}$|^\d{2}$/; # better match; throw out 3 digit dates

These quantifiers will try to match as much of the string as possible, while still allowing
the regex to match. So we have

$x = ’the cat in the hat’;

$x =~ /^(.*)(at)(.*)$/; # matches,

$1 = ’the cat in the h’

$2 = ’at’

$3 = ’’ (0 matches)

The first quantifier .* grabs as much of the string as possible while still having the regex
match. The second quantifier .* has no string left to it, so it matches 0 times.

66.3.7 More matching

There are a few more things you might want to know about matching operators. The
global modifier //g allows the matching operator to match within a string as many times
as possible. In scalar context, successive matches against a string will have //g jump from
match to match, keeping track of position in the string as it goes along. You can get or set
the position with the pos() function. For example,

$x = "cat dog house"; # 3 words

while ($x =~ /(\w+)/g) {

print "Word is $1, ends at position ", pos $x, "\n";

}

prints

Word is cat, ends at position 3

Word is dog, ends at position 7

Word is house, ends at position 13

A failed match or changing the target string resets the position. If you don’t want the
position reset after failure to match, add the //c, as in /regex/gc.

In list context, //g returns a list of matched groupings, or if there are no groupings, a
list of matches to the whole regex. So

@words = ($x =~ /(\w+)/g); # matches,

$word[0] = ’cat’

$word[1] = ’dog’

$word[2] = ’house’

66.3.8 Search and replace

Search and replace is performed using s/regex/replacement/modifiers. The
replacement is a Perl double-quoted string that replaces in the string whatever is matched
with the regex. The operator =~ is also used here to associate a string with s///. If
matching against $_, the $_ =~ can be dropped. If there is a match, s/// returns the
number of substitutions made; otherwise it returns false. Here are a few examples:

$x = "Time to feed the cat!";

$x =~ s/cat/hacker/; # $x contains "Time to feed the hacker!"

$y = "’quoted words’";

$y =~ s/^’(.*)’$/$1/; # strip single quotes,

$y contains "quoted words"

With the s/// operator, the matched variables $1, $2, etc. are immediately available for
use in the replacement expression. With the global modifier, s///g will search and replace
all occurrences of the regex in the string:

$x = "I batted 4 for 4";

$x =~ s/4/four/; # $x contains "I batted four for 4"

$x = "I batted 4 for 4";

$x =~ s/4/four/g; # $x contains "I batted four for four"

The non-destructive modifier s///r causes the result of the substitution to be returned
instead of modifying $_ (or whatever variable the substitute was bound to with =~):

$x = "I like dogs.";

$y = $x =~ s/dogs/cats/r;

print "$x $y\n"; # prints "I like dogs. I like cats."

$x = "Cats are great.";

print $x =~ s/Cats/Dogs/r =~ s/Dogs/Frogs/r =~

s/Frogs/Hedgehogs/r, "\n";

prints "Hedgehogs are great."

@foo = map { s/[a-z]/X/r } qw(a b c 1 2 3);

@foo is now qw(X X X 1 2 3)

The evaluation modifier s///e wraps an eval{...} around the replacement string and
the evaluated result is substituted for the matched substring. Some examples:

reverse all the words in a string

$x = "the cat in the hat";

$x =~ s/(\w+)/reverse $1/ge; # $x contains "eht tac ni eht tah"

convert percentage to decimal

$x = "A 39% hit rate";

$x =~ s!(\d+)%!$1/100!e; # $x contains "A 0.39 hit rate"

The last example shows that s/// can use other delimiters, such as s!!! and s{}{},
and even s{}//. If single quotes are used s’’’, then the regex and replacement are treated
as single-quoted strings.

66.3.9 The split operator

split /regex/, string splits string into a list of substrings and returns that list. The
regex determines the character sequence that string is split with respect to. For example,
to split a string into words, use

$x = "Calvin and Hobbes";

@word = split /\s+/, $x; # $word[0] = ’Calvin’

$word[1] = ’and’

$word[2] = ’Hobbes’

To extract a comma-delimited list of numbers, use

$x = "1.618,2.718, 3.142";

@const = split /,\s*/, $x; # $const[0] = ’1.618’

$const[1] = ’2.718’

$const[2] = ’3.142’

If the empty regex // is used, the string is split into individual characters. If the regex
has groupings, then the list produced contains the matched substrings from the groupings
as well:

$x = "/usr/bin";

@parts = split m!(/)!, $x; # $parts[0] = ’’

$parts[1] = ’/’

$parts[2] = ’usr’

$parts[3] = ’/’

$parts[4] = ’bin’

Since the first character of $x matched the regex, split prepended an empty initial
element to the list.

66.3.10 use re ’strict’

New in v5.22, this applies stricter rules than otherwise when compiling regular expression
patterns. It can find things that, while legal, may not be what you intended.

See Section “’strict’ mode” in re.

66.4 BUGS

None.

66.5 SEE ALSO

This is just a quick start guide. For a more in-depth tutorial on regexes, see Section 68.1
[perlretut NAME], page 1131 and for the reference page, see Section 58.1 [perlre NAME],
page 989.

66.6 AUTHOR AND COPYRIGHT

Copyright (c) 2000 Mark Kvale All rights reserved.

This document may be distributed under the same terms as Perl itself.

66.6.1 Acknowledgments

The author would like to thank Mark-Jason Dominus, Tom Christiansen, Ilya Zakharevich,
Brad Hughes, and Mike Giroux for all their helpful comments.

67 perlreref

67.1 NAME

perlreref - Perl Regular Expressions Reference

67.2 DESCRIPTION

This is a quick reference to Perl’s regular expressions. For full information see Section 58.1
[perlre NAME], page 989 and Section 48.1 [perlop NAME], page 798, as well as the
Section 67.4 [SEE ALSO], page 1130 section in this document.

67.2.1 OPERATORS

=~ determines to which variable the regex is applied. In its absence, $ is used.

$var =~ /foo/;

!~ determines to which variable the regex is applied, and negates the result of the match;
it returns false if the match succeeds, and true if it fails.

$var !~ /foo/;

m/pattern/msixpogcdualn searches a string for a pattern match, applying the given
options.

m Multiline mode - ^ and $ match internal lines

s match as a Single line - . matches \n

i case-Insensitive

x eXtended legibility - free whitespace and comments

p Preserve a copy of the matched string -

${^PREMATCH}, ${^MATCH}, ${^POSTMATCH} will be defined.

o compile pattern Once

g Global - all occurrences

c don’t reset pos on failed matches when using /g

a restrict \d, \s, \w and [:posix:] to match ASCII only

aa (two a’s) also /i matches exclude ASCII/non-ASCII

l match according to current locale

u match according to Unicode rules

d match according to native rules unless something indicates

Unicode

n Non-capture mode. Don’t let () fill in $1, $2, etc...

If ’pattern’ is an empty string, the last successfully matched regex is used. Delimiters
other than ’/’ may be used for both this operator and the following ones. The leading m

can be omitted if the delimiter is ’/’.

qr/pattern/msixpodualn lets you store a regex in a variable, or pass one around. Mod-
ifiers as for m//, and are stored within the regex.

s/pattern/replacement/msixpogcedual substitutes matches of ’pattern’ with ’replace-
ment’. Modifiers as for m//, with two additions:

e Evaluate ’replacement’ as an expression

r Return substitution and leave the original string untouched.

’e’ may be specified multiple times. ’replacement’ is interpreted as a double quoted string
unless a single-quote (’) is the delimiter.

?pattern? is like m/pattern/ but matches only once. No alternate delimiters can be
used. Must be reset with reset().

67.2.2 SYNTAX

\ Escapes the character immediately following it

. Matches any single character except a newline (unless /s is

used)

^ Matches at the beginning of the string (or line, if /m is used)

$ Matches at the end of the string (or line, if /m is used)

* Matches the preceding element 0 or more times

+ Matches the preceding element 1 or more times

? Matches the preceding element 0 or 1 times

{...} Specifies a range of occurrences for the element preceding it

[...] Matches any one of the characters contained within the brackets

(...) Groups subexpressions for capturing to $1, $2...

(?:...) Groups subexpressions without capturing (cluster)

| Matches either the subexpression preceding or following it

\g1 or \g{1}, \g2 ... Matches the text from the Nth group

\1, \2, \3 ... Matches the text from the Nth group

\g-1 or \g{-1}, \g-2 ... Matches the text from the Nth previous group

\g{name} Named backreference

\k<name> Named backreference

\k’name’ Named backreference

(?P=name) Named backreference (python syntax)

67.2.3 ESCAPE SEQUENCES

These work as in normal strings.

\a Alarm (beep)

\e Escape

\f Formfeed

\n Newline

\r Carriage return

\t Tab

\037 Char whose ordinal is the 3 octal digits, max \777

\o{2307} Char whose ordinal is the octal number, unrestricted

\x7f Char whose ordinal is the 2 hex digits, max \xFF

\x{263a} Char whose ordinal is the hex number, unrestricted

\cx Control-x

\N{name} A named Unicode character or character sequence

\N{U+263D} A Unicode character by hex ordinal

\l Lowercase next character

\u Titlecase next character

\L Lowercase until \E

\U Uppercase until \E

\F Foldcase until \E

\Q Disable pattern metacharacters until \E

\E End modification

For Titlecase, see Section 67.2.10.1 [Titlecase], page 1130.

This one works differently from normal strings:

\b An assertion, not backspace, except in a character class

67.2.4 CHARACTER CLASSES

[amy] Match ’a’, ’m’ or ’y’

[f-j] Dash specifies "range"

[f-j-] Dash escaped or at start or end means ’dash’

[^f-j] Caret indicates "match any character _except_ these"

The following sequences (except \N) work within or without a character class. The first six
are locale aware, all are Unicode aware. See Section 38.1 [perllocale NAME], page 701 and
Section 81.1 [perlunicode NAME], page 1317 for details.

\d A digit

\D A nondigit

\w A word character

\W A non-word character

\s A whitespace character

\S A non-whitespace character

\h An horizontal whitespace

\H A non horizontal whitespace

\N A non newline (when not followed by ’{NAME}’;;

not valid in a character class; equivalent to [^\n]; it’s

like ’.’ without /s modifier)

\v A vertical whitespace

\V A non vertical whitespace

\R A generic newline (?>\v|\x0D\x0A)

\C Match a byte (with Unicode, ’.’ matches a character)

(Deprecated.)

\pP Match P-named (Unicode) property

\p{...} Match Unicode property with name longer than 1 character

\PP Match non-P

\P{...} Match lack of Unicode property with name longer than 1 char

\X Match Unicode extended grapheme cluster

POSIX character classes and their Unicode and Perl equivalents:

ASCII- Full-

POSIX range range backslash

[[:...:]] \p{...} \p{...} sequence Description

alnum PosixAlnum XPosixAlnum Alpha plus Digit

alpha PosixAlpha XPosixAlpha Alphabetic characters

ascii ASCII Any ASCII character

blank PosixBlank XPosixBlank \h Horizontal whitespace;

full-range also

written as

\p{HorizSpace} (GNU

extension)

cntrl PosixCntrl XPosixCntrl Control characters

digit PosixDigit XPosixDigit \d Decimal digits

graph PosixGraph XPosixGraph Alnum plus Punct

lower PosixLower XPosixLower Lowercase characters

print PosixPrint XPosixPrint Graph plus Print, but

not any Cntrls

punct PosixPunct XPosixPunct Punctuation and Symbols

in ASCII-range; just

punct outside it

space PosixSpace XPosixSpace [\s\cK]

PerlSpace XPerlSpace \s Perl’s whitespace def’n

upper PosixUpper XPosixUpper Uppercase characters

word PosixWord XPosixWord \w Alnum + Unicode marks +

connectors, like ’_’

(Perl extension)

xdigit ASCII_Hex_Digit XPosixDigit Hexadecimal digit,

ASCII-range is

[0-9A-Fa-f]

Also, various synonyms like \p{Alpha} for \p{XPosixAlpha}; all listed in Section “Prop-
erties accessible through \p{} and \P{}” in perluniprops

Within a character class:

POSIX traditional Unicode

[:digit:] \d \p{Digit}

[:^digit:] \D \P{Digit}

67.2.5 ANCHORS

All are zero-width assertions.

^ Match string start (or line, if /m is used)

$ Match string end (or line, if /m is used) or before newline

\b{} Match boundary of type specified within the braces

\B{} Match wherever \b{} doesn’t match

\b Match word boundary (between \w and \W)

\B Match except at word boundary (between \w and \w or \W and \W)

\A Match string start (regardless of /m)

\Z Match string end (before optional newline)

\z Match absolute string end

\G Match where previous m//g left off

\K Keep the stuff left of the \K, don’t include it in $&

67.2.6 QUANTIFIERS

Quantifiers are greedy by default and match the longest leftmost.

Maximal Minimal Possessive Allowed range

------- ------- ---------- -------------

{n,m} {n,m}? {n,m}+ Must occur at least n times

but no more than m times

{n,} {n,}? {n,}+ Must occur at least n times

{n} {n}? {n}+ Must occur exactly n times

* *? *+ 0 or more times (same as {0,})

+ +? ++ 1 or more times (same as {1,})

? ?? ?+ 0 or 1 time (same as {0,1})

The possessive forms (new in Perl 5.10) prevent backtracking: what gets matched by a
pattern with a possessive quantifier will not be backtracked into, even if that causes the
whole match to fail.

There is no quantifier {,n}. That’s interpreted as a literal string.

67.2.7 EXTENDED CONSTRUCTS

(?#text) A comment

(?:...) Groups subexpressions without capturing (cluster)

(?pimsx-imsx:...) Enable/disable option (as per m// modifiers)

(?=...) Zero-width positive lookahead assertion

(?!...) Zero-width negative lookahead assertion

(?<=...) Zero-width positive lookbehind assertion

(?<!...) Zero-width negative lookbehind assertion

(?>...) Grab what we can, prohibit backtracking

(?|...) Branch reset

(?<name>...) Named capture

(?’name’...) Named capture

(?P<name>...) Named capture (python syntax)

(?[...]) Extended bracketed character class

(?{ code }) Embedded code, return value becomes $^R

(??{ code }) Dynamic regex, return value used as regex

(?N) Recurse into subpattern number N

(?-N), (?+N) Recurse into Nth previous/next subpattern

(?R), (?0) Recurse at the beginning of the whole pattern

(?&name) Recurse into a named subpattern

(?P>name) Recurse into a named subpattern (python syntax)

(?(cond)yes|no)

(?(cond)yes) Conditional expression, where "cond" can be:

(?=pat) look-ahead

(?!pat) negative look-ahead

(?<=pat) look-behind

(?<!pat) negative look-behind

(N) subpattern N has matched something

(<name>) named subpattern has matched something

(’name’) named subpattern has matched something

(?{code}) code condition

(R) true if recursing

(RN) true if recursing into Nth subpattern

(R&name) true if recursing into named subpattern

(DEFINE) always false, no no-pattern allowed

67.2.8 VARIABLES

$_ Default variable for operators to use

$‘ Everything prior to matched string

$& Entire matched string

$’ Everything after to matched string

${^PREMATCH} Everything prior to matched string

${^MATCH} Entire matched string

${^POSTMATCH} Everything after to matched string

Note to those still using Perl 5.18 or earlier: The use of $‘, $& or $’ will slow down all regex
use within your program. Consult Section 86.1 [perlvar NAME], page 1375 for @- to see
equivalent expressions that won’t cause slow down. See also Devel-SawAmpersand. Starting
with Perl 5.10, you can also use the equivalent variables ${^PREMATCH}, ${^MATCH} and
${^POSTMATCH}, but for them to be defined, you have to specify the /p (preserve) modifier
on your regular expression. In Perl 5.20, the use of $‘, $& and $’ makes no speed difference.

$1, $2 ... hold the Xth captured expr

$+ Last parenthesized pattern match

$^N Holds the most recently closed capture

$^R Holds the result of the last (?{...}) expr

@- Offsets of starts of groups. $-[0] holds start of whole match

@+ Offsets of ends of groups. $+[0] holds end of whole match

%+ Named capture groups

%- Named capture groups, as array refs

Captured groups are numbered according to their opening paren.

67.2.9 FUNCTIONS

lc Lowercase a string

lcfirst Lowercase first char of a string

uc Uppercase a string

ucfirst Titlecase first char of a string

fc Foldcase a string

pos Return or set current match position

quotemeta Quote metacharacters

reset Reset ?pattern? status

study Analyze string for optimizing matching

split Use a regex to split a string into parts

The first five of these are like the escape sequences \L, \l, \U, \u, and \F. For Titlecase,
see Section 67.2.10.1 [Titlecase], page 1130; For Foldcase, see Section 67.2.10.2 [Foldcase],
page 1130.

67.2.10 TERMINOLOGY

67.2.10.1 Titlecase

Unicode concept which most often is equal to uppercase, but for certain characters like the
German "sharp s" there is a difference.

67.2.10.2 Foldcase

Unicode form that is useful when comparing strings regardless of case, as certain characters
have complex one-to-many case mappings. Primarily a variant of lowercase.

67.3 AUTHOR

Iain Truskett. Updated by the Perl 5 Porters.

This document may be distributed under the same terms as Perl itself.

67.4 SEE ALSO

• Section 68.1 [perlretut NAME], page 1131 for a tutorial on regular expressions.

• Section 66.1 [perlrequick NAME], page 1116 for a rapid tutorial.

• Section 58.1 [perlre NAME], page 989 for more details.

• Section 86.1 [perlvar NAME], page 1375 for details on the variables.

• Section 48.1 [perlop NAME], page 798 for details on the operators.

• Section 25.1 [perlfunc NAME], page 351 for details on the functions.

• perlfaq6 for FAQs on regular expressions.

• Section 60.1 [perlrebackslash NAME], page 1046 for a reference on backslash sequences.

• Section 61.1 [perlrecharclass NAME], page 1059 for a reference on character classes.

• The re module to alter behaviour and aid debugging.

• Section 15.4 [perldebug Debugging Regular Expressions], page 135

• Section 83.1 [perluniintro NAME], page 1352, Section 81.1 [perlunicode NAME],
page 1317, charnames and Section 38.1 [perllocale NAME], page 701 for details on
regexes and internationalisation.

• Mastering Regular Expressions by Jeffrey Friedl (http://oreilly.com/catalog/9780596528126/)
for a thorough grounding and reference on the topic.

67.5 THANKS

David P.C. Wollmann, Richard Soderberg, Sean M. Burke, Tom Christiansen, Jim Cromie,
and Jeffrey Goff for useful advice.

68 perlretut

68.1 NAME

perlretut - Perl regular expressions tutorial

68.2 DESCRIPTION

This page provides a basic tutorial on understanding, creating and using regular expressions
in Perl. It serves as a complement to the reference page on regular expressions Section 58.1
[perlre NAME], page 989. Regular expressions are an integral part of the m//, s///, qr//
and split operators and so this tutorial also overlaps with Section 48.2.30 [perlop Regexp
Quote-Like Operators], page 823 and [perlfunc split], page 453.

Perl is widely renowned for excellence in text processing, and regular expressions are
one of the big factors behind this fame. Perl regular expressions display an efficiency and
flexibility unknown in most other computer languages. Mastering even the basics of regular
expressions will allow you to manipulate text with surprising ease.

What is a regular expression? A regular expression is simply a string that describes a
pattern. Patterns are in common use these days; examples are the patterns typed into a
search engine to find web pages and the patterns used to list files in a directory, e.g., ls
*.txt or dir *.*. In Perl, the patterns described by regular expressions are used to search
strings, extract desired parts of strings, and to do search and replace operations.

Regular expressions have the undeserved reputation of being abstract and difficult to
understand. Regular expressions are constructed using simple concepts like conditionals
and loops and are no more difficult to understand than the corresponding if conditionals
and while loops in the Perl language itself. In fact, the main challenge in learning regular
expressions is just getting used to the terse notation used to express these concepts.

This tutorial flattens the learning curve by discussing regular expression concepts, along
with their notation, one at a time and with many examples. The first part of the tutorial
will progress from the simplest word searches to the basic regular expression concepts. If
you master the first part, you will have all the tools needed to solve about 98% of your
needs. The second part of the tutorial is for those comfortable with the basics and hungry
for more power tools. It discusses the more advanced regular expression operators and
introduces the latest cutting-edge innovations.

A note: to save time, ’regular expression’ is often abbreviated as regexp or regex. Regexp
is a more natural abbreviation than regex, but is harder to pronounce. The Perl pod
documentation is evenly split on regexp vs regex; in Perl, there is more than one way to
abbreviate it. We’ll use regexp in this tutorial.

New in v5.22, Section “’strict’ mode” in re applies stricter rules than otherwise when
compiling regular expression patterns. It can find things that, while legal, may not be what
you intended.

68.3 Part 1: The basics

68.3.1 Simple word matching

The simplest regexp is simply a word, or more generally, a string of characters. A regexp
consisting of a word matches any string that contains that word:

"Hello World" =~ /World/; # matches

What is this Perl statement all about? "Hello World" is a simple double-quoted string.
World is the regular expression and the // enclosing /World/ tells Perl to search a string
for a match. The operator =~ associates the string with the regexp match and produces a
true value if the regexp matched, or false if the regexp did not match. In our case, World
matches the second word in "Hello World", so the expression is true. Expressions like this
are useful in conditionals:

if ("Hello World" =~ /World/) {

print "It matches\n";

}

else {

print "It doesn’t match\n";

}

There are useful variations on this theme. The sense of the match can be reversed by
using the !~ operator:

if ("Hello World" !~ /World/) {

print "It doesn’t match\n";

}

else {

print "It matches\n";

}

The literal string in the regexp can be replaced by a variable:

$greeting = "World";

if ("Hello World" =~ /$greeting/) {

print "It matches\n";

}

else {

print "It doesn’t match\n";

}

If you’re matching against the special default variable $_, the $_ =~ part can be omitted:

$_ = "Hello World";

if (/World/) {

print "It matches\n";

}

else {

print "It doesn’t match\n";

}

And finally, the // default delimiters for a match can be changed to arbitrary delimiters
by putting an ’m’ out front:

"Hello World" =~ m!World!; # matches, delimited by ’!’

"Hello World" =~ m{World}; # matches, note the matching ’{}’

"/usr/bin/perl" =~ m"/perl"; # matches after ’/usr/bin’,

’/’ becomes an ordinary char

/World/, m!World!, and m{World} all represent the same thing. When, e.g., the quote
(") is used as a delimiter, the forward slash ’/’ becomes an ordinary character and can be
used in this regexp without trouble.

Let’s consider how different regexps would match "Hello World":

"Hello World" =~ /world/; # doesn’t match

"Hello World" =~ /o W/; # matches

"Hello World" =~ /oW/; # doesn’t match

"Hello World" =~ /World /; # doesn’t match

The first regexp world doesn’t match because regexps are case-sensitive. The second
regexp matches because the substring ’o W’ occurs in the string "Hello World". The space
character ’ ’ is treated like any other character in a regexp and is needed to match in this
case. The lack of a space character is the reason the third regexp ’oW’ doesn’t match. The
fourth regexp ’World ’ doesn’t match because there is a space at the end of the regexp,
but not at the end of the string. The lesson here is that regexps must match a part of the
string exactly in order for the statement to be true.

If a regexp matches in more than one place in the string, Perl will always match at the
earliest possible point in the string:

"Hello World" =~ /o/; # matches ’o’ in ’Hello’

"That hat is red" =~ /hat/; # matches ’hat’ in ’That’

With respect to character matching, there are a few more points you need to know
about. First of all, not all characters can be used ’as is’ in a match. Some characters, called
metacharacters, are reserved for use in regexp notation. The metacharacters are

{}[]()^$.|*+?\

The significance of each of these will be explained in the rest of the tutorial, but for now,
it is important only to know that a metacharacter can be matched by putting a backslash
before it:

"2+2=4" =~ /2+2/; # doesn’t match, + is a metacharacter

"2+2=4" =~ /2\+2/; # matches, \+ is treated like an ordinary +

"The interval is [0,1)." =~ /[0,1)./ # is a syntax error!

"The interval is [0,1)." =~ /\[0,1\)\./ # matches

"#!/usr/bin/perl" =~ /#!\/usr\/bin\/perl/; # matches

In the last regexp, the forward slash ’/’ is also backslashed, because it is used to delimit
the regexp. This can lead to LTS (leaning toothpick syndrome), however, and it is often
more readable to change delimiters.

"#!/usr/bin/perl" =~ m!#\!/usr/bin/perl!; # easier to read

The backslash character ’\’ is a metacharacter itself and needs to be backslashed:

’C:\WIN32’ =~ /C:\\WIN/; # matches

In addition to the metacharacters, there are some ASCII characters which don’t have
printable character equivalents and are instead represented by escape sequences. Common
examples are \t for a tab, \n for a newline, \r for a carriage return and \a for a bell (or
alert). If your string is better thought of as a sequence of arbitrary bytes, the octal escape

sequence, e.g., \033, or hexadecimal escape sequence, e.g., \x1B may be a more natural
representation for your bytes. Here are some examples of escapes:

"1000\t2000" =~ m(0\t2) # matches

"1000\n2000" =~ /0\n20/ # matches

"1000\t2000" =~ /\000\t2/ # doesn’t match, "0" ne "\000"

"cat" =~ /\o{143}\x61\x74/ # matches in ASCII, but a weird way

to spell cat

If you’ve been around Perl a while, all this talk of escape sequences may seem familiar.
Similar escape sequences are used in double-quoted strings and in fact the regexps in Perl
are mostly treated as double-quoted strings. This means that variables can be used in
regexps as well. Just like double-quoted strings, the values of the variables in the regexp
will be substituted in before the regexp is evaluated for matching purposes. So we have:

$foo = ’house’;

’housecat’ =~ /$foo/; # matches

’cathouse’ =~ /cat$foo/; # matches

’housecat’ =~ /${foo}cat/; # matches

So far, so good. With the knowledge above you can already perform searches with just
about any literal string regexp you can dream up. Here is a very simple emulation of the
Unix grep program:

% cat > simple_grep

#!/usr/bin/perl

$regexp = shift;

while (<>) {

print if /$regexp/;

}

^D

% chmod +x simple_grep

% simple_grep abba /usr/dict/words

Babbage

cabbage

cabbages

sabbath

Sabbathize

Sabbathizes

sabbatical

scabbard

scabbards

This program is easy to understand. #!/usr/bin/perl is the standard way to invoke
a perl program from the shell. $regexp = shift; saves the first command line argument
as the regexp to be used, leaving the rest of the command line arguments to be treated as
files. while (<>) loops over all the lines in all the files. For each line, print if /$regexp/;

prints the line if the regexp matches the line. In this line, both print and /$regexp/ use
the default variable $_ implicitly.

With all of the regexps above, if the regexp matched anywhere in the string, it was
considered a match. Sometimes, however, we’d like to specify where in the string the
regexp should try to match. To do this, we would use the anchor metacharacters ^ and $.
The anchor ^ means match at the beginning of the string and the anchor $ means match
at the end of the string, or before a newline at the end of the string. Here is how they are
used:

"housekeeper" =~ /keeper/; # matches

"housekeeper" =~ /^keeper/; # doesn’t match

"housekeeper" =~ /keeper$/; # matches

"housekeeper\n" =~ /keeper$/; # matches

The second regexp doesn’t match because ^ constrains keeper to match only at the
beginning of the string, but "housekeeper" has keeper starting in the middle. The third
regexp does match, since the $ constrains keeper to match only at the end of the string.

When both ^ and $ are used at the same time, the regexp has to match both the
beginning and the end of the string, i.e., the regexp matches the whole string. Consider

"keeper" =~ /^keep$/; # doesn’t match

"keeper" =~ /^keeper$/; # matches

"" =~ /^$/; # ^$ matches an empty string

The first regexp doesn’t match because the string has more to it than keep. Since the
second regexp is exactly the string, it matches. Using both ^ and $ in a regexp forces the
complete string to match, so it gives you complete control over which strings match and
which don’t. Suppose you are looking for a fellow named bert, off in a string by himself:

"dogbert" =~ /bert/; # matches, but not what you want

"dilbert" =~ /^bert/; # doesn’t match, but ..

"bertram" =~ /^bert/; # matches, so still not good enough

"bertram" =~ /^bert$/; # doesn’t match, good

"dilbert" =~ /^bert$/; # doesn’t match, good

"bert" =~ /^bert$/; # matches, perfect

Of course, in the case of a literal string, one could just as easily use the string comparison
$string eq ’bert’ and it would be more efficient. The ^...$ regexp really becomes useful
when we add in the more powerful regexp tools below.

68.3.2 Using character classes

Although one can already do quite a lot with the literal string regexps above, we’ve only
scratched the surface of regular expression technology. In this and subsequent sections we
will introduce regexp concepts (and associated metacharacter notations) that will allow a
regexp to represent not just a single character sequence, but a whole class of them.

One such concept is that of a character class. A character class allows a set of possible
characters, rather than just a single character, to match at a particular point in a regexp.
You can define your own custom character classes. These are denoted by brackets [...],
with the set of characters to be possibly matched inside. Here are some examples:

/cat/; # matches ’cat’

/[bcr]at/; # matches ’bat, ’cat’, or ’rat’

/item[0123456789]/; # matches ’item0’ or ... or ’item9’

"abc" =~ /[cab]/; # matches ’a’

In the last statement, even though ’c’ is the first character in the class, ’a’ matches
because the first character position in the string is the earliest point at which the regexp
can match.

/[yY][eE][sS]/; # match ’yes’ in a case-insensitive way

’yes’, ’Yes’, ’YES’, etc.

This regexp displays a common task: perform a case-insensitive match. Perl provides
a way of avoiding all those brackets by simply appending an ’i’ to the end of the match.
Then /[yY][eE][sS]/; can be rewritten as /yes/i;. The ’i’ stands for case-insensitive
and is an example of a modifier of the matching operation. We will meet other modifiers
later in the tutorial.

We saw in the section above that there were ordinary characters, which represented
themselves, and special characters, which needed a backslash \ to represent themselves.
The same is true in a character class, but the sets of ordinary and special characters inside
a character class are different than those outside a character class. The special characters
for a character class are -]\^$ (and the pattern delimiter, whatever it is).] is special
because it denotes the end of a character class. $ is special because it denotes a scalar
variable. \ is special because it is used in escape sequences, just like above. Here is how
the special characters]$\ are handled:

/[\]c]def/; # matches ’]def’ or ’cdef’

$x = ’bcr’;

/[$x]at/; # matches ’bat’, ’cat’, or ’rat’

/[\$x]at/; # matches ’$at’ or ’xat’

/[\\$x]at/; # matches ’\at’, ’bat, ’cat’, or ’rat’

The last two are a little tricky. In [\$x], the backslash protects the dollar sign, so the
character class has two members $ and x. In [\\$x], the backslash is protected, so $x is
treated as a variable and substituted in double quote fashion.

The special character ’-’ acts as a range operator within character classes, so that
a contiguous set of characters can be written as a range. With ranges, the unwieldy
[0123456789] and [abc...xyz] become the svelte [0-9] and [a-z]. Some examples
are

/item[0-9]/; # matches ’item0’ or ... or ’item9’

/[0-9bx-z]aa/; # matches ’0aa’, ..., ’9aa’,

’baa’, ’xaa’, ’yaa’, or ’zaa’

/[0-9a-fA-F]/; # matches a hexadecimal digit

/[0-9a-zA-Z_]/; # matches a "word" character,

like those in a Perl variable name

If ’-’ is the first or last character in a character class, it is treated as an ordinary
character; [-ab], [ab-] and [a\-b] are all equivalent.

The special character ^ in the first position of a character class denotes a negated char-
acter class, which matches any character but those in the brackets. Both [...] and [^...]

must match a character, or the match fails. Then

/[^a]at/; # doesn’t match ’aat’ or ’at’, but matches

all other ’bat’, ’cat, ’0at’, ’%at’, etc.

/[^0-9]/; # matches a non-numeric character

/[a^]at/; # matches ’aat’ or ’^at’; here ’^’ is ordinary

Now, even [0-9] can be a bother to write multiple times, so in the interest of saving
keystrokes and making regexps more readable, Perl has several abbreviations for common
character classes, as shown below. Since the introduction of Unicode, unless the //amodifier
is in effect, these character classes match more than just a few characters in the ASCII range.

• \d matches a digit, not just [0-9] but also digits from non-roman scripts

• \s matches a whitespace character, the set [\ \t\r\n\f] and others

• \w matches a word character (alphanumeric or), not just [0-9a-zA-Z] but also digits
and characters from non-roman scripts

• \D is a negated \d; it represents any other character than a digit, or [^\d]

• \S is a negated \s; it represents any non-whitespace character [^\s]

• \W is a negated \w; it represents any non-word character [^\w]

• The period ’.’ matches any character but "\n" (unless the modifier //s is in effect, as
explained below).

• \N, like the period, matches any character but "\n", but it does so regardless of whether
the modifier //s is in effect.

The //a modifier, available starting in Perl 5.14, is used to restrict the matches of \d,
\s, and \w to just those in the ASCII range. It is useful to keep your program from being
needlessly exposed to full Unicode (and its accompanying security considerations) when all
you want is to process English-like text. (The "a" may be doubled, //aa, to provide even
more restrictions, preventing case-insensitive matching of ASCII with non-ASCII characters;
otherwise a Unicode "Kelvin Sign" would caselessly match a "k" or "K".)

The \d\s\w\D\S\W abbreviations can be used both inside and outside of bracketed char-
acter classes. Here are some in use:

/\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format

/[\d\s]/; # matches any digit or whitespace character

/\w\W\w/; # matches a word char, followed by a

non-word char, followed by a word char

/..rt/; # matches any two chars, followed by ’rt’

/end\./; # matches ’end.’

/end[.]/; # same thing, matches ’end.’

Because a period is a metacharacter, it needs to be escaped to match as an ordinary
period. Because, for example, \d and \w are sets of characters, it is incorrect to think of
[^\d\w] as [\D\W]; in fact [^\d\w] is the same as [^\w], which is the same as [\W]. Think
DeMorgan’s laws.

In actuality, the period and \d\s\w\D\S\W abbreviations are themselves types of char-
acter classes, so the ones surrounded by brackets are just one type of character class. When
we need to make a distinction, we refer to them as "bracketed character classes."

An anchor useful in basic regexps is the word anchor \b. This matches a boundary
between a word character and a non-word character \w\W or \W\w:

$x = "Housecat catenates house and cat";

$x =~ /cat/; # matches cat in ’housecat’

$x =~ /\bcat/; # matches cat in ’catenates’

$x =~ /cat\b/; # matches cat in ’housecat’

$x =~ /\bcat\b/; # matches ’cat’ at end of string

Note in the last example, the end of the string is considered a word boundary.

For natural language processing (so that, for example, apostrophes are included in
words), use instead \b{wb}

"don’t" =~ / .+? \b{wb} /x; # matches the whole string

You might wonder why ’.’ matches everything but "\n" - why not every character?
The reason is that often one is matching against lines and would like to ignore the newline
characters. For instance, while the string "\n" represents one line, we would like to think
of it as empty. Then

"" =~ /^$/; # matches

"\n" =~ /^$/; # matches, $ anchors before "\n"

"" =~ /./; # doesn’t match; it needs a char

"" =~ /^.$/; # doesn’t match; it needs a char

"\n" =~ /^.$/; # doesn’t match; it needs a char other than "\n"

"a" =~ /^.$/; # matches

"a\n" =~ /^.$/; # matches, $ anchors before "\n"

This behavior is convenient, because we usually want to ignore newlines when we count
and match characters in a line. Sometimes, however, we want to keep track of newlines.
We might even want ^ and $ to anchor at the beginning and end of lines within the string,
rather than just the beginning and end of the string. Perl allows us to choose between
ignoring and paying attention to newlines by using the //s and //m modifiers. //s and //m

stand for single line and multi-line and they determine whether a string is to be treated as
one continuous string, or as a set of lines. The two modifiers affect two aspects of how the
regexp is interpreted: 1) how the ’.’ character class is defined, and 2) where the anchors
^ and $ are able to match. Here are the four possible combinations:

• no modifiers (//): Default behavior. ’.’matches any character except "\n". ^matches
only at the beginning of the string and $ matches only at the end or before a newline
at the end.

• s modifier (//s): Treat string as a single long line. ’.’ matches any character, even
"\n". ^ matches only at the beginning of the string and $ matches only at the end or
before a newline at the end.

• m modifier (//m): Treat string as a set of multiple lines. ’.’ matches any character
except "\n". ^ and $ are able to match at the start or end of any line within the string.

• both s and m modifiers (//sm): Treat string as a single long line, but detect multiple
lines. ’.’ matches any character, even "\n". ^ and $, however, are able to match at
the start or end of any line within the string.

Here are examples of //s and //m in action:

$x = "There once was a girl\nWho programmed in Perl\n";

$x =~ /^Who/; # doesn’t match, "Who" not at start of string

$x =~ /^Who/s; # doesn’t match, "Who" not at start of string

$x =~ /^Who/m; # matches, "Who" at start of second line

$x =~ /^Who/sm; # matches, "Who" at start of second line

$x =~ /girl.Who/; # doesn’t match, "." doesn’t match "\n"

$x =~ /girl.Who/s; # matches, "." matches "\n"

$x =~ /girl.Who/m; # doesn’t match, "." doesn’t match "\n"

$x =~ /girl.Who/sm; # matches, "." matches "\n"

Most of the time, the default behavior is what is wanted, but //s and //m are occasionally
very useful. If //m is being used, the start of the string can still be matched with \A and
the end of the string can still be matched with the anchors \Z (matches both the end and
the newline before, like $), and \z (matches only the end):

$x =~ /^Who/m; # matches, "Who" at start of second line

$x =~ /\AWho/m; # doesn’t match, "Who" is not at start of string

$x =~ /girl$/m; # matches, "girl" at end of first line

$x =~ /girl\Z/m; # doesn’t match, "girl" is not at end of string

$x =~ /Perl\Z/m; # matches, "Perl" is at newline before end

$x =~ /Perl\z/m; # doesn’t match, "Perl" is not at end of string

We now know how to create choices among classes of characters in a regexp. What about
choices among words or character strings? Such choices are described in the next section.

68.3.3 Matching this or that

Sometimes we would like our regexp to be able to match different possible words or character
strings. This is accomplished by using the alternation metacharacter |. To match dog or
cat, we form the regexp dog|cat. As before, Perl will try to match the regexp at the
earliest possible point in the string. At each character position, Perl will first try to match
the first alternative, dog. If dog doesn’t match, Perl will then try the next alternative, cat.
If cat doesn’t match either, then the match fails and Perl moves to the next position in the
string. Some examples:

"cats and dogs" =~ /cat|dog|bird/; # matches "cat"

"cats and dogs" =~ /dog|cat|bird/; # matches "cat"

Even though dog is the first alternative in the second regexp, cat is able to match earlier
in the string.

"cats" =~ /c|ca|cat|cats/; # matches "c"

"cats" =~ /cats|cat|ca|c/; # matches "cats"

Here, all the alternatives match at the first string position, so the first alternative is the
one that matches. If some of the alternatives are truncations of the others, put the longest
ones first to give them a chance to match.

"cab" =~ /a|b|c/ # matches "c"

/a|b|c/ == /[abc]/

The last example points out that character classes are like alternations of characters. At
a given character position, the first alternative that allows the regexp match to succeed will
be the one that matches.

68.3.4 Grouping things and hierarchical matching

Alternation allows a regexp to choose among alternatives, but by itself it is unsatisfying.
The reason is that each alternative is a whole regexp, but sometime we want alternatives for
just part of a regexp. For instance, suppose we want to search for housecats or housekeepers.
The regexp housecat|housekeeper fits the bill, but is inefficient because we had to type
house twice. It would be nice to have parts of the regexp be constant, like house, and some
parts have alternatives, like cat|keeper.

The grouping metacharacters () solve this problem. Grouping allows parts of a reg-
exp to be treated as a single unit. Parts of a regexp are grouped by enclosing them in
parentheses. Thus we could solve the housecat|housekeeper by forming the regexp as
house(cat|keeper). The regexp house(cat|keeper) means match house followed by
either cat or keeper. Some more examples are

/(a|b)b/; # matches ’ab’ or ’bb’

/(ac|b)b/; # matches ’acb’ or ’bb’

/(^a|b)c/; # matches ’ac’ at start of string or ’bc’ anywhere

/(a|[bc])d/; # matches ’ad’, ’bd’, or ’cd’

/house(cat|)/; # matches either ’housecat’ or ’house’

/house(cat(s|)|)/; # matches either ’housecats’ or ’housecat’ or

’house’. Note groups can be nested.

/(19|20|)\d\d/; # match years 19xx, 20xx, or the Y2K problem, xx

"20" =~ /(19|20|)\d\d/; # matches the null alternative ’()\d\d’,

because ’20\d\d’ can’t match

Alternations behave the same way in groups as out of them: at a given string position,
the leftmost alternative that allows the regexp to match is taken. So in the last example at
the first string position, "20" matches the second alternative, but there is nothing left over
to match the next two digits \d\d. So Perl moves on to the next alternative, which is the
null alternative and that works, since "20" is two digits.

The process of trying one alternative, seeing if it matches, and moving on to the next
alternative, while going back in the string from where the previous alternative was tried, if it
doesn’t, is called backtracking. The term ’backtracking’ comes from the idea that matching
a regexp is like a walk in the woods. Successfully matching a regexp is like arriving at a
destination. There are many possible trailheads, one for each string position, and each one
is tried in order, left to right. From each trailhead there may be many paths, some of which
get you there, and some which are dead ends. When you walk along a trail and hit a dead
end, you have to backtrack along the trail to an earlier point to try another trail. If you hit
your destination, you stop immediately and forget about trying all the other trails. You are
persistent, and only if you have tried all the trails from all the trailheads and not arrived
at your destination, do you declare failure. To be concrete, here is a step-by-step analysis
of what Perl does when it tries to match the regexp

"abcde" =~ /(abd|abc)(df|d|de)/;

0

Start with the first letter in the string ’a’.

1

Try the first alternative in the first group ’abd’.

2

Match ’a’ followed by ’b’. So far so good.

3

’d’ in the regexp doesn’t match ’c’ in the string - a dead end. So backtrack two
characters and pick the second alternative in the first group ’abc’.

4

Match ’a’ followed by ’b’ followed by ’c’. We are on a roll and have satisfied
the first group. Set $1 to ’abc’.

5

Move on to the second group and pick the first alternative ’df’.

6

Match the ’d’.

7

’f’ in the regexp doesn’t match ’e’ in the string, so a dead end. Backtrack one
character and pick the second alternative in the second group ’d’.

8

’d’ matches. The second grouping is satisfied, so set $2 to ’d’.

9

We are at the end of the regexp, so we are done! We have matched ’abcd’ out
of the string "abcde".

There are a couple of things to note about this analysis. First, the third alternative in
the second group ’de’ also allows a match, but we stopped before we got to it - at a given
character position, leftmost wins. Second, we were able to get a match at the first character
position of the string ’a’. If there were no matches at the first position, Perl would move
to the second character position ’b’ and attempt the match all over again. Only when all
possible paths at all possible character positions have been exhausted does Perl give up and
declare $string =~ /(abd|abc)(df|d|de)/; to be false.

Even with all this work, regexp matching happens remarkably fast. To speed things up,
Perl compiles the regexp into a compact sequence of opcodes that can often fit inside a
processor cache. When the code is executed, these opcodes can then run at full throttle
and search very quickly.

68.3.5 Extracting matches

The grouping metacharacters () also serve another completely different function: they allow
the extraction of the parts of a string that matched. This is very useful to find out what
matched and for text processing in general. For each grouping, the part that matched inside
goes into the special variables $1, $2, etc. They can be used just as ordinary variables:

extract hours, minutes, seconds

if ($time =~ /(\d\d):(\d\d):(\d\d)/) { # match hh:mm:ss format

$hours = $1;

$minutes = $2;

$seconds = $3;

}

Now, we know that in scalar context, $time =~ /(\d\d):(\d\d):(\d\d)/ returns a true
or false value. In list context, however, it returns the list of matched values ($1,$2,$3).
So we could write the code more compactly as

extract hours, minutes, seconds

($hours, $minutes, $second) = ($time =~ /(\d\d):(\d\d):(\d\d)/);

If the groupings in a regexp are nested, $1 gets the group with the leftmost opening
parenthesis, $2 the next opening parenthesis, etc. Here is a regexp with nested groups:

/(ab(cd|ef)((gi)|j))/;

1 2 34

If this regexp matches, $1 contains a string starting with ’ab’, $2 is either set to ’cd’

or ’ef’, $3 equals either ’gi’ or ’j’, and $4 is either set to ’gi’, just like $3, or it remains
undefined.

For convenience, Perl sets $+ to the string held by the highest numbered $1, $2,...
that got assigned (and, somewhat related, $^N to the value of the $1, $2,... most-recently
assigned; i.e. the $1, $2,... associated with the rightmost closing parenthesis used in the
match).

68.3.6 Backreferences

Closely associated with the matching variables $1, $2, ... are the backreferences \g1, \g2,...
Backreferences are simply matching variables that can be used inside a regexp. This is a
really nice feature; what matches later in a regexp is made to depend on what matched
earlier in the regexp. Suppose we wanted to look for doubled words in a text, like ’the the’.
The following regexp finds all 3-letter doubles with a space in between:

/\b(\w\w\w)\s\g1\b/;

The grouping assigns a value to \g1, so that the same 3-letter sequence is used for both
parts.

A similar task is to find words consisting of two identical parts:

% simple_grep ’^(\w\w\w\w|\w\w\w|\w\w|\w)\g1$’ /usr/dict/words

beriberi

booboo

coco

mama

murmur

papa

The regexp has a single grouping which considers 4-letter combinations, then 3-letter
combinations, etc., and uses \g1 to look for a repeat. Although $1 and \g1 represent the
same thing, care should be taken to use matched variables $1, $2,... only outside a regexp
and backreferences \g1, \g2,... only inside a regexp; not doing so may lead to surprising
and unsatisfactory results.

68.3.7 Relative backreferences

Counting the opening parentheses to get the correct number for a backreference is error-
prone as soon as there is more than one capturing group. A more convenient technique
became available with Perl 5.10: relative backreferences. To refer to the immediately pre-
ceding capture group one now may write \g{-1}, the next but last is available via \g{-2},
and so on.

Another good reason in addition to readability and maintainability for using relative
backreferences is illustrated by the following example, where a simple pattern for matching
peculiar strings is used:

$a99a = ’([a-z])(\d)\g2\g1’; # matches a11a, g22g, x33x, etc.

Now that we have this pattern stored as a handy string, we might feel tempted to use it
as a part of some other pattern:

$line = "code=e99e";

if ($line =~ /^(\w+)=$a99a$/){ # unexpected behavior!

print "$1 is valid\n";

} else {

print "bad line: ’$line’\n";

}

But this doesn’t match, at least not the way one might expect. Only after inserting
the interpolated $a99a and looking at the resulting full text of the regexp is it obvious
that the backreferences have backfired. The subexpression (\w+) has snatched number
1 and demoted the groups in $a99a by one rank. This can be avoided by using relative
backreferences:

$a99a = ’([a-z])(\d)\g{-1}\g{-2}’; # safe for being interpolated

68.3.8 Named backreferences

Perl 5.10 also introduced named capture groups and named backreferences. To attach a
name to a capturing group, you write either (?<name>...) or (?’name’...). The backref-
erence may then be written as \g{name}. It is permissible to attach the same name to more
than one group, but then only the leftmost one of the eponymous set can be referenced.
Outside of the pattern a named capture group is accessible through the %+ hash.

Assuming that we have to match calendar dates which may be given in one of the three
formats yyyy-mm-dd, mm/dd/yyyy or dd.mm.yyyy, we can write three suitable patterns
where we use ’d’, ’m’ and ’y’ respectively as the names of the groups capturing the pertaining
components of a date. The matching operation combines the three patterns as alternatives:

$fmt1 = ’(?<y>\d\d\d\d)-(?<m>\d\d)-(?<d>\d\d)’;

$fmt2 = ’(?<m>\d\d)/(?<d>\d\d)/(?<y>\d\d\d\d)’;

$fmt3 = ’(?<d>\d\d)\.(?<m>\d\d)\.(?<y>\d\d\d\d)’;

for my $d qw(2006-10-21 15.01.2007 10/31/2005){

if ($d =~ m{$fmt1|$fmt2|$fmt3}){

print "day=$+{d} month=$+{m} year=$+{y}\n";

}

}

If any of the alternatives matches, the hash %+ is bound to contain the three key-value
pairs.

68.3.9 Alternative capture group numbering

Yet another capturing group numbering technique (also as from Perl 5.10) deals with the
problem of referring to groups within a set of alternatives. Consider a pattern for matching
a time of the day, civil or military style:

if ($time =~ /(\d\d|\d):(\d\d)|(\d\d)(\d\d)/){

process hour and minute

}

Processing the results requires an additional if statement to determine whether $1 and
$2 or $3 and $4 contain the goodies. It would be easier if we could use group numbers 1
and 2 in second alternative as well, and this is exactly what the parenthesized construct
(?|...), set around an alternative achieves. Here is an extended version of the previous
pattern:

if($time =~ /(?|(\d\d|\d):(\d\d)|(\d\d)(\d\d))\s+([A-Z][A-Z][A-Z])/){

print "hour=$1 minute=$2 zone=$3\n";

}

Within the alternative numbering group, group numbers start at the same position for
each alternative. After the group, numbering continues with one higher than the maximum
reached across all the alternatives.

68.3.10 Position information

In addition to what was matched, Perl also provides the positions of what was matched as
contents of the @- and @+ arrays. $-[0] is the position of the start of the entire match
and $+[0] is the position of the end. Similarly, $-[n] is the position of the start of the $n
match and $+[n] is the position of the end. If $n is undefined, so are $-[n] and $+[n].
Then this code

$x = "Mmm...donut, thought Homer";

$x =~ /^(Mmm|Yech)\.\.\.(donut|peas)/; # matches

foreach $exp (1..$#-) {

print "Match $exp: ’${$exp}’ at position ($-[$exp],$+[$exp])\n";

}

prints

Match 1: ’Mmm’ at position (0,3)

Match 2: ’donut’ at position (6,11)

Even if there are no groupings in a regexp, it is still possible to find out what exactly
matched in a string. If you use them, Perl will set $‘ to the part of the string before the
match, will set $& to the part of the string that matched, and will set $’ to the part of the
string after the match. An example:

$x = "the cat caught the mouse";

$x =~ /cat/; # $‘ = ’the ’, $& = ’cat’, $’ = ’ caught the mouse’

$x =~ /the/; # $‘ = ’’, $& = ’the’, $’ = ’ cat caught the mouse’

In the second match, $‘ equals ’’ because the regexp matched at the first character
position in the string and stopped; it never saw the second ’the’.

If your code is to run on Perl versions earlier than 5.20, it is worthwhile to note that
using $‘ and $’ slows down regexp matching quite a bit, while $& slows it down to a lesser

extent, because if they are used in one regexp in a program, they are generated for all
regexps in the program. So if raw performance is a goal of your application, they should be
avoided. If you need to extract the corresponding substrings, use @- and @+ instead:

$‘ is the same as substr($x, 0, $-[0])

$& is the same as substr($x, $-[0], $+[0]-$-[0])

$’ is the same as substr($x, $+[0])

As of Perl 5.10, the ${^PREMATCH}, ${^MATCH} and ${^POSTMATCH} variables may be
used. These are only set if the /p modifier is present. Consequently they do not penalize
the rest of the program. In Perl 5.20, ${^PREMATCH}, ${^MATCH} and ${^POSTMATCH} are
available whether the /p has been used or not (the modifier is ignored), and $‘, $’ and $&

do not cause any speed difference.

68.3.11 Non-capturing groupings

A group that is required to bundle a set of alternatives may or may not be useful as
a capturing group. If it isn’t, it just creates a superfluous addition to the set of available
capture group values, inside as well as outside the regexp. Non-capturing groupings, denoted
by (?:regexp), still allow the regexp to be treated as a single unit, but don’t establish a
capturing group at the same time. Both capturing and non-capturing groupings are allowed
to co-exist in the same regexp. Because there is no extraction, non-capturing groupings are
faster than capturing groupings. Non-capturing groupings are also handy for choosing
exactly which parts of a regexp are to be extracted to matching variables:

match a number, $1-$4 are set, but we only want $1

/([+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?)/;

match a number faster , only $1 is set

/([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][+-]?\d+)?)/;

match a number, get $1 = whole number, $2 = exponent

/([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE]([+-]?\d+))?)/;

Non-capturing groupings are also useful for removing nuisance elements gathered from
a split operation where parentheses are required for some reason:

$x = ’12aba34ba5’;

@num = split /(a|b)+/, $x; # @num = (’12’,’a’,’34’,’a’,’5’)

@num = split /(?:a|b)+/, $x; # @num = (’12’,’34’,’5’)

In Perl 5.22 and later, all groups within a regexp can be set to non-capturing by using
the new /n flag:

"hello" =~ /(hi|hello)/n; # $1 is not set!

See [perlre n], page 990 for more information.

68.3.12 Matching repetitions

The examples in the previous section display an annoying weakness. We were only matching
3-letter words, or chunks of words of 4 letters or less. We’d like to be able to match
words or, more generally, strings of any length, without writing out tedious alternatives like
\w\w\w\w|\w\w\w|\w\w|\w.

This is exactly the problem the quantifier metacharacters ?, *, +, and {} were created
for. They allow us to delimit the number of repeats for a portion of a regexp we consider
to be a match. Quantifiers are put immediately after the character, character class, or
grouping that we want to specify. They have the following meanings:

• a? means: match ’a’ 1 or 0 times

• a* means: match ’a’ 0 or more times, i.e., any number of times

• a+ means: match ’a’ 1 or more times, i.e., at least once

• a{n,m} means: match at least n times, but not more than m times.

• a{n,} means: match at least n or more times

• a{n} means: match exactly n times

Here are some examples:

/[a-z]+\s+\d*/; # match a lowercase word, at least one space, and

any number of digits

/(\w+)\s+\g1/; # match doubled words of arbitrary length

/y(es)?/i; # matches ’y’, ’Y’, or a case-insensitive ’yes’

$year =~ /^\d{2,4}$/; # make sure year is at least 2 but not more

than 4 digits

$year =~ /^\d{4}$|^\d{2}$/; # better match; throw out 3-digit dates

$year =~ /^\d{2}(\d{2})?$/; # same thing written differently.

However, this captures the last two

digits in $1 and the other does not.

% simple_grep ’^(\w+)\g1$’ /usr/dict/words # isn’t this easier?

beriberi

booboo

coco

mama

murmur

papa

For all of these quantifiers, Perl will try to match as much of the string as possible, while
still allowing the regexp to succeed. Thus with /a?.../, Perl will first try to match the
regexp with the a present; if that fails, Perl will try to match the regexp without the a

present. For the quantifier *, we get the following:

$x = "the cat in the hat";

$x =~ /^(.*)(cat)(.*)$/; # matches,

$1 = ’the ’

$2 = ’cat’

$3 = ’ in the hat’

Which is what we might expect, the match finds the only cat in the string and locks
onto it. Consider, however, this regexp:

$x =~ /^(.*)(at)(.*)$/; # matches,

$1 = ’the cat in the h’

$2 = ’at’

$3 = ’’ (0 characters match)

One might initially guess that Perl would find the at in cat and stop there, but that
wouldn’t give the longest possible string to the first quantifier .*. Instead, the first quantifier
.* grabs as much of the string as possible while still having the regexp match. In this
example, that means having the at sequence with the final at in the string. The other
important principle illustrated here is that, when there are two or more elements in a regexp,
the leftmost quantifier, if there is one, gets to grab as much of the string as possible, leaving
the rest of the regexp to fight over scraps. Thus in our example, the first quantifier .* grabs
most of the string, while the second quantifier .* gets the empty string. Quantifiers that
grab as much of the string as possible are called maximal match or greedy quantifiers.

When a regexp can match a string in several different ways, we can use the principles
above to predict which way the regexp will match:

• Principle 0: Taken as a whole, any regexp will be matched at the earliest possible
position in the string.

• Principle 1: In an alternation a|b|c..., the leftmost alternative that allows a match
for the whole regexp will be the one used.

• Principle 2: The maximal matching quantifiers ?, *, + and {n,m} will in general match
as much of the string as possible while still allowing the whole regexp to match.

• Principle 3: If there are two or more elements in a regexp, the leftmost greedy quantifier,
if any, will match as much of the string as possible while still allowing the whole regexp
to match. The next leftmost greedy quantifier, if any, will try to match as much of
the string remaining available to it as possible, while still allowing the whole regexp to
match. And so on, until all the regexp elements are satisfied.

As we have seen above, Principle 0 overrides the others. The regexp will be matched
as early as possible, with the other principles determining how the regexp matches at that
earliest character position.

Here is an example of these principles in action:

$x = "The programming republic of Perl";

$x =~ /^(.+)(e|r)(.*)$/; # matches,

$1 = ’The programming republic of Pe’

$2 = ’r’

$3 = ’l’

This regexp matches at the earliest string position, ’T’. One might think that e, being
leftmost in the alternation, would be matched, but r produces the longest string in the first
quantifier.

$x =~ /(m{1,2})(.*)$/; # matches,

$1 = ’mm’

$2 = ’ing republic of Perl’

Here, The earliest possible match is at the first ’m’ in programming. m{1,2} is the first
quantifier, so it gets to match a maximal mm.

$x =~ /.*(m{1,2})(.*)$/; # matches,

$1 = ’m’

$2 = ’ing republic of Perl’

Here, the regexp matches at the start of the string. The first quantifier .* grabs as much
as possible, leaving just a single ’m’ for the second quantifier m{1,2}.

$x =~ /(.?)(m{1,2})(.*)$/; # matches,

$1 = ’a’

$2 = ’mm’

$3 = ’ing republic of Perl’

Here, .? eats its maximal one character at the earliest possible position in the string,
’a’ in programming, leaving m{1,2} the opportunity to match both m’s. Finally,

"aXXXb" =~ /(X*)/; # matches with $1 = ’’

because it can match zero copies of ’X’ at the beginning of the string. If you definitely
want to match at least one ’X’, use X+, not X*.

Sometimes greed is not good. At times, we would like quantifiers to match a minimal
piece of string, rather than a maximal piece. For this purpose, Larry Wall created the
minimal match or non-greedy quantifiers ??, *?, +?, and {}?. These are the usual quantifiers
with a ? appended to them. They have the following meanings:

• a?? means: match ’a’ 0 or 1 times. Try 0 first, then 1.

• a*? means: match ’a’ 0 or more times, i.e., any number of times, but as few times as
possible

• a+? means: match ’a’ 1 or more times, i.e., at least once, but as few times as possible

• a{n,m}? means: match at least n times, not more than m times, as few times as possible

• a{n,}? means: match at least n times, but as few times as possible

• a{n}? means: match exactly n times. Because we match exactly n times, a{n}? is
equivalent to a{n} and is just there for notational consistency.

Let’s look at the example above, but with minimal quantifiers:

$x = "The programming republic of Perl";

$x =~ /^(.+?)(e|r)(.*)$/; # matches,

$1 = ’Th’

$2 = ’e’

$3 = ’ programming republic of Perl’

The minimal string that will allow both the start of the string ^ and the alternation to
match is Th, with the alternation e|r matching e. The second quantifier .* is free to gobble
up the rest of the string.

$x =~ /(m{1,2}?)(.*?)$/; # matches,

$1 = ’m’

$2 = ’ming republic of Perl’

The first string position that this regexp can match is at the first ’m’ in programming.
At this position, the minimal m{1,2}?matches just one ’m’. Although the second quantifier
.*? would prefer to match no characters, it is constrained by the end-of-string anchor $ to
match the rest of the string.

$x =~ /(.*?)(m{1,2}?)(.*)$/; # matches,

$1 = ’The progra’

$2 = ’m’

$3 = ’ming republic of Perl’

In this regexp, you might expect the first minimal quantifier .*? to match the empty
string, because it is not constrained by a ^ anchor to match the beginning of the word.

Principle 0 applies here, however. Because it is possible for the whole regexp to match at
the start of the string, it will match at the start of the string. Thus the first quantifier has
to match everything up to the first m. The second minimal quantifier matches just one m

and the third quantifier matches the rest of the string.

$x =~ /(.??)(m{1,2})(.*)$/; # matches,

$1 = ’a’

$2 = ’mm’

$3 = ’ing republic of Perl’

Just as in the previous regexp, the first quantifier .?? can match earliest at position
’a’, so it does. The second quantifier is greedy, so it matches mm, and the third matches
the rest of the string.

We can modify principle 3 above to take into account non-greedy quantifiers:

• Principle 3: If there are two or more elements in a regexp, the leftmost greedy (non-
greedy) quantifier, if any, will match as much (little) of the string as possible while still
allowing the whole regexp to match. The next leftmost greedy (non-greedy) quantifier,
if any, will try to match as much (little) of the string remaining available to it as
possible, while still allowing the whole regexp to match. And so on, until all the regexp
elements are satisfied.

Just like alternation, quantifiers are also susceptible to backtracking. Here is a step-by-
step analysis of the example

$x = "the cat in the hat";

$x =~ /^(.*)(at)(.*)$/; # matches,

$1 = ’the cat in the h’

$2 = ’at’

$3 = ’’ (0 matches)

0

Start with the first letter in the string ’t’.

1

The first quantifier ’.*’ starts out by matching the whole string ’the cat in the
hat’.

2

’a’ in the regexp element ’at’ doesn’t match the end of the string. Backtrack
one character.

3

’a’ in the regexp element ’at’ still doesn’t match the last letter of the string ’t’,
so backtrack one more character.

4

Now we can match the ’a’ and the ’t’.

5

Move on to the third element ’.*’. Since we are at the end of the string and ’.*’
can match 0 times, assign it the empty string.

6

We are done!

Most of the time, all this moving forward and backtracking happens quickly and searching
is fast. There are some pathological regexps, however, whose execution time exponentially
grows with the size of the string. A typical structure that blows up in your face is of the
form

/(a|b+)*/;

The problem is the nested indeterminate quantifiers. There are many different ways of
partitioning a string of length n between the + and *: one repetition with b+ of length n,
two repetitions with the first b+ length k and the second with length n-k, m repetitions
whose bits add up to length n, etc. In fact there are an exponential number of ways to
partition a string as a function of its length. A regexp may get lucky and match early in
the process, but if there is no match, Perl will try every possibility before giving up. So
be careful with nested *’s, {n,m}’s, and +’s. The book Mastering Regular Expressions by
Jeffrey Friedl gives a wonderful discussion of this and other efficiency issues.

68.3.13 Possessive quantifiers

Backtracking during the relentless search for a match may be a waste of time, particularly
when the match is bound to fail. Consider the simple pattern

/^\w+\s+\w+$/; # a word, spaces, a word

Whenever this is applied to a string which doesn’t quite meet the pattern’s expectations
such as "abc " or "abc def ", the regex engine will backtrack, approximately once for each
character in the string. But we know that there is no way around taking all of the initial
word characters to match the first repetition, that all spaces must be eaten by the middle
part, and the same goes for the second word.

With the introduction of the possessive quantifiers in Perl 5.10, we have a way of in-
structing the regex engine not to backtrack, with the usual quantifiers with a + appended
to them. This makes them greedy as well as stingy; once they succeed they won’t give
anything back to permit another solution. They have the following meanings:

• a{n,m}+ means: match at least n times, not more than m times, as many times as
possible, and don’t give anything up. a?+ is short for a{0,1}+

• a{n,}+ means: match at least n times, but as many times as possible, and don’t give
anything up. a*+ is short for a{0,}+ and a++ is short for a{1,}+.

• a{n}+ means: match exactly n times. It is just there for notational consistency.

These possessive quantifiers represent a special case of a more general concept, the
independent subexpression, see below.

As an example where a possessive quantifier is suitable we consider matching a quoted
string, as it appears in several programming languages. The backslash is used as an escape
character that indicates that the next character is to be taken literally, as another character
for the string. Therefore, after the opening quote, we expect a (possibly empty) sequence of
alternatives: either some character except an unescaped quote or backslash or an escaped
character.

/"(?:[^"\\]++|\\.)*+"/;

68.3.14 Building a regexp

At this point, we have all the basic regexp concepts covered, so let’s give a more involved
example of a regular expression. We will build a regexp that matches numbers.

The first task in building a regexp is to decide what we want to match and what we
want to exclude. In our case, we want to match both integers and floating point numbers
and we want to reject any string that isn’t a number.

The next task is to break the problem down into smaller problems that are easily con-
verted into a regexp.

The simplest case is integers. These consist of a sequence of digits, with an optional sign
in front. The digits we can represent with \d+ and the sign can be matched with [+-].
Thus the integer regexp is

/[+-]?\d+/; # matches integers

A floating point number potentially has a sign, an integral part, a decimal point, a
fractional part, and an exponent. One or more of these parts is optional, so we need to check
out the different possibilities. Floating point numbers which are in proper form include 123.,
0.345, .34, -1e6, and 25.4E-72. As with integers, the sign out front is completely optional
and can be matched by [+-]?. We can see that if there is no exponent, floating point
numbers must have a decimal point, otherwise they are integers. We might be tempted to
model these with \d*\.\d*, but this would also match just a single decimal point, which
is not a number. So the three cases of floating point number without exponent are

/[+-]?\d+\./; # 1., 321., etc.

/[+-]?\.\d+/; # .1, .234, etc.

/[+-]?\d+\.\d+/; # 1.0, 30.56, etc.

These can be combined into a single regexp with a three-way alternation:

/[+-]?(\d+\.\d+|\d+\.|\.\d+)/; # floating point, no exponent

In this alternation, it is important to put ’\d+\.\d+’ before ’\d+\.’. If ’\d+\.’ were
first, the regexp would happily match that and ignore the fractional part of the number.

Now consider floating point numbers with exponents. The key observation here is that
both integers and numbers with decimal points are allowed in front of an exponent. Then
exponents, like the overall sign, are independent of whether we are matching numbers with
or without decimal points, and can be ’decoupled’ from the mantissa. The overall form of
the regexp now becomes clear:

/^(optional sign)(integer | f.p. mantissa)(optional exponent)$/;

The exponent is an e or E, followed by an integer. So the exponent regexp is

/[eE][+-]?\d+/; # exponent

Putting all the parts together, we get a regexp that matches numbers:

/^[+-]?(\d+\.\d+|\d+\.|\.\d+|\d+)([eE][+-]?\d+)?$/; # Ta da!

Long regexps like this may impress your friends, but can be hard to decipher. In complex
situations like this, the //x modifier for a match is invaluable. It allows one to put nearly
arbitrary whitespace and comments into a regexp without affecting their meaning. Using
it, we can rewrite our ’extended’ regexp in the more pleasing form

/^

[+-]? # first, match an optional sign

(# then match integers or f.p. mantissas:

\d+\.\d+ # mantissa of the form a.b

|\d+\. # mantissa of the form a.

|\.\d+ # mantissa of the form .b

|\d+ # integer of the form a

)

([eE][+-]?\d+)? # finally, optionally match an exponent

$/x;

If whitespace is mostly irrelevant, how does one include space characters in an extended
regexp? The answer is to backslash it ’\ ’ or put it in a character class []. The same
thing goes for pound signs: use \# or [#]. For instance, Perl allows a space between the
sign and the mantissa or integer, and we could add this to our regexp as follows:

/^

[+-]?\ * # first, match an optional sign *and space*

(# then match integers or f.p. mantissas:

\d+\.\d+ # mantissa of the form a.b

|\d+\. # mantissa of the form a.

|\.\d+ # mantissa of the form .b

|\d+ # integer of the form a

)

([eE][+-]?\d+)? # finally, optionally match an exponent

$/x;

In this form, it is easier to see a way to simplify the alternation. Alternatives 1, 2, and
4 all start with \d+, so it could be factored out:

/^

[+-]?\ * # first, match an optional sign

(# then match integers or f.p. mantissas:

\d+ # start out with a ...

(

\.\d* # mantissa of the form a.b or a.

)? # ? takes care of integers of the form a

|\.\d+ # mantissa of the form .b

)

([eE][+-]?\d+)? # finally, optionally match an exponent

$/x;

or written in the compact form,

/^[+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?$/;

This is our final regexp. To recap, we built a regexp by

• specifying the task in detail,

• breaking down the problem into smaller parts,

• translating the small parts into regexps,

• combining the regexps,

• and optimizing the final combined regexp.

These are also the typical steps involved in writing a computer program. This makes per-
fect sense, because regular expressions are essentially programs written in a little computer
language that specifies patterns.

68.3.15 Using regular expressions in Perl

The last topic of Part 1 briefly covers how regexps are used in Perl programs. Where do
they fit into Perl syntax?

We have already introduced the matching operator in its default /regexp/ and arbitrary
delimiter m!regexp! forms. We have used the binding operator =~ and its negation !~ to
test for string matches. Associated with the matching operator, we have discussed the single
line //s, multi-line //m, case-insensitive //i and extended //x modifiers. There are a few
more things you might want to know about matching operators.

68.3.15.1 Prohibiting substitution

If you change $pattern after the first substitution happens, Perl will ignore it. If you don’t
want any substitutions at all, use the special delimiter m’’:

@pattern = (’Seuss’);

while (<>) {

print if m’@pattern’; # matches literal ’@pattern’, not ’Seuss’

}

Similar to strings, m’’ acts like apostrophes on a regexp; all other m delimiters act like
quotes. If the regexp evaluates to the empty string, the regexp in the last successful match
is used instead. So we have

"dog" =~ /d/; # ’d’ matches

"dogbert =~ //; # this matches the ’d’ regexp used before

68.3.15.2 Global matching

The final two modifiers we will discuss here, //g and //c, concern multiple matches. The
modifier //g stands for global matching and allows the matching operator to match within
a string as many times as possible. In scalar context, successive invocations against a string
will have //g jump from match to match, keeping track of position in the string as it goes
along. You can get or set the position with the pos() function.

The use of //g is shown in the following example. Suppose we have a string that consists
of words separated by spaces. If we know how many words there are in advance, we could
extract the words using groupings:

$x = "cat dog house"; # 3 words

$x =~ /^\s*(\w+)\s+(\w+)\s+(\w+)\s*$/; # matches,

$1 = ’cat’

$2 = ’dog’

$3 = ’house’

But what if we had an indeterminate number of words? This is the sort of task //g was
made for. To extract all words, form the simple regexp (\w+) and loop over all matches
with /(\w+)/g:

while ($x =~ /(\w+)/g) {

print "Word is $1, ends at position ", pos $x, "\n";

}

prints

Word is cat, ends at position 3

Word is dog, ends at position 7

Word is house, ends at position 13

A failed match or changing the target string resets the position. If you don’t want the
position reset after failure to match, add the //c, as in /regexp/gc. The current position
in the string is associated with the string, not the regexp. This means that different strings
have different positions and their respective positions can be set or read independently.

In list context, //g returns a list of matched groupings, or if there are no groupings, a
list of matches to the whole regexp. So if we wanted just the words, we could use

@words = ($x =~ /(\w+)/g); # matches,

$words[0] = ’cat’

$words[1] = ’dog’

$words[2] = ’house’

Closely associated with the //g modifier is the \G anchor. The \G anchor matches at
the point where the previous //g match left off. \G allows us to easily do context-sensitive
matching:

$metric = 1; # use metric units

...

$x = <FILE>; # read in measurement

$x =~ /^([+-]?\d+)\s*/g; # get magnitude

$weight = $1;

if ($metric) { # error checking

print "Units error!" unless $x =~ /\Gkg\./g;

}

else {

print "Units error!" unless $x =~ /\Glbs\./g;

}

$x =~ /\G\s+(widget|sprocket)/g; # continue processing

The combination of //g and \G allows us to process the string a bit at a time and
use arbitrary Perl logic to decide what to do next. Currently, the \G anchor is only fully
supported when used to anchor to the start of the pattern.

\G is also invaluable in processing fixed-length records with regexps. Suppose we have
a snippet of coding region DNA, encoded as base pair letters ATCGTTGAAT... and we want
to find all the stop codons TGA. In a coding region, codons are 3-letter sequences, so we can
think of the DNA snippet as a sequence of 3-letter records. The naive regexp

expanded, this is "ATC GTT GAA TGC AAA TGA CAT GAC"

$dna = "ATCGTTGAATGCAAATGACATGAC";

$dna =~ /TGA/;

doesn’t work; it may match a TGA, but there is no guarantee that the match is aligned
with codon boundaries, e.g., the substring GTT GAA gives a match. A better solution is

while ($dna =~ /(\w\w\w)*?TGA/g) { # note the minimal *?

print "Got a TGA stop codon at position ", pos $dna, "\n";

}

which prints

Got a TGA stop codon at position 18

Got a TGA stop codon at position 23

Position 18 is good, but position 23 is bogus. What happened?

The answer is that our regexp works well until we get past the last real match. Then
the regexp will fail to match a synchronized TGA and start stepping ahead one character
position at a time, not what we want. The solution is to use \G to anchor the match to the
codon alignment:

while ($dna =~ /\G(\w\w\w)*?TGA/g) {

print "Got a TGA stop codon at position ", pos $dna, "\n";

}

This prints

Got a TGA stop codon at position 18

which is the correct answer. This example illustrates that it is important not only to
match what is desired, but to reject what is not desired.

(There are other regexp modifiers that are available, such as //o, but their specialized
uses are beyond the scope of this introduction.)

68.3.15.3 Search and replace

Regular expressions also play a big role in search and replace operations in Perl.
Search and replace is accomplished with the s/// operator. The general form is
s/regexp/replacement/modifiers, with everything we know about regexps and modifiers
applying in this case as well. The replacement is a Perl double-quoted string that replaces
in the string whatever is matched with the regexp. The operator =~ is also used here to
associate a string with s///. If matching against $_, the $_ =~ can be dropped. If there is
a match, s/// returns the number of substitutions made; otherwise it returns false. Here
are a few examples:

$x = "Time to feed the cat!";

$x =~ s/cat/hacker/; # $x contains "Time to feed the hacker!"

if ($x =~ s/^(Time.*hacker)!$/$1 now!/) {

$more_insistent = 1;

}

$y = "’quoted words’";

$y =~ s/^’(.*)’$/$1/; # strip single quotes,

$y contains "quoted words"

In the last example, the whole string was matched, but only the part inside the single
quotes was grouped. With the s/// operator, the matched variables $1, $2, etc. are
immediately available for use in the replacement expression, so we use $1 to replace the
quoted string with just what was quoted. With the global modifier, s///g will search and
replace all occurrences of the regexp in the string:

$x = "I batted 4 for 4";

$x =~ s/4/four/; # doesn’t do it all:

$x contains "I batted four for 4"

$x = "I batted 4 for 4";

$x =~ s/4/four/g; # does it all:

$x contains "I batted four for four"

If you prefer ’regex’ over ’regexp’ in this tutorial, you could use the following program
to replace it:

% cat > simple_replace

#!/usr/bin/perl

$regexp = shift;

$replacement = shift;

while (<>) {

s/$regexp/$replacement/g;

print;

}

^D

% simple_replace regexp regex perlretut.pod

In simple_replace we used the s///g modifier to replace all occurrences of the
regexp on each line. (Even though the regular expression appears in a loop, Perl is
smart enough to compile it only once.) As with simple_grep, both the print and the
s/$regexp/$replacement/g use $_ implicitly.

If you don’t want s/// to change your original variable you can use the non-destructive
substitute modifier, s///r. This changes the behavior so that s///r returns the final
substituted string (instead of the number of substitutions):

$x = "I like dogs.";

$y = $x =~ s/dogs/cats/r;

print "$x $y\n";

That example will print "I like dogs. I like cats". Notice the original $x variable has
not been affected. The overall result of the substitution is instead stored in $y. If the
substitution doesn’t affect anything then the original string is returned:

$x = "I like dogs.";

$y = $x =~ s/elephants/cougars/r;

print "$x $y\n"; # prints "I like dogs. I like dogs."

One other interesting thing that the s///r flag allows is chaining substitutions:

$x = "Cats are great.";

print $x =~ s/Cats/Dogs/r =~ s/Dogs/Frogs/r =~

s/Frogs/Hedgehogs/r, "\n";

prints "Hedgehogs are great."

A modifier available specifically to search and replace is the s///e evaluation modifier.
s///e treats the replacement text as Perl code, rather than a double-quoted string. The
value that the code returns is substituted for the matched substring. s///e is useful if
you need to do a bit of computation in the process of replacing text. This example counts
character frequencies in a line:

$x = "Bill the cat";

$x =~ s/(.)/$chars{$1}++;$1/eg; # final $1 replaces char with itself

print "frequency of ’$_’ is $chars{$_}\n"

foreach (sort {$chars{$b} <=> $chars{$a}} keys %chars);

This prints

frequency of ’ ’ is 2

frequency of ’t’ is 2

frequency of ’l’ is 2

frequency of ’B’ is 1

frequency of ’c’ is 1

frequency of ’e’ is 1

frequency of ’h’ is 1

frequency of ’i’ is 1

frequency of ’a’ is 1

As with the match m// operator, s/// can use other delimiters, such as s!!! and s{}{},
and even s{}//. If single quotes are used s’’’, then the regexp and replacement are treated
as single-quoted strings and there are no variable substitutions. s/// in list context returns
the same thing as in scalar context, i.e., the number of matches.

68.3.15.4 The split function

The split() function is another place where a regexp is used. split /regexp/, string,

limit separates the string operand into a list of substrings and returns that list. The
regexp must be designed to match whatever constitutes the separators for the desired sub-
strings. The limit, if present, constrains splitting into no more than limit number of
strings. For example, to split a string into words, use

$x = "Calvin and Hobbes";

@words = split /\s+/, $x; # $word[0] = ’Calvin’

$word[1] = ’and’

$word[2] = ’Hobbes’

If the empty regexp // is used, the regexp always matches and the string is split into
individual characters. If the regexp has groupings, then the resulting list contains the
matched substrings from the groupings as well. For instance,

$x = "/usr/bin/perl";

@dirs = split m!/!, $x; # $dirs[0] = ’’

$dirs[1] = ’usr’

$dirs[2] = ’bin’

$dirs[3] = ’perl’

@parts = split m!(/)!, $x; # $parts[0] = ’’

$parts[1] = ’/’

$parts[2] = ’usr’

$parts[3] = ’/’

$parts[4] = ’bin’

$parts[5] = ’/’

$parts[6] = ’perl’

Since the first character of $x matched the regexp, split prepended an empty initial
element to the list.

If you have read this far, congratulations! You now have all the basic tools needed to use
regular expressions to solve a wide range of text processing problems. If this is your first
time through the tutorial, why not stop here and play around with regexps a while.... Part 2
concerns the more esoteric aspects of regular expressions and those concepts certainly aren’t
needed right at the start.

68.4 Part 2: Power tools

OK, you know the basics of regexps and you want to know more. If matching regular
expressions is analogous to a walk in the woods, then the tools discussed in Part 1 are
analogous to topo maps and a compass, basic tools we use all the time. Most of the tools
in part 2 are analogous to flare guns and satellite phones. They aren’t used too often on a
hike, but when we are stuck, they can be invaluable.

What follows are the more advanced, less used, or sometimes esoteric capabilities of Perl
regexps. In Part 2, we will assume you are comfortable with the basics and concentrate on
the advanced features.

68.4.1 More on characters, strings, and character classes

There are a number of escape sequences and character classes that we haven’t covered yet.

There are several escape sequences that convert characters or strings between upper and
lower case, and they are also available within patterns. \l and \u convert the next character
to lower or upper case, respectively:

$x = "perl";

$string =~ /\u$x/; # matches ’Perl’ in $string

$x = "M(rs?|s)\\."; # note the double backslash

$string =~ /\l$x/; # matches ’mr.’, ’mrs.’, and ’ms.’,

A \L or \U indicates a lasting conversion of case, until terminated by \E or thrown over
by another \U or \L:

$x = "This word is in lower case:\L SHOUT\E";

$x =~ /shout/; # matches

$x = "I STILL KEYPUNCH CARDS FOR MY 360"

$x =~ /\Ukeypunch/; # matches punch card string

If there is no \E, case is converted until the end of the string. The regexps \L\u$word or
\u\L$word convert the first character of $word to uppercase and the rest of the characters
to lowercase.

Control characters can be escaped with \c, so that a control-Z character would be
matched with \cZ. The escape sequence \Q...\E quotes, or protects most non-alphabetic
characters. For instance,

$x = "\QThat !^*&%~& cat!";

$x =~ /\Q!^*&%~&\E/; # check for rough language

It does not protect $ or @, so that variables can still be substituted.

\Q, \L, \l, \U, \u and \E are actually part of double-quotish syntax, and not part of
regexp syntax proper. They will work if they appear in a regular expression embedded
directly in a program, but not when contained in a string that is interpolated in a pattern.

Perl regexps can handle more than just the standard ASCII character set. Perl supports
Unicode, a standard for representing the alphabets from virtually all of the world’s written
languages, and a host of symbols. Perl’s text strings are Unicode strings, so they can contain
characters with a value (codepoint or character number) higher than 255.

What does this mean for regexps? Well, regexp users don’t need to know much about
Perl’s internal representation of strings. But they do need to know 1) how to represent
Unicode characters in a regexp and 2) that a matching operation will treat the string to be
searched as a sequence of characters, not bytes. The answer to 1) is that Unicode characters
greater than chr(255) are represented using the \x{hex} notation, because \x hex (without
curly braces) doesn’t go further than 255. (Starting in Perl 5.14, if you’re an octal fan, you
can also use \o{oct}.)

/\x{263a}/; # match a Unicode smiley face :)

NOTE: In Perl 5.6.0 it used to be that one needed to say use utf8 to use any Unicode
features. This is no more the case: for almost all Unicode processing, the explicit utf8

pragma is not needed. (The only case where it matters is if your Perl script is in Unicode
and encoded in UTF-8, then an explicit use utf8 is needed.)

Figuring out the hexadecimal sequence of a Unicode character you want or deciphering
someone else’s hexadecimal Unicode regexp is about as much fun as programming in machine
code. So another way to specify Unicode characters is to use the named character escape
sequence \N{name}. name is a name for the Unicode character, as specified in the Unicode
standard. For instance, if we wanted to represent or match the astrological sign for the
planet Mercury, we could use

$x = "abc\N{MERCURY}def";

$x =~ /\N{MERCURY}/; # matches

One can also use "short" names:

print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";

print "\N{greek:Sigma} is an upper-case sigma.\n";

You can also restrict names to a certain alphabet by specifying the charnames pragma:

use charnames qw(greek);

print "\N{sigma} is Greek sigma\n";

An index of character names is available on-line from the Unicode Consortium, http://
www.unicode.org/charts/charindex.html; explanatory material with links to other
resources at http://www.unicode.org/standard/where.

The answer to requirement 2) is that a regexp (mostly) uses Unicode characters. The
"mostly" is for messy backward compatibility reasons, but starting in Perl 5.14, any regex
compiled in the scope of a use feature ’unicode_strings’ (which is automatically turned
on within the scope of a use 5.012 or higher) will turn that "mostly" into "always". If you
want to handle Unicode properly, you should ensure that ’unicode_strings’ is turned on.
Internally, this is encoded to bytes using either UTF-8 or a native 8 bit encoding, depending
on the history of the string, but conceptually it is a sequence of characters, not bytes. See
Section 84.1 [perlunitut NAME], page 1367 for a tutorial about that.

Let us now discuss Unicode character classes, most usually called "character properties".
These are represented by the \p{name} escape sequence. Closely associated is the \P{name}
property, which is the negation of the \p{name} one. For example, to match lower and
uppercase characters,

http://www.unicode.org/charts/charindex.html
http://www.unicode.org/charts/charindex.html
http://www.unicode.org/standard/where

$x = "BOB";

$x =~ /^\p{IsUpper}/; # matches, uppercase char class

$x =~ /^\P{IsUpper}/; # doesn’t match, char class sans uppercase

$x =~ /^\p{IsLower}/; # doesn’t match, lowercase char class

$x =~ /^\P{IsLower}/; # matches, char class sans lowercase

(The "Is" is optional.)

There are many, many Unicode character properties. For the full list see perluniprops.
Most of them have synonyms with shorter names, also listed there. Some synonyms are a
single character. For these, you can drop the braces. For instance, \pM is the same thing
as \p{Mark}, meaning things like accent marks.

The Unicode \p{Script} property is used to categorize every Unicode character into
the language script it is written in. For example, English, French, and a bunch of other
European languages are written in the Latin script. But there is also the Greek script, the
Thai script, the Katakana script, etc. You can test whether a character is in a particular
script with, for example \p{Latin}, \p{Greek}, or \p{Katakana}. To test if it isn’t in the
Balinese script, you would use \P{Balinese}.

What we have described so far is the single form of the \p{...} character classes.
There is also a compound form which you may run into. These look like \p{name=value}

or \p{name:value} (the equals sign and colon can be used interchangeably). These are
more general than the single form, and in fact most of the single forms are just Perl-defined
shortcuts for common compound forms. For example, the script examples in the previous
paragraph could be written equivalently as \p{Script=Latin}, \p{Script:Greek},
\p{script=katakana}, and \P{script=balinese} (case is irrelevant between the {}

braces). You may never have to use the compound forms, but sometimes it is necessary,
and their use can make your code easier to understand.

\X is an abbreviation for a character class that comprises a Unicode extended grapheme
cluster. This represents a "logical character": what appears to be a single character, but
may be represented internally by more than one. As an example, using the Unicode full
names, e.g., A + COMBINING RING is a grapheme cluster with base character A and combining
character COMBINING RING, which translates in Danish to A with the circle atop it, as in
the word Ångstrom.

For the full and latest information about Unicode see the latest Unicode standard, or
the Unicode Consortium’s website http://www.unicode.org

As if all those classes weren’t enough, Perl also defines POSIX-style character classes.
These have the form [:name:], with name the name of the POSIX class. The POSIX
classes are alpha, alnum, ascii, cntrl, digit, graph, lower, print, punct, space, upper,
and xdigit, and two extensions, word (a Perl extension to match \w), and blank (a GNU
extension). The //a modifier restricts these to matching just in the ASCII range; otherwise
they can match the same as their corresponding Perl Unicode classes: [:upper:] is the same
as \p{IsUpper}, etc. (There are some exceptions and gotchas with this; see Section 61.1
[perlrecharclass NAME], page 1059 for a full discussion.) The [:digit:], [:word:], and
[:space:] correspond to the familiar \d, \w, and \s character classes. To negate a POSIX
class, put a ^ in front of the name, so that, e.g., [:^digit:] corresponds to \D and, under
Unicode, \P{IsDigit}. The Unicode and POSIX character classes can be used just like

http://www.unicode.org

\d, with the exception that POSIX character classes can only be used inside of a character
class:

/\s+[abc[:digit:]xyz]\s*/; # match a,b,c,x,y,z, or a digit

/^=item\s[[:digit:]]/; # match ’=item’,

followed by a space and a digit

/\s+[abc\p{IsDigit}xyz]\s+/; # match a,b,c,x,y,z, or a digit

/^=item\s\p{IsDigit}/; # match ’=item’,

followed by a space and a digit

Whew! That is all the rest of the characters and character classes.

68.4.2 Compiling and saving regular expressions

In Part 1 we mentioned that Perl compiles a regexp into a compact sequence of opcodes.
Thus, a compiled regexp is a data structure that can be stored once and used again and
again. The regexp quote qr// does exactly that: qr/string/ compiles the string as a
regexp and transforms the result into a form that can be assigned to a variable:

$reg = qr/foo+bar?/; # reg contains a compiled regexp

Then $reg can be used as a regexp:

$x = "fooooba";

$x =~ $reg; # matches, just like /foo+bar?/

$x =~ /$reg/; # same thing, alternate form

$reg can also be interpolated into a larger regexp:

$x =~ /(abc)?$reg/; # still matches

As with the matching operator, the regexp quote can use different delimiters, e.g., qr!!,
qr{} or qr~~. Apostrophes as delimiters (qr’’) inhibit any interpolation.

Pre-compiled regexps are useful for creating dynamic matches that don’t need to be
recompiled each time they are encountered. Using pre-compiled regexps, we write a grep_

step program which greps for a sequence of patterns, advancing to the next pattern as soon
as one has been satisfied.

% cat > grep_step

#!/usr/bin/perl

grep_step - match <number> regexps, one after the other

usage: multi_grep <number> regexp1 regexp2 ... file1 file2 ...

$number = shift;

$regexp[$_] = shift foreach (0..$number-1);

@compiled = map qr/$_/, @regexp;

while ($line = <>) {

if ($line =~ /$compiled[0]/) {

print $line;

shift @compiled;

last unless @compiled;

}

}

^D

% grep_step 3 shift print last grep_step

$number = shift;

print $line;

last unless @compiled;

Storing pre-compiled regexps in an array @compiled allows us to simply loop through
the regexps without any recompilation, thus gaining flexibility without sacrificing speed.

68.4.3 Composing regular expressions at runtime

Backtracking is more efficient than repeated tries with different regular expressions. If
there are several regular expressions and a match with any of them is acceptable, then it
is possible to combine them into a set of alternatives. If the individual expressions are
input data, this can be done by programming a join operation. We’ll exploit this idea in an
improved version of the simple_grep program: a program that matches multiple patterns:

% cat > multi_grep

#!/usr/bin/perl

multi_grep - match any of <number> regexps

usage: multi_grep <number> regexp1 regexp2 ... file1 file2 ...

$number = shift;

$regexp[$_] = shift foreach (0..$number-1);

$pattern = join ’|’, @regexp;

while ($line = <>) {

print $line if $line =~ /$pattern/;

}

^D

% multi_grep 2 shift for multi_grep

$number = shift;

$regexp[$_] = shift foreach (0..$number-1);

Sometimes it is advantageous to construct a pattern from the input that is to be analyzed
and use the permissible values on the left hand side of the matching operations. As an
example for this somewhat paradoxical situation, let’s assume that our input contains a
command verb which should match one out of a set of available command verbs, with the
additional twist that commands may be abbreviated as long as the given string is unique.
The program below demonstrates the basic algorithm.

% cat > keymatch

#!/usr/bin/perl

$kwds = ’copy compare list print’;

while($cmd = <>){

$cmd =~ s/^\s+|\s+$//g; # trim leading and trailing spaces

if((@matches = $kwds =~ /\b$cmd\w*/g) == 1){

print "command: ’@matches’\n";

} elsif(@matches == 0){

print "no such command: ’$cmd’\n";

} else {

print "not unique: ’$cmd’ (could be one of: @matches)\n";

}

}

^D

% keymatch

li

command: ’list’

co

not unique: ’co’ (could be one of: copy compare)

printer

no such command: ’printer’

Rather than trying to match the input against the keywords, we match the combined set
of keywords against the input. The pattern matching operation $kwds =~ /\b($cmd\w*)/g

does several things at the same time. It makes sure that the given command begins where
a keyword begins (\b). It tolerates abbreviations due to the added \w*. It tells us the
number of matches (scalar @matches) and all the keywords that were actually matched.
You could hardly ask for more.

68.4.4 Embedding comments and modifiers in a regular expression

Starting with this section, we will be discussing Perl’s set of extended patterns. These are
extensions to the traditional regular expression syntax that provide powerful new tools for
pattern matching. We have already seen extensions in the form of the minimal matching
constructs ??, *?, +?, {n,m}?, and {n,}?. Most of the extensions below have the form
(?char...), where the char is a character that determines the type of extension.

The first extension is an embedded comment (?#text). This embeds a comment into
the regular expression without affecting its meaning. The comment should not have any
closing parentheses in the text. An example is

/(?# Match an integer:)[+-]?\d+/;

This style of commenting has been largely superseded by the raw, freeform commenting
that is allowed with the //x modifier.

Most modifiers, such as //i, //m, //s and //x (or any combination thereof) can also be
embedded in a regexp using (?i), (?m), (?s), and (?x). For instance,

/(?i)yes/; # match ’yes’ case insensitively

/yes/i; # same thing

/(?x)(# freeform version of an integer regexp

[+-]? # match an optional sign

\d+ # match a sequence of digits

)

/x;

Embedded modifiers can have two important advantages over the usual modifiers. Em-
bedded modifiers allow a custom set of modifiers to each regexp pattern. This is great for
matching an array of regexps that must have different modifiers:

$pattern[0] = ’(?i)doctor’;

$pattern[1] = ’Johnson’;

...

while (<>) {

foreach $patt (@pattern) {

print if /$patt/;

}

}

The second advantage is that embedded modifiers (except //p, which modifies the entire
regexp) only affect the regexp inside the group the embedded modifier is contained in. So
grouping can be used to localize the modifier’s effects:

/Answer: ((?i)yes)/; # matches ’Answer: yes’, ’Answer: YES’, etc.

Embedded modifiers can also turn off any modifiers already present by using, e.g., (?-i).
Modifiers can also be combined into a single expression, e.g., (?s-i) turns on single line
mode and turns off case insensitivity.

Embedded modifiers may also be added to a non-capturing grouping. (?i-m:regexp)

is a non-capturing grouping that matches regexp case insensitively and turns off multi-line
mode.

68.4.5 Looking ahead and looking behind

This section concerns the lookahead and lookbehind assertions. First, a little background.

In Perl regular expressions, most regexp elements ’eat up’ a certain amount of string
when they match. For instance, the regexp element [abc}] eats up one character of the
string when it matches, in the sense that Perl moves to the next character position in the
string after the match. There are some elements, however, that don’t eat up characters
(advance the character position) if they match. The examples we have seen so far are the
anchors. The anchor ^ matches the beginning of the line, but doesn’t eat any characters.
Similarly, the word boundary anchor \b matches wherever a character matching \w is next
to a character that doesn’t, but it doesn’t eat up any characters itself. Anchors are examples
of zero-width assertions: zero-width, because they consume no characters, and assertions,
because they test some property of the string. In the context of our walk in the woods
analogy to regexp matching, most regexp elements move us along a trail, but anchors have
us stop a moment and check our surroundings. If the local environment checks out, we can
proceed forward. But if the local environment doesn’t satisfy us, we must backtrack.

Checking the environment entails either looking ahead on the trail, looking behind, or
both. ^ looks behind, to see that there are no characters before. $ looks ahead, to see that
there are no characters after. \b looks both ahead and behind, to see if the characters on
either side differ in their "word-ness".

The lookahead and lookbehind assertions are generalizations of the anchor concept.
Lookahead and lookbehind are zero-width assertions that let us specify which characters
we want to test for. The lookahead assertion is denoted by (?=regexp) and the lookbehind
assertion is denoted by (?<=fixed-regexp). Some examples are

$x = "I catch the housecat ’Tom-cat’ with catnip";

$x =~ /cat(?=\s)/; # matches ’cat’ in ’housecat’

@catwords = ($x =~ /(?<=\s)cat\w+/g); # matches,

$catwords[0] = ’catch’

$catwords[1] = ’catnip’

$x =~ /\bcat\b/; # matches ’cat’ in ’Tom-cat’

$x =~ /(?<=\s)cat(?=\s)/; # doesn’t match; no isolated ’cat’ in

middle of $x

Note that the parentheses in (?=regexp) and (?<=regexp) are non-capturing, since
these are zero-width assertions. Thus in the second regexp, the substrings captured are those
of the whole regexp itself. Lookahead (?=regexp) can match arbitrary regexps, but lookbe-
hind (?<=fixed-regexp) only works for regexps of fixed width, i.e., a fixed number of char-
acters long. Thus (?<=(ab|bc)) is fine, but (?<=(ab)*) is not. The negated versions of the
lookahead and lookbehind assertions are denoted by (?!regexp) and (?<!fixed-regexp)

respectively. They evaluate true if the regexps do not match:

$x = "foobar";

$x =~ /foo(?!bar)/; # doesn’t match, ’bar’ follows ’foo’

$x =~ /foo(?!baz)/; # matches, ’baz’ doesn’t follow ’foo’

$x =~ /(?<!\s)foo/; # matches, there is no \s before ’foo’

The \C is unsupported in lookbehind, because the already treacherous definition of \C
would become even more so when going backwards.

Here is an example where a string containing blank-separated words, numbers and single
dashes is to be split into its components. Using /\s+/ alone won’t work, because spaces
are not required between dashes, or a word or a dash. Additional places for a split are
established by looking ahead and behind:

$str = "one two - --6-8";

@toks = split / \s+ # a run of spaces

| (?<=\S) (?=-) # any non-space followed by ’-’

| (?<=-) (?=\S) # a ’-’ followed by any non-space

/x, $str; # @toks = qw(one two - - - 6 - 8)

68.4.6 Using independent subexpressions to prevent backtracking

Independent subexpressions are regular expressions, in the context of a larger regular expres-
sion, that function independently of the larger regular expression. That is, they consume as
much or as little of the string as they wish without regard for the ability of the larger regexp
to match. Independent subexpressions are represented by (?>regexp). We can illustrate
their behavior by first considering an ordinary regexp:

$x = "ab";

$x =~ /a*ab/; # matches

This obviously matches, but in the process of matching, the subexpression a* first
grabbed the a. Doing so, however, wouldn’t allow the whole regexp to match, so after
backtracking, a* eventually gave back the a and matched the empty string. Here, what a*
matched was dependent on what the rest of the regexp matched.

Contrast that with an independent subexpression:

$x =~ /(?>a*)ab/; # doesn’t match!

The independent subexpression (?>a*) doesn’t care about the rest of the regexp, so it
sees an a and grabs it. Then the rest of the regexp ab cannot match. Because (?>a*)

is independent, there is no backtracking and the independent subexpression does not give

up its a. Thus the match of the regexp as a whole fails. A similar behavior occurs with
completely independent regexps:

$x = "ab";

$x =~ /a*/g; # matches, eats an ’a’

$x =~ /\Gab/g; # doesn’t match, no ’a’ available

Here //g and \G create a ’tag team’ handoff of the string from one regexp to the other.
Regexps with an independent subexpression are much like this, with a handoff of the string
to the independent subexpression, and a handoff of the string back to the enclosing regexp.

The ability of an independent subexpression to prevent backtracking can be quite useful.
Suppose we want to match a non-empty string enclosed in parentheses up to two levels deep.
Then the following regexp matches:

$x = "abc(de(fg)h"; # unbalanced parentheses

$x =~ /\(([^()]+ | \([^()]*\))+ \)/x;

The regexp matches an open parenthesis, one or more copies of an alternation, and a
close parenthesis. The alternation is two-way, with the first alternative [^()]+ matching a
substring with no parentheses and the second alternative \([^()]*\) matching a substring
delimited by parentheses. The problem with this regexp is that it is pathological: it has
nested indeterminate quantifiers of the form (a+|b)+. We discussed in Part 1 how nested
quantifiers like this could take an exponentially long time to execute if there was no match
possible. To prevent the exponential blowup, we need to prevent useless backtracking
at some point. This can be done by enclosing the inner quantifier as an independent
subexpression:

$x =~ /\(((?>[^()]+) | \([^()]*\))+ \)/x;

Here, (?>[^()]+) breaks the degeneracy of string partitioning by gobbling up as much
of the string as possible and keeping it. Then match failures fail much more quickly.

68.4.7 Conditional expressions

A conditional expression is a form of if-then-else statement that allows one to choose which
patterns are to be matched, based on some condition. There are two types of conditional
expression: (?(condition)yes-regexp) and (?(condition)yes-regexp|no-regexp).
(?(condition)yes-regexp) is like an ’if () {}’ statement in Perl. If the condition is
true, the yes-regexp will be matched. If the condition is false, the yes-regexp will
be skipped and Perl will move onto the next regexp element. The second form is like an
’if () {} else {}’ statement in Perl. If the condition is true, the yes-regexp will be
matched, otherwise the no-regexp will be matched.

The condition can have several forms. The first form is simply an integer in parentheses
(integer). It is true if the corresponding backreference \integer matched earlier in the
regexp. The same thing can be done with a name associated with a capture group, written
as (<name>) or (’name’). The second form is a bare zero-width assertion (?...), either
a lookahead, a lookbehind, or a code assertion (discussed in the next section). The third
set of forms provides tests that return true if the expression is executed within a recursion
((R)) or is being called from some capturing group, referenced either by number ((R1),
(R2),...) or by name ((R&name)).

The integer or name form of the condition allows us to choose, with more flexibility,
what to match based on what matched earlier in the regexp. This searches for words of the
form "xx" or "xyyx":

% simple_grep ’^(\w+)(\w+)?(?(2)\g2\g1|\g1)$’ /usr/dict/words

beriberi

coco

couscous

deed

...

toot

toto

tutu

The lookbehind condition allows, along with backreferences, an earlier part of the
match to influence a later part of the match. For instance,

/[ATGC]+(?(?<=AA)G|C)$/;

matches a DNA sequence such that it either ends in AAG, or some other base pair com-
bination and C. Note that the form is (?(?<=AA)G|C) and not (?((?<=AA))G|C); for the
lookahead, lookbehind or code assertions, the parentheses around the conditional are not
needed.

68.4.8 Defining named patterns

Some regular expressions use identical subpatterns in several places. Starting with Perl
5.10, it is possible to define named subpatterns in a section of the pattern so that they can
be called up by name anywhere in the pattern. This syntactic pattern for this definition
group is (?(DEFINE)(?<name>pattern)...). An insertion of a named pattern is written
as (?&name).

The example below illustrates this feature using the pattern for floating point numbers
that was presented earlier on. The three subpatterns that are used more than once are
the optional sign, the digit sequence for an integer and the decimal fraction. The DEFINE
group at the end of the pattern contains their definition. Notice that the decimal fraction
pattern is the first place where we can reuse the integer pattern.

/^ (?&osg)\ * ((?&int)(?&dec)? | (?&dec))

(?: [eE](?&osg)(?&int))?

$

(?(DEFINE)

(?<osg>[-+]?) # optional sign

(?<int>\d++) # integer

(?<dec>\.(?&int)) # decimal fraction

)/x

68.4.9 Recursive patterns

This feature (introduced in Perl 5.10) significantly extends the power of Perl’s pattern
matching. By referring to some other capture group anywhere in the pattern with the
construct (?group-ref), the pattern within the referenced group is used as an independent
subpattern in place of the group reference itself. Because the group reference may be

contained within the group it refers to, it is now possible to apply pattern matching to
tasks that hitherto required a recursive parser.

To illustrate this feature, we’ll design a pattern that matches if a string contains a
palindrome. (This is a word or a sentence that, while ignoring spaces, interpunctuation and
case, reads the same backwards as forwards. We begin by observing that the empty string
or a string containing just one word character is a palindrome. Otherwise it must have a
word character up front and the same at its end, with another palindrome in between.

/(?: (\w) (?...Here be a palindrome...) \g{-1} | \w?)/x

Adding \W* at either end to eliminate what is to be ignored, we already have the full
pattern:

my $pp = qr/^(\W* (?: (\w) (?1) \g{-1} | \w?) \W*)$/ix;

for $s ("saippuakauppias", "A man, a plan, a canal: Panama!"){

print "’$s’ is a palindrome\n" if $s =~ /$pp/;

}

In (?...) both absolute and relative backreferences may be used. The entire pattern can
be reinserted with (?R) or (?0). If you prefer to name your groups, you can use (?&name)
to recurse into that group.

68.4.10 A bit of magic: executing Perl code in a regular
expression

Normally, regexps are a part of Perl expressions. Code evaluation expressions turn that
around by allowing arbitrary Perl code to be a part of a regexp. A code evaluation expression
is denoted (?{code}), with code a string of Perl statements.

Be warned that this feature is considered experimental, and may be changed without
notice.

Code expressions are zero-width assertions, and the value they return depends on their
environment. There are two possibilities: either the code expression is used as a conditional
in a conditional expression (?(condition)...), or it is not. If the code expression is a
conditional, the code is evaluated and the result (i.e., the result of the last statement) is
used to determine truth or falsehood. If the code expression is not used as a conditional,
the assertion always evaluates true and the result is put into the special variable $^R. The
variable $^R can then be used in code expressions later in the regexp. Here are some silly
examples:

$x = "abcdef";

$x =~ /abc(?{print "Hi Mom!";})def/; # matches,

prints ’Hi Mom!’

$x =~ /aaa(?{print "Hi Mom!";})def/; # doesn’t match,

no ’Hi Mom!’

Pay careful attention to the next example:

$x =~ /abc(?{print "Hi Mom!";})ddd/; # doesn’t match,

no ’Hi Mom!’

but why not?

At first glance, you’d think that it shouldn’t print, because obviously the ddd isn’t going
to match the target string. But look at this example:

$x =~ /abc(?{print "Hi Mom!";})[dD]dd/; # doesn’t match,

but _does_ print

Hmm. What happened here? If you’ve been following along, you know that the above
pattern should be effectively (almost) the same as the last one; enclosing the d in a character
class isn’t going to change what it matches. So why does the first not print while the second
one does?

The answer lies in the optimizations the regex engine makes. In the first case, all the
engine sees are plain old characters (aside from the ?{} construct). It’s smart enough to
realize that the string ’ddd’ doesn’t occur in our target string before actually running the
pattern through. But in the second case, we’ve tricked it into thinking that our pattern is
more complicated. It takes a look, sees our character class, and decides that it will have
to actually run the pattern to determine whether or not it matches, and in the process of
running it hits the print statement before it discovers that we don’t have a match.

To take a closer look at how the engine does optimizations, see the section Section 68.4.12
[Pragmas and debugging], page 1172 below.

More fun with ?{}:

$x =~ /(?{print "Hi Mom!";})/; # matches,

prints ’Hi Mom!’

$x =~ /(?{$c = 1;})(?{print "$c";})/; # matches,

prints ’1’

$x =~ /(?{$c = 1;})(?{print "$^R";})/; # matches,

prints ’1’

The bit of magic mentioned in the section title occurs when the regexp backtracks in the
process of searching for a match. If the regexp backtracks over a code expression and if the
variables used within are localized using local, the changes in the variables produced by
the code expression are undone! Thus, if we wanted to count how many times a character
got matched inside a group, we could use, e.g.,

$x = "aaaa";

$count = 0; # initialize ’a’ count

$c = "bob"; # test if $c gets clobbered

$x =~ /(?{local $c = 0;}) # initialize count

(a # match ’a’

(?{local $c = $c + 1;}) # increment count

)* # do this any number of times,

aa # but match ’aa’ at the end

(?{$count = $c;}) # copy local $c var into $count

/x;

print "’a’ count is $count, \$c variable is ’$c’\n";

This prints

’a’ count is 2, $c variable is ’bob’

If we replace the (?{local $c = $c + 1;}) with (?{$c = $c + 1;}), the variable
changes are not undone during backtracking, and we get

’a’ count is 4, $c variable is ’bob’

Note that only localized variable changes are undone. Other side effects of code expres-
sion execution are permanent. Thus

$x = "aaaa";

$x =~ /(a(?{print "Yow\n";}))*aa/;

produces

Yow

Yow

Yow

Yow

The result $^R is automatically localized, so that it will behave properly in the presence
of backtracking.

This example uses a code expression in a conditional to match a definite article, either
’the’ in English or ’der|die|das’ in German:

$lang = ’DE’; # use German

...

$text = "das";

print "matched\n"

if $text =~ /(?(?{

$lang eq ’EN’; # is the language English?

})

the | # if so, then match ’the’

(der|die|das) # else, match ’der|die|das’

)

/xi;

Note that the syntax here is (?(?{...})yes-regexp|no-regexp), not
(?((?{...}))yes-regexp|no-regexp). In other words, in the case of a code
expression, we don’t need the extra parentheses around the conditional.

If you try to use code expressions where the code text is contained within an interpolated
variable, rather than appearing literally in the pattern, Perl may surprise you:

$bar = 5;

$pat = ’(?{ 1 })’;

/foo(?{ $bar })bar/; # compiles ok, $bar not interpolated

/foo(?{ 1 })$bar/; # compiles ok, $bar interpolated

/foo${pat}bar/; # compile error!

$pat = qr/(?{ $foo = 1 })/; # precompile code regexp

/foo${pat}bar/; # compiles ok

If a regexp has a variable that interpolates a code expression, Perl treats the regexp as
an error. If the code expression is precompiled into a variable, however, interpolating is ok.
The question is, why is this an error?

The reason is that variable interpolation and code expressions together pose a security
risk. The combination is dangerous because many programmers who write search engines
often take user input and plug it directly into a regexp:

$regexp = <>; # read user-supplied regexp

$chomp $regexp; # get rid of possible newline

$text =~ /$regexp/; # search $text for the $regexp

If the $regexp variable contains a code expression, the user could then execute arbitrary
Perl code. For instance, some joker could search for system(’rm -rf *’); to erase your files.
In this sense, the combination of interpolation and code expressions taints your regexp. So
by default, using both interpolation and code expressions in the same regexp is not allowed.
If you’re not concerned about malicious users, it is possible to bypass this security check by
invoking use re ’eval’:

use re ’eval’; # throw caution out the door

$bar = 5;

$pat = ’(?{ 1 })’;

/foo${pat}bar/; # compiles ok

Another form of code expression is the pattern code expression. The pattern code ex-
pression is like a regular code expression, except that the result of the code evaluation is
treated as a regular expression and matched immediately. A simple example is

$length = 5;

$char = ’a’;

$x = ’aaaaabb’;

$x =~ /(??{$char x $length})/x; # matches, there are 5 of ’a’

This final example contains both ordinary and pattern code expressions. It detects
whether a binary string 1101010010001... has a Fibonacci spacing 0,1,1,2,3,5,... of the
1’s:

$x = "1101010010001000001";

$z0 = ’’; $z1 = ’0’; # initial conditions

print "It is a Fibonacci sequence\n"

if $x =~ /^1 # match an initial ’1’

(?:

((??{ $z0 })) # match some ’0’

1 # and then a ’1’

(?{ $z0 = $z1; $z1 .= $^N; })

)+ # repeat as needed

$ # that is all there is

/x;

printf "Largest sequence matched was %d\n", length($z1)-length($z0);

Remember that $^N is set to whatever was matched by the last completed capture group.
This prints

It is a Fibonacci sequence

Largest sequence matched was 5

Ha! Try that with your garden variety regexp package...

Note that the variables $z0 and $z1 are not substituted when the regexp is compiled,
as happens for ordinary variables outside a code expression. Rather, the whole code block
is parsed as perl code at the same time as perl is compiling the code containing the literal
regexp pattern.

The regexp without the //x modifier is

/^1(?:((??{ $z0 }))1(?{ $z0 = $z1; $z1 .= $^N; }))+$/

which shows that spaces are still possible in the code parts. Nevertheless, when working
with code and conditional expressions, the extended form of regexps is almost necessary in
creating and debugging regexps.

68.4.11 Backtracking control verbs

Perl 5.10 introduced a number of control verbs intended to provide detailed control over the
backtracking process, by directly influencing the regexp engine and by providing monitoring
techniques. As all the features in this group are experimental and subject to change or
removal in a future version of Perl, the interested reader is referred to Section 58.2.5 [perlre
Special Backtracking Control Verbs], page 1017 for a detailed description.

Below is just one example, illustrating the control verb (*FAIL), which may be abbre-
viated as (*F). If this is inserted in a regexp it will cause it to fail, just as it would at
some mismatch between the pattern and the string. Processing of the regexp continues as
it would after any "normal" failure, so that, for instance, the next position in the string or
another alternative will be tried. As failing to match doesn’t preserve capture groups or
produce results, it may be necessary to use this in combination with embedded code.

%count = ();

"supercalifragilisticexpialidocious" =~

/([aeiou])(?{ $count{$1}++; })(*FAIL)/i;

printf "%3d ’%s’\n", $count{$_}, $_ for (sort keys %count);

The pattern begins with a class matching a subset of letters. Whenever this matches,
a statement like $count{’a’}++; is executed, incrementing the letter’s counter. Then
(*FAIL) does what it says, and the regexp engine proceeds according to the book: as
long as the end of the string hasn’t been reached, the position is advanced before looking
for another vowel. Thus, match or no match makes no difference, and the regexp engine
proceeds until the entire string has been inspected. (It’s remarkable that an alternative
solution using something like

$count{lc($_)}++ for split(’’, "supercalifragilisticexpialidocious");

printf "%3d ’%s’\n", $count2{$_}, $_ for (qw{ a e i o u });

is considerably slower.)

68.4.12 Pragmas and debugging

Speaking of debugging, there are several pragmas available to control and debug regexps in
Perl. We have already encountered one pragma in the previous section, use re ’eval’;,
that allows variable interpolation and code expressions to coexist in a regexp. The other
pragmas are

use re ’taint’;

$tainted = <>;

@parts = ($tainted =~ /(\w+)\s+(\w+)/; # @parts is now tainted

The taint pragma causes any substrings from a match with a tainted variable to be
tainted as well. This is not normally the case, as regexps are often used to extract the
safe bits from a tainted variable. Use taint when you are not extracting safe bits, but
are performing some other processing. Both taint and eval pragmas are lexically scoped,
which means they are in effect only until the end of the block enclosing the pragmas.

use re ’/m’; # or any other flags

$multiline_string =~ /^foo/; # /m is implied

The re ’/flags’ pragma (introduced in Perl 5.14) turns on the given regular expression
flags until the end of the lexical scope. See Section “’/flags’ mode” in re for more detail.

use re ’debug’;

/^(.*)$/s; # output debugging info

use re ’debugcolor’;

/^(.*)$/s; # output debugging info in living color

The global debug and debugcolor pragmas allow one to get detailed debugging info
about regexp compilation and execution. debugcolor is the same as debug, except the
debugging information is displayed in color on terminals that can display termcap color
sequences. Here is example output:

% perl -e ’use re "debug"; "abc" =~ /a*b+c/;’

Compiling REx ’a*b+c’

size 9 first at 1

1: STAR(4)

2: EXACT <a>(0)

4: PLUS(7)

5: EXACT (0)

7: EXACT <c>(9)

9: END(0)

floating ’bc’ at 0..2147483647 (checking floating) minlen 2

Guessing start of match, REx ’a*b+c’ against ’abc’...

Found floating substr ’bc’ at offset 1...

Guessed: match at offset 0

Matching REx ’a*b+c’ against ’abc’

Setting an EVAL scope, savestack=3

0 <> <abc> | 1: STAR

EXACT <a> can match 1 times out of 32767...

Setting an EVAL scope, savestack=3

1 <a> <bc> | 4: PLUS

EXACT can match 1 times out of 32767...

Setting an EVAL scope, savestack=3

2 <ab> <c> | 7: EXACT <c>

3 <abc> <> | 9: END

Match successful!

Freeing REx: ’a*b+c’

If you have gotten this far into the tutorial, you can probably guess what the different
parts of the debugging output tell you. The first part

Compiling REx ’a*b+c’

size 9 first at 1

1: STAR(4)

2: EXACT <a>(0)

4: PLUS(7)

5: EXACT (0)

7: EXACT <c>(9)

9: END(0)

describes the compilation stage. STAR(4) means that there is a starred object, in this
case ’a’, and if it matches, goto line 4, i.e., PLUS(7). The middle lines describe some
heuristics and optimizations performed before a match:

floating ’bc’ at 0..2147483647 (checking floating) minlen 2

Guessing start of match, REx ’a*b+c’ against ’abc’...

Found floating substr ’bc’ at offset 1...

Guessed: match at offset 0

Then the match is executed and the remaining lines describe the process:

Matching REx ’a*b+c’ against ’abc’

Setting an EVAL scope, savestack=3

0 <> <abc> | 1: STAR

EXACT <a> can match 1 times out of 32767...

Setting an EVAL scope, savestack=3

1 <a> <bc> | 4: PLUS

EXACT can match 1 times out of 32767...

Setting an EVAL scope, savestack=3

2 <ab> <c> | 7: EXACT <c>

3 <abc> <> | 9: END

Match successful!

Freeing REx: ’a*b+c’

Each step is of the form n <x> <y>, with <x> the part of the string matched and <y> the
part not yet matched. The | 1: STAR says that Perl is at line number 1 in the compilation
list above. See Section 13.5 [perldebguts Debugging Regular Expressions], page 96 for much
more detail.

An alternative method of debugging regexps is to embed print statements within the
regexp. This provides a blow-by-blow account of the backtracking in an alternation:

"that this" =~ m@(?{print "Start at position ", pos, "\n";})

t(?{print "t1\n";})

h(?{print "h1\n";})

i(?{print "i1\n";})

s(?{print "s1\n";})

|

t(?{print "t2\n";})

h(?{print "h2\n";})

a(?{print "a2\n";})

t(?{print "t2\n";})

(?{print "Done at position ", pos, "\n";})

@x;

prints

Start at position 0

t1

h1

t2

h2

a2

t2

Done at position 4

68.5 BUGS

Code expressions, conditional expressions, and independent expressions are experimental.
Don’t use them in production code. Yet.

68.6 SEE ALSO

This is just a tutorial. For the full story on Perl regular expressions, see the Section 58.1
[perlre NAME], page 989 regular expressions reference page.

For more information on the matching m// and substitution s/// operators, see
Section 48.2.30 [perlop Regexp Quote-Like Operators], page 823. For information on the
split operation, see [perlfunc split], page 453.

For an excellent all-around resource on the care and feeding of regular expressions, see
the book Mastering Regular Expressions by Jeffrey Friedl (published by O’Reilly, ISBN
1556592-257-3).

68.7 AUTHOR AND COPYRIGHT

Copyright (c) 2000 Mark Kvale All rights reserved.

This document may be distributed under the same terms as Perl itself.

68.7.1 Acknowledgments

The inspiration for the stop codon DNA example came from the ZIP code example in
chapter 7 of Mastering Regular Expressions.

The author would like to thank Jeff Pinyan, Andrew Johnson, Peter Haworth, Ronald J
Kimball, and Joe Smith for all their helpful comments.

69 perlrun

69.1 NAME

perlrun - how to execute the Perl interpreter

69.2 SYNOPSIS

perl [-sTtuUWX] [-hv] [-V[:configvar]] [-cw] [-d[t][:debugger]] [-D[number/list]]
[-pna] [-Fpattern] [-l[octal]] [-0[octal/hexadecimal]] [-Idir] [-m[-]module] [-M[-]’module...’] [-f]
[-C [number/list]] [-S] [-x[dir]] [-i[extension]] [[-e|-E] ’command’] [–] [programfile] [argument]...

69.3 DESCRIPTION

The normal way to run a Perl program is by making it directly executable, or else by
passing the name of the source file as an argument on the command line. (An interactive
Perl environment is also possible–see Section 15.1 [perldebug NAME], page 120 for details
on how to do that.) Upon startup, Perl looks for your program in one of the following
places:

1. Specified line by line via -e or -E switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that
systems supporting the #! notation invoke interpreters this way. See Section 69.3.2
[Location of Perl], page 1178.)

3. Passed in implicitly via standard input. This works only if there are no filename
arguments–to pass arguments to a STDIN-read program you must explicitly specify a
"-" for the program name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless
you’ve specified a -x switch, in which case it scans for the first line starting with #! and
containing the word "perl", and starts there instead. This is useful for running a program
embedded in a larger message. (In this case you would indicate the end of the program
using the __END__ token.)

The #! line is always examined for switches as the line is being parsed. Thus, if you’re on
a machine that allows only one argument with the #! line, or worse, doesn’t even recognize
the #! line, you still can get consistent switch behaviour regardless of how Perl was invoked,
even if -x was used to find the beginning of the program.

Because historically some operating systems silently chopped off kernel interpretation
of the #! line after 32 characters, some switches may be passed in on the command line,
and some may not; you could even get a "-" without its letter, if you’re not careful. You
probably want to make sure that all your switches fall either before or after that 32-character
boundary. Most switches don’t actually care if they’re processed redundantly, but getting a
"-" instead of a complete switch could cause Perl to try to execute standard input instead
of your program. And a partial -I switch could also cause odd results.

Some switches do care if they are processed twice, for instance combinations of -l and
-0. Either put all the switches after the 32-character boundary (if applicable), or replace
the use of -0digits by BEGIN{ $/ = "\0digits"; }.

Parsing of the #! switches starts wherever "perl" is mentioned in the line. The sequences
"-*" and "- " are specifically ignored so that you could, if you were so inclined, say

#!/bin/sh

#! -*-perl-*-

eval ’exec perl -x -wS $0 ${1+"$@"}’

if 0;

to let Perl see the -p switch.

A similar trick involves the env program, if you have it.

#!/usr/bin/env perl

The examples above use a relative path to the perl interpreter, getting whatever version
is first in the user’s path. If you want a specific version of Perl, say, perl5.14.1, you should
place that directly in the #! line’s path.

If the #! line does not contain the word "perl" nor the word "indir" the program named
after the #! is executed instead of the Perl interpreter. This is slightly bizarre, but it helps
people on machines that don’t do #!, because they can tell a program that their SHELL
is /usr/bin/perl, and Perl will then dispatch the program to the correct interpreter for
them.

After locating your program, Perl compiles the entire program to an internal form. If
there are any compilation errors, execution of the program is not attempted. (This is unlike
the typical shell script, which might run part-way through before finding a syntax error.)

If the program is syntactically correct, it is executed. If the program runs off the end
without hitting an exit() or die() operator, an implicit exit(0) is provided to indicate
successful completion.

69.3.1 #! and quoting on non-Unix systems

Unix’s #! technique can be simulated on other systems:

OS/2

Put

extproc perl -S -your_switches

as the first line in *.cmd file (-S due to a bug in cmd.exe’s ‘extproc’ handling).

MS-DOS

Create a batch file to run your program, and codify it in ALTERNATE_SHEBANG

(see the dosish.h file in the source distribution for more information).

Win95/NT
The Win95/NT installation, when using the ActiveState installer for Perl, will
modify the Registry to associate the .pl extension with the perl interpreter. If
you install Perl by other means (including building from the sources), you may
have to modify the Registry yourself. Note that this means you can no longer
tell the difference between an executable Perl program and a Perl library file.

VMS

Put

$ perl -mysw ’f$env("procedure")’ ’p1’ ’p2’ ’p3’ ’p4’ ’p5’ ’p6’ ’p7’ ’p8’ !

$ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, where -mysw are any command line switches you
want to pass to Perl. You can now invoke the program directly, by saying
perl program, or as a DCL procedure, by saying @program (or implicitly via
DCL$PATH by just using the name of the program).

This incantation is a bit much to remember, but Perl will display it for you if
you say perl "-V:startperl".

Command-interpreters on non-Unix systems have rather different ideas on quoting than
Unix shells. You’ll need to learn the special characters in your command-interpreter (*, \
and " are common) and how to protect whitespace and these characters to run one-liners
(see [-e], page 1182 below).

On some systems, you may have to change single-quotes to double ones, which you must
not do on Unix or Plan 9 systems. You might also have to change a single % to a %%.

For example:

Unix

perl -e ’print "Hello world\n"’

MS-DOS, etc.

perl -e "print \"Hello world\n\""

VMS

perl -e "print ""Hello world\n"""

The problem is that none of this is reliable: it depends on the command and it is entirely
possible neither works. If 4DOS were the command shell, this would probably work better:

perl -e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

CMD.EXE in Windows NT slipped a lot of standard Unix functionality in when nobody
was looking, but just try to find documentation for its quoting rules.

There is no general solution to all of this. It’s just a mess.

69.3.2 Location of Perl

It may seem obvious to say, but Perl is useful only when users can easily find it. When
possible, it’s good for both /usr/bin/perl and /usr/local/bin/perl to be symlinks to
the actual binary. If that can’t be done, system administrators are strongly encouraged to
put (symlinks to) perl and its accompanying utilities into a directory typically found along
a user’s PATH, or in some other obvious and convenient place.

In this documentation, #!/usr/bin/perl on the first line of the program will stand in
for whatever method works on your system. You are advised to use a specific path if you
care about a specific version.

#!/usr/local/bin/perl5.14

or if you just want to be running at least version, place a statement like this at the top
of your program:

use 5.014;

69.3.3 Command Switches

As with all standard commands, a single-character switch may be clustered with the fol-
lowing switch, if any.

#!/usr/bin/perl -spi.orig # same as -s -p -i.orig

A -- signals the end of options and disables further option processing. Any arguments
after the -- are treated as filenames and arguments.

Switches include:

-0[octal/hexadecimal]
specifies the input record separator ($/) as an octal or hexadecimal number.
If there are no digits, the null character is the separator. Other switches may
precede or follow the digits. For example, if you have a version of find which
can print filenames terminated by the null character, you can say this:

find . -name ’*.orig’ -print0 | perl -n0e unlink

The special value 00 will cause Perl to slurp files in paragraph mode. Any value
0400 or above will cause Perl to slurp files whole, but by convention the value
0777 is the one normally used for this purpose.

You can also specify the separator character using hexadecimal notation: -
0xHHH..., where the H are valid hexadecimal digits. Unlike the octal form, this
one may be used to specify any Unicode character, even those beyond 0xFF.
So if you really want a record separator of 0777, specify it as -0x1FF. (This
means that you cannot use the -x option with a directory name that consists
of hexadecimal digits, or else Perl will think you have specified a hex number
to -0.)

-a

turns on autosplit mode when used with a -n or -p. An implicit split command
to the @F array is done as the first thing inside the implicit while loop produced
by the -n or -p.

perl -ane ’print pop(@F), "\n";’

is equivalent to

while (<>) {

@F = split(’ ’);

print pop(@F), "\n";

}

An alternate delimiter may be specified using -F.

-a implicitly sets -n.

-C [number/list]
The -C flag controls some of the Perl Unicode features.

As of 5.8.1, the -C can be followed either by a number or a list of option letters.
The letters, their numeric values, and effects are as follows; listing the letters
is equal to summing the numbers.

I 1 STDIN is assumed to be in UTF-8

O 2 STDOUT will be in UTF-8

E 4 STDERR will be in UTF-8

S 7 I + O + E

i 8 UTF-8 is the default PerlIO layer for input streams

o 16 UTF-8 is the default PerlIO layer for output streams

D 24 i + o

A 32 the @ARGV elements are expected to be strings encoded

in UTF-8

L 64 normally the "IOEioA" are unconditional, the L makes

them conditional on the locale environment variables

(the LC_ALL, LC_CTYPE, and LANG, in the order of

decreasing precedence) -- if the variables indicate

UTF-8, then the selected "IOEioA" are in effect

a 256 Set ${^UTF8CACHE} to -1, to run the UTF-8 caching

code in debugging mode.

For example, -COE and -C6 will both turn on UTF-8-ness on both STDOUT
and STDERR. Repeating letters is just redundant, not cumulative nor toggling.

The io options mean that any subsequent open() (or similar I/O operations)
in the current file scope will have the :utf8 PerlIO layer implicitly applied to
them, in other words, UTF-8 is expected from any input stream, and UTF-8 is
produced to any output stream. This is just the default, with explicit layers in
open() and with binmode() one can manipulate streams as usual.

-C on its own (not followed by any number or option list), or the empty string ""
for the PERL_UNICODE environment variable, has the same effect as -CSDL. In
other words, the standard I/O handles and the default open() layer are UTF-
8-fied but only if the locale environment variables indicate a UTF-8 locale. This
behaviour follows the implicit (and problematic) UTF-8 behaviour of Perl 5.8.0.
(See Section “UTF-8 no longer default under UTF-8 locales” in perl581delta.)

You can use -C0 (or "0" for PERL_UNICODE) to explicitly disable all the above
Unicode features.

The read-only magic variable ${^UNICODE} reflects the numeric value of this set-
ting. This variable is set during Perl startup and is thereafter read-only. If you
want runtime effects, use the three-arg open() (see 〈undefined〉 [perlfunc open],
page 〈undefined〉), the two-arg binmode() (see 〈undefined〉 [perlfunc binmode],
page 〈undefined〉), and the open pragma (see open).

(In Perls earlier than 5.8.1 the -C switch was a Win32-only switch that en-
abled the use of Unicode-aware "wide system call" Win32 APIs. This feature
was practically unused, however, and the command line switch was therefore
"recycled".)

Note: Since perl 5.10.1, if the -C option is used on the #! line, it must be
specified on the command line as well, since the standard streams are already
set up at this point in the execution of the perl interpreter. You can also use
binmode() to set the encoding of an I/O stream.

-c

causes Perl to check the syntax of the program and then exit without executing
it. Actually, it will execute and BEGIN, UNITCHECK, or CHECK blocks and any

use statements: these are considered as occurring outside the execution of your
program. INIT and END blocks, however, will be skipped.

-d

-dt

runs the program under the Perl debugger. See Section 15.1 [perldebug NAME],
page 120. If t is specified, it indicates to the debugger that threads will be used
in the code being debugged.

-d:MOD[=bar,baz]
-dt:MOD[=bar,baz]

runs the program under the control of a debugging, profiling, or tracing
module installed as Devel::MOD. E.g., -d:DProf executes the program using
the Devel::DProf profiler. As with the -M flag, options may be passed
to the Devel::MOD package where they will be received and interpreted by
the Devel::MOD::import routine. Again, like -M, use --d:-MOD to call
Devel::MOD::unimport instead of import. The comma-separated list of
options must follow a = character. If t is specified, it indicates to the debugger
that threads will be used in the code being debugged. See Section 15.1
[perldebug NAME], page 120.

-Dletters

-Dnumber

sets debugging flags. To watch how it executes your program, use -Dtls. (This
works only if debugging is compiled into your Perl.) Another nice value is -
Dx, which lists your compiled syntax tree. And -Dr displays compiled regular
expressions; the format of the output is explained in Section 13.1 [perldebguts
NAME], page 90.

As an alternative, specify a number instead of list of letters (e.g., -D14 is equiv-
alent to -Dtls):

1 p Tokenizing and parsing (with v, displays parse stack)

2 s Stack snapshots (with v, displays all stacks)

4 l Context (loop) stack processing

8 t Trace execution

16 o Method and overloading resolution

32 c String/numeric conversions

64 P Print profiling info, source file input state

128 m Memory and SV allocation

256 f Format processing

512 r Regular expression parsing and execution

1024 x Syntax tree dump

2048 u Tainting checks

4096 U Unofficial, User hacking (reserved for private,

unreleased use)

8192 H Hash dump -- usurps values()

16384 X Scratchpad allocation

32768 D Cleaning up

65536 S Op slab allocation

131072 T Tokenizing

262144 R Include reference counts of dumped variables (eg when

using -Ds)

524288 J show s,t,P-debug (don’t Jump over) on opcodes within

package DB

1048576 v Verbose: use in conjunction with other flags

2097152 C Copy On Write

4194304 A Consistency checks on internal structures

8388608 q quiet - currently only suppresses the "EXECUTING"

message

16777216 M trace smart match resolution

33554432 B dump suBroutine definitions, including special Blocks

like BEGIN

67108864 L trace Locale-related info; what gets output is very

subject to change

All these flags require -DDEBUGGING when you compile the Perl executable
(but see :opd in Devel-Peek or Section “’debug’ mode” in re which may change
this). See the INSTALL file in the Perl source distribution for how to do this.
This flag is automatically set if you include -g option when Configure asks you
about optimizer/debugger flags.

If you’re just trying to get a print out of each line of Perl code as it executes,
the way that sh -x provides for shell scripts, you can’t use Perl’s -D switch.
Instead do this

If you have "env" utility

env PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

Bourne shell syntax

$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

csh syntax

% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl -dS program)

See Section 15.1 [perldebug NAME], page 120 for details and variations.

-e commandline
may be used to enter one line of program. If -e is given, Perl will not look for a
filename in the argument list. Multiple -e commands may be given to build up
a multi-line script. Make sure to use semicolons where you would in a normal
program.

-E commandline
behaves just like -e, except that it implicitly enables all optional features (in
the main compilation unit). See feature.

-f

Disable executing $Config{sitelib}/sitecustomize.pl at startup.

Perl can be built so that it by default will try to execute
$Config{sitelib}/sitecustomize.pl at startup (in a BEGIN

block). This is a hook that allows the sysadmin to customize how Perl
behaves. It can for instance be used to add entries to the @INC array to make
Perl find modules in non-standard locations.

Perl actually inserts the following code:

BEGIN {

do { local $!; -f "$Config{sitelib}/sitecustomize.pl"; }

&& do "$Config{sitelib}/sitecustomize.pl";

}

Since it is an actual do (not a require), sitecustomize.pl doesn’t need to
return a true value. The code is run in package main, in its own lexical scope.
However, if the script dies, $@ will not be set.

The value of $Config{sitelib} is also determined in C code and not read from
Config.pm, which is not loaded.

The code is executed very early. For example, any changes made to @INC will
show up in the output of ‘perl -V‘. Of course, END blocks will be likewise
executed very late.

To determine at runtime if this capability has been compiled in your perl, you
can check the value of $Config{usesitecustomize}.

-Fpattern

specifies the pattern to split on for -a. The pattern may be surrounded by
//, "", or ’’, otherwise it will be put in single quotes. You can’t use literal
whitespace in the pattern.

-F implicitly sets both -a and -n.

-h

prints a summary of the options.

-i[extension]
specifies that files processed by the <> construct are to be edited in-place. It
does this by renaming the input file, opening the output file by the original
name, and selecting that output file as the default for print() statements. The
extension, if supplied, is used to modify the name of the old file to make a
backup copy, following these rules:

If no extension is supplied, and your system supports it, the original file is
kept open without a name while the output is redirected to a new file with the
original filename. When perl exits, cleanly or not, the original file is unlinked.

If the extension doesn’t contain a *, then it is appended to the end of the current
filename as a suffix. If the extension does contain one or more * characters,
then each * is replaced with the current filename. In Perl terms, you could
think of this as:

($backup = $extension) =~ s/*/$file_name/g;

This allows you to add a prefix to the backup file, instead of (or in addition to)
a suffix:

$ perl -pi’orig_*’ -e ’s/bar/baz/’ fileA # backup to

’orig_fileA’

Or even to place backup copies of the original files into another directory (pro-
vided the directory already exists):

$ perl -pi’old/*.orig’ -e ’s/bar/baz/’ fileA # backup to

’old/fileA.orig’

These sets of one-liners are equivalent:

$ perl -pi -e ’s/bar/baz/’ fileA # overwrite current file

$ perl -pi’*’ -e ’s/bar/baz/’ fileA # overwrite current file

$ perl -pi’.orig’ -e ’s/bar/baz/’ fileA # backup to ’fileA.orig’

$ perl -pi’*.orig’ -e ’s/bar/baz/’ fileA # backup to ’fileA.orig’

From the shell, saying

$ perl -p -i.orig -e "s/foo/bar/; ... "

is the same as using the program:

#!/usr/bin/perl -pi.orig

s/foo/bar/;

which is equivalent to

#!/usr/bin/perl

$extension = ’.orig’;

LINE: while (<>) {

if ($ARGV ne $oldargv) {

if ($extension !~ /*/) {

$backup = $ARGV . $extension;

}

else {

($backup = $extension) =~ s/*/$ARGV/g;

}

rename($ARGV, $backup);

open(ARGVOUT, ">$ARGV");

select(ARGVOUT);

$oldargv = $ARGV;

}

s/foo/bar/;

}

continue {

print; # this prints to original filename

}

select(STDOUT);

except that the -i form doesn’t need to compare $ARGV to $oldargv to know
when the filename has changed. It does, however, use ARGVOUT for the
selected filehandle. Note that STDOUT is restored as the default output file-
handle after the loop.

As shown above, Perl creates the backup file whether or not any output is
actually changed. So this is just a fancy way to copy files:

$ perl -p -i’/some/file/path/*’ -e 1 file1 file2 file3...

or

$ perl -p -i’.orig’ -e 1 file1 file2 file3...

You can use eof without parentheses to locate the end of each input file, in
case you want to append to each file, or reset line numbering (see example in
[perlfunc eof], page 376).

If, for a given file, Perl is unable to create the backup file as specified in the
extension then it will skip that file and continue on with the next one (if it
exists).

For a discussion of issues surrounding file permissions and -i, see Section “Why
does Perl let me delete read-only files? Why does -i clobber protected files?
Isn’t this a bug in Perl?” in perlfaq5.

You cannot use -i to create directories or to strip extensions from files.

Perl does not expand ~ in filenames, which is good, since some folks use it for
their backup files:

$ perl -pi~ -e ’s/foo/bar/’ file1 file2 file3...

Note that because -i renames or deletes the original file before creating a new
file of the same name, Unix-style soft and hard links will not be preserved.

Finally, the -i switch does not impede execution when no files are given on the
command line. In this case, no backup is made (the original file cannot, of
course, be determined) and processing proceeds from STDIN to STDOUT as
might be expected.

-Idirectory
Directories specified by -I are prepended to the search path for modules (@INC).

-l[octnum]

enables automatic line-ending processing. It has two separate effects. First, it
automatically chomps $/ (the input record separator) when used with -n or -p.
Second, it assigns $\ (the output record separator) to have the value of octnum
so that any print statements will have that separator added back on. If octnum
is omitted, sets $\ to the current value of $/. For instance, to trim lines to 80
columns:

perl -lpe ’substr($_, 80) = ""’

Note that the assignment $\ = $/ is done when the switch is processed, so the
input record separator can be different than the output record separator if the
-l switch is followed by a -0 switch:

gnufind / -print0 | perl -ln0e ’print "found $_" if -p’

This sets $\ to newline and then sets $/ to the null character.

-m[-]module
-M[-]module
-M[-]’module ...’
-[mM][-]module=arg[,arg]...

-mmodule executes use module (); before executing your program.

-Mmodule executes use module ; before executing your program. You can
use quotes to add extra code after the module name, e.g., ’-MMODULE qw(foo

bar)’.

If the first character after the -M or -m is a dash (-) then the ’use’ is replaced
with ’no’.

A little builtin syntactic sugar means you can also say -mMODULE=foo,bar or
-MMODULE=foo,bar as a shortcut for ’-MMODULE qw(foo bar)’. This avoids
the need to use quotes when importing symbols. The actual code generated by -
MMODULE=foo,bar is use module split(/,/,q{foo,bar}). Note that the =
form removes the distinction between -m and -M; that is, -mMODULE=foo,bar
is the same as -MMODULE=foo,bar.

A consequence of this is that -MMODULE=number never does a version check,
unless MODULE::import() itself is set up to do a version check, which could
happen for example if MODULE inherits from Exporter.

-n

causes Perl to assume the following loop around your program, which makes it
iterate over filename arguments somewhat like sed -n or awk :

LINE:

while (<>) {

... # your program goes here

}

Note that the lines are not printed by default. See [-p], page 1186 to have lines
printed. If a file named by an argument cannot be opened for some reason, Perl
warns you about it and moves on to the next file.

Also note that <> passes command line arguments to 〈undefined〉 [perlfunc
open], page 〈undefined〉, which doesn’t necessarily interpret them as file names.
See Section 48.1 [perlop NAME], page 798 for possible security implications.

Here is an efficient way to delete all files that haven’t been modified for at least
a week:

find . -mtime +7 -print | perl -nle unlink

This is faster than using the -exec switch of find because you don’t have to start
a process on every filename found. It does suffer from the bug of mishandling
newlines in pathnames, which you can fix if you follow the example under -0.

BEGIN and END blocks may be used to capture control before or after the implicit
program loop, just as in awk.

-p

causes Perl to assume the following loop around your program, which makes it
iterate over filename arguments somewhat like sed :

LINE:

while (<>) {

... # your program goes here

} continue {

print or die "-p destination: $!\n";

}

If a file named by an argument cannot be opened for some reason, Perl warns
you about it, and moves on to the next file. Note that the lines are printed au-
tomatically. An error occurring during printing is treated as fatal. To suppress
printing use the -n switch. A -p overrides a -n switch.

BEGIN and END blocks may be used to capture control before or after the implicit
loop, just as in awk.

-s

enables rudimentary switch parsing for switches on the command line after the
program name but before any filename arguments (or before an argument of –).
Any switch found there is removed from @ARGV and sets the corresponding
variable in the Perl program. The following program prints "1" if the program
is invoked with a -xyz switch, and "abc" if it is invoked with -xyz=abc.

#!/usr/bin/perl -s

if ($xyz) { print "$xyz\n" }

Do note that a switch like –help creates the variable ${-help}, which is not
compliant with use strict "refs". Also, when using this option on a script
with warnings enabled you may get a lot of spurious "used only once" warnings.

-S

makes Perl use the PATH environment variable to search for the program unless
the name of the program contains path separators.

On some platforms, this also makes Perl append suffixes to the filename while
searching for it. For example, on Win32 platforms, the ".bat" and ".cmd"
suffixes are appended if a lookup for the original name fails, and if the name
does not already end in one of those suffixes. If your Perl was compiled with
DEBUGGING turned on, using the -Dp switch to Perl shows how the search pro-
gresses.

Typically this is used to emulate #! startup on platforms that don’t support #!.
It’s also convenient when debugging a script that uses #!, and is thus normally
found by the shell’s $PATH search mechanism.

This example works on many platforms that have a shell compatible with
Bourne shell:

#!/usr/bin/perl

eval ’exec /usr/bin/perl -wS $0 ${1+"$@"}’

if $running_under_some_shell;

The system ignores the first line and feeds the program to /bin/sh, which
proceeds to try to execute the Perl program as a shell script. The shell exe-
cutes the second line as a normal shell command, and thus starts up the Perl
interpreter. On some systems $0 doesn’t always contain the full pathname,
so the -S tells Perl to search for the program if necessary. After Perl locates
the program, it parses the lines and ignores them because the variable $run-
ning under some shell is never true. If the program will be interpreted by csh,
you will need to replace ${1+"$@"} with $*, even though that doesn’t under-
stand embedded spaces (and such) in the argument list. To start up sh rather

than csh, some systems may have to replace the #! line with a line containing
just a colon, which will be politely ignored by Perl. Other systems can’t control
that, and need a totally devious construct that will work under any of csh, sh,
or Perl, such as the following:

eval ’(exit $?0)’ && eval ’exec perl -wS $0 ${1+"$@"}’

& eval ’exec /usr/bin/perl -wS $0 $argv:q’

if $running_under_some_shell;

If the filename supplied contains directory separators (and so is an absolute
or relative pathname), and if that file is not found, platforms that append file
extensions will do so and try to look for the file with those extensions added,
one by one.

On DOS-like platforms, if the program does not contain directory separators,
it will first be searched for in the current directory before being searched for on
the PATH. On Unix platforms, the program will be searched for strictly on the
PATH.

-t

Like -T, but taint checks will issue warnings rather than fatal errors. These
warnings can now be controlled normally with no warnings qw(taint).

Note: This is not a substitute for -T! This is meant to be used only as a
temporary development aid while securing legacy code: for real production
code and for new secure code written from scratch, always use the real -T.

-T

turns on "taint" so you can test them. Ordinarily these checks are done only
when running setuid or setgid. It’s a good idea to turn them on explicitly for
programs that run on behalf of someone else whom you might not necessarily
trust, such as CGI programs or any internet servers you might write in Perl.
See Section 70.1 [perlsec NAME], page 1198 for details. For security reasons,
this option must be seen by Perl quite early; usually this means it must appear
early on the command line or in the #! line for systems which support that
construct.

-u

This switch causes Perl to dump core after compiling your program. You can
then in theory take this core dump and turn it into an executable file by using
the undump program (not supplied). This speeds startup at the expense of
some disk space (which you can minimize by stripping the executable). (Still,
a "hello world" executable comes out to about 200K on my machine.) If you
want to execute a portion of your program before dumping, use the dump()
operator instead. Note: availability of undump is platform specific and may
not be available for a specific port of Perl.

-U

allows Perl to do unsafe operations. Currently the only "unsafe" operations are
attempting to unlink directories while running as superuser and running setuid
programs with fatal taint checks turned into warnings. Note that warnings

must be enabled along with this option to actually generate the taint-check
warnings.

-v

prints the version and patchlevel of your perl executable.

-V

prints summary of the major perl configuration values and the current values
of @INC.

-V:configvar
Prints to STDOUT the value of the named configuration variable(s), with mul-
tiples when your configvar argument looks like a regex (has non-letters). For
example:

$ perl -V:libc

libc=’/lib/libc-2.2.4.so’;

$ perl -V:lib.

libs=’-lnsl -lgdbm -ldb -ldl -lm -lcrypt -lutil -lc’;

libc=’/lib/libc-2.2.4.so’;

$ perl -V:lib.*

libpth=’/usr/local/lib /lib /usr/lib’;

libs=’-lnsl -lgdbm -ldb -ldl -lm -lcrypt -lutil -lc’;

lib_ext=’.a’;

libc=’/lib/libc-2.2.4.so’;

libperl=’libperl.a’;

....

Additionally, extra colons can be used to control formatting. A trailing colon
suppresses the linefeed and terminator ";", allowing you to embed queries into
shell commands. (mnemonic: PATH separator ":".)

$ echo "compression-vars: " ‘perl -V:z.*: ‘ " are here !"

compression-vars: zcat=’’ zip=’zip’ are here !

A leading colon removes the "name=" part of the response, this allows you to
map to the name you need. (mnemonic: empty label)

$ echo "goodvfork="‘./perl -Ilib -V::usevfork‘

goodvfork=false;

Leading and trailing colons can be used together if you need positional pa-
rameter values without the names. Note that in the case below, the PERL_API

params are returned in alphabetical order.

$ echo building_on ‘perl -V::osname: -V::PERL_API_.*:‘ now

building_on ’linux’ ’5’ ’1’ ’9’ now

-w

prints warnings about dubious constructs, such as variable names mentioned
only once and scalar variables used before being set; redefined subroutines;
references to undefined filehandles; filehandles opened read-only that you are
attempting to write on; values used as a number that don’t look like numbers;

using an array as though it were a scalar; if your subroutines recurse more than
100 deep; and innumerable other things.

This switch really just enables the global $^W variable; normally, the lexically
scoped use warnings pragma is preferred. You can disable or promote into
fatal errors specific warnings using __WARN__ hooks, as described in Section 86.1
[perlvar NAME], page 1375 and 〈undefined〉 [perlfunc warn], page 〈undefined〉.
See also Section 16.1 [perldiag NAME], page 137 and Section 80.1 [perltrap
NAME], page 1312. A fine-grained warning facility is also available if you want
to manipulate entire classes of warnings; see warnings.

-W

Enables all warnings regardless of no warnings or $^W. See warnings.

-X

Disables all warnings regardless of use warnings or $^W. See warnings.

-x

-xdirectory
tells Perl that the program is embedded in a larger chunk of unrelated text,
such as in a mail message. Leading garbage will be discarded until the first line
that starts with #! and contains the string "perl". Any meaningful switches on
that line will be applied.

All references to line numbers by the program (warnings, errors, ...) will treat
the #! line as the first line. Thus a warning on the 2nd line of the program,
which is on the 100th line in the file will be reported as line 2, not as line
100. This can be overridden by using the #line directive. (See Section 74.2.15
[perlsyn Plain Old Comments (Not!)], page 1262)

If a directory name is specified, Perl will switch to that directory before running
the program. The -x switch controls only the disposal of leading garbage. The
program must be terminated with __END__ if there is trailing garbage to be
ignored; the program can process any or all of the trailing garbage via the DATA
filehandle if desired.

The directory, if specified, must appear immediately following the -x with no
intervening whitespace.

69.4 ENVIRONMENT

HOME

Used if chdir has no argument.

LOGDIR

Used if chdir has no argument and HOME is not set.

PATH

Used in executing subprocesses, and in finding the program if -S is used.

PERL5LIB
A list of directories in which to look for Perl library files before looking in
the standard library and the current directory. Any architecture-specific

and version-specific directories, such as version/archname/, version/, or
archname/ under the specified locations are automatically included if they
exist, with this lookup done at interpreter startup time. In addition, any
directories matching the entries in $Config{inc_version_list} are added.
(These typically would be for older compatible perl versions installed in the
same directory tree.)

If PERL5LIB is not defined, PERLLIB is used. Directories are separated (like
in PATH) by a colon on Unixish platforms and by a semicolon on Windows
(the proper path separator being given by the command perl -V:path_sep).

When running taint checks, either because the program was running setuid or
setgid, or the -T or -t switch was specified, neither PERL5LIB nor PERLLIB
is consulted. The program should instead say:

use lib "/my/directory";

PERL5OPT
Command-line options (switches). Switches in this variable are treated as if
they were on every Perl command line. Only the -[CDIMUdmtwW] switches are
allowed. When running taint checks (either because the program was running
setuid or setgid, or because the -T or -t switch was used), this variable is ignored.
If PERL5OPT begins with -T, tainting will be enabled and subsequent options
ignored. If PERL5OPT begins with -t, tainting will be enabled, a writable dot
removed from @INC, and subsequent options honored.

PERLIO

A space (or colon) separated list of PerlIO layers. If perl is built to use PerlIO
system for IO (the default) these layers affect Perl’s IO.

It is conventional to start layer names with a colon (for example, :perlio) to
emphasize their similarity to variable "attributes". But the code that parses
layer specification strings, which is also used to decode the PERLIO environ-
ment variable, treats the colon as a separator.

An unset or empty PERLIO is equivalent to the default set of layers for your
platform; for example, :unix:perlio on Unix-like systems and :unix:crlf on
Windows and other DOS-like systems.

The list becomes the default for all Perl’s IO. Consequently only built-in layers
can appear in this list, as external layers (such as :encoding()) need IO in
order to load them! See open for how to add external encodings as defaults.

Layers it makes sense to include in the PERLIO environment variable are briefly
summarized below. For more details see PerlIO.

:bytes

A pseudolayer that turns the :utf8 flag off for the layer
below; unlikely to be useful on its own in the global PERLIO
environment variable. You perhaps were thinking of :crlf:bytes
or :perlio:bytes.

:crlf

A layer which does CRLF to "\n" translation distinguishing "text"
and "binary" files in the manner of MS-DOS and similar operating

systems. (It currently does not mimic MS-DOS as far as treating
of Control-Z as being an end-of-file marker.)

:mmap

A layer that implements "reading" of files by using mmap(2) to
make an entire file appear in the process’s address space, and then
using that as PerlIO’s "buffer".

:perlio

This is a re-implementation of stdio-like buffering written as a Per-
lIO layer. As such it will call whatever layer is below it for its
operations, typically :unix.

:pop

An experimental pseudolayer that removes the topmost layer. Use
with the same care as is reserved for nitroglycerine.

:raw

A pseudolayer that manipulates other layers. Applying the :raw

layer is equivalent to calling binmode($fh). It makes the stream
pass each byte as-is without translation. In particular, both CRLF
translation and intuiting :utf8 from the locale are disabled.

Unlike in earlier versions of Perl, :raw is not just the inverse of
:crlf: other layers which would affect the binary nature of the
stream are also removed or disabled.

:stdio

This layer provides a PerlIO interface by wrapping system’s ANSI
C "stdio" library calls. The layer provides both buffering and IO.
Note that the :stdio layer does not do CRLF translation even if
that is the platform’s normal behaviour. You will need a :crlf

layer above it to do that.

:unix

Low-level layer that calls read, write, lseek, etc.

:utf8

A pseudolayer that enables a flag in the layer below to tell Perl
that output should be in utf8 and that input should be regarded as
already in valid utf8 form. WARNING: It does not check for valid-
ity and as such should be handled with extreme caution for input,
because security violations can occur with non-shortest UTF-8 en-
codings, etc. Generally :encoding(utf8) is the best option when
reading UTF-8 encoded data.

:win32

On Win32 platforms this experimental layer uses native "handle"
IO rather than a Unix-like numeric file descriptor layer. Known to
be buggy in this release (5.14).

The default set of layers should give acceptable results on all platforms

For Unix platforms that will be the equivalent of "unix perlio" or "stdio".
Configure is set up to prefer the "stdio" implementation if the system’s library
provides for fast access to the buffer; otherwise, it uses the "unix perlio" im-
plementation.

On Win32 the default in this release (5.14) is "unix crlf". Win32’s "stdio" has a
number of bugs/mis-features for Perl IO which are somewhat depending on the
version and vendor of the C compiler. Using our own crlf layer as the buffer
avoids those issues and makes things more uniform. The crlf layer provides
CRLF conversion as well as buffering.

This release (5.14) uses unix as the bottom layer on Win32, and so still uses the
C compiler’s numeric file descriptor routines. There is an experimental native
win32 layer, which is expected to be enhanced and should eventually become
the default under Win32.

The PERLIO environment variable is completely ignored when Perl is run in
taint mode.

PERLIO DEBUG
If set to the name of a file or device, certain operations of PerlIO subsystem
will be logged to that file, which is opened in append mode. Typical uses are
in Unix:

% env PERLIO_DEBUG=/dev/tty perl script ...

and under Win32, the approximately equivalent:

> set PERLIO_DEBUG=CON

perl script ...

This functionality is disabled for setuid scripts and for scripts run with -T.

PERLLIB

A list of directories in which to look for Perl library files before looking in the
standard library and the current directory. If PERL5LIB is defined, PERLLIB
is not used.

The PERLLIB environment variable is completely ignored when Perl is run in
taint mode.

PERL5DB
The command used to load the debugger code. The default is:

BEGIN { require "perl5db.pl" }

The PERL5DB environment variable is only used when Perl is started with a
bare -d switch.

PERL5DB THREADED
If set to a true value, indicates to the debugger that the code being debugged
uses threads.

PERL5SHELL (specific to the Win32 port)
On Win32 ports only, may be set to an alternative shell that Perl must use
internally for executing "backtick" commands or system(). Default is cmd.exe

/x/d/c on WindowsNT and command.com /c on Windows95. The value is
considered space-separated. Precede any character that needs to be protected,
like a space or backslash, with another backslash.

Note that Perl doesn’t use COMSPEC for this purpose because COMSPEC
has a high degree of variability among users, leading to portability concerns.
Besides, Perl can use a shell that may not be fit for interactive use, and setting
COMSPEC to such a shell may interfere with the proper functioning of other
programs (which usually look in COMSPEC to find a shell fit for interactive
use).

Before Perl 5.10.0 and 5.8.8, PERL5SHELL was not taint checked when run-
ning external commands. It is recommended that you explicitly set (or delete)
$ENV{PERL5SHELL} when running in taint mode under Windows.

PERL ALLOW NON IFS LSP (specific to the Win32 port)
Set to 1 to allow the use of non-IFS compatible LSPs (Layered Service
Providers). Perl normally searches for an IFS-compatible LSP because this is
required for its emulation of Windows sockets as real filehandles. However, this
may cause problems if you have a firewall such as McAfee Guardian, which
requires that all applications use its LSP but which is not IFS-compatible,
because clearly Perl will normally avoid using such an LSP.

Setting this environment variable to 1 means that Perl will simply use the first
suitable LSP enumerated in the catalog, which keeps McAfee Guardian happy–
and in that particular case Perl still works too because McAfee Guardian’s LSP
actually plays other games which allow applications requiring IFS compatibility
to work.

PERL DEBUG MSTATS
Relevant only if Perl is compiled with the malloc included with the Perl dis-
tribution; that is, if perl -V:d_mymalloc is "define".

If set, this dumps out memory statistics after execution. If set to an integer
greater than one, also dumps out memory statistics after compilation.

PERL DESTRUCT LEVEL
Relevant only if your Perl executable was built with -DDEBUGGING, this
controls the behaviour of global destruction of objects and other references. See
Section 30.8.1 [perlhacktips PERL DESTRUCT LEVEL], page 596 for more
information.

PERL DL NONLAZY
Set to "1" to have Perl resolve all undefined symbols when it loads a dynamic
library. The default behaviour is to resolve symbols when they are used. Setting
this variable is useful during testing of extensions, as it ensures that you get an
error on misspelled function names even if the test suite doesn’t call them.

PERL ENCODING
If using the use encoding pragma without an explicit encoding name, the
PERL ENCODING environment variable is consulted for an encoding name.

PERL HASH SEED
(Since Perl 5.8.1, new semantics in Perl 5.18.0) Used to override the random-
ization of Perl’s internal hash function. The value is expressed in hexadecimal,
and may include a leading 0x. Truncated patterns are treated as though they
are suffixed with sufficient 0’s as required.

If the option is provided, and PERL_PERTURB_KEYS is NOT set, then a value of
’0’ implies PERL_PERTURB_KEYS=0 and any other value implies PERL_PERTURB_
KEYS=2.

PLEASE NOTE: The hash seed is sensitive information. Hashes are randomized
to protect against local and remote attacks against Perl code. By manually
setting a seed, this protection may be partially or completely lost.

See Section 70.4.9 [perlsec Algorithmic Complexity Attacks], page 1205,
[PERL PERTURB KEYS], page 1195, and [PERL HASH SEED DEBUG],
page 1195 for more information.

PERL PERTURB KEYS
(Since Perl 5.18.0) Set to "0" or "NO" then traversing keys will be repeatable
from run to run for the same PERL HASH SEED. Insertion into a hash will
not change the order, except to provide for more space in the hash. When
combined with setting PERL HASH SEED this mode is as close to pre 5.18
behavior as you can get.

When set to "1" or "RANDOM" then traversing keys will be randomized. Ev-
ery time a hash is inserted into the key order will change in a random fash-
ion. The order may not be repeatable in a following program run even if the
PERL HASH SEED has been specified. This is the default mode for perl.

When set to "2" or "DETERMINISTIC" then inserting keys into a hash will cause
the key order to change, but in a way that is repeatable from program run to
program run.

NOTE: Use of this option is considered insecure, and is intended only for de-
bugging non-deterministic behavior in Perl’s hash function. Do not use it in
production.

See Section 70.4.9 [perlsec Algorithmic Complexity Attacks], page 1205
and [PERL HASH SEED], page 1195 and [PERL HASH SEED DEBUG],
page 1195 for more information. You can get and set the key traversal mask
for a specific hash by using the hash_traversal_mask() function from
Hash-Util.

PERL HASH SEED DEBUG
(Since Perl 5.8.1.) Set to "1" to display (to STDERR) information about the
hash function, seed, and what type of key traversal randomization is in ef-
fect at the beginning of execution. This, combined with [PERL HASH SEED],
page 1195 and [PERL PERTURB KEYS], page 1195 is intended to aid in de-
bugging nondeterministic behaviour caused by hash randomization.

Note that any information about the hash function, especially the hash seed
is sensitive information: by knowing it, one can craft a denial-of-service at-
tack against Perl code, even remotely; see Section 70.4.9 [perlsec Algorithmic

Complexity Attacks], page 1205 for more information. Do not disclose the
hash seed to people who don’t need to know it. See also hash_seed() and
key_traversal_mask() in Hash-Util.

An example output might be:

HASH_FUNCTION = ONE_AT_A_TIME_HARD HASH_SEED = 0x652e9b9349a7a032 PERTURB_KEYS = 1 (RANDOM)

PERL MEM LOG
If your Perl was configured with -Accflags=-DPERL MEM LOG, setting the
environment variable PERL_MEM_LOG enables logging debug messages. The value
has the form <number>[m][s][t], where number is the file descriptor num-
ber you want to write to (2 is default), and the combination of letters spec-
ifies that you want information about (m)emory and/or (s)v, optionally with
(t)imestamps. For example, PERL_MEM_LOG=1mst logs all information to stdout.
You can write to other opened file descriptors in a variety of ways:

$ 3>foo3 PERL_MEM_LOG=3m perl ...

PERL ROOT (specific to the VMS port)
A translation-concealed rooted logical name that contains Perl and the
logical device for the @INC path on VMS only. Other logical names
that affect Perl on VMS include PERLSHR, PERL ENV TABLES, and
SYS$TIMEZONE DIFFERENTIAL, but are optional and discussed further
in Section 87.1 [perlvms NAME], page 1409 and in README.vms in the Perl
source distribution.

PERL SIGNALS
Available in Perls 5.8.1 and later. If set to "unsafe", the pre-Perl-5.8.0 signal
behaviour (which is immediate but unsafe) is restored. If set to safe, then safe
(but deferred) signals are used. See Section 36.3.2 [perlipc Deferred Signals
(Safe Signals)], page 671.

PERL UNICODE
Equivalent to the -C command-line switch. Note that this is not a boolean
variable. Setting this to "1" is not the right way to "enable Unicode" (what-
ever that would mean). You can use "0" to "disable Unicode", though (or
alternatively unset PERL UNICODE in your shell before starting Perl). See
the description of the -C switch for more information.

SYS$LOGIN (specific to the VMS port)
Used if chdir has no argument and HOME and LOGDIR are not set.

Perl also has environment variables that control how Perl handles data specific to par-
ticular natural languages; see Section 38.1 [perllocale NAME], page 701.

Perl and its various modules and components, including its test frameworks, may some-
times make use of certain other environment variables. Some of these are specific to a
particular platform. Please consult the appropriate module documentation and any docu-
mentation for your platform (like perlsolaris, perllinux, perlmacosx, perlwin32, etc)
for variables peculiar to those specific situations.

Perl makes all environment variables available to the program being executed, and passes
these along to any child processes it starts. However, programs running setuid would do
well to execute the following lines before doing anything else, just to keep people honest:

$ENV{PATH} = "/bin:/usr/bin"; # or whatever you need

$ENV{SHELL} = "/bin/sh" if exists $ENV{SHELL};

delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

70 perlsec

70.1 NAME

perlsec - Perl security

70.2 DESCRIPTION

Perl is designed to make it easy to program securely even when running with extra priv-
ileges, like setuid or setgid programs. Unlike most command line shells, which are based
on multiple substitution passes on each line of the script, Perl uses a more conventional
evaluation scheme with fewer hidden snags. Additionally, because the language has more
builtin functionality, it can rely less upon external (and possibly untrustworthy) programs
to accomplish its purposes.

70.3 SECURITY VULNERABILITY CONTACT
INFORMATION

If you believe you have found a security vulnerability in Perl, please email perl5-security-
report@perl.org with details. This points to a closed subscription, unarchived mailing list.
Please only use this address for security issues in the Perl core, not for modules indepen-
dently distributed on CPAN.

70.4 SECURITY MECHANISMS AND CONCERNS

70.4.1 Taint mode

Perl automatically enables a set of special security checks, called taint mode, when it detects
its program running with differing real and effective user or group IDs. The setuid bit in
Unix permissions is mode 04000, the setgid bit mode 02000; either or both may be set.
You can also enable taint mode explicitly by using the -T command line flag. This flag
is strongly suggested for server programs and any program run on behalf of someone else,
such as a CGI script. Once taint mode is on, it’s on for the remainder of your script.

While in this mode, Perl takes special precautions called taint checks to prevent both
obvious and subtle traps. Some of these checks are reasonably simple, such as verifying that
path directories aren’t writable by others; careful programmers have always used checks
like these. Other checks, however, are best supported by the language itself, and it is these
checks especially that contribute to making a set-id Perl program more secure than the
corresponding C program.

You may not use data derived from outside your program to affect something else outside
your program–at least, not by accident. All command line arguments, environment vari-
ables, locale information (see Section 38.1 [perllocale NAME], page 701), results of certain
system calls (readdir(), readlink(), the variable of shmread(), the messages returned
by msgrcv(), the password, gcos and shell fields returned by the getpwxxx() calls), and all
file input are marked as "tainted". Tainted data may not be used directly or indirectly in
any command that invokes a sub-shell, nor in any command that modifies files, directories,
or processes, with the following exceptions:

• Arguments to print and syswrite are not checked for taintedness.

• Symbolic methods

$obj->$method(@args);

and symbolic sub references

&{$foo}(@args);

$foo->(@args);

are not checked for taintedness. This requires extra carefulness unless you want external
data to affect your control flow. Unless you carefully limit what these symbolic values
are, people are able to call functions outside your Perl code, such as POSIX::system,
in which case they are able to run arbitrary external code.

• Hash keys are never tainted.

For efficiency reasons, Perl takes a conservative view of whether data is tainted. If an
expression contains tainted data, any subexpression may be considered tainted, even if the
value of the subexpression is not itself affected by the tainted data.

Because taintedness is associated with each scalar value, some elements of an array or
hash can be tainted and others not. The keys of a hash are never tainted.

For example:

$arg = shift; # $arg is tainted

$hid = $arg . ’bar’; # $hid is also tainted

$line = <>; # Tainted

$line = <STDIN>; # Also tainted

open FOO, "/home/me/bar" or die $!;

$line = <FOO>; # Still tainted

$path = $ENV{’PATH’}; # Tainted, but see below

$data = ’abc’; # Not tainted

system "echo $arg"; # Insecure

system "/bin/echo", $arg; # Considered insecure

(Perl doesn’t know about /bin/echo)

system "echo $hid"; # Insecure

system "echo $data"; # Insecure until PATH set

$path = $ENV{’PATH’}; # $path now tainted

$ENV{’PATH’} = ’/bin:/usr/bin’;

delete @ENV{’IFS’, ’CDPATH’, ’ENV’, ’BASH_ENV’};

$path = $ENV{’PATH’}; # $path now NOT tainted

system "echo $data"; # Is secure now!

open(FOO, "< $arg"); # OK - read-only file

open(FOO, "> $arg"); # Not OK - trying to write

open(FOO,"echo $arg|"); # Not OK

open(FOO,"-|")

or exec ’echo’, $arg; # Also not OK

$shout = ‘echo $arg‘; # Insecure, $shout now tainted

unlink $data, $arg; # Insecure

umask $arg; # Insecure

exec "echo $arg"; # Insecure

exec "echo", $arg; # Insecure

exec "sh", ’-c’, $arg; # Very insecure!

@files = <*.c>; # insecure (uses readdir() or similar)

@files = glob(’*.c’); # insecure (uses readdir() or similar)

In either case, the results of glob are tainted, since the list of

filenames comes from outside of the program.

$bad = ($arg, 23); # $bad will be tainted

$arg, ‘true‘; # Insecure (although it isn’t really)

If you try to do something insecure, you will get a fatal error saying something like
"Insecure dependency" or "Insecure $ENV{PATH}".

The exception to the principle of "one tainted value taints the whole expression" is with
the ternary conditional operator ?:. Since code with a ternary conditional

$result = $tainted_value ? "Untainted" : "Also untainted";

is effectively

if ($tainted_value) {

$result = "Untainted";

} else {

$result = "Also untainted";

}

it doesn’t make sense for $result to be tainted.

70.4.2 Laundering and Detecting Tainted Data

To test whether a variable contains tainted data, and whose use would thus trigger an
"Insecure dependency" message, you can use the tainted() function of the Scalar::Util
module, available in your nearby CPAN mirror, and included in Perl starting from the
release 5.8.0. Or you may be able to use the following is_tainted() function.

sub is_tainted {

local $@; # Don’t pollute caller’s value.

return ! eval { eval("#" . substr(join("", @_), 0, 0)); 1 };

}

This function makes use of the fact that the presence of tainted data anywhere within an
expression renders the entire expression tainted. It would be inefficient for every operator
to test every argument for taintedness. Instead, the slightly more efficient and conservative

approach is used that if any tainted value has been accessed within the same expression,
the whole expression is considered tainted.

But testing for taintedness gets you only so far. Sometimes you have just to clear your
data’s taintedness. Values may be untainted by using them as keys in a hash; otherwise
the only way to bypass the tainting mechanism is by referencing subpatterns from a regular
expression match. Perl presumes that if you reference a substring using $1, $2, etc. in a
non-tainting pattern, that you knew what you were doing when you wrote that pattern.
That means using a bit of thought–don’t just blindly untaint anything, or you defeat the
entire mechanism. It’s better to verify that the variable has only good characters (for certain
values of "good") rather than checking whether it has any bad characters. That’s because
it’s far too easy to miss bad characters that you never thought of.

Here’s a test to make sure that the data contains nothing but "word" characters (alpha-
betics, numerics, and underscores), a hyphen, an at sign, or a dot.

if ($data =~ /^([-\@\w.]+)$/) {

$data = $1; # $data now untainted

} else {

die "Bad data in ’$data’"; # log this somewhere

}

This is fairly secure because /\w+/ doesn’t normally match shell metacharacters, nor
are dot, dash, or at going to mean something special to the shell. Use of /.+/ would have
been insecure in theory because it lets everything through, but Perl doesn’t check for that.
The lesson is that when untainting, you must be exceedingly careful with your patterns.
Laundering data using regular expression is the only mechanism for untainting dirty data,
unless you use the strategy detailed below to fork a child of lesser privilege.

The example does not untaint $data if use locale is in effect, because the characters
matched by \w are determined by the locale. Perl considers that locale definitions are
untrustworthy because they contain data from outside the program. If you are writing
a locale-aware program, and want to launder data with a regular expression containing
\w, put no locale ahead of the expression in the same block. See Section 38.7 [perllocale
SECURITY], page 716 for further discussion and examples.

70.4.3 Switches On the "#!" Line

When you make a script executable, in order to make it usable as a command, the system
will pass switches to perl from the script’s #! line. Perl checks that any command line
switches given to a setuid (or setgid) script actually match the ones set on the #! line.
Some Unix and Unix-like environments impose a one-switch limit on the #! line, so you
may need to use something like -wU instead of -w -U under such systems. (This issue should
arise only in Unix or Unix-like environments that support #! and setuid or setgid scripts.)

70.4.4 Taint mode and @INC

When the taint mode (-T) is in effect, the "." directory is removed from @INC, and the
environment variables PERL5LIB and PERLLIB are ignored by Perl. You can still adjust @INC
from outside the program by using the -I command line option as explained in Section 69.1
[perlrun NAME], page 1176. The two environment variables are ignored because they are
obscured, and a user running a program could be unaware that they are set, whereas the
-I option is clearly visible and therefore permitted.

Another way to modify @INC without modifying the program, is to use the lib pragma,
e.g.:

perl -Mlib=/foo program

The benefit of using -Mlib=/foo over -I/foo, is that the former will automagically
remove any duplicated directories, while the latter will not.

Note that if a tainted string is added to @INC, the following problem will be reported:

Insecure dependency in require while running with -T switch

70.4.5 Cleaning Up Your Path

For "Insecure $ENV{PATH}" messages, you need to set $ENV{’PATH’} to a known value, and
each directory in the path must be absolute and non-writable by others than its owner and
group. You may be surprised to get this message even if the pathname to your executable is
fully qualified. This is not generated because you didn’t supply a full path to the program;
instead, it’s generated because you never set your PATH environment variable, or you
didn’t set it to something that was safe. Because Perl can’t guarantee that the executable in
question isn’t itself going to turn around and execute some other program that is dependent
on your PATH, it makes sure you set the PATH.

The PATH isn’t the only environment variable which can cause problems. Because some
shells may use the variables IFS, CDPATH, ENV, and BASH ENV, Perl checks that those
are either empty or untainted when starting subprocesses. You may wish to add something
like this to your setid and taint-checking scripts.

delete @ENV{qw(IFS CDPATH ENV BASH_ENV)}; # Make %ENV safer

It’s also possible to get into trouble with other operations that don’t care whether they
use tainted values. Make judicious use of the file tests in dealing with any user-supplied
filenames. When possible, do opens and such after properly dropping any special user (or
group!) privileges. Perl doesn’t prevent you from opening tainted filenames for reading,
so be careful what you print out. The tainting mechanism is intended to prevent stupid
mistakes, not to remove the need for thought.

Perl does not call the shell to expand wild cards when you pass system and exec explicit
parameter lists instead of strings with possible shell wildcards in them. Unfortunately, the
open, glob, and backtick functions provide no such alternate calling convention, so more
subterfuge will be required.

Perl provides a reasonably safe way to open a file or pipe from a setuid or setgid program:
just create a child process with reduced privilege who does the dirty work for you. First,
fork a child using the special open syntax that connects the parent and child by a pipe. Now
the child resets its ID set and any other per-process attributes, like environment variables,
umasks, current working directories, back to the originals or known safe values. Then the
child process, which no longer has any special permissions, does the open or other system
call. Finally, the child passes the data it managed to access back to the parent. Because
the file or pipe was opened in the child while running under less privilege than the parent,
it’s not apt to be tricked into doing something it shouldn’t.

Here’s a way to do backticks reasonably safely. Notice how the exec is not called with a
string that the shell could expand. This is by far the best way to call something that might
be subjected to shell escapes: just never call the shell at all.

use English;

die "Can’t fork: $!" unless defined($pid = open(KID, "-|"));

if ($pid) { # parent

while (<KID>) {

do something

}

close KID;

} else {

my @temp = ($EUID, $EGID);

my $orig_uid = $UID;

my $orig_gid = $GID;

$EUID = $UID;

$EGID = $GID;

Drop privileges

$UID = $orig_uid;

$GID = $orig_gid;

Make sure privs are really gone

($EUID, $EGID) = @temp;

die "Can’t drop privileges"

unless $UID == $EUID && $GID eq $EGID;

$ENV{PATH} = "/bin:/usr/bin"; # Minimal PATH.

Consider sanitizing the environment even more.

exec ’myprog’, ’arg1’, ’arg2’

or die "can’t exec myprog: $!";

}

A similar strategy would work for wildcard expansion via glob, although you can use
readdir instead.

Taint checking is most useful when although you trust yourself not to have written a
program to give away the farm, you don’t necessarily trust those who end up using it not to
try to trick it into doing something bad. This is the kind of security checking that’s useful
for set-id programs and programs launched on someone else’s behalf, like CGI programs.

This is quite different, however, from not even trusting the writer of the code not to try
to do something evil. That’s the kind of trust needed when someone hands you a program
you’ve never seen before and says, "Here, run this." For that kind of safety, you might want
to check out the Safe module, included standard in the Perl distribution. This module allows
the programmer to set up special compartments in which all system operations are trapped
and namespace access is carefully controlled. Safe should not be considered bullet-proof,
though: it will not prevent the foreign code to set up infinite loops, allocate gigabytes
of memory, or even abusing perl bugs to make the host interpreter crash or behave in
unpredictable ways. In any case it’s better avoided completely if you’re really concerned
about security.

70.4.6 Security Bugs

Beyond the obvious problems that stem from giving special privileges to systems as flexible
as scripts, on many versions of Unix, set-id scripts are inherently insecure right from the
start. The problem is a race condition in the kernel. Between the time the kernel opens the

file to see which interpreter to run and when the (now-set-id) interpreter turns around and
reopens the file to interpret it, the file in question may have changed, especially if you have
symbolic links on your system.

Fortunately, sometimes this kernel "feature" can be disabled. Unfortunately, there are
two ways to disable it. The system can simply outlaw scripts with any set-id bit set, which
doesn’t help much. Alternately, it can simply ignore the set-id bits on scripts.

However, if the kernel set-id script feature isn’t disabled, Perl will complain loudly that
your set-id script is insecure. You’ll need to either disable the kernel set-id script feature,
or put a C wrapper around the script. A C wrapper is just a compiled program that does
nothing except call your Perl program. Compiled programs are not subject to the kernel
bug that plagues set-id scripts. Here’s a simple wrapper, written in C:

#define REAL_PATH "/path/to/script"

main(ac, av)

char **av;

{

execv(REAL_PATH, av);

}

Compile this wrapper into a binary executable and then make it rather than your script
setuid or setgid.

In recent years, vendors have begun to supply systems free of this inherent security
bug. On such systems, when the kernel passes the name of the set-id script to open to the
interpreter, rather than using a pathname subject to meddling, it instead passes /dev/fd/3.
This is a special file already opened on the script, so that there can be no race condition for
evil scripts to exploit. On these systems, Perl should be compiled with -DSETUID_SCRIPTS_

ARE_SECURE_NOW. The Configure program that builds Perl tries to figure this out for itself,
so you should never have to specify this yourself. Most modern releases of SysVr4 and BSD
4.4 use this approach to avoid the kernel race condition.

70.4.7 Protecting Your Programs

There are a number of ways to hide the source to your Perl programs, with varying levels
of "security".

First of all, however, you can’t take away read permission, because the source code has to
be readable in order to be compiled and interpreted. (That doesn’t mean that a CGI script’s
source is readable by people on the web, though.) So you have to leave the permissions at
the socially friendly 0755 level. This lets people on your local system only see your source.

Some people mistakenly regard this as a security problem. If your program does insecure
things, and relies on people not knowing how to exploit those insecurities, it is not secure.
It is often possible for someone to determine the insecure things and exploit them without
viewing the source. Security through obscurity, the name for hiding your bugs instead of
fixing them, is little security indeed.

You can try using encryption via source filters (Filter::* from CPAN, or Filter::Util::Call
and Filter::Simple since Perl 5.8). But crackers might be able to decrypt it. You can try
using the byte code compiler and interpreter described below, but crackers might be able
to de-compile it. You can try using the native-code compiler described below, but crackers
might be able to disassemble it. These pose varying degrees of difficulty to people wanting

to get at your code, but none can definitively conceal it (this is true of every language, not
just Perl).

If you’re concerned about people profiting from your code, then the bottom line is that
nothing but a restrictive license will give you legal security. License your software and
pepper it with threatening statements like "This is unpublished proprietary software of
XYZ Corp. Your access to it does not give you permission to use it blah blah blah." You
should see a lawyer to be sure your license’s wording will stand up in court.

70.4.8 Unicode

Unicode is a new and complex technology and one may easily overlook certain security
pitfalls. See Section 83.1 [perluniintro NAME], page 1352 for an overview and Section 81.1
[perlunicode NAME], page 1317 for details, and Section 81.2.13 [perlunicode Security Im-
plications of Unicode], page 1339 for security implications in particular.

70.4.9 Algorithmic Complexity Attacks

Certain internal algorithms used in the implementation of Perl can be attacked by choosing
the input carefully to consume large amounts of either time or space or both. This can lead
into the so-called Denial of Service (DoS) attacks.

• Hash Algorithm - Hash algorithms like the one used in Perl are well known to be
vulnerable to collision attacks on their hash function. Such attacks involve constructing
a set of keys which collide into the same bucket producing inefficient behavior. Such
attacks often depend on discovering the seed of the hash function used to map the keys
to buckets. That seed is then used to brute-force a key set which can be used to mount
a denial of service attack. In Perl 5.8.1 changes were introduced to harden Perl to
such attacks, and then later in Perl 5.18.0 these features were enhanced and additional
protections added.

At the time of this writing, Perl 5.18.0 is considered to be well-hardened against al-
gorithmic complexity attacks on its hash implementation. This is largely owed to the
following measures mitigate attacks:

Hash Seed Randomization
In order to make it impossible to know what seed to generate an attack
key set for, this seed is randomly initialized at process start. This may
be overridden by using the PERL HASH SEED environment variable, see
[perlrun PERL HASH SEED], page 1195. This environment variable con-
trols how items are actually stored, not how they are presented via keys,
values and each.

Hash Traversal Randomization
Independent of which seed is used in the hash function, keys, values,
and each return items in a per-hash randomized order. Modifying a hash
by insertion will change the iteration order of that hash. This behavior
can be overridden by using hash_traversal_mask() from Hash-Util or
by using the PERL PERTURB KEYS environment variable, see [perlrun
PERL PERTURB KEYS], page 1195. Note that this feature controls the
"visible" order of the keys, and not the actual order they are stored in.

Bucket Order Perturbance
When items collide into a given hash bucket the order they are stored in
the chain is no longer predictable in Perl 5.18. This has the intention to
make it harder to observe a collision. This behavior can be overridden
by using the PERL PERTURB KEYS environment variable, see [perlrun
PERL PERTURB KEYS], page 1195.

New Default Hash Function
The default hash function has been modified with the intention of making
it harder to infer the hash seed.

Alternative Hash Functions
The source code includes multiple hash algorithms to choose from. While
we believe that the default perl hash is robust to attack, we have included
the hash function Siphash as a fall-back option. At the time of release of
Perl 5.18.0 Siphash is believed to be of cryptographic strength. This is not
the default as it is much slower than the default hash.

Without compiling a special Perl, there is no way to get the exact same behavior
of any versions prior to Perl 5.18.0. The closest one can get is by setting
PERL PERTURB KEYS to 0 and setting the PERL HASH SEED to a known
value. We do not advise those settings for production use due to the above security
considerations.

Perl has never guaranteed any ordering of the hash keys, and the ordering has already
changed several times during the lifetime of Perl 5. Also, the ordering of hash keys
has always been, and continues to be, affected by the insertion order and the history
of changes made to the hash over its lifetime.

Also note that while the order of the hash elements might be randomized, this
"pseudo-ordering" should not be used for applications like shuffling a list randomly
(use List::Util::shuffle() for that, see List-Util, a standard core module
since Perl 5.8.0; or the CPAN module Algorithm::Numerical::Shuffle), or for
generating permutations (use e.g. the CPAN modules Algorithm::Permute or
Algorithm::FastPermute), or for any cryptographic applications.

Tied hashes may have their own ordering and algorithmic complexity attacks.

• Regular expressions - Perl’s regular expression engine is so called NFA (Non-
deterministic Finite Automaton), which among other things means that it can rather
easily consume large amounts of both time and space if the regular expression may
match in several ways. Careful crafting of the regular expressions can help but quite
often there really isn’t much one can do (the book "Mastering Regular Expressions"
is required reading, see perlfaq2). Running out of space manifests itself by Perl
running out of memory.

• Sorting - the quicksort algorithm used in Perls before 5.8.0 to implement the sort()
function is very easy to trick into misbehaving so that it consumes a lot of time.
Starting from Perl 5.8.0 a different sorting algorithm, mergesort, is used by default.
Mergesort cannot misbehave on any input.

See http://www.cs.rice.edu/~scrosby/hash/ for more information, and any com-
puter science textbook on algorithmic complexity.

http://www.cs.rice.edu/~scrosby/hash/

70.5 SEE ALSO

Section 69.1 [perlrun NAME], page 1176 for its description of cleaning up environment
variables.

71 perlsource

71.1 NAME

perlsource - A guide to the Perl source tree

71.2 DESCRIPTION

This document describes the layout of the Perl source tree. If you’re hacking on the Perl
core, this will help you find what you’re looking for.

71.3 FINDING YOUR WAY AROUND

The Perl source tree is big. Here’s some of the thing you’ll find in it:

71.3.1 C code

The C source code and header files mostly live in the root of the source tree. There are a
few platform-specific directories which contain C code. In addition, some of the modules
shipped with Perl include C or XS code.

See Section 33.1 [perlinterp NAME], page 627 for more details on the files that make up
the Perl interpreter, as well as details on how it works.

71.3.2 Core modules

Modules shipped as part of the Perl core live in four subdirectories. Two of these directories
contain modules that live in the core, and two contain modules that can also be released
separately on CPAN. Modules which can be released on cpan are known as "dual-life"
modules.

• lib/

This directory contains pure-Perl modules which are only released as part of the core.
This directory contains all of the modules and their tests, unlike other core modules.

• ext/

Like lib/, this directory contains modules which are only released as part of the core.
Unlike lib/, however, a module under ext/ generally has a CPAN-style directory- and
file-layout and its own Makefile.PL. There is no expectation that a module under
ext/ will work with earlier versions of Perl 5. Hence, such a module may take full
advantage of syntactical and other improvements in Perl 5 blead.

• dist/

This directory is for dual-life modules where the blead source is canonical. Note that
some modules in this directory may not yet have been released separately on CPAN.
Modules under dist/ should make an effort to work with earlier versions of Perl 5.

• cpan/

This directory contains dual-life modules where the CPAN module is canonical. Do
not patch these modules directly! Changes to these modules should be submitted to
the maintainer of the CPAN module. Once those changes are applied and released, the
new version of the module will be incorporated into the core.

For some dual-life modules, it has not yet been determined if the CPAN version or the
blead source is canonical. Until that is done, those modules should be in cpan/.

71.3.3 Tests

The Perl core has an extensive test suite. If you add new tests (or new modules with tests),
you may need to update the t/TEST file so that the tests are run.

• Module tests

Tests for core modules in the lib/ directory are right next to the module itself. For
example, we have lib/strict.pm and lib/strict.t.

Tests for modules in ext/ and the dual-life modules are in t/ subdirectories for each
module, like a standard CPAN distribution.

• t/base/

Tests for the absolute basic functionality of Perl. This includes if, basic file reads and
writes, simple regexes, etc. These are run first in the test suite and if any of them fail,
something is really broken.

• t/cmd/

Tests for basic control structures, if/else, while, subroutines, etc.

• t/comp/

Tests for basic issues of how Perl parses and compiles itself.

• t/io/

Tests for built-in IO functions, including command line arguments.

• t/mro/

Tests for perl’s method resolution order implementations (see mro).

• t/op/

Tests for perl’s built in functions that don’t fit into any of the other directories.

• t/opbasic/

Tests for perl’s built in functions which, like those in t/op/, do not fit into any of
the other directories, but which, in addition, cannot use t/test.pl,as that program
depends on functionality which the test file itself is testing.

• t/re/

Tests for regex related functions or behaviour. (These used to live in t/op).

• t/run/

Tests for features of how perl actually runs, including exit codes and handling of PERL*
environment variables.

• t/uni/

Tests for the core support of Unicode.

• t/win32/

Windows-specific tests.

• t/porting/

Tests the state of the source tree for various common errors. For example, it tests that
everyone who is listed in the git log has a corresponding entry in the AUTHORS file.

• t/lib/

The old home for the module tests, you shouldn’t put anything new in here. There are
still some bits and pieces hanging around in here that need to be moved. Perhaps you
could move them? Thanks!

71.3.4 Documentation

All of the core documentation intended for end users lives in pod/. Individual modules
in lib/, ext/, dist/, and cpan/ usually have their own documentation, either in the
Module.pm file or an accompanying Module.pod file.

Finally, documentation intended for core Perl developers lives in the Porting/ directory.

71.3.5 Hacking tools and documentation

The Porting directory contains a grab bag of code and documentation intended to help
porters work on Perl. Some of the highlights include:

• check*

These are scripts which will check the source things like ANSI C violations, POD
encoding issues, etc.

• Maintainers, Maintainers.pl, and Maintainers.pm

These files contain information on who maintains which modules. Run perl

Porting/Maintainers -M Module::Name to find out more information about a
dual-life module.

• podtidy

Tidies a pod file. It’s a good idea to run this on a pod file you’ve patched.

71.3.6 Build system

The Perl build system starts with the Configure script in the root directory.

Platform-specific pieces of the build system also live in platform-specific directories like
win32/, vms/, etc.

The Configure script is ultimately responsible for generating a Makefile.

The build system that Perl uses is called metaconfig. This system is maintained sepa-
rately from the Perl core.

The metaconfig system has its own git repository. Please see its README file in http://

perl5.git.perl.org/metaconfig.git/ for more details.

The Cross directory contains various files related to cross-compiling Perl. See
Cross/README for more details.

71.3.7 AUTHORS

This file lists everyone who’s contributed to Perl. If you submit a patch, you should add
your name to this file as part of the patch.

71.3.8 MANIFEST

The MANIFEST file in the root of the source tree contains a list of every file in the Perl core,
as well as a brief description of each file.

You can get an overview of all the files with this command:

http://perl5.git.perl.org/metaconfig.git/
http://perl5.git.perl.org/metaconfig.git/

% perl -lne ’print if /^[^\/]+\.[ch]\s+/’ MANIFEST

72 perlstyle

72.1 NAME

perlstyle - Perl style guide

72.2 DESCRIPTION

Each programmer will, of course, have his or her own preferences in regards to format-
ting, but there are some general guidelines that will make your programs easier to read,
understand, and maintain.

The most important thing is to run your programs under the -w flag at all times. You
may turn it off explicitly for particular portions of code via the no warnings pragma or the
$^W variable if you must. You should also always run under use strict or know the reason
why not. The use sigtrap and even use diagnostics pragmas may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is
that the closing curly bracket of a multi-line BLOCK should line up with the keyword that
started the construct. Beyond that, he has other preferences that aren’t so strong:

• 4-column indent.

• Opening curly on same line as keyword, if possible, otherwise line up.

• Space before the opening curly of a multi-line BLOCK.

• One-line BLOCK may be put on one line, including curlies.

• No space before the semicolon.

• Semicolon omitted in "short" one-line BLOCK.

• Space around most operators.

• Space around a "complex" subscript (inside brackets).

• Blank lines between chunks that do different things.

• Uncuddled elses.

• No space between function name and its opening parenthesis.

• Space after each comma.

• Long lines broken after an operator (except and and or).

• Space after last parenthesis matching on current line.

• Line up corresponding items vertically.

• Omit redundant punctuation as long as clarity doesn’t suffer.

Larry has his reasons for each of these things, but he doesn’t claim that everyone else’s
mind works the same as his does.

Here are some other more substantive style issues to think about:

• Just because you CAN do something a particular way doesn’t mean that you SHOULD
do it that way. Perl is designed to give you several ways to do anything, so consider
picking the most readable one. For instance

open(FOO,$foo) || die "Can’t open $foo: $!";

is better than

die "Can’t open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier. On the
other hand

print "Starting analysis\n" if $verbose;

is better than

$verbose && print "Starting analysis\n";

because the main point isn’t whether the user typed -v or not.

Similarly, just because an operator lets you assume default arguments doesn’t mean
that you have to make use of the defaults. The defaults are there for lazy systems
programmers writing one-shot programs. If you want your program to be readable,
consider supplying the argument.

Along the same lines, just because you CAN omit parentheses in many places doesn’t
mean that you ought to:

return print reverse sort num values %array;

return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce
on the % key in vi.

Even if you aren’t in doubt, consider the mental welfare of the person who has to
maintain the code after you, and who will probably put parentheses in the wrong
place.

• Don’t go through silly contortions to exit a loop at the top or the bottom, when Perl
provides the last operator so you can exit in the middle. Just "outdent" it a little to
make it more visible:

LINE:

for (;;) {

statements;

last LINE if $foo;

next LINE if /^#/;

statements;

}

• Don’t be afraid to use loop labels–they’re there to enhance readability as well as to
allow multilevel loop breaks. See the previous example.

• Avoid using grep() (or map()) or ‘backticks‘ in a void context, that is, when you just
throw away their return values. Those functions all have return values, so use them.
Otherwise use a foreach() loop or the system() function instead.

• For portability, when using features that may not be implemented on every machine,
test the construct in an eval to see if it fails. If you know what version or patchlevel a
particular feature was implemented, you can test $] ($PERL_VERSION in English) to
see if it will be there. The Configmodule will also let you interrogate values determined
by the Configure program when Perl was installed.

• Choose mnemonic identifiers. If you can’t remember what mnemonic means, you’ve
got a problem.

• While short identifiers like $gotit are probably ok, use underscores to separate
words in longer identifiers. It is generally easier to read $var_names_like_this than

$VarNamesLikeThis, especially for non-native speakers of English. It’s also a simple
rule that works consistently with VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves low-
ercase module names for "pragma" modules like integer and strict. Other modules
should begin with a capital letter and use mixed case, but probably without under-
scores due to limitations in primitive file systems’ representations of module names as
files that must fit into a few sparse bytes.

• You may find it helpful to use letter case to indicate the scope or nature of a variable.
For example:

$ALL_CAPS_HERE constants only (beware clashes with perl vars!)

$Some_Caps_Here package-wide global/static

$no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercase. E.g., $obj->as_

string().

You can use a leading underscore to indicate that a variable or function should not be
used outside the package that defined it.

• If you have a really hairy regular expression, use the /x modifier and put in some
whitespace to make it look a little less like line noise. Don’t use slash as a delimiter
when your regexp has slashes or backslashes.

• Use the new and and or operators to avoid having to parenthesize list operators so
much, and to reduce the incidence of punctuation operators like && and ||. Call your
subroutines as if they were functions or list operators to avoid excessive ampersands
and parentheses.

• Use here documents instead of repeated print() statements.

• Line up corresponding things vertically, especially if it’d be too long to fit on one line
anyway.

$IDX = $ST_MTIME;

$IDX = $ST_ATIME if $opt_u;

$IDX = $ST_CTIME if $opt_c;

$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can’t mkdir $tmpdir: $!";

chdir($tmpdir) or die "can’t chdir $tmpdir: $!";

mkdir ’tmp’, 0777 or die "can’t mkdir $tmpdir/tmp: $!";

• Always check the return codes of system calls. Good error messages should go to
STDERR, include which program caused the problem, what the failed system call and
arguments were, and (VERY IMPORTANT) should contain the standard system error
message for what went wrong. Here’s a simple but sufficient example:

opendir(D, $dir) or die "can’t opendir $dir: $!";

• Line up your transliterations when it makes sense:

tr [abc]

[xyz];

• Think about reusability. Why waste brainpower on a one-shot when you might want
to do something like it again? Consider generalizing your code. Consider writing a

module or object class. Consider making your code run cleanly with use strict and
use warnings (or -w) in effect. Consider giving away your code. Consider changing
your whole world view. Consider... oh, never mind.

• Try to document your code and use Pod formatting in a consistent way. Here are
commonly expected conventions:

• use C<> for function, variable and module names (and more generally anything
that can be considered part of code, like filehandles or specific values). Note that
function names are considered more readable with parentheses after their name,
that is function().

• use B<> for commands names like cat or grep.

• use F<> or C<> for file names. F<> should be the only Pod code for file names, but
as most Pod formatters render it as italic, Unix and Windows paths with their
slashes and backslashes may be less readable, and better rendered with C<>.

• Be consistent.

• Be nice.

73 perlsub

73.1 NAME

perlsub - Perl subroutines

73.2 SYNOPSIS

To declare subroutines:

sub NAME; # A "forward" declaration.

sub NAME(PROTO); # ditto, but with prototypes

sub NAME : ATTRS; # with attributes

sub NAME(PROTO) : ATTRS; # with attributes and prototypes

sub NAME BLOCK # A declaration and a definition.

sub NAME(PROTO) BLOCK # ditto, but with prototypes

sub NAME(SIG) BLOCK # with a signature instead

sub NAME : ATTRS BLOCK # with attributes

sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes

sub NAME(SIG) : ATTRS BLOCK # with a signature and attributes

To define an anonymous subroutine at runtime:

$subref = sub BLOCK; # no proto

$subref = sub (PROTO) BLOCK; # with proto

$subref = sub (SIG) BLOCK; # with signature

$subref = sub : ATTRS BLOCK; # with attributes

$subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes

$subref = sub (SIG) : ATTRS BLOCK; # with signature and attributes

To import subroutines:

use MODULE qw(NAME1 NAME2 NAME3);

To call subroutines:

NAME(LIST); # & is optional with parentheses.

NAME LIST; # Parentheses optional if predeclared/imported.

&NAME(LIST); # Circumvent prototypes.

&NAME; # Makes current @_ visible to called subroutine.

73.3 DESCRIPTION

Like many languages, Perl provides for user-defined subroutines. These may be located
anywhere in the main program, loaded in from other files via the do, require, or use

keywords, or generated on the fly using eval or anonymous subroutines. You can even call
a function indirectly using a variable containing its name or a CODE reference.

The Perl model for function call and return values is simple: all functions are passed as
parameters one single flat list of scalars, and all functions likewise return to their caller one
single flat list of scalars. Any arrays or hashes in these call and return lists will collapse,
losing their identities–but you may always use pass-by-reference instead to avoid this. Both

call and return lists may contain as many or as few scalar elements as you’d like. (Often a
function without an explicit return statement is called a subroutine, but there’s really no
difference from Perl’s perspective.)

Any arguments passed in show up in the array @_. (They may also show up in lexi-
cal variables introduced by a signature; see Section 73.3.1 [Signatures], page 1220 below.)
Therefore, if you called a function with two arguments, those would be stored in $_[0]

and $_[1]. The array @_ is a local array, but its elements are aliases for the actual scalar
parameters. In particular, if an element $_[0] is updated, the corresponding argument
is updated (or an error occurs if it is not updatable). If an argument is an array or hash
element which did not exist when the function was called, that element is created only when
(and if) it is modified or a reference to it is taken. (Some earlier versions of Perl created
the element whether or not the element was assigned to.) Assigning to the whole array @_

removes that aliasing, and does not update any arguments.

A return statement may be used to exit a subroutine, optionally specifying the returned
value, which will be evaluated in the appropriate context (list, scalar, or void) depending on
the context of the subroutine call. If you specify no return value, the subroutine returns an
empty list in list context, the undefined value in scalar context, or nothing in void context.
If you return one or more aggregates (arrays and hashes), these will be flattened together
into one large indistinguishable list.

If no return is found and if the last statement is an expression, its value is returned. If
the last statement is a loop control structure like a foreach or a while, the returned value
is unspecified. The empty sub returns the empty list.

Aside from an experimental facility (see Section 73.3.1 [Signatures], page 1220 below),
Perl does not have named formal parameters. In practice all you do is assign to a my() list
of these. Variables that aren’t declared to be private are global variables. For gory details
on creating private variables, see Section 73.3.2 [Private Variables via my()], page 1223 and
Section 73.3.4 [Temporary Values via local()], page 1228. To create protected environments
for a set of functions in a separate package (and probably a separate file), see Section 40.2.2
[perlmod Packages], page 732.

Example:

sub max {

my $max = shift(@_);

foreach $foo (@_) {

$max = $foo if $max < $foo;

}

return $max;

}

$bestday = max($mon,$tue,$wed,$thu,$fri);

Example:

get a line, combining continuation lines

that start with whitespace

sub get_line {

$thisline = $lookahead; # global variables!

LINE: while (defined($lookahead = <STDIN>)) {

if ($lookahead =~ /^[\t]/) {

$thisline .= $lookahead;

}

else {

last LINE;

}

}

return $thisline;

}

$lookahead = <STDIN>; # get first line

while (defined($line = get_line())) {

...

}

Assigning to a list of private variables to name your arguments:

sub maybeset {

my($key, $value) = @_;

$Foo{$key} = $value unless $Foo{$key};

}

Because the assignment copies the values, this also has the effect of turning call-by-
reference into call-by-value. Otherwise a function is free to do in-place modifications of @_
and change its caller’s values.

upcase_in($v1, $v2); # this changes $v1 and $v2

sub upcase_in {

for (@_) { tr/a-z/A-Z/ }

}

You aren’t allowed to modify constants in this way, of course. If an argument were
actually literal and you tried to change it, you’d take a (presumably fatal) exception. For
example, this won’t work:

upcase_in("frederick");

It would be much safer if the upcase_in() function were written to return a copy of its
parameters instead of changing them in place:

($v3, $v4) = upcase($v1, $v2); # this doesn’t change $v1 and $v2

sub upcase {

return unless defined wantarray; # void context, do nothing

my @parms = @_;

for (@parms) { tr/a-z/A-Z/ }

return wantarray ? @parms : $parms[0];

}

Notice how this (unprototyped) function doesn’t care whether it was passed real scalars
or arrays. Perl sees all arguments as one big, long, flat parameter list in @_. This is one
area where Perl’s simple argument-passing style shines. The upcase() function would work
perfectly well without changing the upcase() definition even if we fed it things like this:

@newlist = upcase(@list1, @list2);

@newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:

(@a, @b) = upcase(@list1, @list2);

Like the flattened incoming parameter list, the return list is also flattened on return.
So all you have managed to do here is stored everything in @a and made @b empty. See
Section 73.3.9 [Pass by Reference], page 1236 for alternatives.

A subroutine may be called using an explicit & prefix. The & is optional in modern Perl,
as are parentheses if the subroutine has been predeclared. The & is not optional when just
naming the subroutine, such as when it’s used as an argument to defined() or undef(). Nor
is it optional when you want to do an indirect subroutine call with a subroutine name or
reference using the &$subref() or &{$subref}() constructs, although the $subref->()

notation solves that problem. See Section 62.1 [perlref NAME], page 1077 for more about
all that.

Subroutines may be called recursively. If a subroutine is called using the & form, the
argument list is optional, and if omitted, no @_ array is set up for the subroutine: the @_

array at the time of the call is visible to subroutine instead. This is an efficiency mechanism
that new users may wish to avoid.

&foo(1,2,3); # pass three arguments

foo(1,2,3); # the same

foo(); # pass a null list

&foo(); # the same

&foo; # foo() get current args, like foo(@_) !!

foo; # like foo() IFF sub foo predeclared, else "foo"

Not only does the & form make the argument list optional, it also disables any prototype
checking on arguments you do provide. This is partly for historical reasons, and partly
for having a convenient way to cheat if you know what you’re doing. See Section 73.3.10
[Prototypes], page 1238 below.

Since Perl 5.16.0, the __SUB__ token is available under use feature ’current_sub’ and
use 5.16.0. It will evaluate to a reference to the currently-running sub, which allows for
recursive calls without knowing your subroutine’s name.

use 5.16.0;

my $factorial = sub {

my ($x) = @_;

return 1 if $x == 1;

return($x * __SUB__->($x - 1));

};

The behavior of __SUB__ within a regex code block (such as /(?{...})/) is subject to
change.

Subroutines whose names are in all upper case are reserved to the Perl core, as are
modules whose names are in all lower case. A subroutine in all capitals is a loosely-held
convention meaning it will be called indirectly by the run-time system itself, usually due to
a triggered event. Subroutines whose name start with a left parenthesis are also reserved the
same way. The following is a list of some subroutines that currently do special, pre-defined
things.

documented later in this document
AUTOLOAD

documented in Section 40.1 [perlmod NAME], page 732
CLONE, CLONE_SKIP,

documented in Section 46.1 [perlobj NAME], page 769
DESTROY

documented in Section 76.1 [perltie NAME], page 1289
BINMODE, CLEAR, CLOSE, DELETE, DESTROY, EOF, EXISTS, EXTEND, FETCH,
FETCHSIZE, FILENO, FIRSTKEY, GETC, NEXTKEY, OPEN, POP, PRINT, PRINTF,
PUSH, READ, READLINE, SCALAR, SEEK, SHIFT, SPLICE, STORE, STORESIZE,
TELL, TIEARRAY, TIEHANDLE, TIEHASH, TIESCALAR, UNSHIFT, UNTIE, WRITE

documented in PerlIO-via

BINMODE, CLEARERR, CLOSE, EOF, ERROR, FDOPEN, FILENO, FILL, FLUSH, OPEN,
POPPED, PUSHED, READ, SEEK, SETLINEBUF, SYSOPEN, TELL, UNREAD, UTF8, WRITE

documented in Section 25.1 [perlfunc NAME], page 351
Section “use” in _perlfunc, Section “use” in _perlfunc, Section “require” in
_perlfunc

documented in UNIVERSAL

VERSION

documented in Section 13.1 [perldebguts NAME], page 90
DB::DB, DB::sub, DB::lsub, DB::goto, DB::postponed

undocumented, used internally by the overload feature
any starting with (

The BEGIN, UNITCHECK, CHECK, INIT and END subroutines are not so much subroutines
as named special code blocks, of which you can have more than one in a package, and which
you can not call explicitly. See Section 40.2.4 [perlmod BEGIN, UNITCHECK, CHECK,
INIT and END], page 736

73.3.1 Signatures

WARNING: Subroutine signatures are experimental. The feature may be modified or
removed in future versions of Perl.

Perl has an experimental facility to allow a subroutine’s formal parameters to be intro-
duced by special syntax, separate from the procedural code of the subroutine body. The
formal parameter list is known as a signature. The facility must be enabled first by a prag-
matic declaration, use feature ’signatures’, and it will produce a warning unless the
"experimental::signatures" warnings category is disabled.

The signature is part of a subroutine’s body. Normally the body of a subroutine is
simply a braced block of code. When using a signature, the signature is a parenthesised list
that goes immediately after the subroutine name. The signature declares lexical variables
that are in scope for the block. When the subroutine is called, the signature takes control
first. It populates the signature variables from the list of arguments that were passed. If
the argument list doesn’t meet the requirements of the signature, then it will throw an
exception. When the signature processing is complete, control passes to the block.

Positional parameters are handled by simply naming scalar variables in the signature.
For example,

sub foo ($left, $right) {

return $left + $right;

}

takes two positional parameters, which must be filled at runtime by two arguments. By
default the parameters are mandatory, and it is not permitted to pass more arguments than
expected. So the above is equivalent to

sub foo {

die "Too many arguments for subroutine" unless @_ <= 2;

die "Too few arguments for subroutine" unless @_ >= 2;

my $left = $_[0];

my $right = $_[1];

return $left + $right;

}

An argument can be ignored by omitting the main part of the name from a parameter
declaration, leaving just a bare $ sigil. For example,

sub foo ($first, $, $third) {

return "first=$first, third=$third";

}

Although the ignored argument doesn’t go into a variable, it is still mandatory for the
caller to pass it.

A positional parameter is made optional by giving a default value, separated from the
parameter name by =:

sub foo ($left, $right = 0) {

return $left + $right;

}

The above subroutine may be called with either one or two arguments. The default value
expression is evaluated when the subroutine is called, so it may provide different default
values for different calls. It is only evaluated if the argument was actually omitted from the
call. For example,

my $auto_id = 0;

sub foo ($thing, $id = $auto_id++) {

print "$thing has ID $id";

}

automatically assigns distinct sequential IDs to things for which no ID was supplied by
the caller. A default value expression may also refer to parameters earlier in the signature,
making the default for one parameter vary according to the earlier parameters. For example,

sub foo ($first_name, $surname, $nickname = $first_name) {

print "$first_name $surname is known as \"$nickname\"";

}

An optional parameter can be nameless just like a mandatory parameter. For example,

sub foo ($thing, $ = 1) {

print $thing;

}

The parameter’s default value will still be evaluated if the corresponding argument isn’t
supplied, even though the value won’t be stored anywhere. This is in case evaluating it
has important side effects. However, it will be evaluated in void context, so if it doesn’t
have side effects and is not trivial it will generate a warning if the "void" warning category
is enabled. If a nameless optional parameter’s default value is not important, it may be
omitted just as the parameter’s name was:

sub foo ($thing, $=) {

print $thing;

}

Optional positional parameters must come after all mandatory positional parameters.
(If there are no mandatory positional parameters then an optional positional parameters
can be the first thing in the signature.) If there are multiple optional positional parameters
and not enough arguments are supplied to fill them all, they will be filled from left to right.

After positional parameters, additional arguments may be captured in a slurpy param-
eter. The simplest form of this is just an array variable:

sub foo ($filter, @inputs) {

print $filter->($_) foreach @inputs;

}

With a slurpy parameter in the signature, there is no upper limit on how many arguments
may be passed. A slurpy array parameter may be nameless just like a positional parameter,
in which case its only effect is to turn off the argument limit that would otherwise apply:

sub foo ($thing, @) {

print $thing;

}

A slurpy parameter may instead be a hash, in which case the arguments available to it
are interpreted as alternating keys and values. There must be as many keys as values: if
there is an odd argument then an exception will be thrown. Keys will be stringified, and
if there are duplicates then the later instance takes precedence over the earlier, as with
standard hash construction.

sub foo ($filter, %inputs) {

print $filter->($_, $inputs{$_}) foreach sort keys %inputs;

}

A slurpy hash parameter may be nameless just like other kinds of parameter. It still
insists that the number of arguments available to it be even, even though they’re not being
put into a variable.

sub foo ($thing, %) {

print $thing;

}

A slurpy parameter, either array or hash, must be the last thing in the signature. It
may follow mandatory and optional positional parameters; it may also be the only thing in
the signature. Slurpy parameters cannot have default values: if no arguments are supplied
for them then you get an empty array or empty hash.

A signature may be entirely empty, in which case all it does is check that the caller
passed no arguments:

sub foo () {

return 123;

}

When using a signature, the arguments are still available in the special array variable
@_, in addition to the lexical variables of the signature. There is a difference between the
two ways of accessing the arguments: @_ aliases the arguments, but the signature variables
get copies of the arguments. So writing to a signature variable only changes that variable,
and has no effect on the caller’s variables, but writing to an element of @_ modifies whatever
the caller used to supply that argument.

There is a potential syntactic ambiguity between signatures and prototypes (see
Section 73.3.10 [Prototypes], page 1238), because both start with an opening parenthesis
and both can appear in some of the same places, such as just after the name in a
subroutine declaration. For historical reasons, when signatures are not enabled, any
opening parenthesis in such a context will trigger very forgiving prototype parsing. Most
signatures will be interpreted as prototypes in those circumstances, but won’t be valid
prototypes. (A valid prototype cannot contain any alphabetic character.) This will lead to
somewhat confusing error messages.

To avoid ambiguity, when signatures are enabled the special syntax for prototypes is
disabled. There is no attempt to guess whether a parenthesised group was intended to be a
prototype or a signature. To give a subroutine a prototype under these circumstances, use
a Section “Built-in Attributes” in attributes. For example,

sub foo :prototype($) { $_[0] }

It is entirely possible for a subroutine to have both a prototype and a signature. They do
different jobs: the prototype affects compilation of calls to the subroutine, and the signature
puts argument values into lexical variables at runtime. You can therefore write

sub foo ($left, $right) : prototype($$) {

return $left + $right;

}

The prototype attribute, and any other attributes, come after the signature.

73.3.2 Private Variables via my()

Synopsis:

my $foo; # declare $foo lexically local

my (@wid, %get); # declare list of variables local

my $foo = "flurp"; # declare $foo lexical, and init it

my @oof = @bar; # declare @oof lexical, and init it

my $x : Foo = $y; # similar, with an attribute applied

WARNING: The use of attribute lists on my declarations is still evolving. The current
semantics and interface are subject to change. See attributes and Attribute-Handlers.

The my operator declares the listed variables to be lexically confined to the enclosing
block, conditional (if/unless/elsif/else), loop (for/foreach/while/until/continue),
subroutine, eval, or do/require/use’d file. If more than one value is listed, the list must

be placed in parentheses. All listed elements must be legal lvalues. Only alphanumeric
identifiers may be lexically scoped–magical built-ins like $/ must currently be localized
with local instead.

Unlike dynamic variables created by the local operator, lexical variables declared with
my are totally hidden from the outside world, including any called subroutines. This is true
if it’s the same subroutine called from itself or elsewhere–every call gets its own copy.

This doesn’t mean that a my variable declared in a statically enclosing lexical scope
would be invisible. Only dynamic scopes are cut off. For example, the bumpx() function
below has access to the lexical $x variable because both the my and the sub occurred at the
same scope, presumably file scope.

my $x = 10;

sub bumpx { $x++ }

An eval(), however, can see lexical variables of the scope it is being evaluated in, so
long as the names aren’t hidden by declarations within the eval() itself. See Section 62.1
[perlref NAME], page 1077.

The parameter list to my() may be assigned to if desired, which allows you to initial-
ize your variables. (If no initializer is given for a particular variable, it is created with
the undefined value.) Commonly this is used to name input parameters to a subroutine.
Examples:

$arg = "fred"; # "global" variable

$n = cube_root(27);

print "$arg thinks the root is $n\n";

fred thinks the root is 3

sub cube_root {

my $arg = shift; # name doesn’t matter

$arg **= 1/3;

return $arg;

}

The my is simply a modifier on something you might assign to. So when you do assign
to variables in its argument list, my doesn’t change whether those variables are viewed as a
scalar or an array. So

my ($foo) = <STDIN>; # WRONG?

my @FOO = <STDIN>;

both supply a list context to the right-hand side, while

my $foo = <STDIN>;

supplies a scalar context. But the following declares only one variable:

my $foo, $bar = 1; # WRONG

That has the same effect as

my $foo;

$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement.
Thus,

my $x = $x;

can be used to initialize a new $x with the value of the old $x, and the expression

my $x = 123 and $x == 123

is false unless the old $x happened to have the value 123.

Lexical scopes of control structures are not bounded precisely by the braces that delimit
their controlled blocks; control expressions are part of that scope, too. Thus in the loop

while (my $line = <>) {

$line = lc $line;

} continue {

print $line;

}

the scope of $line extends from its declaration throughout the rest of the loop construct
(including the continue clause), but not beyond it. Similarly, in the conditional

if ((my $answer = <STDIN>) =~ /^yes$/i) {

user_agrees();

} elsif ($answer =~ /^no$/i) {

user_disagrees();

} else {

chomp $answer;

die "’$answer’ is neither ’yes’ nor ’no’";

}

the scope of $answer extends from its declaration through the rest of that conditional,
including any elsif and else clauses, but not beyond it. See Section 74.2.3 [perlsyn
Simple Statements], page 1250 for information on the scope of variables in statements with
modifiers.

The foreach loop defaults to scoping its index variable dynamically in the manner of
local. However, if the index variable is prefixed with the keyword my, or if there is already
a lexical by that name in scope, then a new lexical is created instead. Thus in the loop

for my $i (1, 2, 3) {

some_function();

}

the scope of $i extends to the end of the loop, but not beyond it, rendering the value of
$i inaccessible within some_function().

Some users may wish to encourage the use of lexically scoped variables. As an aid to
catching implicit uses to package variables, which are always global, if you say

use strict ’vars’;

then any variable mentioned from there to the end of the enclosing block must either refer
to a lexical variable, be predeclared via our or use vars, or else must be fully qualified with
the package name. A compilation error results otherwise. An inner block may countermand
this with no strict ’vars’.

A my has both a compile-time and a run-time effect. At compile time, the compiler takes
notice of it. The principal usefulness of this is to quiet use strict ’vars’, but it is also
essential for generation of closures as detailed in Section 62.1 [perlref NAME], page 1077.

Actual initialization is delayed until run time, though, so it gets executed at the appropriate
time, such as each time through a loop, for example.

Variables declared with my are not part of any package and are therefore never fully
qualified with the package name. In particular, you’re not allowed to try to make a package
variable (or other global) lexical:

my $pack::var; # ERROR! Illegal syntax

In fact, a dynamic variable (also known as package or global variables) are still accessible
using the fully qualified :: notation even while a lexical of the same name is also visible:

package main;

local $x = 10;

my $x = 20;

print "$x and $::x\n";

That will print out 20 and 10.

You may declare my variables at the outermost scope of a file to hide any such identifiers
from the world outside that file. This is similar in spirit to C’s static variables when
they are used at the file level. To do this with a subroutine requires the use of a closure
(an anonymous function that accesses enclosing lexicals). If you want to create a private
subroutine that cannot be called from outside that block, it can declare a lexical variable
containing an anonymous sub reference:

my $secret_version = ’1.001-beta’;

my $secret_sub = sub { print $secret_version };

&$secret_sub();

As long as the reference is never returned by any function within the module, no outside
module can see the subroutine, because its name is not in any package’s symbol table.
Remember that it’s not REALLY called $some_pack::secret_version or anything; it’s
just $secret version, unqualified and unqualifiable.

This does not work with object methods, however; all object methods have to be in the
symbol table of some package to be found. See Section 62.3.7 [perlref Function Templates],
page 1086 for something of a work-around to this.

73.3.3 Persistent Private Variables

There are two ways to build persistent private variables in Perl 5.10. First, you can simply
use the state feature. Or, you can use closures, if you want to stay compatible with releases
older than 5.10.

73.3.3.1 Persistent variables via state()

Beginning with Perl 5.10.0, you can declare variables with the state keyword in place of
my. For that to work, though, you must have enabled that feature beforehand, either by
using the feature pragma, or by using -E on one-liners (see feature). Beginning with Perl
5.16, the CORE::state form does not require the feature pragma.

The state keyword creates a lexical variable (following the same scoping rules as my)
that persists from one subroutine call to the next. If a state variable resides inside an
anonymous subroutine, then each copy of the subroutine has its own copy of the state
variable. However, the value of the state variable will still persist between calls to the same

copy of the anonymous subroutine. (Don’t forget that sub { ... } creates a new subroutine
each time it is executed.)

For example, the following code maintains a private counter, incremented each time the
gimme another() function is called:

use feature ’state’;

sub gimme_another { state $x; return ++$x }

And this example uses anonymous subroutines to create separate counters:

use feature ’state’;

sub create_counter {

return sub { state $x; return ++$x }

}

Also, since $x is lexical, it can’t be reached or modified by any Perl code outside.

When combined with variable declaration, simple scalar assignment to state variables
(as in state $x = 42) is executed only the first time. When such statements are evaluated
subsequent times, the assignment is ignored. The behavior of this sort of assignment to
non-scalar variables is undefined.

73.3.3.2 Persistent variables with closures

Just because a lexical variable is lexically (also called statically) scoped to its enclosing
block, eval, or do FILE, this doesn’t mean that within a function it works like a C static.
It normally works more like a C auto, but with implicit garbage collection.

Unlike local variables in C or C++, Perl’s lexical variables don’t necessarily get recycled
just because their scope has exited. If something more permanent is still aware of the
lexical, it will stick around. So long as something else references a lexical, that lexical won’t
be freed–which is as it should be. You wouldn’t want memory being free until you were
done using it, or kept around once you were done. Automatic garbage collection takes care
of this for you.

This means that you can pass back or save away references to lexical variables, whereas
to return a pointer to a C auto is a grave error. It also gives us a way to simulate C’s function
statics. Here’s a mechanism for giving a function private variables with both lexical scoping
and a static lifetime. If you do want to create something like C’s static variables, just enclose
the whole function in an extra block, and put the static variable outside the function but
in the block.

{

my $secret_val = 0;

sub gimme_another {

return ++$secret_val;

}

}

$secret_val now becomes unreachable by the outside

world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate file via require or use, then this
is probably just fine. If it’s all in the main program, you’ll need to arrange for the my to
be executed early, either by putting the whole block above your main program, or more

likely, placing merely a BEGIN code block around it to make sure it gets executed before
your program starts to run:

BEGIN {

my $secret_val = 0;

sub gimme_another {

return ++$secret_val;

}

}

See Section 40.2.4 [perlmod BEGIN, UNITCHECK, CHECK, INIT and END], page 736
about the special triggered code blocks, BEGIN, UNITCHECK, CHECK, INIT and END.

If declared at the outermost scope (the file scope), then lexicals work somewhat like C’s
file statics. They are available to all functions in that same file declared below them, but
are inaccessible from outside that file. This strategy is sometimes used in modules to create
private variables that the whole module can see.

73.3.4 Temporary Values via local()

WARNING: In general, you should be using my instead of local, because it’s faster and
safer. Exceptions to this include the global punctuation variables, global filehandles and
formats, and direct manipulation of the Perl symbol table itself. local is mostly used when
the current value of a variable must be visible to called subroutines.

Synopsis:

localization of values

local $foo; # make $foo dynamically local

local (@wid, %get); # make list of variables local

local $foo = "flurp"; # make $foo dynamic, and init it

local @oof = @bar; # make @oof dynamic, and init it

local $hash{key} = "val"; # sets a local value for this hash entry

delete local $hash{key}; # delete this entry for the current block

local ($cond ? $v1 : $v2); # several types of lvalues support

localization

localization of symbols

local *FH; # localize $FH, @FH, %FH, &FH ...

local *merlyn = *randal; # now $merlyn is really $randal, plus

@merlyn is really @randal, etc

local *merlyn = ’randal’; # SAME THING: promote ’randal’ to *randal

local *merlyn = \$randal; # just alias $merlyn, not @merlyn etc

A local modifies its listed variables to be "local" to the enclosing block, eval, or do

FILE–and to any subroutine called from within that block. A local just gives temporary
values to global (meaning package) variables. It does not create a local variable. This is
known as dynamic scoping. Lexical scoping is done with my, which works more like C’s auto
declarations.

Some types of lvalues can be localized as well: hash and array elements and slices,
conditionals (provided that their result is always localizable), and symbolic references. As
for simple variables, this creates new, dynamically scoped values.

If more than one variable or expression is given to local, they must be placed in paren-
theses. This operator works by saving the current values of those variables in its argument
list on a hidden stack and restoring them upon exiting the block, subroutine, or eval. This
means that called subroutines can also reference the local variable, but not the global one.
The argument list may be assigned to if desired, which allows you to initialize your local
variables. (If no initializer is given for a particular variable, it is created with an undefined
value.)

Because local is a run-time operator, it gets executed each time through a loop. Con-
sequently, it’s more efficient to localize your variables outside the loop.

73.3.4.1 Grammatical note on local()

A local is simply a modifier on an lvalue expression. When you assign to a localized
variable, the local doesn’t change whether its list is viewed as a scalar or an array. So

local($foo) = <STDIN>;

local @FOO = <STDIN>;

both supply a list context to the right-hand side, while

local $foo = <STDIN>;

supplies a scalar context.

73.3.4.2 Localization of special variables

If you localize a special variable, you’ll be giving a new value to it, but its magic won’t go
away. That means that all side-effects related to this magic still work with the localized
value.

This feature allows code like this to work :

Read the whole contents of FILE in $slurp

{ local $/ = undef; $slurp = <FILE>; }

Note, however, that this restricts localization of some values ; for example, the following
statement dies, as of perl 5.10.0, with an error Modification of a read-only value attempted,
because the $1 variable is magical and read-only :

local $1 = 2;

One exception is the default scalar variable: starting with perl 5.14 local($_) will
always strip all magic from $, to make it possible to safely reuse $ in a subroutine.

WARNING: Localization of tied arrays and hashes does not currently work as described.
This will be fixed in a future release of Perl; in the meantime, avoid code that relies on
any particular behavior of localising tied arrays or hashes (localising individual elements is
still okay). See Section “Localising Tied Arrays and Hashes Is Broken” in perl58delta for
more details.

73.3.4.3 Localization of globs

The construct

local *name;

creates a whole new symbol table entry for the glob name in the current package. That
means that all variables in its glob slot ($name, @name, %name, &name, and the name

filehandle) are dynamically reset.

This implies, among other things, that any magic eventually carried by those variables
is locally lost. In other words, saying local */ will not have any effect on the internal value
of the input record separator.

73.3.4.4 Localization of elements of composite types

It’s also worth taking a moment to explain what happens when you localize a member of
a composite type (i.e. an array or hash element). In this case, the element is localized
by name. This means that when the scope of the local() ends, the saved value will be
restored to the hash element whose key was named in the local(), or the array element
whose index was named in the local(). If that element was deleted while the local() was
in effect (e.g. by a delete() from a hash or a shift() of an array), it will spring back into
existence, possibly extending an array and filling in the skipped elements with undef. For
instance, if you say

%hash = (’This’ => ’is’, ’a’ => ’test’);

@ary = (0..5);

{

local($ary[5]) = 6;

local($hash{’a’}) = ’drill’;

while (my $e = pop(@ary)) {

print "$e . . .\n";

last unless $e > 3;

}

if (@ary) {

$hash{’only a’} = ’test’;

delete $hash{’a’};

}

}

print join(’ ’, map { "$_ $hash{$_}" } sort keys %hash),".\n";

print "The array has ",scalar(@ary)," elements: ",

join(’, ’, map { defined $_ ? $_ : ’undef’ } @ary),"\n";

Perl will print

6 . . .

4 . . .

3 . . .

This is a test only a test.

The array has 6 elements: 0, 1, 2, undef, undef, 5

The behavior of local() on non-existent members of composite types is subject to change
in future.

73.3.4.5 Localized deletion of elements of composite types

You can use the delete local $array[$idx] and delete local $hash{key} constructs
to delete a composite type entry for the current block and restore it when it ends. They

return the array/hash value before the localization, which means that they are respectively
equivalent to

do {

my $val = $array[$idx];

local $array[$idx];

delete $array[$idx];

$val

}

and

do {

my $val = $hash{key};

local $hash{key};

delete $hash{key};

$val

}

except that for those the local is scoped to the do block. Slices are also accepted.

my %hash = (

a => [7, 8, 9],

b => 1,

)

{

my $a = delete local $hash{a};

$a is [7, 8, 9]

%hash is (b => 1)

{

my @nums = delete local @$a[0, 2]

@nums is (7, 9)

$a is [undef, 8]

$a[0] = 999; # will be erased when the scope ends

}

$a is back to [7, 8, 9]

}

%hash is back to its original state

73.3.5 Lvalue subroutines

It is possible to return a modifiable value from a subroutine. To do this, you have to declare
the subroutine to return an lvalue.

my $val;

sub canmod : lvalue {

$val; # or: return $val;

}

sub nomod {

$val;

}

canmod() = 5; # assigns to $val

nomod() = 5; # ERROR

The scalar/list context for the subroutine and for the right-hand side of assignment is
determined as if the subroutine call is replaced by a scalar. For example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in a scalar context, while in:

(data(2,3)) = get_data(3,4);

and in:

(data(2),data(3)) = get_data(3,4);

all the subroutines are called in a list context.

Lvalue subroutines are convenient, but you have to keep in mind that, when used with
objects, they may violate encapsulation. A normal mutator can check the supplied argument
before setting the attribute it is protecting, an lvalue subroutine cannot. If you require any
special processing when storing and retrieving the values, consider using the CPAN module
Sentinel or something similar.

73.3.6 Lexical Subroutines

WARNING: Lexical subroutines are still experimental. The feature may be modified or
removed in future versions of Perl.

Lexical subroutines are only available under the use feature ’lexical_subs’ pragma,
which produces a warning unless the "experimental::lexical subs" warnings category is dis-
abled.

Beginning with Perl 5.18, you can declare a private subroutine with my or state. As
with state variables, the state keyword is only available under use feature ’state’ or
use 5.010 or higher.

These subroutines are only visible within the block in which they are declared, and only
after that declaration:

no warnings "experimental::lexical_subs";

use feature ’lexical_subs’;

foo(); # calls the package/global subroutine

state sub foo {

foo(); # also calls the package subroutine

}

foo(); # calls "state" sub

my $ref = \&foo; # take a reference to "state" sub

my sub bar { ... }

bar(); # calls "my" sub

To use a lexical subroutine from inside the subroutine itself, you must predeclare it. The
sub foo {...} subroutine definition syntax respects any previous my sub; or state sub;

declaration.

my sub baz; # predeclaration

sub baz { # define the "my" sub

baz(); # recursive call

}

73.3.6.1 state sub vs my sub

What is the difference between "state" subs and "my" subs? Each time that execution
enters a block when "my" subs are declared, a new copy of each sub is created. "State"
subroutines persist from one execution of the containing block to the next.

So, in general, "state" subroutines are faster. But "my" subs are necessary if you want
to create closures:

no warnings "experimental::lexical_subs";

use feature ’lexical_subs’;

sub whatever {

my $x = shift;

my sub inner {

... do something with $x ...

}

inner();

}

In this example, a new $x is created when whatever is called, and also a new inner,
which can see the new $x. A "state" sub will only see the $x from the first call to whatever.

73.3.6.2 our subroutines

Like our $variable, our sub creates a lexical alias to the package subroutine of the same
name.

The two main uses for this are to switch back to using the package sub inside an inner
scope:

no warnings "experimental::lexical_subs";

use feature ’lexical_subs’;

sub foo { ... }

sub bar {

my sub foo { ... }

{

need to use the outer foo here

our sub foo;

foo();

}

}

and to make a subroutine visible to other packages in the same scope:

package MySneakyModule;

no warnings "experimental::lexical_subs";

use feature ’lexical_subs’;

our sub do_something { ... }

sub do_something_with_caller {

package DB;

() = caller 1; # sets @DB::args

do_something(@args); # uses MySneakyModule::do_something

}

73.3.7 Passing Symbol Table Entries (typeglobs)

WARNING: The mechanism described in this section was originally the only way to simulate
pass-by-reference in older versions of Perl. While it still works fine in modern versions, the
new reference mechanism is generally easier to work with. See below.

Sometimes you don’t want to pass the value of an array to a subroutine but rather the
name of it, so that the subroutine can modify the global copy of it rather than working
with a local copy. In perl you can refer to all objects of a particular name by prefixing the
name with a star: *foo. This is often known as a "typeglob", because the star on the front
can be thought of as a wildcard match for all the funny prefix characters on variables and
subroutines and such.

When evaluated, the typeglob produces a scalar value that represents all the objects of
that name, including any filehandle, format, or subroutine. When assigned to, it causes the
name mentioned to refer to whatever * value was assigned to it. Example:

sub doubleary {

local(*someary) = @_;

foreach $elem (@someary) {

$elem *= 2;

}

}

doubleary(*foo);

doubleary(*bar);

Scalars are already passed by reference, so you can modify scalar arguments without
using this mechanism by referring explicitly to $_[0] etc. You can modify all the elements
of an array by passing all the elements as scalars, but you have to use the * mechanism (or
the equivalent reference mechanism) to push, pop, or change the size of an array. It will
certainly be faster to pass the typeglob (or reference).

Even if you don’t want to modify an array, this mechanism is useful for passing multiple
arrays in a single LIST, because normally the LIST mechanism will merge all the array
values so that you can’t extract out the individual arrays. For more on typeglobs, see
Section 11.2.10 [perldata Typeglobs and Filehandles], page 85.

73.3.8 When to Still Use local()

Despite the existence of my, there are still three places where the local operator still shines.
In fact, in these three places, you must use local instead of my.

1. You need to give a global variable a temporary value, especially $.

The global variables, like @ARGV or the punctuation variables, must be localized with
local(). This block reads in /etc/motd, and splits it up into chunks separated by
lines of equal signs, which are placed in @Fields.

{

local @ARGV = ("/etc/motd");

local $/ = undef;

local $_ = <>;

@Fields = split /^\s*=+\s*$/;

}

It particular, it’s important to localize $ in any routine that assigns to it. Look out
for implicit assignments in while conditionals.

2. You need to create a local file or directory handle or a local function.

A function that needs a filehandle of its own must use local() on a complete typeglob.
This can be used to create new symbol table entries:

sub ioqueue {

local (*READER, *WRITER); # not my!

pipe (READER, WRITER) or die "pipe: $!";

return (*READER, *WRITER);

}

($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table entries.

Because assignment of a reference to a typeglob creates an alias, this can be used to
create what is effectively a local function, or at least, a local alias.

{

local *grow = \&shrink; # only until this block exits

grow(); # really calls shrink()

move(); # if move() grow()s, it shrink()s too

}

grow(); # get the real grow() again

See Section 62.3.7 [perlref Function Templates], page 1086 for more about manipulating
functions by name in this way.

3. You want to temporarily change just one element of an array or hash.

You can localize just one element of an aggregate. Usually this is done on dynamics:

{

local $SIG{INT} = ’IGNORE’;

funct(); # uninterruptible

}

interruptibility automatically restored here

But it also works on lexically declared aggregates.

73.3.9 Pass by Reference

If you want to pass more than one array or hash into a function–or return them from it–and
have them maintain their integrity, then you’re going to have to use an explicit pass-by-
reference. Before you do that, you need to understand references as detailed in Section 62.1
[perlref NAME], page 1077. This section may not make much sense to you otherwise.

Here are a few simple examples. First, let’s pass in several arrays to a function and have
it pop all of then, returning a new list of all their former last elements:

@tailings = popmany (\@a, \@b, \@c, \@d);

sub popmany {

my $aref;

my @retlist = ();

foreach $aref (@_) {

push @retlist, pop @$aref;

}

return @retlist;

}

Here’s how you might write a function that returns a list of keys occurring in all the
hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);

sub inter {

my ($k, $href, %seen); # locals

foreach $href (@_) {

while ($k = each %$href) {

$seen{$k}++;

}

}

return grep { $seen{$_} == @_ } keys %seen;

}

So far, we’re using just the normal list return mechanism. What happens if you want
to pass or return a hash? Well, if you’re using only one of them, or you don’t mind them
concatenating, then the normal calling convention is ok, although a little expensive.

Where people get into trouble is here:

(@a, @b) = func(@c, @d);

or

(%a, %b) = func(%c, %d);

That syntax simply won’t work. It sets just @a or %a and clears the @b or %b. Plus the
function didn’t get passed into two separate arrays or hashes: it got one long list in @_, as
always.

If you can arrange for everyone to deal with this through references, it’s cleaner code,
although not so nice to look at. Here’s a function that takes two array references as ar-
guments, returning the two array elements in order of how many elements they have in
them:

($aref, $bref) = func(\@c, \@d);

print "@$aref has more than @$bref\n";

sub func {

my ($cref, $dref) = @_;

if (@$cref > @$dref) {

return ($cref, $dref);

} else {

return ($dref, $cref);

}

}

It turns out that you can actually do this also:

(*a, *b) = func(\@c, \@d);

print "@a has more than @b\n";

sub func {

local (*c, *d) = @_;

if (@c > @d) {

return (\@c, \@d);

} else {

return (\@d, \@c);

}

}

Here we’re using the typeglobs to do symbol table aliasing. It’s a tad subtle, though,
and also won’t work if you’re using my variables, because only globals (even in disguise as
locals) are in the symbol table.

If you’re passing around filehandles, you could usually just use the bare typeglob, like
*STDOUT, but typeglobs references work, too. For example:

splutter(*STDOUT);

sub splutter {

my $fh = shift;

print $fh "her um well a hmmm\n";

}

$rec = get_rec(*STDIN);

sub get_rec {

my $fh = shift;

return scalar <$fh>;

}

If you’re planning on generating new filehandles, you could do this. Notice to pass back
just the bare *FH, not its reference.

sub openit {

my $path = shift;

local *FH;

return open (FH, $path) ? *FH : undef;

}

73.3.10 Prototypes

Perl supports a very limited kind of compile-time argument checking using function pro-
totyping. This can be declared in either the PROTO section or with a Section “Built-in
Attributes” in attributes. If you declare either of

sub mypush (+@)

sub mypush :prototype(+@)

then mypush() takes arguments exactly like push() does.

If subroutine signatures are enabled (see Section 73.3.1 [Signatures], page 1220), then
the shorter PROTO syntax is unavailable, because it would clash with signatures. In that
case, a prototype can only be declared in the form of an attribute.

The function declaration must be visible at compile time. The prototype affects only
interpretation of new-style calls to the function, where new-style is defined as not using
the & character. In other words, if you call it like a built-in function, then it behaves like
a built-in function. If you call it like an old-fashioned subroutine, then it behaves like
an old-fashioned subroutine. It naturally falls out from this rule that prototypes have no
influence on subroutine references like \&foo or on indirect subroutine calls like &{$subref}
or $subref->().

Method calls are not influenced by prototypes either, because the function to be called
is indeterminate at compile time, since the exact code called depends on inheritance.

Because the intent of this feature is primarily to let you define subroutines that work like
built-in functions, here are prototypes for some other functions that parse almost exactly
like the corresponding built-in.

Declared as Called as

sub mylink ($$) mylink $old, $new

sub myvec ($$$) myvec $var, $offset, 1

sub myindex ($$;$) myindex &getstring, "substr"

sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) - $off, $off

sub myreverse (@) myreverse $a, $b, $c

sub myjoin ($@) myjoin ":", $a, $b, $c

sub mypop (+) mypop @array

sub mysplice (+$$@) mysplice @array, 0, 2, @pushme

sub mykeys (+) mykeys %{$hashref}

sub myopen (*;$) myopen HANDLE, $name

sub mypipe (**) mypipe READHANDLE, WRITEHANDLE

sub mygrep (&@) mygrep { /foo/ } $a, $b, $c

sub myrand (;$) myrand 42

sub mytime () mytime

Any backslashed prototype character represents an actual argument that must start with
that character (optionally preceded by my, our or local), with the exception of $, which
will accept any scalar lvalue expression, such as $foo = 7 or my_function()->[0]. The
value passed as part of @_ will be a reference to the actual argument given in the subroutine
call, obtained by applying \ to that argument.

You can use the \[] backslash group notation to specify more than one allowed argument
type. For example:

sub myref (\[$@%&*])

will allow calling myref() as

myref $var

myref @array

myref %hash

myref &sub

myref *glob

and the first argument of myref() will be a reference to a scalar, an array, a hash, a code,
or a glob.

Unbackslashed prototype characters have special meanings. Any unbackslashed @ or
% eats all remaining arguments, and forces list context. An argument represented by $

forces scalar context. An & requires an anonymous subroutine, which, if passed as the first
argument, does not require the sub keyword or a subsequent comma.

A * allows the subroutine to accept a bareword, constant, scalar expression, typeglob,
or a reference to a typeglob in that slot. The value will be available to the subroutine either
as a simple scalar, or (in the latter two cases) as a reference to the typeglob. If you wish
to always convert such arguments to a typeglob reference, use Symbol::qualify to ref() as
follows:

use Symbol ’qualify_to_ref’;

sub foo (*) {

my $fh = qualify_to_ref(shift, caller);

...

}

The + prototype is a special alternative to $ that will act like \[@%] when given a literal
array or hash variable, but will otherwise force scalar context on the argument. This is
useful for functions which should accept either a literal array or an array reference as the
argument:

sub mypush (+@) {

my $aref = shift;

die "Not an array or arrayref" unless ref $aref eq ’ARRAY’;

push @$aref, @_;

}

When using the + prototype, your function must check that the argument is of an
acceptable type.

A semicolon (;) separates mandatory arguments from optional arguments. It is redun-
dant before @ or %, which gobble up everything else.

As the last character of a prototype, or just before a semicolon, a @ or a %, you can use
_ in place of $: if this argument is not provided, $_ will be used instead.

Note how the last three examples in the table above are treated specially by the parser.
mygrep() is parsed as a true list operator, myrand() is parsed as a true unary operator
with unary precedence the same as rand(), and mytime() is truly without arguments, just
like time(). That is, if you say

mytime +2;

you’ll get mytime() + 2, not mytime(2), which is how it would be parsed without a
prototype. If you want to force a unary function to have the same precedence as a list
operator, add ; to the end of the prototype:

sub mygetprotobynumber($;);

mygetprotobynumber $a > $b; # parsed as mygetprotobynumber($a > $b)

The interesting thing about & is that you can generate new syntax with it, provided it’s
in the initial position:

sub try (&@) {

my($try,$catch) = @_;

eval { &$try };

if ($@) {

local $_ = $@;

&$catch;

}

}

sub catch (&) { $_[0] }

try {

die "phooey";

} catch {

/phooey/ and print "unphooey\n";

};

That prints "unphooey". (Yes, there are still unresolved issues having to do with visibil-
ity of @_. I’m ignoring that question for the moment. (But note that if we make @_ lexically
scoped, those anonymous subroutines can act like closures... (Gee, is this sounding a little
Lispish? (Never mind.))))

And here’s a reimplementation of the Perl grep operator:

sub mygrep (&@) {

my $code = shift;

my @result;

foreach $_ (@_) {

push(@result, $_) if &$code;

}

@result;

}

Some folks would prefer full alphanumeric prototypes. Alphanumerics have been in-
tentionally left out of prototypes for the express purpose of someday in the future adding
named, formal parameters. The current mechanism’s main goal is to let module writers
provide better diagnostics for module users. Larry feels the notation quite understandable
to Perl programmers, and that it will not intrude greatly upon the meat of the module, nor
make it harder to read. The line noise is visually encapsulated into a small pill that’s easy
to swallow.

If you try to use an alphanumeric sequence in a prototype you will generate an optional
warning - "Illegal character in prototype...". Unfortunately earlier versions of Perl allowed

the prototype to be used as long as its prefix was a valid prototype. The warning may be
upgraded to a fatal error in a future version of Perl once the majority of offending code is
fixed.

It’s probably best to prototype new functions, not retrofit prototyping into older ones.
That’s because you must be especially careful about silent impositions of differing list versus
scalar contexts. For example, if you decide that a function should take just one parameter,
like this:

sub func ($) {

my $n = shift;

print "you gave me $n\n";

}

and someone has been calling it with an array or expression returning a list:

func(@foo);

func(split /:/);

Then you’ve just supplied an automatic scalar in front of their argument, which can be
more than a bit surprising. The old @foo which used to hold one thing doesn’t get passed
in. Instead, func() now gets passed in a 1; that is, the number of elements in @foo. And
the split gets called in scalar context so it starts scribbling on your @_ parameter list.
Ouch!

If a sub has both a PROTO and a BLOCK, the prototype is not applied until after the
BLOCK is completely defined. This means that a recursive function with a prototype has
to be predeclared for the prototype to take effect, like so:

sub foo($$);

sub foo($$) {

foo 1, 2;

}

This is all very powerful, of course, and should be used only in moderation to make the
world a better place.

73.3.11 Constant Functions

Functions with a prototype of () are potential candidates for inlining. If the result after
optimization and constant folding is either a constant or a lexically-scoped scalar which
has no other references, then it will be used in place of function calls made without &.
Calls made using & are never inlined. (See constant.pm for an easy way to declare most
constants.)

The following functions would all be inlined:

sub pi () { 3.14159 } # Not exact, but close.

sub PI () { 4 * atan2 1, 1 } # As good as it gets,

and it’s inlined, too!

sub ST_DEV () { 0 }

sub ST_INO () { 1 }

sub FLAG_FOO () { 1 << 8 }

sub FLAG_BAR () { 1 << 9 }

sub FLAG_MASK () { FLAG_FOO | FLAG_BAR }

sub OPT_BAZ () { not (0x1B58 & FLAG_MASK) }

sub N () { int(OPT_BAZ) / 3 }

sub FOO_SET () { 1 if FLAG_MASK & FLAG_FOO }

sub FOO_SET2 () { if (FLAG_MASK & FLAG_FOO) { 1 } }

(Be aware that the last example was not always inlined in Perl 5.20 and earlier, which did
not behave consistently with subroutines containing inner scopes.) You can countermand
inlining by using an explicit return:

sub baz_val () {

if (OPT_BAZ) {

return 23;

}

else {

return 42;

}

}

sub bonk_val () { return 12345 }

As alluded to earlier you can also declare inlined subs dynamically at BEGIN time if
their body consists of a lexically-scoped scalar which has no other references. Only the first
example here will be inlined:

BEGIN {

my $var = 1;

no strict ’refs’;

*INLINED = sub () { $var };

}

BEGIN {

my $var = 1;

my $ref = \$var;

no strict ’refs’;

*NOT_INLINED = sub () { $var };

}

A not so obvious caveat with this (see [RT #79908]) is that the variable will be imme-
diately inlined, and will stop behaving like a normal lexical variable, e.g. this will print
79907, not 79908:

BEGIN {

my $x = 79907;

*RT_79908 = sub () { $x };

$x++;

}

print RT_79908(); # prints 79907

As of Perl 5.22, this buggy behavior, while preserved for backward compatibility, is
detected and emits a deprecation warning. If you want the subroutine to be inlined (with
no warning), make sure the variable is not used in a context where it could be modified
aside from where it is declared.

Fine, no warning

BEGIN {

my $x = 54321;

*INLINED = sub () { $x };

}

Warns. Future Perl versions will stop inlining it.

BEGIN {

my $x;

$x = 54321;

*ALSO_INLINED = sub () { $x };

}

Perl 5.22 also introduces the experimental "const" attribute as an alternative. (Disable
the "experimental::const attr" warnings if you want to use it.) When applied to an anony-
mous subroutine, it forces the sub to be called when the sub expression is evaluated. The
return value is captured and turned into a constant subroutine:

my $x = 54321;

*INLINED = sub : const { $x };

$x++;

The return value of INLINED in this example will always be 54321, regardless of later
modifications to $x. You can also put any arbitrary code inside the sub, at it will be
executed immediately and its return value captured the same way.

If you really want a subroutine with a () prototype that returns a lexical variable you
can easily force it to not be inlined by adding an explicit return:

BEGIN {

my $x = 79907;

*RT_79908 = sub () { return $x };

$x++;

}

print RT_79908(); # prints 79908

The easiest way to tell if a subroutine was inlined is by using B-Deparse. Consider this
example of two subroutines returning 1, one with a () prototype causing it to be inlined,
and one without (with deparse output truncated for clarity):

$ perl -MO=Deparse -le ’sub ONE { 1 } if (ONE) { print ONE if ONE }’

sub ONE {

1;

}

if (ONE) {

print ONE() if ONE ;

}

$ perl -MO=Deparse -le ’sub ONE () { 1 } if (ONE) { print ONE if ONE }’

sub ONE () { 1 }

do {

print 1

};

If you redefine a subroutine that was eligible for inlining, you’ll get a warning by de-
fault. You can use this warning to tell whether or not a particular subroutine is considered
inlinable, since it’s different than the warning for overriding non-inlined subroutines:

$ perl -e ’sub one () {1} sub one () {2}’

Constant subroutine one redefined at -e line 1.

$ perl -we ’sub one {1} sub one {2}’

Subroutine one redefined at -e line 1.

The warning is considered severe enough not to be affected by the -w switch (or its
absence) because previously compiled invocations of the function will still be using the old
value of the function. If you need to be able to redefine the subroutine, you need to ensure
that it isn’t inlined, either by dropping the () prototype (which changes calling semantics,
so beware) or by thwarting the inlining mechanism in some other way, e.g. by adding an
explicit return, as mentioned above:

sub not_inlined () { return 23 }

73.3.12 Overriding Built-in Functions

Many built-in functions may be overridden, though this should be tried only occasionally
and for good reason. Typically this might be done by a package attempting to emulate
missing built-in functionality on a non-Unix system.

Overriding may be done only by importing the name from a module at compile time–
ordinary predeclaration isn’t good enough. However, the use subs pragma lets you, in
effect, predeclare subs via the import syntax, and these names may then override built-in
ones:

use subs ’chdir’, ’chroot’, ’chmod’, ’chown’;

chdir $somewhere;

sub chdir { ... }

To unambiguously refer to the built-in form, precede the built-in name with the special
package qualifier CORE::. For example, saying CORE::open() always refers to the built-in
open(), even if the current package has imported some other subroutine called &open()

from elsewhere. Even though it looks like a regular function call, it isn’t: the CORE::
prefix in that case is part of Perl’s syntax, and works for any keyword, regardless of what
is in the CORE package. Taking a reference to it, that is, \&CORE::open, only works for
some keywords. See CORE.

Library modules should not in general export built-in names like open or chdir as part
of their default @EXPORT list, because these may sneak into someone else’s namespace and
change the semantics unexpectedly. Instead, if the module adds that name to @EXPORT_OK,
then it’s possible for a user to import the name explicitly, but not implicitly. That is, they
could say

use Module ’open’;

and it would import the open override. But if they said

use Module;

they would get the default imports without overrides.

The foregoing mechanism for overriding built-in is restricted, quite deliberately, to the
package that requests the import. There is a second method that is sometimes applicable
when you wish to override a built-in everywhere, without regard to namespace boundaries.
This is achieved by importing a sub into the special namespace CORE::GLOBAL::. Here is an
example that quite brazenly replaces the glob operator with something that understands
regular expressions.

package REGlob;

require Exporter;

@ISA = ’Exporter’;

@EXPORT_OK = ’glob’;

sub import {

my $pkg = shift;

return unless @_;

my $sym = shift;

my $where = ($sym =~ s/^GLOBAL_// ? ’CORE::GLOBAL’ : caller(0));

$pkg->export($where, $sym, @_);

}

sub glob {

my $pat = shift;

my @got;

if (opendir my $d, ’.’) {

@got = grep /$pat/, readdir $d;

closedir $d;

}

return @got;

}

1;

And here’s how it could be (ab)used:

#use REGlob ’GLOBAL_glob’; # override glob() in ALL namespaces

package Foo;

use REGlob ’glob’; # override glob() in Foo:: only

print for <^[a-z_]+\.pm\$>; # show all pragmatic modules

The initial comment shows a contrived, even dangerous example. By overriding glob

globally, you would be forcing the new (and subversive) behavior for the glob operator for
every namespace, without the complete cognizance or cooperation of the modules that own
those namespaces. Naturally, this should be done with extreme caution–if it must be done
at all.

The REGlob example above does not implement all the support needed to cleanly override
perl’s glob operator. The built-in glob has different behaviors depending on whether it
appears in a scalar or list context, but our REGlob doesn’t. Indeed, many perl built-
in have such context sensitive behaviors, and these must be adequately supported by a
properly written override. For a fully functional example of overriding glob, study the
implementation of File::DosGlob in the standard library.

When you override a built-in, your replacement should be consistent (if possible) with
the built-in native syntax. You can achieve this by using a suitable prototype. To get
the prototype of an overridable built-in, use the prototype function with an argument of
"CORE::builtin_name" (see [perlfunc prototype], page 429).

Note however that some built-ins can’t have their syntax expressed by a prototype (such
as system or chomp). If you override them you won’t be able to fully mimic their original
syntax.

The built-ins do, require and glob can also be overridden, but due to special magic,
their original syntax is preserved, and you don’t have to define a prototype for their re-
placements. (You can’t override the do BLOCK syntax, though).

require has special additional dark magic: if you invoke your require replacement as
require Foo::Bar, it will actually receive the argument "Foo/Bar.pm" in @ . See [perlfunc
require], page 437.

And, as you’ll have noticed from the previous example, if you override glob, the <*>

glob operator is overridden as well.

In a similar fashion, overriding the readline function also overrides the equivalent I/O
operator <FILEHANDLE>. Also, overriding readpipe also overrides the operators ‘‘ and
qx//.

Finally, some built-ins (e.g. exists or grep) can’t be overridden.

73.3.13 Autoloading

If you call a subroutine that is undefined, you would ordinarily get an immediate, fatal
error complaining that the subroutine doesn’t exist. (Likewise for subroutines being used as
methods, when the method doesn’t exist in any base class of the class’s package.) However,
if an AUTOLOAD subroutine is defined in the package or packages used to locate the original
subroutine, then that AUTOLOAD subroutine is called with the arguments that would have
been passed to the original subroutine. The fully qualified name of the original subroutine
magically appears in the global $AUTOLOAD variable of the same package as the AUTOLOAD
routine. The name is not passed as an ordinary argument because, er, well, just because,
that’s why. (As an exception, a method call to a nonexistent import or unimport method is
just skipped instead. Also, if the AUTOLOAD subroutine is an XSUB, there are other ways
to retrieve the subroutine name. See Section 28.4.2 [perlguts Autoloading with XSUBs],
page 538 for details.)

Many AUTOLOAD routines load in a definition for the requested subroutine using eval(),
then execute that subroutine using a special form of goto() that erases the stack frame of
the AUTOLOAD routine without a trace. (See the source to the standard module documented
in AutoLoader, for example.) But an AUTOLOAD routine can also just emulate the routine
and never define it. For example, let’s pretend that a function that wasn’t defined should
just invoke system with those arguments. All you’d do is:

sub AUTOLOAD {

my $program = $AUTOLOAD;

$program =~ s/.*:://;

system($program, @_);

}

date();

who(’am’, ’i’);

ls(’-l’);

In fact, if you predeclare functions you want to call that way, you don’t even need
parentheses:

use subs qw(date who ls);

date;

who "am", "i";

ls ’-l’;

Amore complete example of this is the Shell module on CPAN, which can treat undefined
subroutine calls as calls to external programs.

Mechanisms are available to help modules writers split their modules into autoloadable
files. See the standard AutoLoader module described in AutoLoader and in AutoSplit, the
standard SelfLoader modules in SelfLoader, and the document on adding C functions to
Perl code in perlxs.

73.3.14 Subroutine Attributes

A subroutine declaration or definition may have a list of attributes associated with it. If
such an attribute list is present, it is broken up at space or colon boundaries and treated as
though a use attributes had been seen. See attributes for details about what attributes
are currently supported. Unlike the limitation with the obsolescent use attrs, the sub :

ATTRLIST syntax works to associate the attributes with a pre-declaration, and not just with
a subroutine definition.

The attributes must be valid as simple identifier names (without any punctuation other
than the ’ ’ character). They may have a parameter list appended, which is only checked
for whether its parentheses (’(’,’)’) nest properly.

Examples of valid syntax (even though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) : expensive;

sub plugh () : Ugly(’\(") :Bad;

sub xyzzy : _5x5 { ... }

Examples of invalid syntax:

sub fnord : switch(10,foo(); # ()-string not balanced

sub snoid : Ugly(’(’); # ()-string not balanced

sub xyzzy : 5x5; # "5x5" not a valid identifier

sub plugh : Y2::north; # "Y2::north" not a simple identifier

sub snurt : foo + bar; # "+" not a colon or space

The attribute list is passed as a list of constant strings to the code which associates them
with the subroutine. In particular, the second example of valid syntax above currently looks
like this in terms of how it’s parsed and invoked:

use attributes __PACKAGE__, \&plugh, q[Ugly(’\(")], ’Bad’;

For further details on attribute lists and their manipulation, see attributes and
Attribute-Handlers.

73.4 SEE ALSO

See Section 62.3.7 [perlref Function Templates], page 1086 for more about references and
closures. See perlxs if you’d like to learn about calling C subroutines from Perl. See
Section 20.1 [perlembed NAME], page 301 if you’d like to learn about calling Perl subrou-
tines from C. See Section 40.1 [perlmod NAME], page 732 to learn about bundling up your
functions in separate files. See perlmodlib to learn what library modules come standard
on your system. See Section 47.1 [perlootut NAME], page 786 to learn how to make object
method calls.

74 perlsyn

74.1 NAME

perlsyn - Perl syntax

74.2 DESCRIPTION

A Perl program consists of a sequence of declarations and statements which run from the
top to the bottom. Loops, subroutines, and other control structures allow you to jump
around within the code.

Perl is a free-form language: you can format and indent it however you like. Whitespace
serves mostly to separate tokens, unlike languages like Python where it is an important part
of the syntax, or Fortran where it is immaterial.

Many of Perl’s syntactic elements are optional. Rather than requiring you to put paren-
theses around every function call and declare every variable, you can often leave such explicit
elements off and Perl will figure out what you meant. This is known as Do What I Mean,
abbreviated DWIM. It allows programmers to be lazy and to code in a style with which
they are comfortable.

Perl borrows syntax and concepts from many languages: awk, sed, C, Bourne Shell,
Smalltalk, Lisp and even English. Other languages have borrowed syntax from Perl, par-
ticularly its regular expression extensions. So if you have programmed in another language
you will see familiar pieces in Perl. They often work the same, but see Section 80.1 [perltrap
NAME], page 1312 for information about how they differ.

74.2.1 Declarations

The only things you need to declare in Perl are report formats and subroutines (and some-
times not even subroutines). A scalar variable holds the undefined value (undef) until it
has been assigned a defined value, which is anything other than undef. When used as a
number, undef is treated as 0; when used as a string, it is treated as the empty string, "";
and when used as a reference that isn’t being assigned to, it is treated as an error. If you
enable warnings, you’ll be notified of an uninitialized value whenever you treat undef as a
string or a number. Well, usually. Boolean contexts, such as:

if ($a) {}

are exempt from warnings (because they care about truth rather than definedness).
Operators such as ++, --, +=, -=, and .=, that operate on undefined variables such as:

undef $a;

$a++;

are also always exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect on the execution
of the primary sequence of statements: declarations all take effect at compile time. All
declarations are typically put at the beginning or the end of the script. However, if you’re
using lexically-scoped private variables created with my(), state(), or our(), you’ll have
to make sure your format or subroutine definition is within the same block scope as the my
if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator
from that point forward in the program. You can declare a subroutine without defining it
by saying sub name, thus:

sub myname;

$me = myname $0 or die "can’t get myname";

A bare declaration like that declares the function to be a list operator, not a unary
operator, so you have to be careful to use parentheses (or or instead of ||.) The ||

operator binds too tightly to use after list operators; it becomes part of the last element.
You can always use parentheses around the list operators arguments to turn the list operator
back into something that behaves more like a function call. Alternatively, you can use the
prototype ($) to turn the subroutine into a unary operator:

sub myname ($);

$me = myname $0 || die "can’t get myname";

That now parses as you’d expect, but you still ought to get in the habit of using parenthe-
ses in that situation. For more on prototypes, see Section 73.1 [perlsub NAME], page 1216.

Subroutines declarations can also be loaded up with the require statement or both
loaded and imported into your namespace with a use statement. See Section 40.1 [perlmod
NAME], page 732 for details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart
from declaring a variable name, the declaration acts like an ordinary statement, and is
elaborated within the sequence of statements as if it were an ordinary statement. That
means it actually has both compile-time and run-time effects.

74.2.2 Comments

Text from a "#" character until the end of the line is a comment, and is ignored. Exceptions
include "#" inside a string or regular expression.

74.2.3 Simple Statements

The only kind of simple statement is an expression evaluated for its side-effects. Every
simple statement must be terminated with a semicolon, unless it is the final statement in a
block, in which case the semicolon is optional. But put the semicolon in anyway if the block
takes up more than one line, because you may eventually add another line. Note that there
are operators like eval {}, sub {}, and do {} that look like compound statements, but
aren’t–they’re just TERMs in an expression–and thus need an explicit termination when
used as the last item in a statement.

74.2.4 Truth and Falsehood

The number 0, the strings ’0’ and "", the empty list (), and undef are all false in a boolean
context. All other values are true. Negation of a true value by ! or not returns a special
false value. When evaluated as a string it is treated as "", but as a number, it is treated as
0. Most Perl operators that return true or false behave this way.

74.2.5 Statement Modifiers

Any simple statement may optionally be followed by a SINGLE modifier, just before the
terminating semicolon (or block ending). The possible modifiers are:

if EXPR

unless EXPR

while EXPR

until EXPR

for LIST

foreach LIST

when EXPR

The EXPR following the modifier is referred to as the "condition". Its truth or falsehood
determines how the modifier will behave.

if executes the statement once if and only if the condition is true. unless is the
opposite, it executes the statement unless the condition is true (that is, if the condition is
false).

print "Basset hounds got long ears" if length $ear >= 10;

go_outside() and play() unless $is_raining;

The for(each) modifier is an iterator: it executes the statement once for each item in
the LIST (with $_ aliased to each item in turn).

print "Hello $_!\n" for qw(world Dolly nurse);

while repeats the statement while the condition is true. until does the opposite, it
repeats the statement until the condition is true (or while the condition is false):

Both of these count from 0 to 10.

print $i++ while $i <= 10;

print $j++ until $j > 10;

The while and until modifiers have the usual "while loop" semantics (conditional
evaluated first), except when applied to a do-BLOCK (or to the Perl4 do-SUBROUTINE
statement), in which case the block executes once before the conditional is evaluated.

This is so that you can write loops like:

do {

$line = <STDIN>;

...

} until !defined($line) || $line eq ".\n"

See 〈undefined〉 [perlfunc do], page 〈undefined〉. Note also that the loop control state-
ments described later will NOT work in this construct, because modifiers don’t take loop
labels. Sorry. You can always put another block inside of it (for next) or around it (for
last) to do that sort of thing. For next, just double the braces:

do {{

next if $x == $y;

do something here

}} until $x++ > $z;

For last, you have to be more elaborate:

LOOP: {

do {

last if $x = $y**2;

do something here

} while $x++ <= $z;

}

NOTE: The behaviour of a my, state, or our modified with a statement modifier con-
ditional or loop construct (for example, my $x if ...) is undefined. The value of the my

variable may be undef, any previously assigned value, or possibly anything else. Don’t rely
on it. Future versions of perl might do something different from the version of perl you try
it out on. Here be dragons.

The when modifier is an experimental feature that first appeared in Perl 5.14. To use
it, you should include a use v5.14 declaration. (Technically, it requires only the switch

feature, but that aspect of it was not available before 5.14.) Operative only from within
a foreach loop or a given block, it executes the statement only if the smartmatch $_ ~~

EXPR is true. If the statement executes, it is followed by a next from inside a foreach and
break from inside a given.

Under the current implementation, the foreach loop can be anywhere within the when

modifier’s dynamic scope, but must be within the given block’s lexical scope. This re-
stricted may be relaxed in a future release. See Section 74.2.11 [Switch Statements],
page 1258 below.

74.2.6 Compound Statements

In Perl, a sequence of statements that defines a scope is called a block. Sometimes a block is
delimited by the file containing it (in the case of a required file, or the program as a whole),
and sometimes a block is delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces. We will call
this syntactic construct a BLOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ...

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

unless (EXPR) BLOCK

unless (EXPR) BLOCK else BLOCK

unless (EXPR) BLOCK elsif (EXPR) BLOCK ...

unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

given (EXPR) BLOCK

LABEL while (EXPR) BLOCK

LABEL while (EXPR) BLOCK continue BLOCK

LABEL until (EXPR) BLOCK

LABEL until (EXPR) BLOCK continue BLOCK

LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL for VAR (LIST) BLOCK

LABEL for VAR (LIST) BLOCK continue BLOCK

LABEL foreach (EXPR; EXPR; EXPR) BLOCK

LABEL foreach VAR (LIST) BLOCK

LABEL foreach VAR (LIST) BLOCK continue BLOCK

LABEL BLOCK

LABEL BLOCK continue BLOCK

PHASE BLOCK

The experimental given statement is not automatically enabled ; see Section 74.2.11
[Switch Statements], page 1258 below for how to do so, and the attendant caveats.

Unlike in C and Pascal, in Perl these are all defined in terms of BLOCKs, not statements.
This means that the curly brackets are required–no dangling statements allowed. If you
want to write conditionals without curly brackets, there are several other ways to do it.
The following all do the same thing:

if (!open(FOO)) { die "Can’t open $FOO: $!" }

die "Can’t open $FOO: $!" unless open(FOO);

open(FOO) || die "Can’t open $FOO: $!";

open(FOO) ? () : die "Can’t open $FOO: $!";

a bit exotic, that last one

The if statement is straightforward. Because BLOCKs are always bounded by curly
brackets, there is never any ambiguity about which if an else goes with. If you use unless
in place of if, the sense of the test is reversed. Like if, unless can be followed by else.
unless can even be followed by one or more elsif statements, though you may want to
think twice before using that particular language construct, as everyone reading your code
will have to think at least twice before they can understand what’s going on.

The while statement executes the block as long as the expression is Section 74.2.4 [true],
page 1250. The until statement executes the block as long as the expression is false. The
LABEL is optional, and if present, consists of an identifier followed by a colon. The LABEL
identifies the loop for the loop control statements next, last, and redo. If the LABEL is
omitted, the loop control statement refers to the innermost enclosing loop. This may include
dynamically looking back your call-stack at run time to find the LABEL. Such desperate
behavior triggers a warning if you use the use warnings pragma or the -w flag.

If there is a continue BLOCK, it is always executed just before the conditional is about
to be evaluated again. Thus it can be used to increment a loop variable, even when the
loop has been continued via the next statement.

When a block is preceding by a compilation phase keyword such as BEGIN, END, INIT,
CHECK, or UNITCHECK, then the block will run only during the corresponding phase of exe-
cution. See Section 40.1 [perlmod NAME], page 732 for more details.

Extension modules can also hook into the Perl parser to define new kinds of compound
statements. These are introduced by a keyword which the extension recognizes, and the
syntax following the keyword is defined entirely by the extension. If you are an implementor,
see Section “PL keyword plugin” in perlapi for the mechanism. If you are using such a
module, see the module’s documentation for details of the syntax that it defines.

74.2.7 Loop Control

The next command starts the next iteration of the loop:

LINE: while (<STDIN>) {

next LINE if /^#/; # discard comments

...

}

The last command immediately exits the loop in question. The continue block, if any,
is not executed:

LINE: while (<STDIN>) {

last LINE if /^$/; # exit when done with header

...

}

The redo command restarts the loop block without evaluating the conditional again.
The continue block, if any, is not executed. This command is normally used by programs
that want to lie to themselves about what was just input.

For example, when processing a file like /etc/termcap. If your input lines might end in
backslashes to indicate continuation, you want to skip ahead and get the next record.

while (<>) {

chomp;

if (s/\\$//) {

$_ .= <>;

redo unless eof();

}

now process $_

}

which is Perl shorthand for the more explicitly written version:

LINE: while (defined($line = <ARGV>)) {

chomp($line);

if ($line =~ s/\\$//) {

$line .= <ARGV>;

redo LINE unless eof(); # not eof(ARGV)!

}

now process $line

}

Note that if there were a continue block on the above code, it would get executed only
on lines discarded by the regex (since redo skips the continue block). A continue block is
often used to reset line counters or m?pat? one-time matches:

inspired by :1,$g/fred/s//WILMA/

while (<>) {

m?(fred)? && s//WILMA $1 WILMA/;

m?(barney)? && s//BETTY $1 BETTY/;

m?(homer)? && s//MARGE $1 MARGE/;

} continue {

print "$ARGV $.: $_";

close ARGV if eof; # reset $.

reset if eof; # reset ?pat?

}

If the word while is replaced by the word until, the sense of the test is reversed, but
the conditional is still tested before the first iteration.

Loop control statements don’t work in an if or unless, since they aren’t loops. You
can double the braces to make them such, though.

if (/pattern/) {{

last if /fred/;

next if /barney/; # same effect as "last",

but doesn’t document as well

do something here

}}

This is caused by the fact that a block by itself acts as a loop that executes once, see
Section 74.2.10 [Basic BLOCKs], page 1257.

The form while/if BLOCK BLOCK, available in Perl 4, is no longer available. Replace any
occurrence of if BLOCK by if (do BLOCK).

74.2.8 For Loops

Perl’s C-style for loop works like the corresponding while loop; that means that this:

for ($i = 1; $i < 10; $i++) {

...

}

is the same as this:

$i = 1;

while ($i < 10) {

...

} continue {

$i++;

}

There is one minor difference: if variables are declared with my in the initialization
section of the for, the lexical scope of those variables is exactly the for loop (the body of
the loop and the control sections).

As a special case, if the test in the for loop (or the corresponding while loop) is empty,
it is treated as true. That is, both

for (;;) {

...

}

and

while () {

...

}

are treated as infinite loops.

Besides the normal array index looping, for can lend itself to many other interesting
applications. Here’s one that avoids the problem you get into if you explicitly test for
end-of-file on an interactive file descriptor causing your program to appear to hang.

$on_a_tty = -t STDIN && -t STDOUT;

sub prompt { print "yes? " if $on_a_tty }

for (prompt(); <STDIN>; prompt()) {

do something

}

Using readline (or the operator form, <EXPR>) as the conditional of a for loop is
shorthand for the following. This behaviour is the same as a while loop conditional. >>

for (prompt(); defined($_ = <STDIN>); prompt()) {

do something

}

74.2.9 Foreach Loops

The foreach loop iterates over a normal list value and sets the scalar variable VAR to be
each element of the list in turn. If the variable is preceded with the keyword my, then it
is lexically scoped, and is therefore visible only within the loop. Otherwise, the variable
is implicitly local to the loop and regains its former value upon exiting the loop. If the
variable was previously declared with my, it uses that variable instead of the global one, but
it’s still localized to the loop. This implicit localization occurs only in a foreach loop.

The foreach keyword is actually a synonym for the for keyword, so you can use either.
If VAR is omitted, $_ is set to each value.

If any element of LIST is an lvalue, you can modify it by modifying VAR inside the loop.
Conversely, if any element of LIST is NOT an lvalue, any attempt to modify that element
will fail. In other words, the foreach loop index variable is an implicit alias for each item
in the list that you’re looping over.

If any part of LIST is an array, foreach will get very confused if you add or remove
elements within the loop body, for example with splice. So don’t do that.

foreach probably won’t do what you expect if VAR is a tied or other special variable.
Don’t do that either.

As of Perl 5.22, there is an experimental variant of this loop that accepts a variable
preceded by a backslash for VAR, in which case the items in the LIST must be references.
The backslashed variable will become an alias to each referenced item in the LIST, which
must be of the correct type. The variable needn’t be a scalar in this case, and the backslash
may be followed by my. To use this form, you must enable the refaliasing feature via use

feature. (See feature. See also Section 62.6 [perlref Assigning to References], page 1089.)

Examples:

for (@ary) { s/foo/bar/ }

for my $elem (@elements) {

$elem *= 2;

}

for $count (reverse(1..10), "BOOM") {

print $count, "\n";

sleep(1);

}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:[\\\n:]*/, $ENV{TERMCAP})) {

print "Item: $item\n";

}

use feature "refaliasing";

no warnings "experimental::refaliasing";

foreach \my %hash (@array_of_hash_references) {

do something which each %hash

}

Here’s how a C programmer might code up a particular algorithm in Perl:

for (my $i = 0; $i < @ary1; $i++) {

for (my $j = 0; $j < @ary2; $j++) {

if ($ary1[$i] > $ary2[$j]) {

last; # can’t go to outer :-(

}

$ary1[$i] += $ary2[$j];

}

this is where that last takes me

}

Whereas here’s how a Perl programmer more comfortable with the idiom might do it:

OUTER: for my $wid (@ary1) {

INNER: for my $jet (@ary2) {

next OUTER if $wid > $jet;

$wid += $jet;

}

}

See how much easier this is? It’s cleaner, safer, and faster. It’s cleaner because it’s less
noisy. It’s safer because if code gets added between the inner and outer loops later on, the
new code won’t be accidentally executed. The next explicitly iterates the other loop rather
than merely terminating the inner one. And it’s faster because Perl executes a foreach

statement more rapidly than it would the equivalent for loop.

Perceptive Perl hackers may have noticed that a for loop has a return value, and that
this value can be captured by wrapping the loop in a do block. The reward for this discovery
is this cautionary advice: The return value of a for loop is unspecified and may change
without notice. Do not rely on it.

74.2.10 Basic BLOCKs

A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once.
Thus you can use any of the loop control statements in it to leave or restart the block.

(Note that this is NOT true in eval{}, sub{}, or contrary to popular belief do{} blocks,
which do NOT count as loops.) The continue block is optional.

The BLOCK construct can be used to emulate case structures.

SWITCH: {

if (/^abc/) { $abc = 1; last SWITCH; }

if (/^def/) { $def = 1; last SWITCH; }

if (/^xyz/) { $xyz = 1; last SWITCH; }

$nothing = 1;

}

You’ll also find that foreach loop used to create a topicalizer and a switch:

SWITCH:

for ($var) {

if (/^abc/) { $abc = 1; last SWITCH; }

if (/^def/) { $def = 1; last SWITCH; }

if (/^xyz/) { $xyz = 1; last SWITCH; }

$nothing = 1;

}

Such constructs are quite frequently used, both because older versions of Perl had no
official switch statement, and also because the new version described immediately below
remains experimental and can sometimes be confusing.

74.2.11 Switch Statements

Starting from Perl 5.10.1 (well, 5.10.0, but it didn’t work right), you can say

use feature "switch";

to enable an experimental switch feature. This is loosely based on an old version of a
Perl 6 proposal, but it no longer resembles the Perl 6 construct. You also get the switch
feature whenever you declare that your code prefers to run under a version of Perl that is
5.10 or later. For example:

use v5.14;

Under the "switch" feature, Perl gains the experimental keywords given, when, default,
continue, and break. Starting from Perl 5.16, one can prefix the switch keywords with
CORE:: to access the feature without a use feature statement. The keywords given and
when are analogous to switch and case in other languages, so the code in the previous
section could be rewritten as

use v5.10.1;

for ($var) {

when (/^abc/) { $abc = 1 }

when (/^def/) { $def = 1 }

when (/^xyz/) { $xyz = 1 }

default { $nothing = 1 }

}

The foreach is the non-experimental way to set a topicalizer. If you wish to use the
highly experimental given, that could be written like this:

use v5.10.1;

given ($var) {

when (/^abc/) { $abc = 1 }

when (/^def/) { $def = 1 }

when (/^xyz/) { $xyz = 1 }

default { $nothing = 1 }

}

As of 5.14, that can also be written this way:

use v5.14;

for ($var) {

$abc = 1 when /^abc/;

$def = 1 when /^def/;

$xyz = 1 when /^xyz/;

default { $nothing = 1 }

}

Or if you don’t care to play it safe, like this:

use v5.14;

given ($var) {

$abc = 1 when /^abc/;

$def = 1 when /^def/;

$xyz = 1 when /^xyz/;

default { $nothing = 1 }

}

The arguments to given and when are in scalar context, and given assigns the $_

variable its topic value.

Exactly what the EXPR argument to when does is hard to describe precisely, but in
general, it tries to guess what you want done. Sometimes it is interpreted as $_ ~~ EXPR,
and sometimes it is not. It also behaves differently when lexically enclosed by a given block
than it does when dynamically enclosed by a foreach loop. The rules are far too difficult
to understand to be described here. See Section 74.2.16 [Experimental Details on given and
when], page 1263 later on.

Due to an unfortunate bug in how given was implemented between Perl 5.10 and 5.16,
under those implementations the version of $_ governed by given is merely a lexically
scoped copy of the original, not a dynamically scoped alias to the original, as it would be if
it were a foreach or under both the original and the current Perl 6 language specification.
This bug was fixed in Perl 5.18. If you really want a lexical $_, specify that explicitly, but
note that my $_ is now deprecated and will warn unless warnings have been disabled:

given(my $_ = EXPR) { ... }

If your code still needs to run on older versions, stick to foreach for your topicalizer
and you will be less unhappy.

74.2.12 Goto

Although not for the faint of heart, Perl does support a goto statement. There are three
forms: goto-LABEL, goto-EXPR, and goto-&NAME. A loop’s LABEL is not actually a
valid target for a goto; it’s just the name of the loop.

The goto-LABEL form finds the statement labeled with LABEL and resumes execution
there. It may not be used to go into any construct that requires initialization, such as a
subroutine or a foreach loop. It also can’t be used to go into a construct that is optimized
away. It can be used to go almost anywhere else within the dynamic scope, including out of
subroutines, but it’s usually better to use some other construct such as last or die. The
author of Perl has never felt the need to use this form of goto (in Perl, that is–C is another
matter).

The goto-EXPR form expects a label name, whose scope will be resolved dynamically.
This allows for computed gotos per FORTRAN, but isn’t necessarily recommended if you’re
optimizing for maintainability:

goto(("FOO", "BAR", "GLARCH")[$i]);

The goto-&NAME form is highly magical, and substitutes a call to the named subroutine
for the currently running subroutine. This is used by AUTOLOAD() subroutines that wish to
load another subroutine and then pretend that the other subroutine had been called in the
first place (except that any modifications to @_ in the current subroutine are propagated
to the other subroutine.) After the goto, not even caller() will be able to tell that this
routine was called first.

In almost all cases like this, it’s usually a far, far better idea to use the structured
control flow mechanisms of next, last, or redo instead of resorting to a goto. For certain
applications, the catch and throw pair of eval{} and die() for exception processing can also
be a prudent approach.

74.2.13 The Ellipsis Statement

Beginning in Perl 5.12, Perl accepts an ellipsis, "...", as a placeholder for code that you
haven’t implemented yet. This form of ellipsis, the unimplemented statement, should not
be confused with the binary flip-flop ... operator. One is a statement and the other an
operator. (Perl doesn’t usually confuse them because usually Perl can tell whether it wants
an operator or a statement, but see below for exceptions.)

When Perl 5.12 or later encounters an ellipsis statement, it parses this without error,
but if and when you should actually try to execute it, Perl throws an exception with the
text Unimplemented:

use v5.12;

sub unimplemented { ... }

eval { unimplemented() };

if ($@ =~ /^Unimplemented at /) {

say "I found an ellipsis!";

}

You can only use the elliptical statement to stand in for a complete statement. These
examples of how the ellipsis works:

use v5.12;

{ ... }

sub foo { ... }

...;

eval { ... };

sub somemeth {

my $self = shift;

...;

}

$x = do {

my $n;

...;

say "Hurrah!";

$n;

};

The elliptical statement cannot stand in for an expression that is part of a larger state-
ment, since the ... is also the three-dot version of the flip-flop operator (see Section 48.2.20
[perlop Range Operators], page 812).

These examples of attempts to use an ellipsis are syntax errors:

use v5.12;

print ...;

open(my $fh, ">", "/dev/passwd") or ...;

if ($condition && ...) { say "Howdy" };

There are some cases where Perl can’t immediately tell the difference between an ex-
pression and a statement. For instance, the syntax for a block and an anonymous hash
reference constructor look the same unless there’s something in the braces to give Perl a
hint. The ellipsis is a syntax error if Perl doesn’t guess that the { ... } is a block. In that
case, it doesn’t think the ... is an ellipsis because it’s expecting an expression instead of a
statement:

@transformed = map { ... } @input; # syntax error

Inside your block, you can use a ; before the ellipsis to denote that the { ... } is a
block and not a hash reference constructor. Now the ellipsis works:

@transformed = map {; ... } @input; # ’;’ disambiguates

Note: Some folks colloquially refer to this bit of punctuation as a "yada-yada" or "triple-
dot", but its true name is actually an ellipsis.

74.2.14 PODs: Embedded Documentation

Perl has a mechanism for intermixing documentation with source code. While it’s expecting
the beginning of a new statement, if the compiler encounters a line that begins with an equal
sign and a word, like this

=head1 Here There Be Pods!

Then that text and all remaining text up through and including a line beginning with
=cut will be ignored. The format of the intervening text is described in Section 52.1 [perlpod
NAME], page 900.

This allows you to intermix your source code and your documentation text freely, as in

=item snazzle($)

The snazzle() function will behave in the most spectacular

form that you can possibly imagine, not even excepting

cybernetic pyrotechnics.

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {

my $thingie = shift;

.........

}

Note that pod translators should look at only paragraphs beginning with a pod directive
(it makes parsing easier), whereas the compiler actually knows to look for pod escapes even
in the middle of a paragraph. This means that the following secret stuff will be ignored by
both the compiler and the translators.

$a=3;

=secret stuff

warn "Neither POD nor CODE!?"

=cut back

print "got $a\n";

You probably shouldn’t rely upon the warn() being podded out forever. Not all pod
translators are well-behaved in this regard, and perhaps the compiler will become pickier.

One may also use pod directives to quickly comment out a section of code.

74.2.15 Plain Old Comments (Not!)

Perl can process line directives, much like the C preprocessor. Using this, one can control
Perl’s idea of filenames and line numbers in error or warning messages (especially for strings
that are processed with eval()). The syntax for this mechanism is almost the same as for
most C preprocessors: it matches the regular expression

example: ’# line 42 "new_filename.plx"’

/^\# \s*

line \s+ (\d+) \s*

(?:\s("?)([^"]+)\g2)? \s*

$/x

with $1 being the line number for the next line, and $3 being the optional filename
(specified with or without quotes). Note that no whitespace may precede the #, unlike
modern C preprocessors.

There is a fairly obvious gotcha included with the line directive: Debuggers and profilers
will only show the last source line to appear at a particular line number in a given file. Care
should be taken not to cause line number collisions in code you’d like to debug later.

Here are some examples that you should be able to type into your command shell:

% perl

line 200 "bzzzt"

the ’#’ on the previous line must be the first char on line

die ’foo’;

__END__

foo at bzzzt line 201.

% perl

line 200 "bzzzt"

eval qq[\n#line 2001 ""\ndie ’foo’]; print $@;

__END__

foo at - line 2001.

% perl

eval qq[\n#line 200 "foo bar"\ndie ’foo’]; print $@;

__END__

foo at foo bar line 200.

% perl

line 345 "goop"

eval "\n#line " . __LINE__ . ’ "’ . __FILE__ ."\"\ndie ’foo’";

print $@;

__END__

foo at goop line 345.

74.2.16 Experimental Details on given and when

As previously mentioned, the "switch" feature is considered highly experimental; it is
subject to change with little notice. In particular, when has tricky behaviours that are
expected to change to become less tricky in the future. Do not rely upon its current
(mis)implementation. Before Perl 5.18, given also had tricky behaviours that you should
still beware of if your code must run on older versions of Perl.

Here is a longer example of given:

use feature ":5.10";

given ($foo) {

when (undef) {

say ’$foo is undefined’;

}

when ("foo") {

say ’$foo is the string "foo"’;

}

when ([1,3,5,7,9]) {

say ’$foo is an odd digit’;

continue; # Fall through

}

when ($_ < 100) {

say ’$foo is numerically less than 100’;

}

when (\&complicated_check) {

say ’a complicated check for $foo is true’;

}

default {

die q(I don’t know what to do with $foo);

}

}

Before Perl 5.18, given(EXPR) assigned the value of EXPR to merely a lexically scoped
copy (!) of $_, not a dynamically scoped alias the way foreach does. That made it similar
to

do { my $_ = EXPR; ... }

except that the block was automatically broken out of by a successful when or an explicit
break. Because it was only a copy, and because it was only lexically scoped, not dynamically
scoped, you could not do the things with it that you are used to in a foreach loop. In
particular, it did not work for arbitrary function calls if those functions might try to access
$. Best stick to foreach for that.

Most of the power comes from the implicit smartmatching that can sometimes apply.
Most of the time, when(EXPR) is treated as an implicit smartmatch of $_, that is, $_ ~~

EXPR. (See Section 48.2.14 [perlop Smartmatch Operator], page 805 for more information
on smartmatching.) But when EXPR is one of the 10 exceptional cases (or things like them)
listed below, it is used directly as a boolean.

1.

A user-defined subroutine call or a method invocation.

2.

A regular expression match in the form of /REGEX/, $foo =~ /REGEX/, or $foo
=~ EXPR. Also, a negated regular expression match in the form !/REGEX/, $foo
!~ /REGEX/, or $foo !~ EXPR.

3.

A smart match that uses an explicit ~~ operator, such as EXPR ~~ EXPR.

NOTE: You will often have to use $c ~~ $_ because the default case uses $_ ~~

$c , which is frequentlythe opposite of what you want.

4.

A boolean comparison operator such as $_ < 10 or $x eq "abc". The relational
operators that this applies to are the six numeric comparisons (<, >, <=, >=, ==,
and !=), and the six string comparisons (lt, gt, le, ge, eq, and ne).

5.

At least the three builtin functions defined(...), exists(...), and
eof(...). We might someday add more of these later if we think of them.

6.

A negated expression, whether !(EXPR) or not(EXPR), or a logical exclusive-or,
(EXPR1) xor (EXPR2). The bitwise versions (~ and ^) are not included.

7.

A filetest operator, with exactly 4 exceptions: -s, -M, -A, and -C, as these return
numerical values, not boolean ones. The -z filetest operator is not included in
the exception list.

8.

The .. and ... flip-flop operators. Note that the ... flip-flop operator is
completely different from the ... elliptical statement just described.

In those 8 cases above, the value of EXPR is used directly as a boolean, so no smart-
matching is done. You may think of when as a smartsmartmatch.

Furthermore, Perl inspects the operands of logical operators to decide whether to use
smartmatching for each one by applying the above test to the operands:

9.

If EXPR is EXPR1 && EXPR2 or EXPR1 and EXPR2, the test is applied recursively
to both EXPR1 and EXPR2. Only if both operands also pass the test, recur-
sively, will the expression be treated as boolean. Otherwise, smartmatching is
used.

10.

If EXPR is EXPR1 || EXPR2, EXPR1 // EXPR2, or EXPR1 or EXPR2, the test is
applied recursively to EXPR1 only (which might itself be a higher-precedence
AND operator, for example, and thus subject to the previous rule), not to
EXPR2. If EXPR1 is to use smartmatching, then EXPR2 also does so, no
matter what EXPR2 contains. But if EXPR2 does not get to use smartmatch-
ing, then the second argument will not be either. This is quite different from
the && case just described, so be careful.

These rules are complicated, but the goal is for them to do what you want (even if you
don’t quite understand why they are doing it). For example:

when (/^\d+$/ && $_ < 75) { ... }

will be treated as a boolean match because the rules say both a regex match and an
explicit test on $_ will be treated as boolean.

Also:

when ([qw(foo bar)] && /baz/) { ... }

will use smartmatching because only one of the operands is a boolean: the other uses
smartmatching, and that wins.

Further:

when ([qw(foo bar)] || /^baz/) { ... }

will use smart matching (only the first operand is considered), whereas

when (/^baz/ || [qw(foo bar)]) { ... }

will test only the regex, which causes both operands to be treated as boolean. Watch
out for this one, then, because an arrayref is always a true value, which makes it effectively
redundant. Not a good idea.

Tautologous boolean operators are still going to be optimized away. Don’t be tempted
to write

when ("foo" or "bar") { ... }

This will optimize down to "foo", so "bar" will never be considered (even though the
rules say to use a smartmatch on "foo"). For an alternation like this, an array ref will
work, because this will instigate smartmatching:

when ([qw(foo bar)] { ... }

This is somewhat equivalent to the C-style switch statement’s fallthrough functionality
(not to be confused with Perl’s fallthrough functionality–see below), wherein the same block
is used for several case statements.

Another useful shortcut is that, if you use a literal array or hash as the argument to
given, it is turned into a reference. So given(@foo) is the same as given(\@foo), for
example.

default behaves exactly like when(1 == 1), which is to say that it always matches.

74.2.16.1 Breaking out

You can use the break keyword to break out of the enclosing given block. Every when

block is implicitly ended with a break.

74.2.16.2 Fall-through

You can use the continue keyword to fall through from one case to the next:

given($foo) {

when (/x/) { say ’$foo contains an x’; continue }

when (/y/) { say ’$foo contains a y’ }

default { say ’$foo does not contain a y’ }

}

74.2.16.3 Return value

When a given statement is also a valid expression (for example, when it’s the last statement
of a block), it evaluates to:

• An empty list as soon as an explicit break is encountered.

• The value of the last evaluated expression of the successful when/default clause, if
there happens to be one.

• The value of the last evaluated expression of the given block if no condition is true.

In both last cases, the last expression is evaluated in the context that was applied to the
given block.

Note that, unlike if and unless, failed when statements always evaluate to an empty
list.

my $price = do {

given ($item) {

when (["pear", "apple"]) { 1 }

break when "vote"; # My vote cannot be bought

1e10 when /Mona Lisa/;

"unknown";

}

};

Currently, given blocks can’t always be used as proper expressions. This may be ad-
dressed in a future version of Perl.

74.2.16.4 Switching in a loop

Instead of using given(), you can use a foreach() loop. For example, here’s one way to
count how many times a particular string occurs in an array:

use v5.10.1;

my $count = 0;

for (@array) {

when ("foo") { ++$count }

}

print "\@array contains $count copies of ’foo’\n";

Or in a more recent version:

use v5.14;

my $count = 0;

for (@array) {

++$count when "foo";

}

print "\@array contains $count copies of ’foo’\n";

At the end of all when blocks, there is an implicit next. You can override that with an
explicit last if you’re interested in only the first match alone.

This doesn’t work if you explicitly specify a loop variable, as in for $item (@array).
You have to use the default variable $_.

74.2.16.5 Differences from Perl 6

The Perl 5 smartmatch and given/when constructs are not compatible with their Perl 6
analogues. The most visible difference and least important difference is that, in Perl 5,
parentheses are required around the argument to given() and when() (except when this
last one is used as a statement modifier). Parentheses in Perl 6 are always optional in a
control construct such as if(), while(), or when(); they can’t be made optional in Perl 5
without a great deal of potential confusion, because Perl 5 would parse the expression

given $foo {

...

}

as though the argument to given were an element of the hash %foo, interpreting the
braces as hash-element syntax.

However, their are many, many other differences. For example, this works in Perl 5:

use v5.12;

my @primary = ("red", "blue", "green");

if (@primary ~~ "red") {

say "primary smartmatches red";

}

if ("red" ~~ @primary) {

say "red smartmatches primary";

}

say "that’s all, folks!";

But it doesn’t work at all in Perl 6. Instead, you should use the (parallelizable) any

operator:

if any(@primary) eq "red" {

say "primary smartmatches red";

}

if "red" eq any(@primary) {

say "red smartmatches primary";

}

The table of smartmatches in Section 48.2.14 [perlop Smartmatch Operator], page 805 is
not identical to that proposed by the Perl 6 specification, mainly due to differences between
Perl 6’s and Perl 5’s data models, but also because the Perl 6 spec has changed since Perl
5 rushed into early adoption.

In Perl 6, when() will always do an implicit smartmatch with its argument, while in
Perl 5 it is convenient (albeit potentially confusing) to suppress this implicit smartmatch
in various rather loosely-defined situations, as roughly outlined above. (The difference is
largely because Perl 5 does not have, even internally, a boolean type.)

75 perlthrtut

75.1 NAME

perlthrtut - Tutorial on threads in Perl

75.2 DESCRIPTION

This tutorial describes the use of Perl interpreter threads (sometimes referred to as ithreads).
In this model, each thread runs in its own Perl interpreter, and any data sharing between
threads must be explicit. The user-level interface for ithreads uses the threads class.

NOTE: There was another older Perl threading flavor called the 5.005 model that used
the threads class. This old model was known to have problems, is deprecated, and was
removed for release 5.10. You are strongly encouraged to migrate any existing 5.005 threads
code to the new model as soon as possible.

You can see which (or neither) threading flavour you have by running perl -V and
looking at the Platform section. If you have useithreads=define you have ithreads, if
you have use5005threads=define you have 5.005 threads. If you have neither, you don’t
have any thread support built in. If you have both, you are in trouble.

The threads and threads-shared modules are included in the core Perl distribution.
Additionally, they are maintained as a separate modules on CPAN, so you can check there
for any updates.

75.3 What Is A Thread Anyway?

A thread is a flow of control through a program with a single execution point.

Sounds an awful lot like a process, doesn’t it? Well, it should. Threads are one of the
pieces of a process. Every process has at least one thread and, up until now, every process
running Perl had only one thread. With 5.8, though, you can create extra threads. We’re
going to show you how, when, and why.

75.4 Threaded Program Models

There are three basic ways that you can structure a threaded program. Which model you
choose depends on what you need your program to do. For many non-trivial threaded
programs, you’ll need to choose different models for different pieces of your program.

75.4.1 Boss/Worker

The boss/worker model usually has one boss thread and one or more worker threads. The
boss thread gathers or generates tasks that need to be done, then parcels those tasks out
to the appropriate worker thread.

This model is common in GUI and server programs, where a main thread waits for some
event and then passes that event to the appropriate worker threads for processing. Once
the event has been passed on, the boss thread goes back to waiting for another event.

The boss thread does relatively little work. While tasks aren’t necessarily performed
faster than with any other method, it tends to have the best user-response times.

75.4.2 Work Crew

In the work crew model, several threads are created that do essentially the same thing to
different pieces of data. It closely mirrors classical parallel processing and vector processors,
where a large array of processors do the exact same thing to many pieces of data.

This model is particularly useful if the system running the program will distribute mul-
tiple threads across different processors. It can also be useful in ray tracing or rendering
engines, where the individual threads can pass on interim results to give the user visual
feedback.

75.4.3 Pipeline

The pipeline model divides up a task into a series of steps, and passes the results of one
step on to the thread processing the next. Each thread does one thing to each piece of data
and passes the results to the next thread in line.

This model makes the most sense if you have multiple processors so two or more threads
will be executing in parallel, though it can often make sense in other contexts as well.
It tends to keep the individual tasks small and simple, as well as allowing some parts of
the pipeline to block (on I/O or system calls, for example) while other parts keep going.
If you’re running different parts of the pipeline on different processors you may also take
advantage of the caches on each processor.

This model is also handy for a form of recursive programming where, rather than having
a subroutine call itself, it instead creates another thread. Prime and Fibonacci generators
both map well to this form of the pipeline model. (A version of a prime number generator
is presented later on.)

75.5 What kind of threads are Perl threads?

If you have experience with other thread implementations, you might find that things aren’t
quite what you expect. It’s very important to remember when dealing with Perl threads
that Perl Threads Are Not X Threads for all values of X. They aren’t POSIX threads, or
DecThreads, or Java’s Green threads, or Win32 threads. There are similarities, and the
broad concepts are the same, but if you start looking for implementation details you’re
going to be either disappointed or confused. Possibly both.

This is not to say that Perl threads are completely different from everything that’s
ever come before. They’re not. Perl’s threading model owes a lot to other thread models,
especially POSIX. Just as Perl is not C, though, Perl threads are not POSIX threads. So if
you find yourself looking for mutexes, or thread priorities, it’s time to step back a bit and
think about what you want to do and how Perl can do it.

However, it is important to remember that Perl threads cannot magically do things
unless your operating system’s threads allow it. So if your system blocks the entire process
on sleep(), Perl usually will, as well.

Perl Threads Are Different.

75.6 Thread-Safe Modules

The addition of threads has changed Perl’s internals substantially. There are implications
for people who write modules with XS code or external libraries. However, since Perl data is

not shared among threads by default, Perl modules stand a high chance of being thread-safe
or can be made thread-safe easily. Modules that are not tagged as thread-safe should be
tested or code reviewed before being used in production code.

Not all modules that you might use are thread-safe, and you should always assume a
module is unsafe unless the documentation says otherwise. This includes modules that are
distributed as part of the core. Threads are a relatively new feature, and even some of the
standard modules aren’t thread-safe.

Even if a module is thread-safe, it doesn’t mean that the module is optimized to work
well with threads. A module could possibly be rewritten to utilize the new features in
threaded Perl to increase performance in a threaded environment.

If you’re using a module that’s not thread-safe for some reason, you can protect yourself
by using it from one, and only one thread at all. If you need multiple threads to access such
a module, you can use semaphores and lots of programming discipline to control access to
it. Semaphores are covered in Section 75.9.5 [Basic semaphores], page 1280.

See also Section 75.15 [Thread-Safety of System Libraries], page 1286.

75.7 Thread Basics

The threads module provides the basic functions you need to write threaded programs. In
the following sections, we’ll cover the basics, showing you what you need to do to create a
threaded program. After that, we’ll go over some of the features of the threads module
that make threaded programming easier.

75.7.1 Basic Thread Support

Thread support is a Perl compile-time option. It’s something that’s turned on or off when
Perl is built at your site, rather than when your programs are compiled. If your Perl wasn’t
compiled with thread support enabled, then any attempt to use threads will fail.

Your programs can use the Config module to check whether threads are enabled. If your
program can’t run without them, you can say something like:

use Config;

$Config{useithreads} or

die(’Recompile Perl with threads to run this program.’);

A possibly-threaded program using a possibly-threaded module might have code like
this:

use Config;

use MyMod;

BEGIN {

if ($Config{useithreads}) {

We have threads

require MyMod_threaded;

import MyMod_threaded;

} else {

require MyMod_unthreaded;

import MyMod_unthreaded;

}

}

Since code that runs both with and without threads is usually pretty messy, it’s best
to isolate the thread-specific code in its own module. In our example above, that’s what
MyMod_threaded is, and it’s only imported if we’re running on a threaded Perl.

75.7.2 A Note about the Examples

In a real situation, care should be taken that all threads are finished executing before the
program exits. That care has not been taken in these examples in the interest of simplicity.
Running these examples as is will produce error messages, usually caused by the fact that
there are still threads running when the program exits. You should not be alarmed by this.

75.7.3 Creating Threads

The threads module provides the tools you need to create new threads. Like any other
module, you need to tell Perl that you want to use it; use threads; imports all the pieces
you need to create basic threads.

The simplest, most straightforward way to create a thread is with create():

use threads;

my $thr = threads->create(\&sub1);

sub sub1 {

print("In the thread\n");

}

The create() method takes a reference to a subroutine and creates a new thread that
starts executing in the referenced subroutine. Control then passes both to the subroutine
and the caller.

If you need to, your program can pass parameters to the subroutine as part of the thread
startup. Just include the list of parameters as part of the threads->create() call, like
this:

use threads;

my $Param3 = ’foo’;

my $thr1 = threads->create(\&sub1, ’Param 1’, ’Param 2’, $Param3);

my @ParamList = (42, ’Hello’, 3.14);

my $thr2 = threads->create(\&sub1, @ParamList);

my $thr3 = threads->create(\&sub1, qw(Param1 Param2 Param3));

sub sub1 {

my @InboundParameters = @_;

print("In the thread\n");

print(’Got parameters >’, join(’<>’,@InboundParameters), "<\n");

}

The last example illustrates another feature of threads. You can spawn off several threads
using the same subroutine. Each thread executes the same subroutine, but in a separate
thread with a separate environment and potentially separate arguments.

new() is a synonym for create().

75.7.4 Waiting For A Thread To Exit

Since threads are also subroutines, they can return values. To wait for a thread to exit and
extract any values it might return, you can use the join() method:

use threads;

my ($thr) = threads->create(\&sub1);

my @ReturnData = $thr->join();

print(’Thread returned ’, join(’, ’, @ReturnData), "\n");

sub sub1 { return (’Fifty-six’, ’foo’, 2); }

In the example above, the join()method returns as soon as the thread ends. In addition
to waiting for a thread to finish and gathering up any values that the thread might have
returned, join() also performs any OS cleanup necessary for the thread. That cleanup
might be important, especially for long-running programs that spawn lots of threads. If
you don’t want the return values and don’t want to wait for the thread to finish, you should
call the detach() method instead, as described next.

NOTE: In the example above, the thread returns a list, thus necessitating that the
thread creation call be made in list context (i.e., my ($thr)). See Section “$thr->join()”
in threads and Section “THREAD CONTEXT” in threads for more details on thread
context and return values.

75.7.5 Ignoring A Thread

join() does three things: it waits for a thread to exit, cleans up after it, and returns any
data the thread may have produced. But what if you’re not interested in the thread’s return
values, and you don’t really care when the thread finishes? All you want is for the thread
to get cleaned up after when it’s done.

In this case, you use the detach() method. Once a thread is detached, it’ll run until
it’s finished; then Perl will clean up after it automatically.

use threads;

my $thr = threads->create(\&sub1); # Spawn the thread

$thr->detach(); # Now we officially don’t care any more

sleep(15); # Let thread run for awhile

sub sub1 {

my $count = 0;

while (1) {

$count++;

print("\$count is $count\n");

sleep(1);

}

}

Once a thread is detached, it may not be joined, and any return data that it might have
produced (if it was done and waiting for a join) is lost.

detach() can also be called as a class method to allow a thread to detach itself:

use threads;

my $thr = threads->create(\&sub1);

sub sub1 {

threads->detach();

Do more work

}

75.7.6 Process and Thread Termination

With threads one must be careful to make sure they all have a chance to run to completion,
assuming that is what you want.

An action that terminates a process will terminate all running threads. die() and exit()
have this property, and perl does an exit when the main thread exits, perhaps implicitly by
falling off the end of your code, even if that’s not what you want.

As an example of this case, this code prints the message "Perl exited with active threads:
2 running and unjoined":

use threads;

my $thr1 = threads->new(\&thrsub, "test1");

my $thr2 = threads->new(\&thrsub, "test2");

sub thrsub {

my ($message) = @_;

sleep 1;

print "thread $message\n";

}

But when the following lines are added at the end:

$thr1->join();

$thr2->join();

it prints two lines of output, a perhaps more useful outcome.

75.8 Threads And Data

Now that we’ve covered the basics of threads, it’s time for our next topic: Data. Threading
introduces a couple of complications to data access that non-threaded programs never need
to worry about.

75.8.1 Shared And Unshared Data

The biggest difference between Perl ithreads and the old 5.005 style threading, or for that
matter, to most other threading systems out there, is that by default, no data is shared.
When a new Perl thread is created, all the data associated with the current thread is copied
to the new thread, and is subsequently private to that new thread! This is similar in feel to
what happens when a Unix process forks, except that in this case, the data is just copied
to a different part of memory within the same process rather than a real fork taking place.

To make use of threading, however, one usually wants the threads to share at least some
data between themselves. This is done with the threads-shared module and the :shared
attribute:

use threads;

use threads::shared;

my $foo :shared = 1;

my $bar = 1;

threads->create(sub { $foo++; $bar++; })->join();

print("$foo\n"); # Prints 2 since $foo is shared

print("$bar\n"); # Prints 1 since $bar is not shared

In the case of a shared array, all the array’s elements are shared, and for a shared hash, all
the keys and values are shared. This places restrictions on what may be assigned to shared
array and hash elements: only simple values or references to shared variables are allowed -
this is so that a private variable can’t accidentally become shared. A bad assignment will
cause the thread to die. For example:

use threads;

use threads::shared;

my $var = 1;

my $svar :shared = 2;

my %hash :shared;

... create some threads ...

$hash{a} = 1; # All threads see exists($hash{a})

and $hash{a} == 1

$hash{a} = $var; # okay - copy-by-value: same effect as previous

$hash{a} = $svar; # okay - copy-by-value: same effect as previous

$hash{a} = \$svar; # okay - a reference to a shared variable

$hash{a} = \$var; # This will die

delete($hash{a}); # okay - all threads will see !exists($hash{a})

Note that a shared variable guarantees that if two or more threads try to modify it at
the same time, the internal state of the variable will not become corrupted. However, there
are no guarantees beyond this, as explained in the next section.

75.8.2 Thread Pitfalls: Races

While threads bring a new set of useful tools, they also bring a number of pitfalls. One
pitfall is the race condition:

use threads;

use threads::shared;

my $x :shared = 1;

my $thr1 = threads->create(\&sub1);

my $thr2 = threads->create(\&sub2);

$thr1->join();

$thr2->join();

print("$x\n");

sub sub1 { my $foo = $x; $x = $foo + 1; }

sub sub2 { my $bar = $x; $x = $bar + 1; }

What do you think $x will be? The answer, unfortunately, is it depends. Both sub1()

and sub2() access the global variable $x, once to read and once to write. Depending on
factors ranging from your thread implementation’s scheduling algorithm to the phase of the
moon, $x can be 2 or 3.

Race conditions are caused by unsynchronized access to shared data. Without explicit
synchronization, there’s no way to be sure that nothing has happened to the shared data
between the time you access it and the time you update it. Even this simple code fragment
has the possibility of error:

use threads;

my $x :shared = 2;

my $y :shared;

my $z :shared;

my $thr1 = threads->create(sub { $y = $x; $x = $y + 1; });

my $thr2 = threads->create(sub { $z = $x; $x = $z + 1; });

$thr1->join();

$thr2->join();

Two threads both access $x. Each thread can potentially be interrupted at any point,
or be executed in any order. At the end, $x could be 3 or 4, and both $y and $z could be
2 or 3.

Even $x += 5 or $x++ are not guaranteed to be atomic.

Whenever your program accesses data or resources that can be accessed by other threads,
you must take steps to coordinate access or risk data inconsistency and race conditions. Note
that Perl will protect its internals from your race conditions, but it won’t protect you from
you.

75.9 Synchronization and control

Perl provides a number of mechanisms to coordinate the interactions between themselves
and their data, to avoid race conditions and the like. Some of these are designed to resemble

the common techniques used in thread libraries such as pthreads; others are Perl-specific.
Often, the standard techniques are clumsy and difficult to get right (such as condition
waits). Where possible, it is usually easier to use Perlish techniques such as queues, which
remove some of the hard work involved.

75.9.1 Controlling access: lock()

The lock() function takes a shared variable and puts a lock on it. No other thread may
lock the variable until the variable is unlocked by the thread holding the lock. Unlocking
happens automatically when the locking thread exits the block that contains the call to the
lock() function. Using lock() is straightforward: This example has several threads doing
some calculations in parallel, and occasionally updating a running total:

use threads;

use threads::shared;

my $total :shared = 0;

sub calc {

while (1) {

my $result;

(... do some calculations and set $result ...)

{

lock($total); # Block until we obtain the lock

$total += $result;

} # Lock implicitly released at end of scope

last if $result == 0;

}

}

my $thr1 = threads->create(\&calc);

my $thr2 = threads->create(\&calc);

my $thr3 = threads->create(\&calc);

$thr1->join();

$thr2->join();

$thr3->join();

print("total=$total\n");

lock() blocks the thread until the variable being locked is available. When lock()

returns, your thread can be sure that no other thread can lock that variable until the block
containing the lock exits.

It’s important to note that locks don’t prevent access to the variable in question, only lock
attempts. This is in keeping with Perl’s longstanding tradition of courteous programming,
and the advisory file locking that flock() gives you.

You may lock arrays and hashes as well as scalars. Locking an array, though, will not
block subsequent locks on array elements, just lock attempts on the array itself.

Locks are recursive, which means it’s okay for a thread to lock a variable more than
once. The lock will last until the outermost lock() on the variable goes out of scope. For
example:

my $x :shared;

doit();

sub doit {

{

{

lock($x); # Wait for lock

lock($x); # NOOP - we already have the lock

{

lock($x); # NOOP

{

lock($x); # NOOP

lockit_some_more();

}

}

} # *** Implicit unlock here ***

}

}

sub lockit_some_more {

lock($x); # NOOP

} # Nothing happens here

Note that there is no unlock() function - the only way to unlock a variable is to allow
it to go out of scope.

A lock can either be used to guard the data contained within the variable being locked,
or it can be used to guard something else, like a section of code. In this latter case, the
variable in question does not hold any useful data, and exists only for the purpose of being
locked. In this respect, the variable behaves like the mutexes and basic semaphores of
traditional thread libraries.

75.9.2 A Thread Pitfall: Deadlocks

Locks are a handy tool to synchronize access to data, and using them properly is the key
to safe shared data. Unfortunately, locks aren’t without their dangers, especially when
multiple locks are involved. Consider the following code:

use threads;

my $x :shared = 4;

my $y :shared = ’foo’;

my $thr1 = threads->create(sub {

lock($x);

sleep(20);

lock($y);

});

my $thr2 = threads->create(sub {

lock($y);

sleep(20);

lock($x);

});

This program will probably hang until you kill it. The only way it won’t hang is if
one of the two threads acquires both locks first. A guaranteed-to-hang version is more
complicated, but the principle is the same.

The first thread will grab a lock on $x, then, after a pause during which the second
thread has probably had time to do some work, try to grab a lock on $y. Meanwhile, the
second thread grabs a lock on $y, then later tries to grab a lock on $x. The second lock
attempt for both threads will block, each waiting for the other to release its lock.

This condition is called a deadlock, and it occurs whenever two or more threads are
trying to get locks on resources that the others own. Each thread will block, waiting for the
other to release a lock on a resource. That never happens, though, since the thread with
the resource is itself waiting for a lock to be released.

There are a number of ways to handle this sort of problem. The best way is to always
have all threads acquire locks in the exact same order. If, for example, you lock variables
$x, $y, and $z, always lock $x before $y, and $y before $z. It’s also best to hold on to locks
for as short a period of time to minimize the risks of deadlock.

The other synchronization primitives described below can suffer from similar problems.

75.9.3 Queues: Passing Data Around

A queue is a special thread-safe object that lets you put data in one end and take it out the
other without having to worry about synchronization issues. They’re pretty straightforward,
and look like this:

use threads;

use Thread::Queue;

my $DataQueue = Thread::Queue->new();

my $thr = threads->create(sub {

while (my $DataElement = $DataQueue->dequeue()) {

print("Popped $DataElement off the queue\n");

}

});

$DataQueue->enqueue(12);

$DataQueue->enqueue("A", "B", "C");

sleep(10);

$DataQueue->enqueue(undef);

$thr->join();

You create the queue with Thread::Queue->new(). Then you can add lists of scalars
onto the end with enqueue(), and pop scalars off the front of it with dequeue(). A queue
has no fixed size, and can grow as needed to hold everything pushed on to it.

If a queue is empty, dequeue() blocks until another thread enqueues something. This
makes queues ideal for event loops and other communications between threads.

75.9.4 Semaphores: Synchronizing Data Access

Semaphores are a kind of generic locking mechanism. In their most basic form, they behave
very much like lockable scalars, except that they can’t hold data, and that they must be
explicitly unlocked. In their advanced form, they act like a kind of counter, and can allow
multiple threads to have the lock at any one time.

75.9.5 Basic semaphores

Semaphores have two methods, down() and up(): down() decrements the resource count,
while up() increments it. Calls to down() will block if the semaphore’s current count would
decrement below zero. This program gives a quick demonstration:

use threads;

use Thread::Semaphore;

my $semaphore = Thread::Semaphore->new();

my $GlobalVariable :shared = 0;

$thr1 = threads->create(\&sample_sub, 1);

$thr2 = threads->create(\&sample_sub, 2);

$thr3 = threads->create(\&sample_sub, 3);

sub sample_sub {

my $SubNumber = shift(@_);

my $TryCount = 10;

my $LocalCopy;

sleep(1);

while ($TryCount--) {

$semaphore->down();

$LocalCopy = $GlobalVariable;

print("$TryCount tries left for sub $SubNumber "

."(\$GlobalVariable is $GlobalVariable)\n");

sleep(2);

$LocalCopy++;

$GlobalVariable = $LocalCopy;

$semaphore->up();

}

}

$thr1->join();

$thr2->join();

$thr3->join();

The three invocations of the subroutine all operate in sync. The semaphore, though,
makes sure that only one thread is accessing the global variable at once.

75.9.6 Advanced Semaphores

By default, semaphores behave like locks, letting only one thread down() them at a time.
However, there are other uses for semaphores.

Each semaphore has a counter attached to it. By default, semaphores are created with
the counter set to one, down() decrements the counter by one, and up() increments by one.
However, we can override any or all of these defaults simply by passing in different values:

use threads;

use Thread::Semaphore;

my $semaphore = Thread::Semaphore->new(5);

Creates a semaphore with the counter set to five

my $thr1 = threads->create(\&sub1);

my $thr2 = threads->create(\&sub1);

sub sub1 {

$semaphore->down(5); # Decrements the counter by five

Do stuff here

$semaphore->up(5); # Increment the counter by five

}

$thr1->detach();

$thr2->detach();

If down() attempts to decrement the counter below zero, it blocks until the counter is
large enough. Note that while a semaphore can be created with a starting count of zero, any
up() or down() always changes the counter by at least one, and so $semaphore->down(0)

is the same as $semaphore->down(1).

The question, of course, is why would you do something like this? Why create a
semaphore with a starting count that’s not one, or why decrement or increment it by more
than one? The answer is resource availability. Many resources that you want to manage
access for can be safely used by more than one thread at once.

For example, let’s take a GUI driven program. It has a semaphore that it uses to
synchronize access to the display, so only one thread is ever drawing at once. Handy, but
of course you don’t want any thread to start drawing until things are properly set up. In
this case, you can create a semaphore with a counter set to zero, and up it when things are
ready for drawing.

Semaphores with counters greater than one are also useful for establishing quotas. Say,
for example, that you have a number of threads that can do I/O at once. You don’t want all
the threads reading or writing at once though, since that can potentially swamp your I/O
channels, or deplete your process’s quota of filehandles. You can use a semaphore initialized
to the number of concurrent I/O requests (or open files) that you want at any one time,
and have your threads quietly block and unblock themselves.

Larger increments or decrements are handy in those cases where a thread needs to check
out or return a number of resources at once.

75.9.7 Waiting for a Condition

The functions cond_wait() and cond_signal() can be used in conjunction with locks to
notify co-operating threads that a resource has become available. They are very similar in

use to the functions found in pthreads. However for most purposes, queues are simpler to
use and more intuitive. See threads-shared for more details.

75.9.8 Giving up control

There are times when you may find it useful to have a thread explicitly give up the CPU
to another thread. You may be doing something processor-intensive and want to make sure
that the user-interface thread gets called frequently. Regardless, there are times that you
might want a thread to give up the processor.

Perl’s threading package provides the yield() function that does this. yield() is pretty
straightforward, and works like this:

use threads;

sub loop {

my $thread = shift;

my $foo = 50;

while($foo--) { print("In thread $thread\n"); }

threads->yield();

$foo = 50;

while($foo--) { print("In thread $thread\n"); }

}

my $thr1 = threads->create(\&loop, ’first’);

my $thr2 = threads->create(\&loop, ’second’);

my $thr3 = threads->create(\&loop, ’third’);

It is important to remember that yield() is only a hint to give up the CPU, it depends
on your hardware, OS and threading libraries what actually happens. On many operating
systems, yield() is a no-op. Therefore it is important to note that one should not build
the scheduling of the threads around yield() calls. It might work on your platform but it
won’t work on another platform.

75.10 General Thread Utility Routines

We’ve covered the workhorse parts of Perl’s threading package, and with these tools you
should be well on your way to writing threaded code and packages. There are a few useful
little pieces that didn’t really fit in anyplace else.

75.10.1 What Thread Am I In?

The threads->self() class method provides your program with a way to get an object
representing the thread it’s currently in. You can use this object in the same way as the
ones returned from thread creation.

75.10.2 Thread IDs

tid() is a thread object method that returns the thread ID of the thread the object rep-
resents. Thread IDs are integers, with the main thread in a program being 0. Currently
Perl assigns a unique TID to every thread ever created in your program, assigning the first
thread to be created a TID of 1, and increasing the TID by 1 for each new thread that’s

created. When used as a class method, threads->tid() can be used by a thread to get its
own TID.

75.10.3 Are These Threads The Same?

The equal() method takes two thread objects and returns true if the objects represent the
same thread, and false if they don’t.

Thread objects also have an overloaded == comparison so that you can do comparison
on them as you would with normal objects.

75.10.4 What Threads Are Running?

threads->list() returns a list of thread objects, one for each thread that’s currently
running and not detached. Handy for a number of things, including cleaning up at the end
of your program (from the main Perl thread, of course):

Loop through all the threads

foreach my $thr (threads->list()) {

$thr->join();

}

If some threads have not finished running when the main Perl thread ends, Perl will warn
you about it and die, since it is impossible for Perl to clean up itself while other threads
are running.

NOTE: The main Perl thread (thread 0) is in a detached state, and so does not appear
in the list returned by threads->list().

75.11 A Complete Example

Confused yet? It’s time for an example program to show some of the things we’ve covered.
This program finds prime numbers using threads.

1 #!/usr/bin/perl

2 # prime-pthread, courtesy of Tom Christiansen

3

4 use strict;

5 use warnings;

6

7 use threads;

8 use Thread::Queue;

9

10 sub check_num {

11 my ($upstream, $cur_prime) = @_;

12 my $kid;

13 my $downstream = Thread::Queue->new();

14 while (my $num = $upstream->dequeue()) {

15 next unless ($num % $cur_prime);

16 if ($kid) {

17 $downstream->enqueue($num);

18 } else {

19 print("Found prime: $num\n");

20 $kid = threads->create(\&check_num, $downstream, $num);

21 if (! $kid) {

22 warn("Sorry. Ran out of threads.\n");

23 last;

24 }

25 }

26 }

27 if ($kid) {

28 $downstream->enqueue(undef);

29 $kid->join();

30 }

31 }

32

33 my $stream = Thread::Queue->new(3..1000, undef);

34 check_num($stream, 2);

This program uses the pipeline model to generate prime numbers. Each thread in the
pipeline has an input queue that feeds numbers to be checked, a prime number that it’s
responsible for, and an output queue into which it funnels numbers that have failed the
check. If the thread has a number that’s failed its check and there’s no child thread, then
the thread must have found a new prime number. In that case, a new child thread is created
for that prime and stuck on the end of the pipeline.

This probably sounds a bit more confusing than it really is, so let’s go through this
program piece by piece and see what it does. (For those of you who might be trying to
remember exactly what a prime number is, it’s a number that’s only evenly divisible by
itself and 1.)

The bulk of the work is done by the check_num() subroutine, which takes a reference
to its input queue and a prime number that it’s responsible for. After pulling in the input
queue and the prime that the subroutine is checking (line 11), we create a new queue (line
13) and reserve a scalar for the thread that we’re likely to create later (line 12).

The while loop from line 14 to line 26 grabs a scalar off the input queue and checks
against the prime this thread is responsible for. Line 15 checks to see if there’s a remainder
when we divide the number to be checked by our prime. If there is one, the number must
not be evenly divisible by our prime, so we need to either pass it on to the next thread if
we’ve created one (line 17) or create a new thread if we haven’t.

The new thread creation is line 20. We pass on to it a reference to the queue we’ve
created, and the prime number we’ve found. In lines 21 through 24, we check to make sure
that our new thread got created, and if not, we stop checking any remaining numbers in
the queue.

Finally, once the loop terminates (because we got a 0 or undef in the queue, which serves
as a note to terminate), we pass on the notice to our child, and wait for it to exit if we’ve
created a child (lines 27 and 30).

Meanwhile, back in the main thread, we first create a queue (line 33) and queue up all
the numbers from 3 to 1000 for checking, plus a termination notice. Then all we have to do
to get the ball rolling is pass the queue and the first prime to the check_num() subroutine
(line 34).

That’s how it works. It’s pretty simple; as with many Perl programs, the explanation is
much longer than the program.

75.12 Different implementations of threads

Some background on thread implementations from the operating system viewpoint. There
are three basic categories of threads: user-mode threads, kernel threads, and multiprocessor
kernel threads.

User-mode threads are threads that live entirely within a program and its libraries. In
this model, the OS knows nothing about threads. As far as it’s concerned, your process is
just a process.

This is the easiest way to implement threads, and the way most OSes start. The big
disadvantage is that, since the OS knows nothing about threads, if one thread blocks they
all do. Typical blocking activities include most system calls, most I/O, and things like
sleep().

Kernel threads are the next step in thread evolution. The OS knows about kernel
threads, and makes allowances for them. The main difference between a kernel thread and
a user-mode thread is blocking. With kernel threads, things that block a single thread don’t
block other threads. This is not the case with user-mode threads, where the kernel blocks
at the process level and not the thread level.

This is a big step forward, and can give a threaded program quite a performance boost
over non-threaded programs. Threads that block performing I/O, for example, won’t block
threads that are doing other things. Each process still has only one thread running at once,
though, regardless of how many CPUs a system might have.

Since kernel threading can interrupt a thread at any time, they will uncover some of the
implicit locking assumptions you may make in your program. For example, something as
simple as $x = $x + 2 can behave unpredictably with kernel threads if $x is visible to other
threads, as another thread may have changed $x between the time it was fetched on the
right hand side and the time the new value is stored.

Multiprocessor kernel threads are the final step in thread support. With multiprocessor
kernel threads on a machine with multiple CPUs, the OS may schedule two or more threads
to run simultaneously on different CPUs.

This can give a serious performance boost to your threaded program, since more than
one thread will be executing at the same time. As a tradeoff, though, any of those nagging
synchronization issues that might not have shown with basic kernel threads will appear with
a vengeance.

In addition to the different levels of OS involvement in threads, different OSes (and
different thread implementations for a particular OS) allocate CPU cycles to threads in
different ways.

Cooperative multitasking systems have running threads give up control if one of two
things happen. If a thread calls a yield function, it gives up control. It also gives up
control if the thread does something that would cause it to block, such as perform I/O. In
a cooperative multitasking implementation, one thread can starve all the others for CPU
time if it so chooses.

Preemptive multitasking systems interrupt threads at regular intervals while the system
decides which thread should run next. In a preemptive multitasking system, one thread
usually won’t monopolize the CPU.

On some systems, there can be cooperative and preemptive threads running simultane-
ously. (Threads running with realtime priorities often behave cooperatively, for example,
while threads running at normal priorities behave preemptively.)

Most modern operating systems support preemptive multitasking nowadays.

75.13 Performance considerations

The main thing to bear in mind when comparing Perl’s ithreads to other threading models
is the fact that for each new thread created, a complete copy of all the variables and data
of the parent thread has to be taken. Thus, thread creation can be quite expensive, both in
terms of memory usage and time spent in creation. The ideal way to reduce these costs is to
have a relatively short number of long-lived threads, all created fairly early on (before the
base thread has accumulated too much data). Of course, this may not always be possible,
so compromises have to be made. However, after a thread has been created, its performance
and extra memory usage should be little different than ordinary code.

Also note that under the current implementation, shared variables use a little more
memory and are a little slower than ordinary variables.

75.14 Process-scope Changes

Note that while threads themselves are separate execution threads and Perl data is thread-
private unless explicitly shared, the threads can affect process-scope state, affecting all the
threads.

The most common example of this is changing the current working directory using
chdir(). One thread calls chdir(), and the working directory of all the threads changes.

Even more drastic example of a process-scope change is chroot(): the root directory of
all the threads changes, and no thread can undo it (as opposed to chdir()).

Further examples of process-scope changes include umask() and changing uids and gids.

Thinking of mixing fork() and threads? Please lie down and wait until the feeling
passes. Be aware that the semantics of fork() vary between platforms. For example, some
Unix systems copy all the current threads into the child process, while others only copy the
thread that called fork(). You have been warned!

Similarly, mixing signals and threads may be problematic. Implementations are
platform-dependent, and even the POSIX semantics may not be what you expect (and Perl
doesn’t even give you the full POSIX API). For example, there is no way to guarantee that
a signal sent to a multi-threaded Perl application will get intercepted by any particular
thread. (However, a recently added feature does provide the capability to send signals
between threads. See Section “THREAD SIGNALLING” in threads for more details.)

75.15 Thread-Safety of System Libraries

Whether various library calls are thread-safe is outside the control of Perl. Calls often
suffering from not being thread-safe include: localtime(), gmtime(), functions fetching

user, group and network information (such as getgrent(), gethostent(), getnetent()
and so on), readdir(), rand(), and srand(). In general, calls that depend on some global
external state.

If the system Perl is compiled in has thread-safe variants of such calls, they will be used.
Beyond that, Perl is at the mercy of the thread-safety or -unsafety of the calls. Please
consult your C library call documentation.

On some platforms the thread-safe library interfaces may fail if the result buffer is too
small (for example the user group databases may be rather large, and the reentrant interfaces
may have to carry around a full snapshot of those databases). Perl will start with a small
buffer, but keep retrying and growing the result buffer until the result fits. If this limitless
growing sounds bad for security or memory consumption reasons you can recompile Perl
with PERL_REENTRANT_MAXSIZE defined to the maximum number of bytes you will allow.

75.16 Conclusion

A complete thread tutorial could fill a book (and has, many times), but with what we’ve
covered in this introduction, you should be well on your way to becoming a threaded Perl
expert.

75.17 SEE ALSO

Annotated POD for threads: http://annocpan.org/ ?mode=search&field=Module&

name=threads

Latest version of threads on CPAN: http: / / search . cpan . org / search ?

module=threads

Annotated POD for threads-shared: http: / / annocpan . org / ? mode=search &

field=Module&name=threads%3A%3Ashared

Latest version of threads-shared on CPAN: http://search.cpan.org/search?
module=threads%3A%3Ashared

Perl threads mailing list: http://lists.perl.org/list/ithreads.html

75.18 Bibliography

Here’s a short bibliography courtesy of Jürgen Christoffel:

75.18.1 Introductory Texts

Birrell, Andrew D. An Introduction to Programming with Threads. Digi-
tal Equipment Corporation, 1989, DEC-SRC Research Report #35 online as
ftp://ftp.dec.com/pub/DEC/SRC/research-reports/SRC-035.pdf (highly recommended)

Robbins, Kay. A., and Steven Robbins. Practical Unix Programming: A Guide to
Concurrency, Communication, and Multithreading. Prentice-Hall, 1996.

Lewis, Bill, and Daniel J. Berg. Multithreaded Programming with Pthreads. Prentice
Hall, 1997, ISBN 0-13-443698-9 (a well-written introduction to threads).

Nelson, Greg (editor). Systems Programming with Modula-3. Prentice Hall, 1991, ISBN
0-13-590464-1.

http://annocpan.org/?mode=search&field=Module&name=threads
http://annocpan.org/?mode=search&field=Module&name=threads
http://search.cpan.org/search?module=threads
http://search.cpan.org/search?module=threads
http://annocpan.org/?mode=search&field=Module&name=threads%3A%3Ashared
http://annocpan.org/?mode=search&field=Module&name=threads%3A%3Ashared
http://search.cpan.org/search?module=threads%3A%3Ashared
http://search.cpan.org/search?module=threads%3A%3Ashared
http://lists.perl.org/list/ithreads.html

Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Programming.
O’Reilly & Associates, 1996, ISBN 156592-115-1 (covers POSIX threads).

75.18.2 OS-Related References

Boykin, Joseph, David Kirschen, Alan Langerman, and Susan LoVerso. Programming under
Mach. Addison-Wesley, 1994, ISBN 0-201-52739-1.

Tanenbaum, Andrew S. Distributed Operating Systems. Prentice Hall, 1995, ISBN 0-
13-219908-4 (great textbook).

Silberschatz, Abraham, and Peter B. Galvin. Operating System Concepts, 4th ed.
Addison-Wesley, 1995, ISBN 0-201-59292-4

75.18.3 Other References

Arnold, Ken and James Gosling. The Java Programming Language, 2nd ed. Addison-
Wesley, 1998, ISBN 0-201-31006-6.

comp.programming.threads FAQ, http://www.serpentine.com/~bos/threads-faq/

Le Sergent, T. and B. Berthomieu. "Incremental MultiThreaded Garbage Collection on
Virtually Shared Memory Architectures" in Memory Management: Proc. of the Interna-
tional Workshop IWMM 92, St. Malo, France, September 1992, Yves Bekkers and Jacques
Cohen, eds. Springer, 1992, ISBN 3540-55940-X (real-life thread applications).

Artur Bergman, "Where Wizards Fear To Tread", June 11, 2002, http://www.perl.
com/pub/a/2002/06/11/threads.html

75.19 Acknowledgements

Thanks (in no particular order) to Chaim Frenkel, Steve Fink, Gurusamy Sarathy, Ilya
Zakharevich, Benjamin Sugars, Jürgen Christoffel, Joshua Pritikin, and Alan Burlison, for
their help in reality-checking and polishing this article. Big thanks to Tom Christiansen for
his rewrite of the prime number generator.

75.20 AUTHOR

Dan Sugalski <dan@sidhe.org<gt>

Slightly modified by Arthur Bergman to fit the new thread model/module.

Reworked slightly by Jörg Walter <jwalt@cpan.org<gt> to be more concise about thread-
safety of Perl code.

Rearranged slightly by Elizabeth Mattijsen <liz@dijkmat.nl<gt> to put less emphasis on
yield().

75.21 Copyrights

The original version of this article originally appeared in The Perl Journal #10, and is
copyright 1998 The Perl Journal. It appears courtesy of Jon Orwant and The Perl Journal.
This document may be distributed under the same terms as Perl itself.

http://www.serpentine.com/~bos/threads-faq/
http://www.perl.com/pub/a/2002/06/11/threads.html
http://www.perl.com/pub/a/2002/06/11/threads.html

76 perltie

76.1 NAME

perltie - how to hide an object class in a simple variable

76.2 SYNOPSIS

tie VARIABLE, CLASSNAME, LIST

$object = tied VARIABLE

untie VARIABLE

76.3 DESCRIPTION

Prior to release 5.0 of Perl, a programmer could use dbmopen() to connect an on-disk
database in the standard Unix dbm(3x) format magically to a %HASH in their program.
However, their Perl was either built with one particular dbm library or another, but not
both, and you couldn’t extend this mechanism to other packages or types of variables.

Now you can.

The tie() function binds a variable to a class (package) that will provide the implemen-
tation for access methods for that variable. Once this magic has been performed, accessing
a tied variable automatically triggers method calls in the proper class. The complexity of
the class is hidden behind magic methods calls. The method names are in ALL CAPS,
which is a convention that Perl uses to indicate that they’re called implicitly rather than
explicitly–just like the BEGIN() and END() functions.

In the tie() call, VARIABLE is the name of the variable to be enchanted. CLASSNAME

is the name of a class implementing objects of the correct type. Any additional argu-
ments in the LIST are passed to the appropriate constructor method for that class–meaning
TIESCALAR(), TIEARRAY(), TIEHASH(), or TIEHANDLE(). (Typically these are argu-
ments such as might be passed to the dbminit() function of C.) The object returned by the
"new" method is also returned by the tie() function, which would be useful if you wanted
to access other methods in CLASSNAME. (You don’t actually have to return a reference to a
right "type" (e.g., HASH or CLASSNAME) so long as it’s a properly blessed object.) You can
also retrieve a reference to the underlying object using the tied() function.

Unlike dbmopen(), the tie() function will not use or require a module for you–you need
to do that explicitly yourself.

76.3.1 Tying Scalars

A class implementing a tied scalar should define the following methods: TIESCALAR,
FETCH, STORE, and possibly UNTIE and/or DESTROY.

Let’s look at each in turn, using as an example a tie class for scalars that allows the user
to do something like:

tie $his_speed, ’Nice’, getppid();

tie $my_speed, ’Nice’, $$;

And now whenever either of those variables is accessed, its current system priority is
retrieved and returned. If those variables are set, then the process’s priority is changed!

We’ll use Jarkko Hietaniemi <jhi@iki.fi>’s BSD::Resource class (not included) to ac-
cess the PRIO PROCESS, PRIO MIN, and PRIO MAX constants from your system, as
well as the getpriority() and setpriority() system calls. Here’s the preamble of the class.

package Nice;

use Carp;

use BSD::Resource;

use strict;

$Nice::DEBUG = 0 unless defined $Nice::DEBUG;

TIESCALAR classname, LIST
This is the constructor for the class. That means it is expected to return a
blessed reference to a new scalar (probably anonymous) that it’s creating. For
example:

sub TIESCALAR {

my $class = shift;

my $pid = shift || $$; # 0 means me

if ($pid !~ /^\d+$/) {

carp "Nice::Tie::Scalar got non-numeric pid $pid" if $^W;

return undef;

}

unless (kill 0, $pid) { # EPERM or ERSCH, no doubt

carp "Nice::Tie::Scalar got bad pid $pid: $!" if $^W;

return undef;

}

return bless \$pid, $class;

}

This tie class has chosen to return an error rather than raising an exception if
its constructor should fail. While this is how dbmopen() works, other classes
may well not wish to be so forgiving. It checks the global variable $^W to see
whether to emit a bit of noise anyway.

FETCH this
This method will be triggered every time the tied variable is accessed (read). It
takes no arguments beyond its self reference, which is the object representing
the scalar we’re dealing with. Because in this case we’re using just a SCALAR
ref for the tied scalar object, a simple $$self allows the method to get at the
real value stored there. In our example below, that real value is the process ID
to which we’ve tied our variable.

sub FETCH {

my $self = shift;

confess "wrong type" unless ref $self;

croak "usage error" if @_;

my $nicety;

local($!) = 0;

$nicety = getpriority(PRIO_PROCESS, $$self);

if ($!) { croak "getpriority failed: $!" }

return $nicety;

}

This time we’ve decided to blow up (raise an exception) if the renice fails–there’s
no place for us to return an error otherwise, and it’s probably the right thing
to do.

STORE this, value
This method will be triggered every time the tied variable is set (assigned).
Beyond its self reference, it also expects one (and only one) argument: the
new value the user is trying to assign. Don’t worry about returning a value
from STORE; the semantic of assignment returning the assigned value is im-
plemented with FETCH.

sub STORE {

my $self = shift;

confess "wrong type" unless ref $self;

my $new_nicety = shift;

croak "usage error" if @_;

if ($new_nicety < PRIO_MIN) {

carp sprintf

"WARNING: priority %d less than minimum system priority %d",

$new_nicety, PRIO_MIN if $^W;

$new_nicety = PRIO_MIN;

}

if ($new_nicety > PRIO_MAX) {

carp sprintf

"WARNING: priority %d greater than maximum system priority %d",

$new_nicety, PRIO_MAX if $^W;

$new_nicety = PRIO_MAX;

}

unless (defined setpriority(PRIO_PROCESS, $$self, $new_nicety)) {

confess "setpriority failed: $!";

}

}

UNTIE this
This method will be triggered when the untie occurs. This can be useful if the
class needs to know when no further calls will be made. (Except DESTROY
of course.) See Section 76.3.6 [The untie Gotcha], page 1305 below for more
details.

DESTROY this
This method will be triggered when the tied variable needs to be destructed.
As with other object classes, such a method is seldom necessary, because Perl
deallocates its moribund object’s memory for you automatically–this isn’t C++,
you know. We’ll use a DESTROY method here for debugging purposes only.

sub DESTROY {

my $self = shift;

confess "wrong type" unless ref $self;

carp "[Nice::DESTROY pid $$self]" if $Nice::DEBUG;

}

That’s about all there is to it. Actually, it’s more than all there is to it, because we’ve
done a few nice things here for the sake of completeness, robustness, and general aesthetics.
Simpler TIESCALAR classes are certainly possible.

76.3.2 Tying Arrays

A class implementing a tied ordinary array should define the following methods: TIEAR-
RAY, FETCH, STORE, FETCHSIZE, STORESIZE, CLEAR and perhaps UNTIE and/or
DESTROY.

FETCHSIZE and STORESIZE are used to provide $#array and equivalent
scalar(@array) access.

The methods POP, PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, and EXISTS are
required if the perl operator with the corresponding (but lowercase) name is to operate on
the tied array. The Tie::Array class can be used as a base class to implement the first five
of these in terms of the basic methods above. The default implementations of DELETE
and EXISTS in Tie::Array simply croak.

In addition EXTEND will be called when perl would have pre-extended allocation in a
real array.

For this discussion, we’ll implement an array whose elements are a fixed size at creation.
If you try to create an element larger than the fixed size, you’ll take an exception. For
example:

use FixedElem_Array;

tie @array, ’FixedElem_Array’, 3;

$array[0] = ’cat’; # ok.

$array[1] = ’dogs’; # exception, length(’dogs’) > 3.

The preamble code for the class is as follows:

package FixedElem_Array;

use Carp;

use strict;

TIEARRAY classname, LIST
This is the constructor for the class. That means it is expected to return a
blessed reference through which the new array (probably an anonymous AR-
RAY ref) will be accessed.

In our example, just to show you that you don’t really have to return an AR-
RAY reference, we’ll choose a HASH reference to represent our object. A HASH

works out well as a generic record type: the {ELEMSIZE} field will store the max-
imum element size allowed, and the {ARRAY} field will hold the true ARRAY ref.
If someone outside the class tries to dereference the object returned (doubtless
thinking it an ARRAY ref), they’ll blow up. This just goes to show you that
you should respect an object’s privacy.

sub TIEARRAY {

my $class = shift;

my $elemsize = shift;

if (@_ || $elemsize =~ /\D/) {

croak "usage: tie ARRAY, ’" . __PACKAGE__ . "’, elem_size";

}

return bless {

ELEMSIZE => $elemsize,

ARRAY => [],

}, $class;

}

FETCH this, index
This method will be triggered every time an individual element the tied array
is accessed (read). It takes one argument beyond its self reference: the index
whose value we’re trying to fetch.

sub FETCH {

my $self = shift;

my $index = shift;

return $self->{ARRAY}->[$index];

}

If a negative array index is used to read from an array, the index will be trans-
lated to a positive one internally by calling FETCHSIZE before being passed to
FETCH. You may disable this feature by assigning a true value to the variable
$NEGATIVE_INDICES in the tied array class.

As you may have noticed, the name of the FETCH method (et al.) is the same
for all accesses, even though the constructors differ in names (TIESCALAR vs
TIEARRAY). While in theory you could have the same class servicing several
tied types, in practice this becomes cumbersome, and it’s easiest to keep them
at simply one tie type per class.

STORE this, index, value
This method will be triggered every time an element in the tied array is set
(written). It takes two arguments beyond its self reference: the index at which
we’re trying to store something and the value we’re trying to put there.

In our example, undef is really $self->{ELEMSIZE} number of spaces so we
have a little more work to do here:

sub STORE {

my $self = shift;

my($index, $value) = @_;

if (length $value > $self->{ELEMSIZE}) {

croak "length of $value is greater than $self->{ELEMSIZE}";

}

fill in the blanks

$self->EXTEND($index) if $index > $self->FETCHSIZE();

right justify to keep element size for smaller elements

$self->{ARRAY}->[$index] = sprintf "%$self->{ELEMSIZE}s", $value;

}

Negative indexes are treated the same as with FETCH.

FETCHSIZE this
Returns the total number of items in the tied array associated with object this.
(Equivalent to scalar(@array)). For example:

sub FETCHSIZE {

my $self = shift;

return scalar @{$self->{ARRAY}};

}

STORESIZE this, count
Sets the total number of items in the tied array associated with object this to
be count. If this makes the array larger then class’s mapping of undef should
be returned for new positions. If the array becomes smaller then entries beyond
count should be deleted.

In our example, ’undef’ is really an element containing $self->{ELEMSIZE}

number of spaces. Observe:

sub STORESIZE {

my $self = shift;

my $count = shift;

if ($count > $self->FETCHSIZE()) {

foreach ($count - $self->FETCHSIZE() .. $count) {

$self->STORE($_, ’’);

}

} elsif ($count < $self->FETCHSIZE()) {

foreach (0 .. $self->FETCHSIZE() - $count - 2) {

$self->POP();

}

}

}

EXTEND this, count
Informative call that array is likely to grow to have count entries. Can be used
to optimize allocation. This method need do nothing.

In our example, we want to make sure there are no blank (undef) entries, so
EXTEND will make use of STORESIZE to fill elements as needed:

sub EXTEND {

my $self = shift;

my $count = shift;

$self->STORESIZE($count);

}

EXISTS this, key
Verify that the element at index key exists in the tied array this.

In our example, we will determine that if an element consists of
$self->{ELEMSIZE} spaces only, it does not exist:

sub EXISTS {

my $self = shift;

my $index = shift;

return 0 if ! defined $self->{ARRAY}->[$index] ||

$self->{ARRAY}->[$index] eq ’ ’ x $self->{ELEMSIZE};

return 1;

}

DELETE this, key
Delete the element at index key from the tied array this.

In our example, a deleted item is $self->{ELEMSIZE} spaces:

sub DELETE {

my $self = shift;

my $index = shift;

return $self->STORE($index, ’’);

}

CLEAR this
Clear (remove, delete, ...) all values from the tied array associated with object
this. For example:

sub CLEAR {

my $self = shift;

return $self->{ARRAY} = [];

}

PUSH this, LIST
Append elements of LIST to the array. For example:

sub PUSH {

my $self = shift;

my @list = @_;

my $last = $self->FETCHSIZE();

$self->STORE($last + $_, $list[$_]) foreach 0 .. $#list;

return $self->FETCHSIZE();

}

POP this

Remove last element of the array and return it. For example:

sub POP {

my $self = shift;

return pop @{$self->{ARRAY}};

}

SHIFT this
Remove the first element of the array (shifting other elements down) and return
it. For example:

sub SHIFT {

my $self = shift;

return shift @{$self->{ARRAY}};

}

UNSHIFT this, LIST
Insert LIST elements at the beginning of the array, moving existing elements
up to make room. For example:

sub UNSHIFT {

my $self = shift;

my @list = @_;

my $size = scalar(@list);

make room for our list

@{$self->{ARRAY}}[$size .. $#{$self->{ARRAY}} + $size]

= @{$self->{ARRAY}};

$self->STORE($_, $list[$_]) foreach 0 .. $#list;

}

SPLICE this, offset, length, LIST
Perform the equivalent of splice on the array.

offset is optional and defaults to zero, negative values count back from the end
of the array.

length is optional and defaults to rest of the array.

LIST may be empty.

Returns a list of the original length elements at offset.

In our example, we’ll use a little shortcut if there is a LIST :

sub SPLICE {

my $self = shift;

my $offset = shift || 0;

my $length = shift || $self->FETCHSIZE() - $offset;

my @list = ();

if (@_) {

tie @list, __PACKAGE__, $self->{ELEMSIZE};

@list = @_;

}

return splice @{$self->{ARRAY}}, $offset, $length, @list;

}

UNTIE this
Will be called when untie happens. (See Section 76.3.6 [The untie Gotcha],
page 1305 below.)

DESTROY this
This method will be triggered when the tied variable needs to be destructed.
As with the scalar tie class, this is almost never needed in a language that does
its own garbage collection, so this time we’ll just leave it out.

76.3.3 Tying Hashes

Hashes were the first Perl data type to be tied (see dbmopen()). A class implementing a
tied hash should define the following methods: TIEHASH is the constructor. FETCH and
STORE access the key and value pairs. EXISTS reports whether a key is present in the
hash, and DELETE deletes one. CLEAR empties the hash by deleting all the key and value
pairs. FIRSTKEY and NEXTKEY implement the keys() and each() functions to iterate
over all the keys. SCALAR is triggered when the tied hash is evaluated in scalar context.
UNTIE is called when untie happens, and DESTROY is called when the tied variable is
garbage collected.

If this seems like a lot, then feel free to inherit from merely the standard Tie::StdHash
module for most of your methods, redefining only the interesting ones. See Tie-Hash for
details.

Remember that Perl distinguishes between a key not existing in the hash, and the key
existing in the hash but having a corresponding value of undef. The two possibilities can
be tested with the exists() and defined() functions.

Here’s an example of a somewhat interesting tied hash class: it gives you a hash rep-
resenting a particular user’s dot files. You index into the hash with the name of the file
(minus the dot) and you get back that dot file’s contents. For example:

use DotFiles;

tie %dot, ’DotFiles’;

if ($dot{profile} =~ /MANPATH/ ||

$dot{login} =~ /MANPATH/ ||

$dot{cshrc} =~ /MANPATH/)

{

print "you seem to set your MANPATH\n";

}

Or here’s another sample of using our tied class:

tie %him, ’DotFiles’, ’daemon’;

foreach $f (keys %him) {

printf "daemon dot file %s is size %d\n",

$f, length $him{$f};

}

In our tied hash DotFiles example, we use a regular hash for the object containing several
important fields, of which only the {LIST} field will be what the user thinks of as the real
hash.

USER

whose dot files this object represents

HOME

where those dot files live

CLOBBER
whether we should try to change or remove those dot files

LIST

the hash of dot file names and content mappings

Here’s the start of Dotfiles.pm:

package DotFiles;

use Carp;

sub whowasi { (caller(1))[3] . ’()’ }

my $DEBUG = 0;

sub debug { $DEBUG = @_ ? shift : 1 }

For our example, we want to be able to emit debugging info to help in tracing during
development. We keep also one convenience function around internally to help print out
warnings; whowasi() returns the function name that calls it.

Here are the methods for the DotFiles tied hash.

TIEHASH classname, LIST
This is the constructor for the class. That means it is expected to return a
blessed reference through which the new object (probably but not necessarily
an anonymous hash) will be accessed.

Here’s the constructor:

sub TIEHASH {

my $self = shift;

my $user = shift || $>;

my $dotdir = shift || ’’;

croak "usage: @{[&whowasi]} [USER [DOTDIR]]" if @_;

$user = getpwuid($user) if $user =~ /^\d+$/;

my $dir = (getpwnam($user))[7]

|| croak "@{[&whowasi]}: no user $user";

$dir .= "/$dotdir" if $dotdir;

my $node = {

USER => $user,

HOME => $dir,

LIST => {},

CLOBBER => 0,

};

opendir(DIR, $dir)

|| croak "@{[&whowasi]}: can’t opendir $dir: $!";

foreach $dot (grep /^\./ && -f "$dir/$_", readdir(DIR)) {

$dot =~ s/^\.//;

$node->{LIST}{$dot} = undef;

}

closedir DIR;

return bless $node, $self;

}

It’s probably worth mentioning that if you’re going to filetest the return values
out of a readdir, you’d better prepend the directory in question. Otherwise,
because we didn’t chdir() there, it would have been testing the wrong file.

FETCH this, key
This method will be triggered every time an element in the tied hash is accessed
(read). It takes one argument beyond its self reference: the key whose value
we’re trying to fetch.

Here’s the fetch for our DotFiles example.

sub FETCH {

carp &whowasi if $DEBUG;

my $self = shift;

my $dot = shift;

my $dir = $self->{HOME};

my $file = "$dir/.$dot";

unless (exists $self->{LIST}->{$dot} || -f $file) {

carp "@{[&whowasi]}: no $dot file" if $DEBUG;

return undef;

}

if (defined $self->{LIST}->{$dot}) {

return $self->{LIST}->{$dot};

} else {

return $self->{LIST}->{$dot} = ‘cat $dir/.$dot‘;

}

}

It was easy to write by having it call the Unix cat(1) command, but it would
probably be more portable to open the file manually (and somewhat more
efficient). Of course, because dot files are a Unixy concept, we’re not that
concerned.

STORE this, key, value
This method will be triggered every time an element in the tied hash is set
(written). It takes two arguments beyond its self reference: the index at which
we’re trying to store something, and the value we’re trying to put there.

Here in our DotFiles example, we’ll be careful not to let them try to over-
write the file unless they’ve called the clobber() method on the original object
reference returned by tie().

sub STORE {

carp &whowasi if $DEBUG;

my $self = shift;

my $dot = shift;

my $value = shift;

my $file = $self->{HOME} . "/.$dot";

my $user = $self->{USER};

croak "@{[&whowasi]}: $file not clobberable"

unless $self->{CLOBBER};

open(my $f, ’>’, $file) || croak "can’t open $file: $!";

print $f $value;

close($f);

}

If they wanted to clobber something, they might say:

$ob = tie %daemon_dots, ’daemon’;

$ob->clobber(1);

$daemon_dots{signature} = "A true daemon\n";

Another way to lay hands on a reference to the underlying object is to use the
tied() function, so they might alternately have set clobber using:

tie %daemon_dots, ’daemon’;

tied(%daemon_dots)->clobber(1);

The clobber method is simply:

sub clobber {

my $self = shift;

$self->{CLOBBER} = @_ ? shift : 1;

}

DELETE this, key
This method is triggered when we remove an element from the hash, typically
by using the delete() function. Again, we’ll be careful to check whether they
really want to clobber files.

sub DELETE {

carp &whowasi if $DEBUG;

my $self = shift;

my $dot = shift;

my $file = $self->{HOME} . "/.$dot";

croak "@{[&whowasi]}: won’t remove file $file"

unless $self->{CLOBBER};

delete $self->{LIST}->{$dot};

my $success = unlink($file);

carp "@{[&whowasi]}: can’t unlink $file: $!" unless $success;

$success;

}

The value returned by DELETE becomes the return value of the call to delete().
If you want to emulate the normal behavior of delete(), you should return
whatever FETCH would have returned for this key. In this example, we have
chosen instead to return a value which tells the caller whether the file was
successfully deleted.

CLEAR this
This method is triggered when the whole hash is to be cleared, usually by
assigning the empty list to it.

In our example, that would remove all the user’s dot files! It’s such a dangerous
thing that they’ll have to set CLOBBER to something higher than 1 to make
it happen.

sub CLEAR {

carp &whowasi if $DEBUG;

my $self = shift;

croak "@{[&whowasi]}: won’t remove all dot files for $self->{USER}"

unless $self->{CLOBBER} > 1;

my $dot;

foreach $dot (keys %{$self->{LIST}}) {

$self->DELETE($dot);

}

}

EXISTS this, key
This method is triggered when the user uses the exists() function on a particular
hash. In our example, we’ll look at the {LIST} hash element for this:

sub EXISTS {

carp &whowasi if $DEBUG;

my $self = shift;

my $dot = shift;

return exists $self->{LIST}->{$dot};

}

FIRSTKEY this
This method will be triggered when the user is going to iterate through the
hash, such as via a keys() or each() call.

sub FIRSTKEY {

carp &whowasi if $DEBUG;

my $self = shift;

my $a = keys %{$self->{LIST}}; # reset each() iterator

each %{$self->{LIST}}

}

NEXTKEY this, lastkey
This method gets triggered during a keys() or each() iteration. It has a second
argument which is the last key that had been accessed. This is useful if you’re
carrying about ordering or calling the iterator from more than one sequence, or
not really storing things in a hash anywhere.

For our example, we’re using a real hash so we’ll do just the simple thing, but
we’ll have to go through the LIST field indirectly.

sub NEXTKEY {

carp &whowasi if $DEBUG;

my $self = shift;

return each %{ $self->{LIST} }

}

SCALAR this
This is called when the hash is evaluated in scalar context. In order to mimic
the behaviour of untied hashes, this method should return a false value when
the tied hash is considered empty. If this method does not exist, perl will make

some educated guesses and return true when the hash is inside an iteration. If
this isn’t the case, FIRSTKEY is called, and the result will be a false value if
FIRSTKEY returns the empty list, true otherwise.

However, you should not blindly rely on perl always doing the right thing. Par-
ticularly, perl will mistakenly return true when you clear the hash by repeatedly
calling DELETE until it is empty. You are therefore advised to supply your
own SCALAR method when you want to be absolutely sure that your hash
behaves nicely in scalar context.

In our example we can just call scalar on the underlying hash referenced by
$self->{LIST}:

sub SCALAR {

carp &whowasi if $DEBUG;

my $self = shift;

return scalar %{ $self->{LIST} }

}

UNTIE this
This is called when untie occurs. See Section 76.3.6 [The untie Gotcha],
page 1305 below.

DESTROY this
This method is triggered when a tied hash is about to go out of scope. You
don’t really need it unless you’re trying to add debugging or have auxiliary
state to clean up. Here’s a very simple function:

sub DESTROY {

carp &whowasi if $DEBUG;

}

Note that functions such as keys() and values() may return huge lists when used on
large objects, like DBM files. You may prefer to use the each() function to iterate over
such. Example:

print out history file offsets

use NDBM_File;

tie(%HIST, ’NDBM_File’, ’/usr/lib/news/history’, 1, 0);

while (($key,$val) = each %HIST) {

print $key, ’ = ’, unpack(’L’,$val), "\n";

}

untie(%HIST);

76.3.4 Tying FileHandles

This is partially implemented now.

A class implementing a tied filehandle should define the following methods: TIEHAN-
DLE, at least one of PRINT, PRINTF, WRITE, READLINE, GETC, READ, and possibly
CLOSE, UNTIE and DESTROY. The class can also provide: BINMODE, OPEN, EOF,
FILENO, SEEK, TELL - if the corresponding perl operators are used on the handle.

When STDERR is tied, its PRINT method will be called to issue warnings and error
messages. This feature is temporarily disabled during the call, which means you can use

warn() inside PRINT without starting a recursive loop. And just like __WARN__ and __

DIE__ handlers, STDERR’s PRINT method may be called to report parser errors, so the
caveats mentioned under [perlvar %SIG], page 1383 apply.

All of this is especially useful when perl is embedded in some other program, where
output to STDOUT and STDERR may have to be redirected in some special way. See nvi
and the Apache module for examples.

When tying a handle, the first argument to tie should begin with an asterisk. So, if you
are tying STDOUT, use *STDOUT. If you have assigned it to a scalar variable, say $handle,
use *$handle. tie $handle ties the scalar variable $handle, not the handle inside it.

In our example we’re going to create a shouting handle.

package Shout;

TIEHANDLE classname, LIST
This is the constructor for the class. That means it is expected to return a
blessed reference of some sort. The reference can be used to hold some internal
information.

sub TIEHANDLE { print "<shout>\n"; my $i; bless \$i, shift }

WRITE this, LIST
This method will be called when the handle is written to via the syswrite

function.

sub WRITE {

$r = shift;

my($buf,$len,$offset) = @_;

print "WRITE called, \$buf=$buf, \$len=$len, \$offset=$offset";

}

PRINT this, LIST
This method will be triggered every time the tied handle is printed to with the
print() or say() functions. Beyond its self reference it also expects the list
that was passed to the print function.

sub PRINT { $r = shift; $$r++; print join($,,map(uc($_),@_)),$\ }

say() acts just like print() except $\ will be localized to \n so you need do
nothing special to handle say() in PRINT().

PRINTF this, LIST
This method will be triggered every time the tied handle is printed to with the
printf() function. Beyond its self reference it also expects the format and list
that was passed to the printf function.

sub PRINTF {

shift;

my $fmt = shift;

print sprintf($fmt, @_);

}

READ this, LIST
This method will be called when the handle is read from via the read or sysread
functions.

sub READ {

my $self = shift;

my $bufref = \$_[0];

my(undef,$len,$offset) = @_;

print "READ called, \$buf=$bufref, \$len=$len, \$offset=$offset";

add to $$bufref, set $len to number of characters read

$len;

}

READLINE this
This method is called when the handle is read via <HANDLE> or readline

HANDLE.

As per [readline], page 433, in scalar context it should return the next line, or
undef for no more data. In list context it should return all remaining lines, or
an empty list for no more data. The strings returned should include the input
record separator $/ (see Section 86.1 [perlvar NAME], page 1375), unless it is
undef (which means "slurp" mode).

sub READLINE {

my $r = shift;

if (wantarray) {

return ("all remaining\n",

"lines up\n",

"to eof\n");

} else {

return "READLINE called " . ++$$r . " times\n";

}

}

GETC this
This method will be called when the getc function is called.

sub GETC { print "Don’t GETC, Get Perl"; return "a"; }

EOF this

This method will be called when the eof function is called.

Starting with Perl 5.12, an additional integer parameter will be passed. It will
be zero if eof is called without parameter; 1 if eof is given a filehandle as a
parameter, e.g. eof(FH); and 2 in the very special case that the tied filehandle
is ARGV and eof is called with an empty parameter list, e.g. eof().

sub EOF { not length $stringbuf }

CLOSE this
This method will be called when the handle is closed via the close function.

sub CLOSE { print "CLOSE called.\n" }

UNTIE this
As with the other types of ties, this method will be called when untie happens.
It may be appropriate to "auto CLOSE" when this occurs. See Section 76.3.6
[The untie Gotcha], page 1305 below.

DESTROY this
As with the other types of ties, this method will be called when the tied handle
is about to be destroyed. This is useful for debugging and possibly cleaning up.

sub DESTROY { print "</shout>\n" }

Here’s how to use our little example:

tie(*FOO,’Shout’);

print FOO "hello\n";

$a = 4; $b = 6;

print FOO $a, " plus ", $b, " equals ", $a + $b, "\n";

print <FOO>;

76.3.5 UNTIE this

You can define for all tie types an UNTIE method that will be called at untie(). See
Section 76.3.6 [The untie Gotcha], page 1305 below.

76.3.6 The untie Gotcha

If you intend making use of the object returned from either tie() or tied(), and if the tie’s
target class defines a destructor, there is a subtle gotcha you must guard against.

As setup, consider this (admittedly rather contrived) example of a tie; all it does is use
a file to keep a log of the values assigned to a scalar.

package Remember;

use strict;

use warnings;

use IO::File;

sub TIESCALAR {

my $class = shift;

my $filename = shift;

my $handle = IO::File->new("> $filename")

or die "Cannot open $filename: $!\n";

print $handle "The Start\n";

bless {FH => $handle, Value => 0}, $class;

}

sub FETCH {

my $self = shift;

return $self->{Value};

}

sub STORE {

my $self = shift;

my $value = shift;

my $handle = $self->{FH};

print $handle "$value\n";

$self->{Value} = $value;

}

sub DESTROY {

my $self = shift;

my $handle = $self->{FH};

print $handle "The End\n";

close $handle;

}

1;

Here is an example that makes use of this tie:

use strict;

use Remember;

my $fred;

tie $fred, ’Remember’, ’myfile.txt’;

$fred = 1;

$fred = 4;

$fred = 5;

untie $fred;

system "cat myfile.txt";

This is the output when it is executed:

The Start

1

4

5

The End

So far so good. Those of you who have been paying attention will have spotted that the
tied object hasn’t been used so far. So lets add an extra method to the Remember class to
allow comments to be included in the file; say, something like this:

sub comment {

my $self = shift;

my $text = shift;

my $handle = $self->{FH};

print $handle $text, "\n";

}

And here is the previous example modified to use the comment method (which requires
the tied object):

use strict;

use Remember;

my ($fred, $x);

$x = tie $fred, ’Remember’, ’myfile.txt’;

$fred = 1;

$fred = 4;

comment $x "changing...";

$fred = 5;

untie $fred;

system "cat myfile.txt";

When this code is executed there is no output. Here’s why:

When a variable is tied, it is associated with the object which is the return value of
the TIESCALAR, TIEARRAY, or TIEHASH function. This object normally has only one
reference, namely, the implicit reference from the tied variable. When untie() is called,
that reference is destroyed. Then, as in the first example above, the object’s destructor
(DESTROY) is called, which is normal for objects that have no more valid references; and
thus the file is closed.

In the second example, however, we have stored another reference to the tied object in
$x. That means that when untie() gets called there will still be a valid reference to the
object in existence, so the destructor is not called at that time, and thus the file is not
closed. The reason there is no output is because the file buffers have not been flushed to
disk.

Now that you know what the problem is, what can you do to avoid it? Prior to the
introduction of the optional UNTIE method the only way was the good old -w flag. Which
will spot any instances where you call untie() and there are still valid references to the tied
object. If the second script above this near the top use warnings ’untie’ or was run with
the -w flag, Perl prints this warning message:

untie attempted while 1 inner references still exist

To get the script to work properly and silence the warning make sure there are no valid
references to the tied object before untie() is called:

undef $x;

untie $fred;

Now that UNTIE exists the class designer can decide which parts of the class function-
ality are really associated with untie and which with the object being destroyed. What
makes sense for a given class depends on whether the inner references are being kept so that
non-tie-related methods can be called on the object. But in most cases it probably makes
sense to move the functionality that would have been in DESTROY to the UNTIE method.

If the UNTIE method exists then the warning above does not occur. Instead the UN-
TIE method is passed the count of "extra" references and can issue its own warning if
appropriate. e.g. to replicate the no UNTIE case this method can be used:

sub UNTIE

{

my ($obj,$count) = @_;

carp "untie attempted while $count inner references still exist" if $count;

}

76.4 SEE ALSO

See DB_File or Config for some interesting tie() implementations. A good starting point for
many tie() implementations is with one of the modules Tie-Scalar, Tie-Array, Tie-Hash,
or Tie-Handle.

76.5 BUGS

The bucket usage information provided by scalar(%hash) is not available. What this means
is that using %tied hash in boolean context doesn’t work right (currently this always tests
false, regardless of whether the hash is empty or hash elements).

Localizing tied arrays or hashes does not work. After exiting the scope the arrays or the
hashes are not restored.

Counting the number of entries in a hash via scalar(keys(%hash)) or
scalar(values(%hash)) is inefficient since it needs to iterate through all the entries with
FIRSTKEY/NEXTKEY.

Tied hash/array slices cause multiple FETCH/STORE pairs, there are no tie methods
for slice operations.

You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm
file. The first problem is that all but GDBM and Berkeley DB have size limitations, but
beyond that, you also have problems with how references are to be represented on disk. One
module that does attempt to address this need is DBM::Deep. Check your nearest CPAN
site as described in perlmodlib for source code. Note that despite its name, DBM::Deep
does not use dbm. Another earlier attempt at solving the problem is MLDBM, which is
also available on the CPAN, but which has some fairly serious limitations.

Tied filehandles are still incomplete. sysopen(), truncate(), flock(), fcntl(), stat() and
-X can’t currently be trapped.

76.6 AUTHOR

Tom Christiansen

TIEHANDLE by Sven Verdoolaege <skimo@dns.ufsia.ac.be> and Doug MacEachern
<dougm@osf.org>

UNTIE by Nick Ing-Simmons <nick@ing-simmons.net>

SCALAR by Tassilo von Parseval <tassilo.von.parseval@rwth-aachen.de>

Tying Arrays by Casey West <casey@geeknest.com>

77 perltodo

77.1 NAME

perltodo - Link to the Perl to-do list

77.2 DESCRIPTION

The Perl 5 to-do list is maintained in the git repository, and can be viewed at http://

perl5.git.perl.org/perl.git/blob/HEAD:/Porting/todo.pod

(The to-do list used to be here in perltodo. That has stopped, as installing a snapshot
that becomes increasingly out of date isn’t that useful to anyone.)

http://perl5.git.perl.org/perl.git/blob/HEAD:/Porting/todo.pod
http://perl5.git.perl.org/perl.git/blob/HEAD:/Porting/todo.pod

78 perltooc

78.1 NAME

perltooc - Links to information on object-oriented programming in Perl

78.2 DESCRIPTION

For information on OO programming with Perl, please see Section 47.1 [perlootut NAME],
page 786 and Section 46.1 [perlobj NAME], page 769.

(The above documents supersede the tutorial that was formerly here in perltooc.)

79 perltoot

79.1 NAME

perltoot - Links to information on object-oriented programming in Perl

79.2 DESCRIPTION

For information on OO programming with Perl, please see Section 47.1 [perlootut NAME],
page 786 and Section 46.1 [perlobj NAME], page 769.

(The above documents supersede the tutorial that was formerly here in perltoot.)

80 perltrap

80.1 NAME

perltrap - Perl traps for the unwary

80.2 DESCRIPTION

The biggest trap of all is forgetting to use warnings or use the -w switch; see warnings

and Section 69.1 [perlrun NAME], page 1176. The second biggest trap is not making your
entire program runnable under use strict. The third biggest trap is not reading the list
of changes in this version of Perl; see perldelta.

80.2.1 Awk Traps

Accustomed awk users should take special note of the following:

• A Perl program executes only once, not once for each input line. You can do an implicit
loop with -n or -p.

• The English module, loaded via

use English;

allows you to refer to special variables (like $/) with names (like $RS), as though they
were in awk; see Section 86.1 [perlvar NAME], page 1375 for details.

• Semicolons are required after all simple statements in Perl (except at the end of a
block). Newline is not a statement delimiter.

• Curly brackets are required on ifs and whiles.

• Variables begin with "$", "@" or "%" in Perl.

• Arrays index from 0. Likewise string positions in substr() and index().

• You have to decide whether your array has numeric or string indices.

• Hash values do not spring into existence upon mere reference.

• You have to decide whether you want to use string or numeric comparisons.

• Reading an input line does not split it for you. You get to split it to an array yourself.
And the split() operator has different arguments than awk’s.

• The current input line is normally in $, not $0. It generally does not have the newline
stripped. ($0 is the name of the program executed.) See Section 86.1 [perlvar NAME],
page 1375.

• $<digit> does not refer to fields–it refers to substrings matched by the last match
pattern.

• The print() statement does not add field and record separators unless you set $, and
$\. You can set $OFS and $ORS if you’re using the English module.

• You must open your files before you print to them.

• The range operator is "..", not comma. The comma operator works as in C.

• The match operator is "=~", not "~". ("~" is the one’s complement operator, as in
C.)

• The exponentiation operator is "**", not "^". "^" is the XOR operator, as in C. (You
know, one could get the feeling that awk is basically incompatible with C.)

• The concatenation operator is ".", not the null string. (Using the null string would
render /pat/ /pat/ unparsable, because the third slash would be interpreted as a
division operator–the tokenizer is in fact slightly context sensitive for operators like
"/", "?", and ">". And in fact, "." itself can be the beginning of a number.)

• The next, exit, and continue keywords work differently.

• The following variables work differently:

Awk Perl

ARGC scalar @ARGV (compare with $#ARGV)

ARGV[0] $0

FILENAME $ARGV

FNR $. - something

FS (whatever you like)

NF $#Fld, or some such

NR $.

OFMT $#

OFS $,

ORS $\

RLENGTH length($&)

RS $/

RSTART length($‘)

SUBSEP $;

• You cannot set $RS to a pattern, only a string.

• When in doubt, run the awk construct through a2p and see what it gives you.

80.2.2 C/C++ Traps

Cerebral C and C++ programmers should take note of the following:

• Curly brackets are required on if’s and while’s.

• You must use elsif rather than else if.

• The break and continue keywords from C become in Perl last and next, respectively.
Unlike in C, these do not work within a do { } while construct. See Section 74.2.7
[perlsyn Loop Control], page 1254.

• The switch statement is called given/when and only available in perl 5.10 or newer.
See Section 74.2.11 [perlsyn Switch Statements], page 1258.

• Variables begin with "$", "@" or "%" in Perl.

• Comments begin with "#", not "/*" or "//". Perl may interpret C/C++ comments as
division operators, unterminated regular expressions or the defined-or operator.

• You can’t take the address of anything, although a similar operator in Perl is the
backslash, which creates a reference.

• ARGV must be capitalized. $ARGV[0] is C’s argv[1], and argv[0] ends up in $0.

• System calls such as link(), unlink(), rename(), etc. return nonzero for success, not 0.
(system(), however, returns zero for success.)

• Signal handlers deal with signal names, not numbers. Use kill -l to find their names
on your system.

80.2.3 JavaScript Traps

Judicious JavaScript programmers should take note of the following:

• In Perl, binary + is always addition. $string1 + $string2 converts both strings to
numbers and then adds them. To concatenate two strings, use the . operator.

• The + unary operator doesn’t do anything in Perl. It exists to avoid syntactic ambigu-
ities.

• Unlike for...in, Perl’s for (also spelled foreach) does not allow the left-hand side
to be an arbitrary expression. It must be a variable:

for my $variable (keys %hash) {

...

}

Furthermore, don’t forget the keys in there, as foreach my $kv (%hash) {} iterates
over the keys and values, and is generally not useful ($kv would be a key, then a value,
and so on).

• To iterate over the indices of an array, use foreach my $i (0 .. $#array) {}. foreach
my $v (@array) {} iterates over the values.

• Perl requires braces following if, while, foreach, etc.

• In Perl, else if is spelled elsif.

• ? : has higher precedence than assignment. In JavaScript, one can write:

condition ? do_something() : variable = 3

and the variable is only assigned if the condition is false. In Perl, you need parentheses:

$condition ? do_something() : ($variable = 3);

Or just use if.

• Perl requires semicolons to separate statements.

• Variables declared with my only affect code after the declaration. You cannot write $x
= 1; my $x; and expect the first assignment to affect the same variable. It will instead
assign to an $x declared previously in an outer scope, or to a global variable.

Note also that the variable is not visible until the following statement. This means that
in my $x = 1 + $x the second $x refers to one declared previously.

• my variables are scoped to the current block, not to the current function. If you write
{my $x;} $x;, the second $x does not refer to the one declared inside the block.

• An object’s members cannot be made accessible as variables. The closest Perl equiva-
lent to with(object) { method() } is for, which can alias $_ to the object:

for ($object) {

$_->method;

}

• The object or class on which a method is called is passed as one of the method’s
arguments, not as a separate this value.

80.2.4 Sed Traps

Seasoned sed programmers should take note of the following:

• A Perl program executes only once, not once for each input line. You can do an implicit
loop with -n or -p.

• Backreferences in substitutions use "$" rather than "\".

• The pattern matching metacharacters "(", ")", and "|" do not have backslashes in
front.

• The range operator is ..., rather than comma.

80.2.5 Shell Traps

Sharp shell programmers should take note of the following:

• The backtick operator does variable interpolation without regard to the presence of
single quotes in the command.

• The backtick operator does no translation of the return value, unlike csh.

• Shells (especially csh) do several levels of substitution on each command line. Perl does
substitution in only certain constructs such as double quotes, backticks, angle brackets,
and search patterns.

• Shells interpret scripts a little bit at a time. Perl compiles the entire program before
executing it (except for BEGIN blocks, which execute at compile time).

• The arguments are available via @ARGV, not $1, $2, etc.

• The environment is not automatically made available as separate scalar variables.

• The shell’s test uses "=", "!=", "<" etc for string comparisons and "-eq", "-ne", "-lt"
etc for numeric comparisons. This is the reverse of Perl, which uses eq, ne, lt for string
comparisons, and ==, != < etc for numeric comparisons.

80.2.6 Perl Traps

Practicing Perl Programmers should take note of the following:

• Remember that many operations behave differently in a list context than they do in a
scalar one. See Section 11.1 [perldata NAME], page 70 for details.

• Avoid barewords if you can, especially all lowercase ones. You can’t tell by just looking
at it whether a bareword is a function or a string. By using quotes on strings and
parentheses on function calls, you won’t ever get them confused.

• You cannot discern from mere inspection which builtins are unary operators (like chop()
and chdir()) and which are list operators (like print() and unlink()). (Unless proto-
typed, user-defined subroutines can only be list operators, never unary ones.) See
Section 48.1 [perlop NAME], page 798 and Section 73.1 [perlsub NAME], page 1216.

• People have a hard time remembering that some functions default to $, or @ARGV,
or whatever, but that others which you might expect to do not.

• The <FH> construct is not the name of the filehandle, it is a readline operation on that
handle. The data read is assigned to $ only if the file read is the sole condition in a
while loop:

while (<FH>) { }

while (defined($_ = <FH>)) { }..

<FH>; # data discarded!

• Remember not to use = when you need =~; these two constructs are quite different:

$x = /foo/;

$x =~ /foo/;

• The do {} construct isn’t a real loop that you can use loop control on.

• Use my() for local variables whenever you can get away with it (but see Section 24.1
[perlform NAME], page 343 for where you can’t). Using local() actually gives a local
value to a global variable, which leaves you open to unforeseen side-effects of dynamic
scoping.

• If you localize an exported variable in a module, its exported value will not change.
The local name becomes an alias to a new value but the external name is still an alias
for the original.

As always, if any of these are ever officially declared as bugs, they’ll be fixed and removed.

81 perlunicode

81.1 NAME

perlunicode - Unicode support in Perl

81.2 DESCRIPTION

If you haven’t already, before reading this document, you should become familiar with
both Section 84.1 [perlunitut NAME], page 1367 and Section 83.1 [perluniintro NAME],
page 1352.

Unicode aims to UNI-fy the en-CODE-ings of all the world’s character sets into a single
Standard. For quite a few of the various coding standards that existed when Unicode was
first created, converting from each to Unicode essentially meant adding a constant to each
code point in the original standard, and converting back meant just subtracting that same
constant. For ASCII and ISO-8859-1, the constant is 0. For ISO-8859-5, (Cyrillic) the
constant is 864; for Hebrew (ISO-8859-8), it’s 1488; Thai (ISO-8859-11), 3424; and so forth.
This made it easy to do the conversions, and facilitated the adoption of Unicode.

And it worked; nowadays, those legacy standards are rarely used. Most everyone uses
Unicode.

Unicode is a comprehensive standard. It specifies many things outside the scope of
Perl, such as how to display sequences of characters. For a full discussion of all aspects of
Unicode, see http://www.unicode.org.

81.2.1 Important Caveats

Even though some of this section may not be understandable to you on first reading, we
think it’s important enough to highlight some of the gotchas before delving further, so here
goes:

Unicode support is an extensive requirement. While Perl does not implement the Uni-
code standard or the accompanying technical reports from cover to cover, Perl does support
many Unicode features.

Also, the use of Unicode may present security issues that aren’t obvious. Read Unicode
Security Considerations (http://www.unicode.org/reports/tr36).

Safest if you use feature ’unicode_strings’

In order to preserve backward compatibility, Perl does not turn on full internal
Unicode support unless the pragma Section “The ’unicode strings’ feature” in
feature is specified. (This is automatically selected if you use 5.012 or higher.)
Failure to do this can trigger unexpected surprises. See Section 81.2.17 [The
"Unicode Bug"], page 1340 below.

This pragma doesn’t affect I/O. Nor does it change the internal representation
of strings, only their interpretation. There are still several places where Unicode
isn’t fully supported, such as in filenames.

Input and Output Layers
Use the :encoding(...) layer to read from and write to filehandles using the
specified encoding. (See open.)

http://www.unicode.org
http://www.unicode.org/reports/tr36
http://www.unicode.org/reports/tr36

You should convert your non-ASCII, non-UTF-8 Perl scripts to be UTF-8.
See encoding.

use utf8 still needed to enable Section 81.2.10 [UTF-8], page 1334 in scripts
If your Perl script is itself encoded in Section 81.2.10 [UTF-8], page 1334, the
use utf8 pragma must be explicitly included to enable recognition of that (in
string or regular expression literals, or in identifier names). This is the only
time when an explicit use utf8 is needed. (See utf8).

BOM-marked scripts and Section 81.2.10 [UTF-16], page 1334 scripts autodetected
However, if a Perl script begins with the Unicode BOM (UTF-16LE, UTF16-
BE, or UTF-8), or if the script looks like non-BOM-marked UTF-16 of either
endianness, Perl will correctly read in the script as the appropriate Unicode
encoding. (BOM-less UTF-8 cannot be effectively recognized or differentiated
from ISO 8859-1 or other eight-bit encodings.)

81.2.2 Byte and Character Semantics

Before Unicode, most encodings used 8 bits (a single byte) to encode each character. Thus
a character was a byte, and a byte was a character, and there could be only 256 or fewer
possible characters. "Byte Semantics" in the title of this section refers to this behavior.
There was no need to distinguish between "Byte" and "Character".

Then along comes Unicode which has room for over a million characters (and Perl allows
for even more). This means that a character may require more than a single byte to represent
it, and so the two terms are no longer equivalent. What matter are the characters as whole
entities, and not usually the bytes that comprise them. That’s what the term "Character
Semantics" in the title of this section refers to.

Perl had to change internally to decouple "bytes" from "characters". It is important
that you too change your ideas, if you haven’t already, so that "byte" and "character" no
longer mean the same thing in your mind.

The basic building block of Perl strings has always been a "character". The changes
basically come down to that the implementation no longer thinks that a character is always
just a single byte.

There are various things to note:

• String handling functions, for the most part, continue to operate in terms of characters.
length(), for example, returns the number of characters in a string, just as before.
But that number no longer is necessarily the same as the number of bytes in the string
(there may be more bytes than characters). The other such functions include chop(),
chomp(), substr(), pos(), index(), rindex(), sort(), sprintf(), and write().

The exceptions are:

• the bit-oriented vec

• the byte-oriented pack/unpack "C" format

However, the W specifier does operate on whole characters, as does the U specifier.

• some operators that interact with the platform’s operating system

Operators dealing with filenames are examples.

• when the functions are called from within the scope of the bytes pragma

Likely, you should use this only for debugging anyway.

• Strings–including hash keys–and regular expression patterns may contain characters
that have ordinal values larger than 255.

If you use a Unicode editor to edit your program, Unicode characters may occur directly
within the literal strings in UTF-8 encoding, or UTF-16. (The former requires a BOM

or use utf8, the latter requires a BOM.)

Section 83.2.5 [perluniintro Creating Unicode], page 1355 gives other ways to place
non-ASCII characters in your strings.

• The chr() and ord() functions work on whole characters.

• Regular expressions match whole characters. For example, "." matches a whole char-
acter instead of only a single byte.

• The tr/// operator translates whole characters. (Note that the tr///CU function-
ality has been removed. For similar functionality to that, see pack(’U0’, ...) and
pack(’C0’, ...)).

• scalar reverse() reverses by character rather than by byte.

• The bit string operators, & | ^ ~ and (starting in v5.22) &. |. ^. ~. can operate on
characters that don’t fit into a byte. However, the current behavior is likely to change.
You should not use these operators on strings that are encoded in UTF-8. If you’re not
sure about the encoding of a string, downgrade it before using any of these operators;
you can use Section “Utility functions” in utf8.

The bottom line is that Perl has always practiced "Character Semantics", but with the
advent of Unicode, that is now different than "Byte Semantics".

81.2.3 ASCII Rules versus Unicode Rules

Before Unicode, when a character was a byte was a character, Perl knew only about the
128 characters defined by ASCII, code points 0 through 127 (except for under use locale).
That left the code points 128 to 255 as unassigned, and available for whatever use a program
might want. The only semantics they have is their ordinal numbers, and that they are
members of none of the non-negative character classes. None are considered to match \w

for example, but all match \W.

Unicode, of course, assigns each of those code points a particular meaning (along with
ones above 255). To preserve backward compatibility, Perl only uses the Unicode meanings
when there is some indication that Unicode is what is intended; otherwise the non-ASCII
code points remain treated as if they are unassigned.

Here are the ways that Perl knows that a string should be treated as Unicode:

• Within the scope of use utf8

If the whole program is Unicode (signified by using 8-bit Unicode Transformation
Format), then all strings within it must be Unicode.

• Within the scope of Section “The ’unicode strings’ feature” in feature

This pragma was created so you can explicitly tell Perl that operations executed within
its scope are to use Unicode rules. More operations are affected with newer perls. See
Section 81.2.17 [The "Unicode Bug"], page 1340.

• Within the scope of use 5.012 or higher

This implicitly turns on use feature ’unicode_strings’.

• Within the scope of Section 38.10 [use locale ’not_characters’], page 721, or
Section 38.1 [use locale], page 701 and the current locale is a UTF-8 locale.

The former is defined to imply Unicode handling; and the latter indicates a Unicode
locale, hence a Unicode interpretation of all strings within it.

• When the string contains a Unicode-only code point

Perl has never accepted code points above 255 without them being Unicode, so their
use implies Unicode for the whole string.

• When the string contains a Unicode named code point \N{...}

The \N{...} construct explicitly refers to a Unicode code point, even if it is one that
is also in ASCII. Therefore the string containing it must be Unicode.

• When the string has come from an external source marked as Unicode

The [-C], page 1179 command line option can specify that certain inputs to the pro-
gram are Unicode, and the values of this can be read by your Perl code, see [perlvar
${^UNICODE}], page 1407.

• When the string has been upgraded to UTF-8

The function Section “Utility functions” in utf8 can be explicitly used to permanently
(unless a subsequent utf8::utf8_downgrade() is called) cause a string to be treated
as Unicode.

• There are additional methods for regular expression patterns

A pattern that is compiled with the /u or /a modifiers is treated as Unicode (though
there are some restrictions with /a). Under the /d and /l modifiers, there are several
other indications for Unicode; see Section 58.2.1.2 [perlre Character set modifiers],
page 992.

Note that all of the above are overridden within the scope of bytes; but you should be
using this pragma only for debugging.

Note also that some interactions with the platform’s operating system never use Unicode
rules.

When Unicode rules are in effect:

• Case translation operators use the Unicode case translation tables.

Note that uc(), or \U in interpolated strings, translates to uppercase, while ucfirst, or
\u in interpolated strings, translates to titlecase in languages that make the distinction
(which is equivalent to uppercase in languages without the distinction).

There is a CPAN module, Unicode-Casing, which allows you to define your own map-
pings to be used in lc(), lcfirst(), uc(), ucfirst(), and fc (or their double-quoted
string inlined versions such as \U). (Prior to Perl 5.16, this functionality was partially
provided in the Perl core, but suffered from a number of insurmountable drawbacks,
so the CPAN module was written instead.)

• Character classes in regular expressions match based on the character properties spec-
ified in the Unicode properties database.

\w can be used to match a Japanese ideograph, for instance; and [[:digit:]] a Bengali
number.

• Named Unicode properties, scripts, and block ranges may be used (like bracketed char-
acter classes) by using the \p{} "matches property" construct and the \P{} negation,
"doesn’t match property".

See Section 81.2.5 [Unicode Character Properties], page 1321 for more details.

You can define your own character properties and use them in the regular expression
with the \p{} or \P{} construct. See Section 81.2.6 [User-Defined Character Proper-
ties], page 1329 for more details.

81.2.4 Extended Grapheme Clusters (Logical characters)

Consider a character, say H. It could appear with various marks around it, such as an acute
accent, or a circumflex, or various hooks, circles, arrows, etc., above, below, to one side or
the other, etc. There are many possibilities among the world’s languages. The number of
combinations is astronomical, and if there were a character for each combination, it would
soon exhaust Unicode’s more than a million possible characters. So Unicode took a different
approach: there is a character for the base H, and a character for each of the possible marks,
and these can be variously combined to get a final logical character. So a logical character–
what appears to be a single character–can be a sequence of more than one individual
characters. The Unicode standard calls these "extended grapheme clusters" (which is an
improved version of the no-longer much used "grapheme cluster"); Perl furnishes the \X

regular expression construct to match such sequences in their entirety.

But Unicode’s intent is to unify the existing character set standards and practices, and
several pre-existing standards have single characters that mean the same thing as some of
these combinations, like ISO-8859-1, which has quite a few of them. For example, "LATIN
CAPITAL LETTER E WITH ACUTE" was already in this standard when Unicode came along.
Unicode therefore added it to its repertoire as that single character. But this character is
considered by Unicode to be equivalent to the sequence consisting of the character "LATIN
CAPITAL LETTER E" followed by the character "COMBINING ACUTE ACCENT".

"LATIN CAPITAL LETTER E WITH ACUTE" is called a "pre-composed" character, and its
equivalence with the "E" and the "COMBINING ACCENT" sequence is called canoni-
cal equivalence. All pre-composed characters are said to have a decomposition (into the
equivalent sequence), and the decomposition type is also called canonical. A string may be
comprised as much as possible of precomposed characters, or it may be comprised of entirely
decomposed characters. Unicode calls these respectively, "Normalization Form Composed"
(NFC) and "Normalization Form Decomposed". The Unicode-Normalize module contains
functions that convert between the two. A string may also have both composed characters
and decomposed characters; this module can be used to make it all one or the other.

You may be presented with strings in any of these equivalent forms. There is currently
nothing in Perl 5 that ignores the differences. So you’ll have to specially hanlde it. The
usual advice is to convert your inputs to NFD before processing further.

For more detailed information, see http://unicode.org/reports/tr15/.

81.2.5 Unicode Character Properties

(The only time that Perl considers a sequence of individual code points as a single logical
character is in the \X construct, already mentioned above. Therefore "character" in this
discussion means a single Unicode code point.)

http://unicode.org/reports/tr15/

Very nearly all Unicode character properties are accessible through regular expressions
by using the \p{} "matches property" construct and the \P{} "doesn’t match property"
for its negation.

For instance, \p{Uppercase} matches any single character with the Unicode
"Uppercase" property, while \p{L} matches any character with a General_Category of
"L" (letter) property (see Section 81.2.5.1 [General Category], page 1323 below). Brackets
are not required for single letter property names, so \p{L} is equivalent to \pL.

More formally, \p{Uppercase} matches any single character whose Unicode Uppercase
property value is True, and \P{Uppercase} matches any character whose Uppercase

property value is False, and they could have been written as \p{Uppercase=True} and
\p{Uppercase=False}, respectively.

This formality is needed when properties are not binary; that is, if they can take
on more values than just True and False. For example, the Bidi_Class property (see
Section 81.2.5.2 [Bidirectional Character Types], page 1324 below), can take on several dif-
ferent values, such as Left, Right, Whitespace, and others. To match these, one needs
to specify both the property name (Bidi_Class), AND the value being matched against
(Left, Right, etc.). This is done, as in the examples above, by having the two components
separated by an equal sign (or interchangeably, a colon), like \p{Bidi_Class: Left}.

All Unicode-defined character properties may be written in these compound forms of
\p{property=value} or \p{property:value}, but Perl provides some additional proper-
ties that are written only in the single form, as well as single-form short-cuts for all binary
properties and certain others described below, in which you may omit the property name
and the equals or colon separator.

Most Unicode character properties have at least two synonyms (or aliases if you prefer):
a short one that is easier to type and a longer one that is more descriptive and hence
easier to understand. Thus the "L" and "Letter" properties above are equivalent and can
be used interchangeably. Likewise, "Upper" is a synonym for "Uppercase", and we could
have written \p{Uppercase} equivalently as \p{Upper}. Also, there are typically various
synonyms for the values the property can be. For binary properties, "True" has 3 synonyms:
"T", "Yes", and "Y"; and "False" has correspondingly "F", "No", and "N". But be careful.
A short form of a value for one property may not mean the same thing as the same short form
for another. Thus, for the Section 81.2.5.1 [General_Category], page 1323 property,
"L" means "Letter", but for the Section 81.2.5.2 [Bidi_Class], page 1324 property, "L"
means "Left". A complete list of properties and synonyms is in perluniprops.

Upper/lower case differences in property names and values are irrelevant; thus \p{Upper}
means the same thing as \p{upper} or even \p{UpPeR}. Similarly, you can add or subtract
underscores anywhere in the middle of a word, so that these are also equivalent to \p{U_

p_p_e_r}. And white space is irrelevant adjacent to non-word characters, such as the
braces and the equals or colon separators, so \p{ Upper } and \p{ Upper_case : Y } are
equivalent to these as well. In fact, white space and even hyphens can usually be added or
deleted anywhere. So even \p{ Up-per case = Yes} is equivalent. All this is called "loose-
matching" by Unicode. The few places where stricter matching is used is in the middle of
numbers, and in the Perl extension properties that begin or end with an underscore. Stricter
matching cares about white space (except adjacent to non-word characters), hyphens, and
non-interior underscores.

You can also use negation in both \p{} and \P{} by introducing a caret (^) between
the first brace and the property name: \p{^Tamil} is equal to \P{Tamil}.

Almost all properties are immune to case-insensitive matching. That is, adding a /i

regular expression modifier does not change what they match. There are two sets that are
affected. The first set is Uppercase_Letter, Lowercase_Letter, and Titlecase_Letter,
all of which match Cased_Letter under /i matching. And the second set is Uppercase,
Lowercase, and Titlecase, all of which match Cased under /i matching. This set also in-
cludes its subsets PosixUpper and PosixLower both of which under /i match PosixAlpha.
(The difference between these sets is that some things, such as Roman numerals, come in
both upper and lower case so they are Cased, but aren’t considered letters, so they aren’t
Cased_Letter’s.)

See Section 81.2.12 [Beyond Unicode code points], page 1337 for special considerations
when matching Unicode properties against non-Unicode code points.

81.2.5.1 General Category

Every Unicode character is assigned a general category, which is the "most usual catego-
rization of a character" (from http://www.unicode.org/reports/tr44).

The compound way of writing these is like \p{General_Category=Number} (short:
\p{gc:n}). But Perl furnishes shortcuts in which everything up through the equal or colon
separator is omitted. So you can instead just write \pN.

Here are the short and long forms of the values the General Category property can
have:

Short Long

L Letter

LC, L& Cased_Letter (that is: [\p{Ll}\p{Lu}\p{Lt}])

Lu Uppercase_Letter

Ll Lowercase_Letter

Lt Titlecase_Letter

Lm Modifier_Letter

Lo Other_Letter

M Mark

Mn Nonspacing_Mark

Mc Spacing_Mark

Me Enclosing_Mark

N Number

Nd Decimal_Number (also Digit)

Nl Letter_Number

No Other_Number

P Punctuation (also Punct)

Pc Connector_Punctuation

Pd Dash_Punctuation

Ps Open_Punctuation

http://www.unicode.org/reports/tr44

Pe Close_Punctuation

Pi Initial_Punctuation

(may behave like Ps or Pe depending on usage)

Pf Final_Punctuation

(may behave like Ps or Pe depending on usage)

Po Other_Punctuation

S Symbol

Sm Math_Symbol

Sc Currency_Symbol

Sk Modifier_Symbol

So Other_Symbol

Z Separator

Zs Space_Separator

Zl Line_Separator

Zp Paragraph_Separator

C Other

Cc Control (also Cntrl)

Cf Format

Cs Surrogate

Co Private_Use

Cn Unassigned

Single-letter properties match all characters in any of the two-letter sub-properties start-
ing with the same letter. LC and L& are special: both are aliases for the set consisting of
everything matched by Ll, Lu, and Lt.

81.2.5.2 Bidirectional Character Types

Because scripts differ in their directionality (Hebrew and Arabic are written right to left,
for example) Unicode supplies a Bidi_Class property. Some of the values this property
can have are:

Value Meaning

L Left-to-Right

LRE Left-to-Right Embedding

LRO Left-to-Right Override

R Right-to-Left

AL Arabic Letter

RLE Right-to-Left Embedding

RLO Right-to-Left Override

PDF Pop Directional Format

EN European Number

ES European Separator

ET European Terminator

AN Arabic Number

CS Common Separator

NSM Non-Spacing Mark

BN Boundary Neutral

B Paragraph Separator

S Segment Separator

WS Whitespace

ON Other Neutrals

This property is always written in the compound form. For example, \p{Bidi_Class:R}
matches characters that are normally written right to left. Unlike the Section 81.2.5.1

[General_Category], page 1323 property, this property can have more values added in
a future Unicode release. Those listed above comprised the complete set for many Unicode
releases, but others were added in Unicode 6.3; you can always find what the current ones
are in in perluniprops. And http://www.unicode.org/reports/tr9/ describes how to
use them.

81.2.5.3 Scripts

The world’s languages are written in many different scripts. This sentence (unless you’re
reading it in translation) is written in Latin, while Russian is written in Cyrillic, and Greek
is written in, well, Greek; Japanese mainly in Hiragana or Katakana. There are many more.

The Unicode Script and Script_Extensions properties give what script a given charac-
ter is in. Either property can be specified with the compound form like \p{Script=Hebrew}
(short: \p{sc=hebr}), or \p{Script_Extensions=Javanese} (short: \p{scx=java}). In
addition, Perl furnishes shortcuts for all Script property names. You can omit everything
up through the equals (or colon), and simply write \p{Latin} or \P{Cyrillic}. (This is
not true for Script_Extensions, which is required to be written in the compound form.)

The difference between these two properties involves characters that are used in multiple
scripts. For example the digits ’0’ through ’9’ are used in many parts of the world. These
are placed in a script named Common. Other characters are used in just a few scripts.
For example, the "KATAKANA-HIRAGANA DOUBLE HYPHEN" is used in both Japanese scripts,
Katakana and Hiragana, but nowhere else. The Script property places all characters that
are used in multiple scripts in the Common script, while the Script_Extensions property
places those that are used in only a few scripts into each of those scripts; while still using
Common for those used in many scripts. Thus both these match:

"0" =~ /\p{sc=Common}/ # Matches

"0" =~ /\p{scx=Common}/ # Matches

and only the first of these match:

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{sc=Common} # Matches

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{scx=Common} # No match

And only the last two of these match:

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{sc=Hiragana} # No match

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{sc=Katakana} # No match

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{scx=Hiragana} # Matches

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{scx=Katakana} # Matches

Script_Extensions is thus an improved Script, in which there are fewer characters in
the Common script, and correspondingly more in other scripts. It is new in Unicode version

http://www.unicode.org/reports/tr9/

6.0, and its data are likely to change significantly in later releases, as things get sorted out.
New code should probably be using Script_Extensions and not plain Script.

(Actually, besides Common, the Inherited script, contains characters that are used in
multiple scripts. These are modifier characters which inherit the script value of the control-
ling character. Some of these are used in many scripts, and so go into Inherited in both
Script and Script_Extensions. Others are used in just a few scripts, so are in Inherited

in Script, but not in Script_Extensions.)

It is worth stressing that there are several different sets of digits in Unicode that are
equivalent to 0-9 and are matchable by \d in a regular expression. If they are used in a
single language only, they are in that language’s Script and Script_Extension. If they
are used in more than one script, they will be in sc=Common, but only if they are used in
many scripts should they be in scx=Common.

A complete list of scripts and their shortcuts is in perluniprops.

81.2.5.4 Use of the "Is" Prefix

For backward compatibility (with Perl 5.6), all properties writable without using the com-
pound form mentioned so far may have Is or Is_ prepended to their name, so \P{Is_Lu},
for example, is equal to \P{Lu}, and \p{IsScript:Arabic} is equal to \p{Arabic}.

81.2.5.5 Blocks

In addition to scripts, Unicode also defines blocks of characters. The difference between
scripts and blocks is that the concept of scripts is closer to natural languages, while the
concept of blocks is more of an artificial grouping based on groups of Unicode characters
with consecutive ordinal values. For example, the "Basic Latin" block is all the characters
whose ordinals are between 0 and 127, inclusive; in other words, the ASCII characters. The
"Latin" script contains some letters from this as well as several other blocks, like "Latin-1
Supplement", "Latin Extended-A", etc., but it does not contain all the characters from
those blocks. It does not, for example, contain the digits 0-9, because those digits are shared
across many scripts, and hence are in the Common script.

For more about scripts versus blocks, see UAX#24 "Unicode Script Property": http://
www.unicode.org/reports/tr24

The Script or Script_Extensions properties are likely to be the ones you want to
use when processing natural language; the Block property may occasionally be useful in
working with the nuts and bolts of Unicode.

Block names are matched in the compound form, like \p{Block: Arrows} or
\p{Blk=Hebrew}. Unlike most other properties, only a few block names have a
Unicode-defined short name. But Perl does provide a (slight, no longer recommended)
shortcut: You can say, for example \p{In_Arrows} or \p{In_Hebrew}.

For backwards compatibility, the In prefix may be omitted if there is no naming conflict
with a script or any other property, and you can even use an Is prefix instead in those cases.
But don’t do this for new code because your code could break in new releases, and this has
already happened: There was a time in very early Unicode releases when \p{Hebrew} would
have matched the block Hebrew; now it doesn’t.

Using the In prefix avoids this ambiguity, so far. But new versions of Unicode continue
to add new properties whose names begin with In. There is a possibility that one of them

http://www.unicode.org/reports/tr24
http://www.unicode.org/reports/tr24

someday will conflict with your usage. Since this is just a Perl extension, Unicode’s name
will take precedence and your code will become broken. Also, Unicode is free to add a script
whose name begins with In; that would cause problems.

So it’s clearer and best to use the compound form when specifying blocks. And be sure
that is what you really really want to do. In most cases scripts are what you want instead.

A complete list of blocks and their shortcuts is in perluniprops.

81.2.5.6 Other Properties

There are many more properties than the very basic ones described here. A complete list
is in perluniprops.

Unicode defines all its properties in the compound form, so all single-form properties are
Perl extensions. Most of these are just synonyms for the Unicode ones, but some are genuine
extensions, including several that are in the compound form. And quite a few of these are
actually recommended by Unicode (in http://www.unicode.org/reports/tr18).

This section gives some details on all extensions that aren’t just synonyms for compound-
form Unicode properties (for those properties, you’ll have to refer to the Unicode Standard
(http://www.unicode.org/reports/tr44).

\p{All}

This matches every possible code point. It is equivalent to qr/./s. Unlike
all the other non-user-defined \p{} property matches, no warning is ever gen-
erated if this is property is matched against a non-Unicode code point (see
Section 81.2.12 [Beyond Unicode code points], page 1337 below).

\p{Alnum}

This matches any \p{Alphabetic} or \p{Decimal_Number} character.

\p{Any}

This matches any of the 1 114 112 Unicode code points. It is a synonym for
\p{Unicode}.

\p{ASCII}

This matches any of the 128 characters in the US-ASCII character set, which
is a subset of Unicode.

\p{Assigned}

This matches any assigned code point; that is, any code point whose
Section 81.2.5.1 [general category], page 1323 is not Unassigned (or
equivalently, not Cn).

\p{Blank}

This is the same as \h and \p{HorizSpace}: A character that changes the
spacing horizontally.

\p{Decomposition_Type: Non_Canonical} (Short: \p{Dt=NonCanon})
Matches a character that has a non-canonical decomposition.

The Section 81.2.4 [Extended Grapheme Clusters (Logical characters)],
page 1321 section above talked about canonical decompositions. However,
many more characters have a different type of decomposition, a "compatible"

http://www.unicode.org/reports/tr18
http://www.unicode.org/reports/tr44
http://www.unicode.org/reports/tr44

or "non-canonical" decomposition. The sequences that form these decomposi-
tions are not considered canonically equivalent to the pre-composed character.
An example is the "SUPERSCRIPT ONE". It is somewhat like a regular digit 1,
but not exactly; its decomposition into the digit 1 is called a "compatible"
decomposition, specifically a "super" decomposition. There are several such
compatibility decompositions (see http: / / www . unicode . org / reports /

tr44), including one called "compat", which means some miscellaneous type
of decomposition that doesn’t fit into the other decomposition categories that
Unicode has chosen.

Note that most Unicode characters don’t have a decomposition, so their de-
composition type is "None".

For your convenience, Perl has added the Non_Canonical decomposition type
to mean any of the several compatibility decompositions.

\p{Graph}

Matches any character that is graphic. Theoretically, this means a character
that on a printer would cause ink to be used.

\p{HorizSpace}

This is the same as \h and \p{Blank}: a character that changes the spacing
horizontally.

\p{In=*}

This is a synonym for \p{Present_In=*}

\p{PerlSpace}

This is the same as \s, restricted to ASCII, namely [\f\n\r\t] and starting
in Perl v5.18, a vertical tab.

Mnemonic: Perl’s (original) space

\p{PerlWord}

This is the same as \w, restricted to ASCII, namely [A-Za-z0-9_]

Mnemonic: Perl’s (original) word.

\p{Posix...}

There are several of these, which are equivalents, using the \p{} notation,
for Posix classes and are described in Section 61.2.3.5 [perlrecharclass POSIX
Character Classes], page 1069.

\p{Present_In: *} (Short: \p{In=*})
This property is used when you need to know in what Unicode version(s) a
character is.

The "*" above stands for some two digit Unicode version number, such as 1.1
or 4.0; or the "*" can also be Unassigned. This property will match the code
points whose final disposition has been settled as of the Unicode release given
by the version number; \p{Present_In: Unassigned} will match those code
points whose meaning has yet to be assigned.

For example, U+0041 "LATIN CAPITAL LETTER A" was present in the very first
Unicode release available, which is 1.1, so this property is true for all valid "*"

http://www.unicode.org/reports/tr44
http://www.unicode.org/reports/tr44

versions. On the other hand, U+1EFF was not assigned until version 5.1 when it
became "LATIN SMALL LETTER Y WITH LOOP", so the only "*" that would match
it are 5.1, 5.2, and later.

Unicode furnishes the Age property from which this is derived. The problem
with Age is that a strict interpretation of it (which Perl takes) has it matching
the precise release a code point’s meaning is introduced in. Thus U+0041 would
match only 1.1; and U+1EFF only 5.1. This is not usually what you want.

Some non-Perl implementations of the Age property may change its meaning
to be the same as the Perl Present_In property; just be aware of that.

Another confusion with both these properties is that the definition is not that
the code point has been assigned, but that the meaning of the code point has
been determined. This is because 66 code points will always be unassigned,
and so the Age for them is the Unicode version in which the decision to make
them so was made. For example, U+FDD0 is to be permanently unassigned to a
character, and the decision to do that was made in version 3.1, so \p{Age=3.1}

matches this character, as also does \p{Present_In: 3.1} and up.

\p{Print}

This matches any character that is graphical or blank, except controls.

\p{SpacePerl}

This is the same as \s, including beyond ASCII.

Mnemonic: Space, as modified by Perl. (It doesn’t include the vertical tab until
v5.18, which both the Posix standard and Unicode consider white space.)

\p{Title} and \p{Titlecase}

Under case-sensitive matching, these both match the same code points as
\p{General Category=Titlecase_Letter} (\p{gc=lt}). The difference is
that under /i caseless matching, these match the same as \p{Cased}, whereas
\p{gc=lt} matches \p{Cased_Letter).

\p{Unicode}

This matches any of the 1 114 112 Unicode code points. \p{Any}.

\p{VertSpace}

This is the same as \v: A character that changes the spacing vertically.

\p{Word}

This is the same as \w, including over 100 000 characters beyond ASCII.

\p{XPosix...}

There are several of these, which are the standard Posix classes extended to
the full Unicode range. They are described in Section 61.2.3.5 [perlrecharclass
POSIX Character Classes], page 1069.

81.2.6 User-Defined Character Properties

You can define your own binary character properties by defining subroutines whose names
begin with "In" or "Is". (The experimental feature [perlre (?[])], page 1017 provides an
alternative which allows more complex definitions.) The subroutines can be defined in any
package. The user-defined properties can be used in the regular expression \p{} and \P{}

constructs; if you are using a user-defined property from a package other than the one you
are in, you must specify its package in the \p{} or \P{} construct.

assuming property Is_Foreign defined in Lang::

package main; # property package name required

if ($txt =~ /\p{Lang::IsForeign}+/) { ... }

package Lang; # property package name not required

if ($txt =~ /\p{IsForeign}+/) { ... }

Note that the effect is compile-time and immutable once defined. However, the sub-
routines are passed a single parameter, which is 0 if case-sensitive matching is in effect
and non-zero if caseless matching is in effect. The subroutine may return different values
depending on the value of the flag, and one set of values will immutably be in effect for all
case-sensitive matches, and the other set for all case-insensitive matches.

Note that if the regular expression is tainted, then Perl will die rather than calling the
subroutine when the name of the subroutine is determined by the tainted data.

The subroutines must return a specially-formatted string, with one or more newline-
separated lines. Each line must be one of the following:

• A single hexadecimal number denoting a code point to include.

• Two hexadecimal numbers separated by horizontal whitespace (space or tabular char-
acters) denoting a range of code points to include.

• Something to include, prefixed by "+": a built-in character property (prefixed by
"utf8::") or a fully qualified (including package name) user-defined character prop-
erty, to represent all the characters in that property; two hexadecimal code points for
a range; or a single hexadecimal code point.

• Something to exclude, prefixed by "-": an existing character property (prefixed by
"utf8::") or a fully qualified (including package name) user-defined character property,
to represent all the characters in that property; two hexadecimal code points for a range;
or a single hexadecimal code point.

• Something to negate, prefixed "!": an existing character property (prefixed by
"utf8::") or a fully qualified (including package name) user-defined character
property, to represent all the characters in that property; two hexadecimal code points
for a range; or a single hexadecimal code point.

• Something to intersect with, prefixed by "&": an existing character property (prefixed
by "utf8::") or a fully qualified (including package name) user-defined character prop-
erty, for all the characters except the characters in the property; two hexadecimal code
points for a range; or a single hexadecimal code point.

For example, to define a property that covers both the Japanese syllabaries (hiragana
and katakana), you can define

sub InKana {

return <<END;

3040\t309F

30A0\t30FF

END

}

Imagine that the here-doc end marker is at the beginning of the line. Now you can use
\p{InKana} and \P{InKana}.

You could also have used the existing block property names:

sub InKana {

return <<’END’;

+utf8::InHiragana

+utf8::InKatakana

END

}

Suppose you wanted to match only the allocated characters, not the raw block ranges:
in other words, you want to remove the unassigned characters:

sub InKana {

return <<’END’;

+utf8::InHiragana

+utf8::InKatakana

-utf8::IsCn

END

}

The negation is useful for defining (surprise!) negated classes.

sub InNotKana {

return <<’END’;

!utf8::InHiragana

-utf8::InKatakana

+utf8::IsCn

END

}

This will match all non-Unicode code points, since every one of them is not in Kana.
You can use intersection to exclude these, if desired, as this modified example shows:

sub InNotKana {

return <<’END’;

!utf8::InHiragana

-utf8::InKatakana

+utf8::IsCn

&utf8::Any

END

}

&utf8::Any must be the last line in the definition.

Intersection is used generally for getting the common characters matched by two (or
more) classes. It’s important to remember not to use "&" for the first set; that would be
intersecting with nothing, resulting in an empty set.

Unlike non-user-defined \p{} property matches, no warning is ever generated if these
properties are matched against a non-Unicode code point (see Section 81.2.12 [Beyond
Unicode code points], page 1337 below).

81.2.7 User-Defined Case Mappings (for serious hackers only)

This feature has been removed as of Perl 5.16. The CPAN module Unicode-Casing

provides better functionality without the drawbacks that this feature had. If you
are using a Perl earlier than 5.16, this feature was most fully documented in the
5.14 version of this pod: http://perldoc.perl.org/5.14.0/perlunicode.html#

User-Defined-Case-Mappings-%28for-serious-hackers-only%29

81.2.8 Character Encodings for Input and Output

See Encode.

81.2.9 Unicode Regular Expression Support Level

The following list of Unicode supported features for regular expressions describes all features
currently directly supported by core Perl. The references to "Level N" and the section
numbers refer to the Unicode Technical Standard #18, "Unicode Regular Expressions",
version 13, from August 2008.

• Level 1 - Basic Unicode Support

RL1.1 Hex Notation - done [1]

RL1.2 Properties - done [2][3]

RL1.2a Compatibility Properties - done [4]

RL1.3 Subtraction and Intersection - experimental [5]

RL1.4 Simple Word Boundaries - done [6]

RL1.5 Simple Loose Matches - done [7]

RL1.6 Line Boundaries - MISSING [8][9]

RL1.7 Supplementary Code Points - done [10]

[1] \N{U+...} and \x{...}

[2] \p{...} \P{...}

[3] supports not only minimal list, but all Unicode character properties (see Unicode
Character Properties above)
[4] \d \D \s \S \w \W \X [:prop:] [:^prop:]

[5] The experimental feature starting in v5.18 "(?[...])" accomplishes this.
See [perlre (?[])], page 1017. If you don’t want to use an experimental
feature, you can use one of the following:

• Regular expression look-ahead

You can mimic class subtraction using lookahead. For example, what
UTS#18 might write as

[{Block=Greek}-[{UNASSIGNED}]]

in Perl can be written as:

(?!\p{Unassigned})\p{Block=Greek}

(?=\p{Assigned})\p{Block=Greek}

But in this particular example, you probably really want

\p{Greek}

which will match assigned characters known to be part of the Greek
script.

http://perldoc.perl.org/5.14.0/perlunicode.html#User-Defined-Case-Mappings-%28for-serious-hackers-only%29
http://perldoc.perl.org/5.14.0/perlunicode.html#User-Defined-Case-Mappings-%28for-serious-hackers-only%29

• CPAN module Unicode-Regex-Set

It does implement the full UTS#18 grouping, intersection, union, and
removal (subtraction) syntax.

• Section 81.2.6 [User-Defined Character Properties], page 1329

"+" for union, "-" for removal (set-difference), "&" for intersection

[6] \b \B

[7] Note that Perl does Full case-folding in matching, not Simple:
For example U+1F88 is equivalent to U+1F00 U+03B9, instead of just U+1F80.
This difference matters mainly for certain Greek capital letters with certain
modifiers: the Full case-folding decomposes the letter, while the Simple
case-folding would map it to a single character.

[8] Perl treats \n as the start- and end-line delimiter. Unicode specifies more
characters that should be so-interpreted.

These are:

VT U+000B (\v in C)

FF U+000C (\f)

CR U+000D (\r)

NEL U+0085

LS U+2028

PS U+2029

^ and $ in regular expression patterns are supposed to match all these, but
don’t. These characters also don’t, but should, affect <> $., and script line
numbers.

Also, lines should not be split within CRLF (i.e. there is no empty line
between \r and \n). For CRLF, try the :crlf layer (see PerlIO).

[9] But Unicode-LineBreak is available.
This module supplies line breaking conformant with UAX#14 "Unicode
Line Breaking Algorithm" (http://www.unicode.org/reports/tr14).

[10] UTF-8/UTF-EBDDIC used in Perl allows not only U+10000 to U+10FFFF but
also beyond U+10FFFF

• Level 2 - Extended Unicode Support

RL2.1 Canonical Equivalents - MISSING [10][11]

RL2.2 Default Grapheme Clusters - MISSING [12]

RL2.3 Default Word Boundaries - DONE [14]

RL2.4 Default Loose Matches - MISSING [15]

RL2.5 Name Properties - DONE

RL2.6 Wildcard Properties - MISSING

[10] see UAX#15 "Unicode Normalization Forms"

[11] have Unicode::Normalize but not integrated to regexes

[12] have \X and \b{gcb} but we don’t have a "Grapheme Cluster

Mode"

[14] see UAX#29, Word Boundaries

[15] This is covered in Chapter 3.13 (in Unicode 6.0)

http://www.unicode.org/reports/tr14
http://www.unicode.org/reports/tr14

• Level 3 - Tailored Support

RL3.1 Tailored Punctuation - MISSING

RL3.2 Tailored Grapheme Clusters - MISSING [17][18]

RL3.3 Tailored Word Boundaries - MISSING

RL3.4 Tailored Loose Matches - MISSING

RL3.5 Tailored Ranges - MISSING

RL3.6 Context Matching - MISSING [19]

RL3.7 Incremental Matches - MISSING

(RL3.8 Unicode Set Sharing)

RL3.9 Possible Match Sets - MISSING

RL3.10 Folded Matching - MISSING [20]

RL3.11 Submatchers - MISSING

[17] see UAX#10 "Unicode Collation Algorithms"

[18] have Unicode::Collate but not integrated to regexes

[19] have (?<=x) and (?=x), but look-aheads or look-behinds

should see outside of the target substring

[20] need insensitive matching for linguistic features other

than case; for example, hiragana to katakana, wide and

narrow, simplified Han to traditional Han (see UTR#30

"Character Foldings")

81.2.10 Unicode Encodings

Unicode characters are assigned to code points, which are abstract numbers. To use these
numbers, various encodings are needed.

• UTF-8

UTF-8 is a variable-length (1 to 4 bytes), byte-order independent encoding. In most of
Perl’s documentation, including elsewhere in this document, the term "UTF-8" means
also "UTF-EBCDIC". But in this section, "UTF-8" refers only to the encoding used
on ASCII platforms. It is a superset of 7-bit US-ASCII, so anything encoded in ASCII
has the identical representation when encoded in UTF-8.

The following table is from Unicode 3.2.

Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

U+0000..U+007F 00..7F

U+0080..U+07FF * C2..DF 80..BF

U+0800..U+0FFF E0 * A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+D800..U+DFFF +++++ utf16 surrogates, not legal utf8 +++++

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 * 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

Note the gaps marked by "*" before several of the byte entries above. These are caused
by legal UTF-8 avoiding non-shortest encodings: it is technically possible to UTF-8-

encode a single code point in different ways, but that is explicitly forbidden, and the
shortest possible encoding should always be used (and that is what Perl does).

Another way to look at it is via bits:

Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

0aaaaaaa 0aaaaaaa

00000bbbbbaaaaaa 110bbbbb 10aaaaaa

ccccbbbbbbaaaaaa 1110cccc 10bbbbbb 10aaaaaa

00000dddccccccbbbbbbaaaaaa 11110ddd 10cccccc 10bbbbbb 10aaaaaa

As you can see, the continuation bytes all begin with "10", and the leading bits of the
start byte tell how many bytes there are in the encoded character.

The original UTF-8 specification allowed up to 6 bytes, to allow encoding of numbers
up to 0x7FFF_FFFF. Perl continues to allow those, and has extended that up to 13
bytes to encode code points up to what can fit in a 64-bit word. However, Perl will
warn if you output any of these as being non-portable; and under strict UTF-8 input
protocols, they are forbidden.

• UTF-EBCDIC

Like UTF-8, but EBCDIC-safe, in the way that UTF-8 is ASCII-safe. This means that
all the basic characters (which includes all those that have ASCII equivalents (like "A",
"0", "%", etc.) are the same in both EBCDIC and UTF-EBCDIC.)

UTF-EBCDIC is used on EBCDIC platforms. The largest Unicode code points take
5 bytes to represent (instead of 4 in UTF-8), and Perl extends it to a maximum of 7
bytes to encode pode points up to what can fit in a 32-bit word (instead of 13 bytes
and a 64-bit word in UTF-8).

• UTF-16, UTF-16BE, UTF-16LE, Surrogates, and BOM’s (Byte Order Marks)

The followings items are mostly for reference and general Unicode knowledge, Perl
doesn’t use these constructs internally.

Like UTF-8, UTF-16 is a variable-width encoding, but where UTF-8 uses 8-bit code
units, UTF-16 uses 16-bit code units. All code points occupy either 2 or 4 bytes in
UTF-16: code points U+0000..U+FFFF are stored in a single 16-bit unit, and code
points U+10000..U+10FFFF in two 16-bit units. The latter case is using surrogates, the
first 16-bit unit being the high surrogate, and the second being the low surrogate.

Surrogates are code points set aside to encode the U+10000..U+10FFFF range of Unicode
code points in pairs of 16-bit units. The high surrogates are the range U+D800..U+DBFF
and the low surrogates are the range U+DC00..U+DFFF. The surrogate encoding is

$hi = ($uni - 0x10000) / 0x400 + 0xD800;

$lo = ($uni - 0x10000) % 0x400 + 0xDC00;

and the decoding is

$uni = 0x10000 + ($hi - 0xD800) * 0x400 + ($lo - 0xDC00);

Because of the 16-bitness, UTF-16 is byte-order dependent. UTF-16 itself can be used
for in-memory computations, but if storage or transfer is required either UTF-16BE
(big-endian) or UTF-16LE (little-endian) encodings must be chosen.

This introduces another problem: what if you just know that your data is UTF-16, but
you don’t know which endianness? Byte Order Marks, or BOM’s, are a solution to this.

A special character has been reserved in Unicode to function as a byte order marker:
the character with the code point U+FEFF is the BOM.

The trick is that if you read a BOM, you will know the byte order, since if it was written
on a big-endian platform, you will read the bytes 0xFE 0xFF, but if it was written on
a little-endian platform, you will read the bytes 0xFF 0xFE. (And if the originating
platform was writing in ASCII platform UTF-8, you will read the bytes 0xEF 0xBB

0xBF.)

The way this trick works is that the character with the code point U+FFFE is not
supposed to be in input streams, so the sequence of bytes 0xFF 0xFE is unambiguously
"BOM, represented in little-endian format" and cannot be U+FFFE, represented in big-
endian format".

Surrogates have no meaning in Unicode outside their use in pairs to represent other
code points. However, Perl allows them to be represented individually internally, for
example by saying chr(0xD801), so that all code points, not just those valid for open
interchange, are representable. Unicode does define semantics for them, such as their
Section 81.2.5.1 [General_Category], page 1323 is "Cs". But because their use
is somewhat dangerous, Perl will warn (using the warning category "surrogate", which
is a sub-category of "utf8") if an attempt is made to do things like take the lower case
of one, or match case-insensitively, or to output them. (But don’t try this on Perls
before 5.14.)

• UTF-32, UTF-32BE, UTF-32LE

The UTF-32 family is pretty much like the UTF-16 family, except that the units are
32-bit, and therefore the surrogate scheme is not needed. UTF-32 is a fixed-width
encoding. The BOM signatures are 0x00 0x00 0xFE 0xFF for BE and 0xFF 0xFE 0x00

0x00 for LE.

• UCS-2, UCS-4

Legacy, fixed-width encodings defined by the ISO 10646 standard. UCS-2 is a 16-bit
encoding. Unlike UTF-16, UCS-2 is not extensible beyond U+FFFF, because it does
not use surrogates. UCS-4 is a 32-bit encoding, functionally identical to UTF-32 (the
difference being that UCS-4 forbids neither surrogates nor code points larger than
0x10_FFFF).

• UTF-7

A seven-bit safe (non-eight-bit) encoding, which is useful if the transport or storage is
not eight-bit safe. Defined by RFC 2152.

81.2.11 Noncharacter code points

66 code points are set aside in Unicode as "noncharacter code points". These all have the
Unassigned (Cn) Section 81.2.5.1 [General_Category], page 1323, and no character
will ever be assigned to any of them. They are the 32 code points between U+FDD0 and
U+FDEF inclusive, and the 34 code points:

U+FFFE U+FFFF

U+1FFFE U+1FFFF

U+2FFFE U+2FFFF

...

U+EFFFE U+EFFFF

U+FFFFE U+FFFFF

U+10FFFE U+10FFFF

Until Unicode 7.0, the noncharacters were "forbidden for use in open interchange of
Unicode text data", so that code that processed those streams could use these code points
as sentinels that could be mixed in with character data, and would always be distinguishable
from that data. (Emphasis above and in the next paragraph are added in this document.)

Unicode 7.0 changed the wording so that they are "not recommended for use in open
interchange of Unicode text data". The 7.0 Standard goes on to say:

"If a noncharacter is received in open interchange, an application is not required
to interpret it in any way. It is good practice, however, to recognize it as a non-
character and to take appropriate action, such as replacing it with U+FFFD re-
placement character, to indicate the problem in the text. It is not recommended
to simply delete noncharacter code points from such text, because of the po-
tential security issues caused by deleting uninterpreted characters. (See confor-
mance clause C7 in Section 3.2, Conformance Requirements, and Unicode Tech-
nical Report #36, "Unicode Security Considerations" (http://www.unicode.
org/reports/tr36/#Substituting_for_Ill_Formed_Subsequences))."

This change was made because it was found that various commercial tools like editors, or
for things like source code control, had been written so that they would not handle program
files that used these code points, effectively precluding their use almost entirely! And that
was never the intent. They’ve always been meant to be usable within an application, or
cooperating set of applications, at will.

If you’re writing code, such as an editor, that is supposed to be able to handle any
Unicode text data, then you shouldn’t be using these code points yourself, and instead
allow them in the input. If you need sentinels, they should instead be something that isn’t
legal Unicode. For UTF-8 data, you can use the bytes 0xC1 and 0xC2 as sentinels, as they
never appear in well-formed UTF-8. (There are equivalents for UTF-EBCDIC). You can
also store your Unicode code points in integer variables and use negative values as sentinels.

If you’re not writing such a tool, then whether you accept noncharacters as input is up to
you (though the Standard recommends that you not). If you do strict input stream check-
ing with Perl, these code points continue to be forbidden. This is to maintain backward
compatibility (otherwise potential security holes could open up, as an unsuspecting appli-
cation that was written assuming the noncharacters would be filtered out before getting to
it, could now, without warning, start getting them). To do strict checking, you can use the
layer :encoding(’UTF-8’).

Perl continues to warn (using the warning category "nonchar", which is a sub-category
of "utf8") if an attempt is made to output noncharacters.

81.2.12 Beyond Unicode code points

The maximum Unicode code point is U+10FFFF, and Unicode only defines operations on
code points up through that. But Perl works on code points up to the maximum permissible
unsigned number available on the platform. However, Perl will not accept these from input
streams unless lax rules are being used, and will warn (using the warning category "non_

unicode", which is a sub-category of "utf8") if any are output.

http://www.unicode.org/reports/tr36/#Substituting_for_Ill_Formed_Subsequences
http://www.unicode.org/reports/tr36/#Substituting_for_Ill_Formed_Subsequences
http://www.unicode.org/reports/tr36/#Substituting_for_Ill_Formed_Subsequences

Since Unicode rules are not defined on these code points, if a Unicode-defined operation
is done on them, Perl uses what we believe are sensible rules, while generally warning,
using the "non_unicode" category. For example, uc("\x{11_0000}") will generate such
a warning, returning the input parameter as its result, since Perl defines the uppercase of
every non-Unicode code point to be the code point itself. (All the case changing operations,
not just uppercasing, work this way.)

The situation with matching Unicode properties in regular expressions, the \p{} and
\P{} constructs, against these code points is not as clear cut, and how these are handled
has changed as we’ve gained experience.

One possibility is to treat any match against these code points as undefined. But since
Perl doesn’t have the concept of a match being undefined, it converts this to failing or
FALSE. This is almost, but not quite, what Perl did from v5.14 (when use of these code
points became generally reliable) through v5.18. The difference is that Perl treated all \p{}
matches as failing, but all \P{} matches as succeeding.

One problem with this is that it leads to unexpected, and confusting results in some
cases:

chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Failed on <= v5.18

chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Failed! on <= v5.18

That is, it treated both matches as undefined, and converted that to false (raising a
warning on each). The first case is the expected result, but the second is likely counter-
intuitive: "How could both be false when they are complements?" Another problem was
that the implementation optimized many Unicode property matches down to already exist-
ing simpler, faster operations, which don’t raise the warning. We chose to not forgo those
optimizations, which help the vast majority of matches, just to generate a warning for the
unlikely event that an above-Unicode code point is being matched against.

As a result of these problems, starting in v5.20, what Perl does is to treat non-Unicode
code points as just typical unassigned Unicode characters, and matches accordingly. (Note:
Unicode has atypical unassigned code points. For example, it has noncharacter code points,
and ones that, when they do get assigned, are destined to be written Right-to-left, as Arabic
and Hebrew are. Perl assumes that no non-Unicode code point has any atypical properties.)

Perl, in most cases, will raise a warning when matching an above-Unicode code point
against a Unicode property when the result is TRUE for \p{}, and FALSE for \P{}. For
example:

chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Fails, no warning

chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Succeeds, with warning

In both these examples, the character being matched is non-Unicode, so Unicode doesn’t
define how it should match. It clearly isn’t an ASCII hex digit, so the first example clearly
should fail, and so it does, with no warning. But it is arguable that the second example
should have an undefined, hence FALSE, result. So a warning is raised for it.

Thus the warning is raised for many fewer cases than in earlier Perls, and only when what
the result is could be arguable. It turns out that none of the optimizations made by Perl (or
are ever likely to be made) cause the warning to be skipped, so it solves both problems of
Perl’s earlier approach. The most commonly used property that is affected by this change is
\p{Unassigned} which is a short form for \p{General_Category=Unassigned}. Starting

in v5.20, all non-Unicode code points are considered Unassigned. In earlier releases the
matches failed because the result was considered undefined.

The only place where the warning is not raised when it might ought to have been is if
optimizations cause the whole pattern match to not even be attempted. For example, Perl
may figure out that for a string to match a certain regular expression pattern, the string
has to contain the substring "foobar". Before attempting the match, Perl may look for
that substring, and if not found, immediately fail the match without actually trying it; so
no warning gets generated even if the string contains an above-Unicode code point.

This behavior is more "Do what I mean" than in earlier Perls for most applications.
But it catches fewer issues for code that needs to be strictly Unicode compliant. Therefore
there is an additional mode of operation available to accommodate such code. This mode
is enabled if a regular expression pattern is compiled within the lexical scope where the
"non_unicode" warning class has been made fatal, say by:

use warnings FATAL => "non_unicode"

(see warnings). In this mode of operation, Perl will raise the warning for all matches
against a non-Unicode code point (not just the arguable ones), and it skips the optimizations
that might cause the warning to not be output. (It currently still won’t warn if the match
isn’t even attempted, like in the "foobar" example above.)

In summary, Perl now normally treats non-Unicode code points as typical Unicode unas-
signed code points for regular expression matches, raising a warning only when it is arguable
what the result should be. However, if this warning has been made fatal, it isn’t skipped.

There is one exception to all this. \p{All} looks like a Unicode property, but it is a
Perl extension that is defined to be true for all possible code points, Unicode or not, so no
warning is ever generated when matching this against a non-Unicode code point. (Prior to
v5.20, it was an exact synonym for \p{Any}, matching code points 0 through 0x10FFFF.)

81.2.13 Security Implications of Unicode

First, read Unicode Security Considerations (http://www.unicode.org/reports/tr36).

Also, note the following:

• Malformed UTF-8

Unfortunately, the original specification of UTF-8 leaves some room for interpretation
of how many bytes of encoded output one should generate from one input Unicode
character. Strictly speaking, the shortest possible sequence of UTF-8 bytes should
be generated, because otherwise there is potential for an input buffer overflow at the
receiving end of a UTF-8 connection. Perl always generates the shortest length UTF-
8, and with warnings on, Perl will warn about non-shortest length UTF-8 along with
other malformations, such as the surrogates, which are not Unicode code points valid
for interchange.

• Regular expression pattern matching may surprise you if you’re not accustomed to
Unicode. Starting in Perl 5.14, several pattern modifiers are available to control this,
called the character set modifiers. Details are given in Section 58.2.1.2 [perlre Character
set modifiers], page 992.

As discussed elsewhere, Perl has one foot (two hooves?) planted in each of two worlds:
the old world of ASCII and single-byte locales, and the new world of Unicode, upgrading

http://www.unicode.org/reports/tr36

when necessary. If your legacy code does not explicitly use Unicode, no automatic switch-
over to Unicode should happen.

81.2.14 Unicode in Perl on EBCDIC

Unicode is supported on EBCDIC platforms. See Section 19.1 [perlebcdic NAME], page 266.

Unless ASCII vs. EBCDIC issues are specifically being discussed, references to UTF-8
encoding in this document and elsewhere should be read as meaning UTF-EBCDIC on
EBCDIC platforms. See Section 19.3.6 [perlebcdic Unicode and UTF], page 269.

Because UTF-EBCDIC is so similar to UTF-8, the differences are mostly hidden from
you; use utf8 (and NOT something like use utfebcdic) declares the the script is in the
platform’s "native" 8-bit encoding of Unicode. (Similarly for the ":utf8" layer.)

81.2.15 Locales

See Section 38.10 [perllocale Unicode and UTF-8], page 721

81.2.16 When Unicode Does Not Happen

There are still many places where Unicode (in some encoding or another) could be given
as arguments or received as results, or both in Perl, but it is not, in spite of Perl having
extensive ways to input and output in Unicode, and a few other "entry points" like the
@ARGV array (which can sometimes be interpreted as UTF-8).

The following are such interfaces. Also, see Section 81.2.17 [The "Unicode Bug"],
page 1340. For all of these interfaces Perl currently (as of v5.16.0) simply assumes byte
strings both as arguments and results, or UTF-8 strings if the (deprecated) encoding

pragma has been used.

One reason that Perl does not attempt to resolve the role of Unicode in these situations
is that the answers are highly dependent on the operating system and the file system(s). For
example, whether filenames can be in Unicode and in exactly what kind of encoding, is not
exactly a portable concept. Similarly for qx and system: how well will the "command-line
interface" (and which of them?) handle Unicode?

• chdir, chmod, chown, chroot, exec, link, lstat, mkdir, rename, rmdir, stat,
symlink, truncate, unlink, utime, -X

• %ENV

• glob (aka the <*>)

• open, opendir, sysopen

• qx (aka the backtick operator), system

• readdir, readlink

81.2.17 The "Unicode Bug"

The term, "Unicode bug" has been applied to an inconsistency with the code points in
the Latin-1 Supplement block, that is, between 128 and 255. Without a locale specified,
unlike all other characters or code points, these characters can have very different semantics
depending on the rules in effect. (Characters whose code points are above 255 force Unicode
rules; whereas the rules for ASCII characters are the same under both ASCII and Unicode
rules.)

Under Unicode rules, these upper-Latin1 characters are interpreted as Unicode code
points, which means they have the same semantics as Latin-1 (ISO-8859-1) and C1 controls.

As explained in Section 81.2.3 [ASCII Rules versus Unicode Rules], page 1319, under
ASCII rules, they are considered to be unassigned characters.

This can lead to unexpected results. For example, a string’s semantics can suddenly
change if a code point above 255 is appended to it, which changes the rules from ASCII to
Unicode. As an example, consider the following program and its output:

$ perl -le’

no feature ’unicode_strings’;

$s1 = "\xC2";

$s2 = "\x{2660}";

for ($s1, $s2, $s1.$s2) {

print /\w/ || 0;

}

’

0

0

1

If there’s no \w in s1 nor in s2, why does their concatenation have one?

This anomaly stems from Perl’s attempt to not disturb older programs that didn’t use
Unicode, along with Perl’s desire to add Unicode support seamlessly. But the result turned
out to not be seamless. (By the way, you can choose to be warned when things like this
happen. See encoding-warnings.)

Section “The ’unicode strings’ feature” in feature was added, starting in Perl v5.12, to
address this problem. It affects these things:

• Changing the case of a scalar, that is, using uc(), ucfirst(), lc(), and lcfirst(), or
\L, \U, \u and \l in double-quotish contexts, such as regular expression substitutions.

Under unicode_strings starting in Perl 5.12.0, Unicode rules are generally used. See
[perlfunc lc], page 399 for details on how this works in combination with various other
pragmas.

• Using caseless (/i) regular expression matching.

Starting in Perl 5.14.0, regular expressions compiled within the scope of unicode_
strings use Unicode rules even when executed or compiled into larger regular expres-
sions outside the scope.

• Matching any of several properties in regular expressions.

These properties are \b (without braces), \B (without braces), \s, \S, \w, \W, and all
the Posix character classes except [[:ascii:]].

Starting in Perl 5.14.0, regular expressions compiled within the scope of unicode_
strings use Unicode rules even when executed or compiled into larger regular expres-
sions outside the scope.

• In quotemeta or its inline equivalent \Q.

Starting in Perl 5.16.0, consistent quoting rules are used within the scope of unicode_
strings, as described in [perlfunc quotemeta], page 430. Prior to that, or outside its

scope, no code points above 127 are quoted in UTF-8 encoded strings, but in byte
encoded strings, code points between 128-255 are always quoted.

You can see from the above that the effect of unicode_strings increased over several
Perl releases. (And Perl’s support for Unicode continues to improve; it’s best to use the
latest available release in order to get the most complete and accurate results possible.)
Note that unicode_strings is automatically chosen if you use 5.012 or higher.

For Perls earlier than those described above, or when a string is passed to a function
outside the scope of unicode_strings, see the next section.

81.2.18 Forcing Unicode in Perl (Or Unforcing Unicode in Perl)

Sometimes (see Section 81.2.16 [When Unicode Does Not Happen], page 1340 or
Section 81.2.17 [The "Unicode Bug"], page 1340) there are situations where you simply
need to force a byte string into UTF-8, or vice versa. The standard module Encode can be
used for this, or the low-level calls Section “Utility functions” in utf8 and Section “Utility
functions” in utf8.

Note that utf8::downgrade() can fail if the string contains characters that don’t fit
into a byte.

Calling either function on a string that already is in the desired state is a no-op.

Section 81.2.3 [ASCII Rules versus Unicode Rules], page 1319 gives all the ways that a
string is made to use Unicode rules.

81.2.19 Using Unicode in XS

See Section 28.11 [perlguts Unicode Support], page 555 for an introduction to Unicode at
the XS level, and Section “Unicode Support” in perlapi for the API details.

81.2.20 Hacking Perl to work on earlier Unicode versions (for very
serious hackers only)

Perl by default comes with the latest supported Unicode version built-in, but the goal is to
allow you to change to use any earlier one. In Perls v5.20 and v5.22, however, the earliest
usable version is Unicode 5.1. Perl v5.18 is able to handle all earlier versions.

Download the files in the desired version of Unicode from the Unicode web site http://
www.unicode.org). These should replace the existing files in lib/unicore in the Perl
source tree. Follow the instructions in README.perl in that directory to change some of
their names, and then build perl (see INSTALL).

81.2.21 Porting code from perl-5.6.X

Perls starting in 5.8 have a different Unicode model from 5.6. In 5.6 the programmer was
required to use the utf8 pragma to declare that a given scope expected to deal with Unicode
data and had to make sure that only Unicode data were reaching that scope. If you have
code that is working with 5.6, you will need some of the following adjustments to your code.
The examples are written such that the code will continue to work under 5.6, so you should
be safe to try them out.

• A filehandle that should read or write UTF-8

if ($] > 5.008) {

http://www.unicode.org
http://www.unicode.org

binmode $fh, ":encoding(utf8)";

}

• A scalar that is going to be passed to some extension

Be it Compress::Zlib, Apache::Request or any extension that has no mention of
Unicode in the manpage, you need to make sure that the UTF8 flag is stripped off.
Note that at the time of this writing (January 2012) the mentioned modules are not
UTF-8-aware. Please check the documentation to verify if this is still true.

if ($] > 5.008) {

require Encode;

$val = Encode::encode_utf8($val); # make octets

}

• A scalar we got back from an extension

If you believe the scalar comes back as UTF-8, you will most likely want the UTF8 flag
restored:

if ($] > 5.008) {

require Encode;

$val = Encode::decode_utf8($val);

}

• Same thing, if you are really sure it is UTF-8

if ($] > 5.008) {

require Encode;

Encode::_utf8_on($val);

}

• A wrapper for DBI fetchrow_array and fetchrow_hashref

When the database contains only UTF-8, a wrapper function or method is a convenient
way to replace all your fetchrow_array and fetchrow_hashref calls. A wrapper func-
tion will also make it easier to adapt to future enhancements in your database driver.
Note that at the time of this writing (January 2012), the DBI has no standardized way
to deal with UTF-8 data. Please check the DBI to verify if that is still true.

sub fetchrow {

$what is one of fetchrow_{array,hashref}

my($self, $sth, $what) = @_;

if ($] < 5.008) {

return $sth->$what;

} else {

require Encode;

if (wantarray) {

my @arr = $sth->$what;

for (@arr) {

defined && /[^\000-\177]/ && Encode::_utf8_on($_);

}

return @arr;

} else {

my $ret = $sth->$what;

if (ref $ret) {

for my $k (keys %$ret) {

defined

&& /[^\000-\177]/

&& Encode::_utf8_on($_) for $ret->{$k};

}

return $ret;

} else {

defined && /[^\000-\177]/ && Encode::_utf8_on($_) for $ret;

return $ret;

}

}

}

}

• A large scalar that you know can only contain ASCII

Scalars that contain only ASCII and are marked as UTF-8 are sometimes a drag to
your program. If you recognize such a situation, just remove the UTF8 flag:

utf8::downgrade($val) if $] > 5.008;

81.3 BUGS

See also Section 81.2.17 [The "Unicode Bug"], page 1340 above.

81.3.1 Interaction with Extensions

When Perl exchanges data with an extension, the extension should be able to understand
the UTF8 flag and act accordingly. If the extension doesn’t recognize that flag, it’s likely
that the extension will return incorrectly-flagged data.

So if you’re working with Unicode data, consult the documentation of every module
you’re using if there are any issues with Unicode data exchange. If the documentation
does not talk about Unicode at all, suspect the worst and probably look at the source to
learn how the module is implemented. Modules written completely in Perl shouldn’t cause
problems. Modules that directly or indirectly access code written in other programming
languages are at risk.

For affected functions, the simple strategy to avoid data corruption is to always make the
encoding of the exchanged data explicit. Choose an encoding that you know the extension
can handle. Convert arguments passed to the extensions to that encoding and convert
results back from that encoding. Write wrapper functions that do the conversions for you,
so you can later change the functions when the extension catches up.

To provide an example, let’s say the popular Foo::Bar::escape_html function doesn’t
deal with Unicode data yet. The wrapper function would convert the argument to raw
UTF-8 and convert the result back to Perl’s internal representation like so:

sub my_escape_html ($) {

my($what) = shift;

return unless defined $what;

Encode::decode_utf8(Foo::Bar::escape_html(

Encode::encode_utf8($what)));

}

Sometimes, when the extension does not convert data but just stores and retrieves it,
you will be able to use the otherwise dangerous Section “ utf8 on” in Encode function.
Let’s say the popular Foo::Bar extension, written in C, provides a param method that lets
you store and retrieve data according to these prototypes:

$self->param($name, $value); # set a scalar

$value = $self->param($name); # retrieve a scalar

If it does not yet provide support for any encoding, one could write a derived class with
such a param method:

sub param {

my($self,$name,$value) = @_;

utf8::upgrade($name); # make sure it is UTF-8 encoded

if (defined $value) {

utf8::upgrade($value); # make sure it is UTF-8 encoded

return $self->SUPER::param($name,$value);

} else {

my $ret = $self->SUPER::param($name);

Encode::_utf8_on($ret); # we know, it is UTF-8 encoded

return $ret;

}

}

Some extensions provide filters on data entry/exit points, such as DB_File::filter_

store_key and family. Look out for such filters in the documentation of your extensions;
they can make the transition to Unicode data much easier.

81.3.2 Speed

Some functions are slower when working on UTF-8 encoded strings than on byte encoded
strings. All functions that need to hop over characters such as length(), substr() or
index(), or matching regular expressions can work much faster when the underlying data
are byte-encoded.

In Perl 5.8.0 the slowness was often quite spectacular; in Perl 5.8.1 a caching scheme
was introduced which improved the situation. In general, operations with UTF-8 encoded
strings are still slower. As an example, the Unicode properties (character classes) like
\p{Nd} are known to be quite a bit slower (5-20 times) than their simpler counterparts like
[0-9] (then again, there are hundreds of Unicode characters matching Nd compared with
the 10 ASCII characters matching [0-9]).

81.4 SEE ALSO

Section 84.1 [perlunitut NAME], page 1367, Section 83.1 [perluniintro NAME], page 1352,
perluniprops, Encode, open, utf8, bytes, Section 68.1 [perlretut NAME], page 1131,
[perlvar ${^UNICODE}], page 1407, http://www.unicode.org/reports/tr44).

http://www.unicode.org/reports/tr44

82 perlunifaq

82.1 NAME

perlunifaq - Perl Unicode FAQ

82.2 Q and A

This is a list of questions and answers about Unicode in Perl, intended to be read after
Section 84.1 [perlunitut NAME], page 1367.

82.2.1 perlunitut isn’t really a Unicode tutorial, is it?

No, and this isn’t really a Unicode FAQ.

Perl has an abstracted interface for all supported character encodings, so this is actually
a generic Encode tutorial and Encode FAQ. But many people think that Unicode is special
and magical, and I didn’t want to disappoint them, so I decided to call the document a
Unicode tutorial.

82.2.2 What character encodings does Perl support?

To find out which character encodings your Perl supports, run:

perl -MEncode -le "print for Encode->encodings(’:all’)"

82.2.3 Which version of perl should I use?

Well, if you can, upgrade to the most recent, but certainly 5.8.1 or newer. The tutorial
and FAQ assume the latest release.

You should also check your modules, and upgrade them if necessary. For example,
HTML::Entities requires version >= 1.32 to function correctly, even though the changelog
is silent about this.

82.2.4 What about binary data, like images?

Well, apart from a bare binmode $fh, you shouldn’t treat them specially. (The binmode is
needed because otherwise Perl may convert line endings on Win32 systems.)

Be careful, though, to never combine text strings with binary strings. If you need text
in a binary stream, encode your text strings first using the appropriate encoding, then join
them with binary strings. See also: "What if I don’t encode?".

82.2.5 When should I decode or encode?

Whenever you’re communicating text with anything that is external to your perl process,
like a database, a text file, a socket, or another program. Even if the thing you’re commu-
nicating with is also written in Perl.

82.2.6 What if I don’t decode?

Whenever your encoded, binary string is used together with a text string, Perl will assume
that your binary string was encoded with ISO-8859-1, also known as latin-1. If it wasn’t

latin-1, then your data is unpleasantly converted. For example, if it was UTF-8, the individ-
ual bytes of multibyte characters are seen as separate characters, and then again converted
to UTF-8. Such double encoding can be compared to double HTML encoding (&gt;),
or double URI encoding (%253E).

This silent implicit decoding is known as "upgrading". That may sound positive, but
it’s best to avoid it.

82.2.7 What if I don’t encode?

Your text string will be sent using the bytes in Perl’s internal format. In some cases, Perl
will warn you that you’re doing something wrong, with a friendly warning:

Wide character in print at example.pl line 2.

Because the internal format is often UTF-8, these bugs are hard to spot, because UTF-8
is usually the encoding you wanted! But don’t be lazy, and don’t use the fact that Perl’s
internal format is UTF-8 to your advantage. Encode explicitly to avoid weird bugs, and to
show to maintenance programmers that you thought this through.

82.2.8 Is there a way to automatically decode or encode?

If all data that comes from a certain handle is encoded in exactly the same way, you can
tell the PerlIO system to automatically decode everything, with the encoding layer. If you
do this, you can’t accidentally forget to decode or encode anymore, on things that use the
layered handle.

You can provide this layer when opening the file:

open my $fh, ’>:encoding(UTF-8)’, $filename; # auto encoding on write

open my $fh, ’<:encoding(UTF-8)’, $filename; # auto decoding on read

Or if you already have an open filehandle:

binmode $fh, ’:encoding(UTF-8)’;

Some database drivers for DBI can also automatically encode and decode, but that is
sometimes limited to the UTF-8 encoding.

82.2.9 What if I don’t know which encoding was used?

Do whatever you can to find out, and if you have to: guess. (Don’t forget to document your
guess with a comment.)

You could open the document in a web browser, and change the character set or character
encoding until you can visually confirm that all characters look the way they should.

There is no way to reliably detect the encoding automatically, so if people keep sending
you data without charset indication, you may have to educate them.

82.2.10 Can I use Unicode in my Perl sources?

Yes, you can! If your sources are UTF-8 encoded, you can indicate that with the use utf8

pragma.

use utf8;

This doesn’t do anything to your input, or to your output. It only influences the way
your sources are read. You can use Unicode in string literals, in identifiers (but they still
have to be "word characters" according to \w), and even in custom delimiters.

82.2.11 Data::Dumper doesn’t restore the UTF8 flag; is it broken?

No, Data::Dumper’s Unicode abilities are as they should be. There have been some com-
plaints that it should restore the UTF8 flag when the data is read again with eval. However,
you should really not look at the flag, and nothing indicates that Data::Dumper should break
this rule.

Here’s what happens: when Perl reads in a string literal, it sticks to 8 bit encoding
as long as it can. (But perhaps originally it was internally encoded as UTF-8, when you
dumped it.) When it has to give that up because other characters are added to the text
string, it silently upgrades the string to UTF-8.

If you properly encode your strings for output, none of this is of your concern, and you
can just eval dumped data as always.

82.2.12 Why do regex character classes sometimes match only in
the ASCII range?

Starting in Perl 5.14 (and partially in Perl 5.12), just put a use feature ’unicode_

strings’ near the beginning of your program. Within its lexical scope you shouldn’t have
this problem. It also is automatically enabled under use feature ’:5.12’ or use v5.12

or using -E on the command line for Perl 5.12 or higher.

The rationale for requiring this is to not break older programs that rely on the way things
worked before Unicode came along. Those older programs knew only about the ASCII
character set, and so may not work properly for additional characters. When a string is
encoded in UTF-8, Perl assumes that the program is prepared to deal with Unicode, but
when the string isn’t, Perl assumes that only ASCII is wanted, and so those characters
that are not ASCII characters aren’t recognized as to what they would be in Unicode.
use feature ’unicode_strings’ tells Perl to treat all characters as Unicode, whether the
string is encoded in UTF-8 or not, thus avoiding the problem.

However, on earlier Perls, or if you pass strings to subroutines outside the feature’s
scope, you can force Unicode rules by changing the encoding to UTF-8 by doing
utf8::upgrade($string). This can be used safely on any string, as it checks and does
not change strings that have already been upgraded.

For a more detailed discussion, see Unicode-Semantics on CPAN.

82.2.13 Why do some characters not uppercase or lowercase
correctly?

See the answer to the previous question.

82.2.14 How can I determine if a string is a text string or a
binary string?

You can’t. Some use the UTF8 flag for this, but that’s misuse, and makes well behaved
modules like Data::Dumper look bad. The flag is useless for this purpose, because it’s off
when an 8 bit encoding (by default ISO-8859-1) is used to store the string.

This is something you, the programmer, has to keep track of; sorry. You could consider
adopting a kind of "Hungarian notation" to help with this.

82.2.15 How do I convert from encoding FOO to encoding BAR?

By first converting the FOO-encoded byte string to a text string, and then the text string
to a BAR-encoded byte string:

my $text_string = decode(’FOO’, $foo_string);

my $bar_string = encode(’BAR’, $text_string);

or by skipping the text string part, and going directly from one binary encoding to the
other:

use Encode qw(from_to);

from_to($string, ’FOO’, ’BAR’); # changes contents of $string

or by letting automatic decoding and encoding do all the work:

open my $foofh, ’<:encoding(FOO)’, ’example.foo.txt’;

open my $barfh, ’>:encoding(BAR)’, ’example.bar.txt’;

print { $barfh } $_ while <$foofh>;

82.2.16 What are decode_utf8 and encode_utf8?

These are alternate syntaxes for decode(’utf8’, ...) and encode(’utf8’, ...).

82.2.17 What is a "wide character"?

This is a term used for characters occupying more than one byte.

The Perl warning "Wide character in ..." is caused by such a character. With no specified
encoding layer, Perl tries to fit things into a single byte. When it can’t, it emits this warning
(if warnings are enabled), and uses UTF-8 encoded data instead.

To avoid this warning and to avoid having different output encodings in a single stream,
always specify an encoding explicitly, for example with a PerlIO layer:

binmode STDOUT, ":encoding(UTF-8)";

82.3 INTERNALS

82.3.1 What is "the UTF8 flag"?

Please, unless you’re hacking the internals, or debugging weirdness, don’t think about the
UTF8 flag at all. That means that you very probably shouldn’t use is_utf8, _utf8_on or
_utf8_off at all.

The UTF8 flag, also called SvUTF8, is an internal flag that indicates that the current
internal representation is UTF-8. Without the flag, it is assumed to be ISO-8859-1. Perl
converts between these automatically. (Actually Perl usually assumes the representation is
ASCII; see Section 82.2.12 [Why do regex character classes sometimes match only in the
ASCII range?], page 1348 above.)

One of Perl’s internal formats happens to be UTF-8. Unfortunately, Perl can’t keep a
secret, so everyone knows about this. That is the source of much confusion. It’s better to
pretend that the internal format is some unknown encoding, and that you always have to
encode and decode explicitly.

82.3.2 What about the use bytes pragma?

Don’t use it. It makes no sense to deal with bytes in a text string, and it makes no sense to
deal with characters in a byte string. Do the proper conversions (by decoding/encoding),
and things will work out well: you get character counts for decoded data, and byte counts
for encoded data.

use bytes is usually a failed attempt to do something useful. Just forget about it.

82.3.3 What about the use encoding pragma?

Don’t use it. Unfortunately, it assumes that the programmer’s environment and that of the
user will use the same encoding. It will use the same encoding for the source code and for
STDIN and STDOUT. When a program is copied to another machine, the source code does
not change, but the STDIO environment might.

If you need non-ASCII characters in your source code, make it a UTF-8 encoded file and
use utf8.

If you need to set the encoding for STDIN, STDOUT, and STDERR, for example based
on the user’s locale, use open.

82.3.4 What is the difference between :encoding and :utf8?

Because UTF-8 is one of Perl’s internal formats, you can often just skip the encoding or
decoding step, and manipulate the UTF8 flag directly.

Instead of :encoding(UTF-8), you can simply use :utf8, which skips the encoding step
if the data was already represented as UTF8 internally. This is widely accepted as good
behavior when you’re writing, but it can be dangerous when reading, because it causes
internal inconsistency when you have invalid byte sequences. Using :utf8 for input can
sometimes result in security breaches, so please use :encoding(UTF-8) instead.

Instead of decode and encode, you could use _utf8_on and _utf8_off, but this is
considered bad style. Especially _utf8_on can be dangerous, for the same reason that
:utf8 can.

There are some shortcuts for oneliners; see [-C], page 1179 in Section 69.1 [perlrun
NAME], page 1176.

82.3.5 What’s the difference between UTF-8 and utf8?

UTF-8 is the official standard. utf8 is Perl’s way of being liberal in what it accepts. If you
have to communicate with things that aren’t so liberal, you may want to consider using
UTF-8. If you have to communicate with things that are too liberal, you may have to use
utf8. The full explanation is in Encode.

UTF-8 is internally known as utf-8-strict. The tutorial uses UTF-8 consistently, even
where utf8 is actually used internally, because the distinction can be hard to make, and is
mostly irrelevant.

For example, utf8 can be used for code points that don’t exist in Unicode, like 9999999,
but if you encode that to UTF-8, you get a substitution character (by default; see Section
“Handling Malformed Data” in Encode for more ways of dealing with this.)

Okay, if you insist: the "internal format" is utf8, not UTF-8. (When it’s not some other
encoding.)

82.3.6 I lost track; what encoding is the internal format really?

It’s good that you lost track, because you shouldn’t depend on the internal format being any
specific encoding. But since you asked: by default, the internal format is either ISO-8859-1
(latin-1), or utf8, depending on the history of the string. On EBCDIC platforms, this may
be different even.

Perl knows how it stored the string internally, and will use that knowledge when you
encode. In other words: don’t try to find out what the internal encoding for a certain string
is, but instead just encode it into the encoding that you want.

82.4 AUTHOR

Juerd Waalboer <#####@juerd.nl>

82.5 SEE ALSO

Section 81.1 [perlunicode NAME], page 1317, Section 83.1 [perluniintro NAME], page 1352,
Encode

83 perluniintro

83.1 NAME

perluniintro - Perl Unicode introduction

83.2 DESCRIPTION

This document gives a general idea of Unicode and how to use Unicode in Perl. See
Section 83.2.15 [Further Resources], page 1365 for references to more in-depth treatments
of Unicode.

83.2.1 Unicode

Unicode is a character set standard which plans to codify all of the writing systems of the
world, plus many other symbols.

Unicode and ISO/IEC 10646 are coordinated standards that unify almost all other
modern character set standards, covering more than 80 writing systems and hundreds of
languages, including all commercially-important modern languages. All characters in the
largest Chinese, Japanese, and Korean dictionaries are also encoded. The standards will
eventually cover almost all characters in more than 250 writing systems and thousands of
languages. Unicode 1.0 was released in October 1991, and 6.0 in October 2010.

A Unicode character is an abstract entity. It is not bound to any particular integer
width, especially not to the C language char. Unicode is language-neutral and display-
neutral: it does not encode the language of the text, and it does not generally define fonts
or other graphical layout details. Unicode operates on characters and on text built from
those characters.

Unicode defines characters like LATIN CAPITAL LETTER A or GREEK SMALL LETTER ALPHA

and unique numbers for the characters, in this case 0x0041 and 0x03B1, respectively. These
unique numbers are called code points. A code point is essentially the position of the
character within the set of all possible Unicode characters, and thus in Perl, the term
ordinal is often used interchangeably with it.

The Unicode standard prefers using hexadecimal notation for the code points. If numbers
like 0x0041 are unfamiliar to you, take a peek at a later section, Section 83.2.14 [Hexadeci-
mal Notation], page 1364. The Unicode standard uses the notation U+0041 LATIN CAPITAL

LETTER A, to give the hexadecimal code point and the normative name of the character.

Unicode also defines various properties for the characters, like "uppercase" or "lower-
case", "decimal digit", or "punctuation"; these properties are independent of the names of
the characters. Furthermore, various operations on the characters like uppercasing, lower-
casing, and collating (sorting) are defined.

A Unicode logical "character" can actually consist of more than one internal actual
"character" or code point. For Western languages, this is adequately modelled by a base
character (like LATIN CAPITAL LETTER A) followed by one or moremodifiers (like COMBINING
ACUTE ACCENT). This sequence of base character and modifiers is called a combining char-
acter sequence. Some non-western languages require more complicated models, so Unicode
created the grapheme cluster concept, which was later further refined into the extended

grapheme cluster. For example, a Korean Hangul syllable is considered a single logical
character, but most often consists of three actual Unicode characters: a leading consonant
followed by an interior vowel followed by a trailing consonant.

Whether to call these extended grapheme clusters "characters" depends on your point
of view. If you are a programmer, you probably would tend towards seeing each element in
the sequences as one unit, or "character". However from the user’s point of view, the whole
sequence could be seen as one "character" since that’s probably what it looks like in the
context of the user’s language. In this document, we take the programmer’s point of view:
one "character" is one Unicode code point.

For some combinations of base character and modifiers, there are precomposed characters.
There is a single character equivalent, for example, for the sequence LATIN CAPITAL LETTER

A followed by COMBINING ACUTE ACCENT. It is called LATIN CAPITAL LETTER A WITH ACUTE.
These precomposed characters are, however, only available for some combinations, and are
mainly meant to support round-trip conversions between Unicode and legacy standards (like
ISO 8859). Using sequences, as Unicode does, allows for needing fewer basic building blocks
(code points) to express many more potential grapheme clusters. To support conversion be-
tween equivalent forms, various normalization forms are also defined. Thus, LATIN CAPITAL

LETTER A WITH ACUTE is in Normalization Form Composed, (abbreviated NFC), and the se-
quence LATIN CAPITAL LETTER A followed by COMBINING ACUTE ACCENT represents the same
character in Normalization Form Decomposed (NFD).

Because of backward compatibility with legacy encodings, the "a unique number for
every character" idea breaks down a bit: instead, there is "at least one number for every
character". The same character could be represented differently in several legacy encodings.
The converse is not true: some code points do not have an assigned character. Firstly,
there are unallocated code points within otherwise used blocks. Secondly, there are special
Unicode control characters that do not represent true characters.

When Unicode was first conceived, it was thought that all the world’s characters could
be represented using a 16-bit word; that is a maximum of 0x10000 (or 65,536) characters
would be needed, from 0x0000 to 0xFFFF. This soon proved to be wrong, and since Unicode
2.0 (July 1996), Unicode has been defined all the way up to 21 bits (0x10FFFF), and Unicode
3.1 (March 2001) defined the first characters above 0xFFFF. The first 0x10000 characters
are called the Plane 0, or the Basic Multilingual Plane (BMP). With Unicode 3.1, 17 (yes,
seventeen) planes in all were defined–but they are nowhere near full of defined characters,
yet.

When a new language is being encoded, Unicode generally will choose a block of consec-
utive unallocated code points for its characters. So far, the number of code points in these
blocks has always been evenly divisible by 16. Extras in a block, not currently needed,
are left unallocated, for future growth. But there have been occasions when a later re-
lease needed more code points than the available extras, and a new block had to allocated
somewhere else, not contiguous to the initial one, to handle the overflow. Thus, it became
apparent early on that "block" wasn’t an adequate organizing principal, and so the Script
property was created. (Later an improved script property was added as well, the Script_

Extensions property.) Those code points that are in overflow blocks can still have the
same script as the original ones. The script concept fits more closely with natural language:
there is Latin script, Greek script, and so on; and there are several artificial scripts, like
Common for characters that are used in multiple scripts, such as mathematical symbols.

Scripts usually span varied parts of several blocks. For more information about scripts,
see Section 81.2.5.3 [perlunicode Scripts], page 1325. The division into blocks exists, but
it is almost completely accidental–an artifact of how the characters have been and still are
allocated. (Note that this paragraph has oversimplified things for the sake of this being an
introduction. Unicode doesn’t really encode languages, but the writing systems for them–
their scripts; and one script can be used by many languages. Unicode also encodes things
that aren’t really about languages, such as symbols like BAGGAGE CLAIM.)

The Unicode code points are just abstract numbers. To input and output these abstract
numbers, the numbers must be encoded or serialised somehow. Unicode defines several
character encoding forms, of which UTF-8 is the most popular. UTF-8 is a variable length
encoding that encodes Unicode characters as 1 to 4 bytes. Other encodings include UTF-16
and UTF-32 and their big- and little-endian variants (UTF-8 is byte-order independent).
The ISO/IEC 10646 defines the UCS-2 and UCS-4 encoding forms.

For more information about encodings–for instance, to learn what surrogates and byte
order marks (BOMs) are–see Section 81.1 [perlunicode NAME], page 1317.

83.2.2 Perl’s Unicode Support

Starting from Perl v5.6.0, Perl has had the capacity to handle Unicode natively. Perl v5.8.0,
however, is the first recommended release for serious Unicode work. The maintenance
release 5.6.1 fixed many of the problems of the initial Unicode implementation, but for
example regular expressions still do not work with Unicode in 5.6.1. Perl v5.14.0 is the
first release where Unicode support is (almost) seamlessly integrable without some gotchas
(the exception being some differences in [quotemeta], page 430, and that is fixed starting in
Perl 5.16.0). To enable this seamless support, you should use feature ’unicode_strings’

(which is automatically selected if you use 5.012 or higher). See feature. (5.14 also fixes
a number of bugs and departures from the Unicode standard.)

Before Perl v5.8.0, the use of use utf8 was used to declare that operations in the current
block or file would be Unicode-aware. This model was found to be wrong, or at least clumsy:
the "Unicodeness" is now carried with the data, instead of being attached to the operations.
Starting with Perl v5.8.0, only one case remains where an explicit use utf8 is needed: if
your Perl script itself is encoded in UTF-8, you can use UTF-8 in your identifier names,
and in string and regular expression literals, by saying use utf8. This is not the default
because scripts with legacy 8-bit data in them would break. See utf8.

83.2.3 Perl’s Unicode Model

Perl supports both pre-5.6 strings of eight-bit native bytes, and strings of Unicode char-
acters. The general principle is that Perl tries to keep its data as eight-bit bytes for as
long as possible, but as soon as Unicodeness cannot be avoided, the data is transparently
upgraded to Unicode. Prior to Perl v5.14.0, the upgrade was not completely transpar-
ent (see Section 81.2.17 [perlunicode The "Unicode Bug"], page 1340), and for backwards
compatibility, full transparency is not gained unless use feature ’unicode_strings’ (see
feature) or use 5.012 (or higher) is selected.

Internally, Perl currently uses either whatever the native eight-bit character set of the
platform (for example Latin-1) is, defaulting to UTF-8, to encode Unicode strings. Specifi-
cally, if all code points in the string are 0xFF or less, Perl uses the native eight-bit character
set. Otherwise, it uses UTF-8.

A user of Perl does not normally need to know nor care how Perl happens to encode
its internal strings, but it becomes relevant when outputting Unicode strings to a stream
without a PerlIO layer (one with the "default" encoding). In such a case, the raw bytes
used internally (the native character set or UTF-8, as appropriate for each string) will be
used, and a "Wide character" warning will be issued if those strings contain a character
beyond 0x00FF.

For example,

perl -e ’print "\x{DF}\n", "\x{0100}\x{DF}\n"’

produces a fairly useless mixture of native bytes and UTF-8, as well as a warning:

Wide character in print at ...

To output UTF-8, use the :encoding or :utf8 output layer. Prepending

binmode(STDOUT, ":utf8");

to this sample program ensures that the output is completely UTF-8, and removes the
program’s warning.

You can enable automatic UTF-8-ification of your standard file handles, default open()
layer, and @ARGV by using either the -C command line switch or the PERL_UNICODE environ-
ment variable, see Section 69.1 [perlrun NAME], page 1176 for the documentation of the
-C switch.

Note that this means that Perl expects other software to work the same way: if Perl has
been led to believe that STDIN should be UTF-8, but then STDIN coming in from another
command is not UTF-8, Perl will likely complain about the malformed UTF-8.

All features that combine Unicode and I/O also require using the new PerlIO feature.
Almost all Perl 5.8 platforms do use PerlIO, though: you can see whether yours is by
running "perl -V" and looking for useperlio=define.

83.2.4 Unicode and EBCDIC

Perl 5.8.0 added support for Unicode on EBCDIC platforms. This support was allowed to
lapse in later releases, but was revived in 5.22. Unicode support is somewhat more complex
to implement since additional conversions are needed. See Section 19.1 [perlebcdic NAME],
page 266 for more information.

On EBCDIC platforms, the internal Unicode encoding form is UTF-EBCDIC instead of
UTF-8. The difference is that as UTF-8 is "ASCII-safe" in that ASCII characters encode to
UTF-8 as-is, while UTF-EBCDIC is "EBCDIC-safe", in that all the basic characters (which
includes all those that have ASCII equivalents (like "A", "0", "%", etc.) are the same in
both EBCDIC and UTF-EBCDIC. Often, documentation will use the term "UTF-8" to
mean UTF-EBCDIC as well. This is the case in this document.

83.2.5 Creating Unicode

This section applies fully to Perls starting with v5.22. Various caveats for earlier releases
are in the Section 83.2.5.1 [Earlier releases caveats], page 1356 subsection below.

To create Unicode characters in literals, use the \N{...} notation in double-quoted
strings:

my $smiley_from_name = "\N{WHITE SMILING FACE}";

my $smiley_from_code_point = "\N{U+263a}";

Similarly, they can be used in regular expression literals

$smiley =~ /\N{WHITE SMILING FACE}/;

$smiley =~ /\N{U+263a}/;

At run-time you can use:

use charnames ();

my $hebrew_alef_from_name

= charnames::string_vianame("HEBREW LETTER ALEF");

my $hebrew_alef_from_code_point = charnames::string_vianame("U+05D0");

Naturally, ord() will do the reverse: it turns a character into a code point.

There are other runtime options as well. You can use pack():

my $hebrew_alef_from_code_point = pack("U", 0x05d0);

Or you can use chr(), though it is less convenient in the general case:

$hebrew_alef_from_code_point = chr(utf8::unicode_to_native(0x05d0));

utf8::upgrade($hebrew_alef_from_code_point);

The utf8::unicode_to_native() and utf8::upgrade() aren’t needed if the argument
is above 0xFF, so the above could have been written as

$hebrew_alef_from_code_point = chr(0x05d0);

since 0x5d0 is above 255.

\x{} and \o{} can also be used to specify code points at compile time in double-quotish
strings, but, for backward compatibility with older Perls, the same rules apply as with
chr() for code points less than 256.

utf8::unicode_to_native() is used so that the Perl code is portable to EBCDIC
platforms. You can omit it if you’re really sure no one will ever want to use your code on
a non-ASCII platform. Starting in Perl v5.22, calls to it on ASCII platforms are optimized
out, so there’s no performance penalty at all in adding it. Or you can simply use the other
constructs that don’t require it.

See Section 83.2.15 [Further Resources], page 1365 for how to find all these names and
numeric codes.

83.2.5.1 Earlier releases caveats

On EBCDIC platforms, prior to v5.22, using \N{U+...} doesn’t work properly.

Prior to v5.16, using \N{...} with a character name (as opposed to a U+... code point)
required a use charnames :full.

Prior to v5.14, there were some bugs in \N{...} with a character name (as opposed to
a U+... code point).

charnames::string_vianame() was introduced in v5.14. Prior to that,
charnames::vianame() should work, but only if the argument is of the form "U+...".
Your best bet there for runtime Unicode by character name is probably:

use charnames ();

my $hebrew_alef_from_name

= pack("U", charnames::vianame("HEBREW LETTER ALEF"));

83.2.6 Handling Unicode

Handling Unicode is for the most part transparent: just use the strings as usual. Functions
like index(), length(), and substr() will work on the Unicode characters; regular expres-
sions will work on the Unicode characters (see Section 81.1 [perlunicode NAME], page 1317
and Section 68.1 [perlretut NAME], page 1131).

Note that Perl considers grapheme clusters to be separate characters, so for example

print length("\N{LATIN CAPITAL LETTER A}\N{COMBINING ACUTE ACCENT}"),

"\n";

will print 2, not 1. The only exception is that regular expressions have \X for matching
an extended grapheme cluster. (Thus \X in a regular expression would match the entire
sequence of both the example characters.)

Life is not quite so transparent, however, when working with legacy encodings, I/O, and
certain special cases:

83.2.7 Legacy Encodings

When you combine legacy data and Unicode, the legacy data needs to be upgraded to
Unicode. Normally the legacy data is assumed to be ISO 8859-1 (or EBCDIC, if applicable).

The Encode module knows about many encodings and has interfaces for doing conver-
sions between those encodings:

use Encode ’decode’;

$data = decode("iso-8859-3", $data); # convert from legacy to utf-8

83.2.8 Unicode I/O

Normally, writing out Unicode data

print FH $some_string_with_unicode, "\n";

produces raw bytes that Perl happens to use to internally encode the Unicode string.
Perl’s internal encoding depends on the system as well as what characters happen to be in
the string at the time. If any of the characters are at code points 0x100 or above, you will get
a warning. To ensure that the output is explicitly rendered in the encoding you desire–and
to avoid the warning–open the stream with the desired encoding. Some examples:

open FH, ">:utf8", "file";

open FH, ">:encoding(ucs2)", "file";

open FH, ">:encoding(UTF-8)", "file";

open FH, ">:encoding(shift_jis)", "file";

and on already open streams, use binmode():

binmode(STDOUT, ":utf8");

binmode(STDOUT, ":encoding(ucs2)");

binmode(STDOUT, ":encoding(UTF-8)");

binmode(STDOUT, ":encoding(shift_jis)");

The matching of encoding names is loose: case does not matter, and many encodings
have several aliases. Note that the :utf8 layer must always be specified exactly like that;

it is not subject to the loose matching of encoding names. Also note that currently :utf8

is unsafe for input, because it accepts the data without validating that it is indeed valid
UTF-8; you should instead use :encoding(utf-8) (with or without a hyphen).

See PerlIO for the :utf8 layer, PerlIO-encoding and Encode-PerlIO for the
:encoding() layer, and Encode-Supported for many encodings supported by the Encode

module.

Reading in a file that you know happens to be encoded in one of the Unicode or legacy
encodings does not magically turn the data into Unicode in Perl’s eyes. To do that, specify
the appropriate layer when opening files

open(my $fh,’<:encoding(utf8)’, ’anything’);

my $line_of_unicode = <$fh>;

open(my $fh,’<:encoding(Big5)’, ’anything’);

my $line_of_unicode = <$fh>;

The I/O layers can also be specified more flexibly with the open pragma. See open, or
look at the following example.

use open ’:encoding(utf8)’; # input/output default encoding will be

UTF-8

open X, ">file";

print X chr(0x100), "\n";

close X;

open Y, "<file";

printf "%#x\n", ord(<Y>); # this should print 0x100

close Y;

With the open pragma you can use the :locale layer

BEGIN { $ENV{LC_ALL} = $ENV{LANG} = ’ru_RU.KOI8-R’ }

the :locale will probe the locale environment variables like

LC_ALL

use open OUT => ’:locale’; # russki parusski

open(O, ">koi8");

print O chr(0x430); # Unicode CYRILLIC SMALL LETTER A = KOI8-R 0xc1

close O;

open(I, "<koi8");

printf "%#x\n", ord(<I>), "\n"; # this should print 0xc1

close I;

These methods install a transparent filter on the I/O stream that converts data from
the specified encoding when it is read in from the stream. The result is always Unicode.

The open pragma affects all the open() calls after the pragma by setting default layers.
If you want to affect only certain streams, use explicit layers directly in the open() call.

You can switch encodings on an already opened stream by using binmode(); see 〈unde-
fined〉 [perlfunc binmode], page 〈undefined〉.

The :locale does not currently work with open() and binmode(), only with the open

pragma. The :utf8 and :encoding(...) methods do work with all of open(), binmode(),
and the open pragma.

Similarly, you may use these I/O layers on output streams to automatically convert
Unicode to the specified encoding when it is written to the stream. For example, the
following snippet copies the contents of the file "text.jis" (encoded as ISO-2022-JP, aka
JIS) to the file "text.utf8", encoded as UTF-8:

open(my $nihongo, ’<:encoding(iso-2022-jp)’, ’text.jis’);

open(my $unicode, ’>:utf8’, ’text.utf8’);

while (<$nihongo>) { print $unicode $_ }

The naming of encodings, both by the open() and by the open pragma allows for flexible
names: koi8-r and KOI8R will both be understood.

Common encodings recognized by ISO, MIME, IANA, and various other standardisation
organisations are recognised; for a more detailed list see Encode-Supported.

read() reads characters and returns the number of characters. seek() and tell()

operate on byte counts, as do sysread() and sysseek().

Notice that because of the default behaviour of not doing any conversion upon input if
there is no default layer, it is easy to mistakenly write code that keeps on expanding a file
by repeatedly encoding the data:

BAD CODE WARNING

open F, "file";

local $/; ## read in the whole file of 8-bit characters

$t = <F>;

close F;

open F, ">:encoding(utf8)", "file";

print F $t; ## convert to UTF-8 on output

close F;

If you run this code twice, the contents of the file will be twice UTF-8 encoded. A use

open ’:encoding(utf8)’ would have avoided the bug, or explicitly opening also the file
for input as UTF-8.

NOTE: the :utf8 and :encoding features work only if your Perl has been built with
PerlIO, which is the default on most systems.

83.2.9 Displaying Unicode As Text

Sometimes you might want to display Perl scalars containing Unicode as simple ASCII (or
EBCDIC) text. The following subroutine converts its argument so that Unicode characters
with code points greater than 255 are displayed as \x{...}, control characters (like \n) are
displayed as \x.., and the rest of the characters as themselves:

sub nice_string {

join("",

map { $_ > 255 # if wide character...

? sprintf("\\x{%04X}", $_) # \x{...}

: chr($_) =~ /[[:cntrl:]]/ # else if control character...

? sprintf("\\x%02X", $_) # \x..

: quotemeta(chr($_)) # else quoted or as themselves

} unpack("W*", $_[0])); # unpack Unicode characters

}

For example,

nice_string("foo\x{100}bar\n")

returns the string

’foo\x{0100}bar\x0A’

which is ready to be printed.

(\\x{} is used here instead of \\N{}, since it’s most likely that you want to see what
the native values are.)

83.2.10 Special Cases

• Bit Complement Operator ~ And vec()

The bit complement operator ~ may produce surprising results if used on strings con-
taining characters with ordinal values above 255. In such a case, the results are consis-
tent with the internal encoding of the characters, but not with much else. So don’t do
that. Similarly for vec(): you will be operating on the internally-encoded bit patterns
of the Unicode characters, not on the code point values, which is very probably not
what you want.

• Peeking At Perl’s Internal Encoding

Normal users of Perl should never care how Perl encodes any particular Unicode string
(because the normal ways to get at the contents of a string with Unicode–via input
and output–should always be via explicitly-defined I/O layers). But if you must, there
are two ways of looking behind the scenes.

One way of peeking inside the internal encoding of Unicode characters is to use
unpack("C*", ... to get the bytes of whatever the string encoding happens to be, or
unpack("U0..", ...) to get the bytes of the UTF-8 encoding:

this prints c4 80 for the UTF-8 bytes 0xc4 0x80

print join(" ", unpack("U0(H2)*", pack("U", 0x100))), "\n";

Yet another way would be to use the Devel::Peek module:

perl -MDevel::Peek -e ’Dump(chr(0x100))’

That shows the UTF8 flag in FLAGS and both the UTF-8 bytes and Unicode characters
in PV. See also later in this document the discussion about the utf8::is_utf8()

function.

83.2.11 Advanced Topics

• String Equivalence

The question of string equivalence turns somewhat complicated in Unicode: what do
you mean by "equal"?

(Is LATIN CAPITAL LETTER A WITH ACUTE equal to LATIN CAPITAL LETTER A?)

The short answer is that by default Perl compares equivalence (eq, ne) based only on
code points of the characters. In the above case, the answer is no (because 0x00C1 !=
0x0041). But sometimes, any CAPITAL LETTER A’s should be considered equal, or
even A’s of any case.

The long answer is that you need to consider character normalization and casing issues:
see Unicode-Normalize, Unicode Technical Report #15, Unicode Normalization Forms

http://www.unicode.org/unicode/reports/tr15

(http://www.unicode.org/unicode/reports/tr15) and sections on case mapping in
the Unicode Standard (http://www.unicode.org).

As of Perl 5.8.0, the "Full" case-folding of Case Mappings/SpecialCasing is imple-
mented, but bugs remain in qr//i with them, mostly fixed by 5.14, and essentially
entirely by 5.18.

• String Collation

People like to see their strings nicely sorted–or as Unicode parlance goes, collated. But
again, what do you mean by collate?

(Does LATIN CAPITAL LETTER A WITH ACUTE come before or after LATIN CAPITAL

LETTER A WITH GRAVE?)

The short answer is that by default, Perl compares strings (lt, le, cmp, ge, gt) based
only on the code points of the characters. In the above case, the answer is "after",
since 0x00C1 > 0x00C0.

The long answer is that "it depends", and a good answer cannot be given without
knowing (at the very least) the language context. See Unicode-Collate, and Unicode
Collation Algorithm http://www.unicode.org/unicode/reports/tr10/

83.2.12 Miscellaneous

• Character Ranges and Classes

Character ranges in regular expression bracketed character classes (e.g., /[a-z]/) and
in the tr/// (also known as y///) operator are not magically Unicode-aware. What
this means is that [A-Za-z] will not magically start to mean "all alphabetic letters"
(not that it does mean that even for 8-bit characters; for those, if you are using locales
(Section 38.1 [perllocale NAME], page 701), use /[[:alpha:]]/; and if not, use the
8-bit-aware property \p{alpha}).

All the properties that begin with \p (and its inverse \P) are actually character classes
that are Unicode-aware. There are dozens of them, see perluniprops.

Starting in v5.22, you can use Unicode code points as the end points of regular expres-
sion pattern character ranges, and the range will include all Unicode code points that
lie between those end points, inclusive.

qr/ [\N{U+03]-\N{U+20}] /x

includes the code points \N{U+03}, \N{U+04}, ..., \N{U+20}.

(It is planned to extend this behavior to ranges in tr/// in Perl v5.24.)

• String-To-Number Conversions

Unicode does define several other decimal–and numeric–characters besides the familiar
0 to 9, such as the Arabic and Indic digits. Perl does not support string-to-number
conversion for digits other than ASCII 0 to 9 (and ASCII a to f for hexadecimal). To
get safe conversions from any Unicode string, use Section “num()” in Unicode-UCD.

83.2.13 Questions With Answers

• Will My Old Scripts Break?

Very probably not. Unless you are generating Unicode characters somehow, old be-
haviour should be preserved. About the only behaviour that has changed and which

http://www.unicode.org/unicode/reports/tr15
http://www.unicode.org/unicode/reports/tr15
http://www.unicode.org
http://www.unicode.org/unicode/reports/tr10/

could start generating Unicode is the old behaviour of chr() where supplying an ar-
gument more than 255 produced a character modulo 255. chr(300), for example, was
equal to chr(45) or "-" (in ASCII), now it is LATIN CAPITAL LETTER I WITH
BREVE.

• How Do I Make My Scripts Work With Unicode?

Very little work should be needed since nothing changes until you generate Unicode
data. The most important thing is getting input as Unicode; for that, see the earlier
I/O discussion. To get full seamless Unicode support, add use feature ’unicode_

strings’ (or use 5.012 or higher) to your script.

• How Do I Know Whether My String Is In Unicode?

You shouldn’t have to care. But you may if your Perl is before 5.14.0 or you haven’t
specified use feature ’unicode_strings’ or use 5.012 (or higher) because other-
wise the rules for the code points in the range 128 to 255 are different depending on
whether the string they are contained within is in Unicode or not. (See Section 81.2.16
[perlunicode When Unicode Does Not Happen], page 1340.)

To determine if a string is in Unicode, use:

print utf8::is_utf8($string) ? 1 : 0, "\n";

But note that this doesn’t mean that any of the characters in the string are necessary
UTF-8 encoded, or that any of the characters have code points greater than 0xFF
(255) or even 0x80 (128), or that the string has any characters at all. All the is_

utf8() does is to return the value of the internal "utf8ness" flag attached to the
$string. If the flag is off, the bytes in the scalar are interpreted as a single byte
encoding. If the flag is on, the bytes in the scalar are interpreted as the (variable-length,
potentially multi-byte) UTF-8 encoded code points of the characters. Bytes added to
a UTF-8 encoded string are automatically upgraded to UTF-8. If mixed non-UTF-8
and UTF-8 scalars are merged (double-quoted interpolation, explicit concatenation, or
printf/sprintf parameter substitution), the result will be UTF-8 encoded as if copies of
the byte strings were upgraded to UTF-8: for example,

$a = "ab\x80c";

$b = "\x{100}";

print "$a = $b\n";

the output string will be UTF-8-encoded ab\x80c = \x{100}\n, but $a will stay byte-
encoded.

Sometimes you might really need to know the byte length of a string instead of the
character length. For that use either the Encode::encode_utf8() function or the
bytes pragma and the length() function:

my $unicode = chr(0x100);

print length($unicode), "\n"; # will print 1

require Encode;

print length(Encode::encode_utf8($unicode)),"\n"; # will print 2

use bytes;

print length($unicode), "\n"; # will also print 2

(the 0xC4 0x80 of the UTF-8)

no bytes;

• How Do I Find Out What Encoding a File Has?

You might try Encode-Guess, but it has a number of limitations.

• How Do I Detect Data That’s Not Valid In a Particular Encoding?

Use the Encode package to try converting it. For example,

use Encode ’decode_utf8’;

if (eval { decode_utf8($string, Encode::FB_CROAK); 1 }) {

$string is valid utf8

} else {

$string is not valid utf8

}

Or use unpack to try decoding it:

use warnings;

@chars = unpack("C0U*", $string_of_bytes_that_I_think_is_utf8);

If invalid, a Malformed UTF-8 character warning is produced. The "C0" means "pro-
cess the string character per character". Without that, the unpack("U*", ...) would
work in U0 mode (the default if the format string starts with U) and it would return the
bytes making up the UTF-8 encoding of the target string, something that will always
work.

• How Do I Convert Binary Data Into a Particular Encoding, Or Vice Versa?

This probably isn’t as useful as you might think. Normally, you shouldn’t need to.

In one sense, what you are asking doesn’t make much sense: encodings are for charac-
ters, and binary data are not "characters", so converting "data" into some encoding
isn’t meaningful unless you know in what character set and encoding the binary data
is in, in which case it’s not just binary data, now is it?

If you have a raw sequence of bytes that you know should be interpreted via a particular
encoding, you can use Encode:

use Encode ’from_to’;

from_to($data, "iso-8859-1", "utf-8"); # from latin-1 to utf-8

The call to from_to() changes the bytes in $data, but nothing material about the
nature of the string has changed as far as Perl is concerned. Both before and after the
call, the string $data contains just a bunch of 8-bit bytes. As far as Perl is concerned,
the encoding of the string remains as "system-native 8-bit bytes".

You might relate this to a fictional ’Translate’ module:

use Translate;

my $phrase = "Yes";

Translate::from_to($phrase, ’english’, ’deutsch’);

phrase now contains "Ja"

The contents of the string changes, but not the nature of the string. Perl doesn’t
know any more after the call than before that the contents of the string indicates the
affirmative.

Back to converting data. If you have (or want) data in your system’s native 8-bit
encoding (e.g. Latin-1, EBCDIC, etc.), you can use pack/unpack to convert to/from
Unicode.

$native_string = pack("W*", unpack("U*", $Unicode_string));

$Unicode_string = pack("U*", unpack("W*", $native_string));

If you have a sequence of bytes you know is valid UTF-8, but Perl doesn’t know it yet,
you can make Perl a believer, too:

use Encode ’decode_utf8’;

$Unicode = decode_utf8($bytes);

or:

$Unicode = pack("U0a*", $bytes);

You can find the bytes that make up a UTF-8 sequence with

@bytes = unpack("C*", $Unicode_string)

and you can create well-formed Unicode with

$Unicode_string = pack("U*", 0xff, ...)

• How Do I Display Unicode? How Do I Input Unicode?

See http://www.alanwood.net/unicode/ and http://www.cl.cam.ac.uk/~mgk25/

unicode.html

• How Does Unicode Work With Traditional Locales?

If your locale is a UTF-8 locale, starting in Perl v5.20, Perl works well for all categories
except LC_COLLATE dealing with sorting and the cmp operator.

For other locales, starting in Perl 5.16, you can specify

use locale ’:not_characters’;

to get Perl to work well with them. The catch is that you have to translate from
the locale character set to/from Unicode yourself. See Section 83.2.8 [Unicode I/O],
page 1357 above for how to

use open ’:locale’;

to accomplish this, but full details are in Section 38.10 [perllocale Unicode and UTF-8],
page 721, including gotchas that happen if you don’t specify :not_characters.

83.2.14 Hexadecimal Notation

The Unicode standard prefers using hexadecimal notation because that more clearly shows
the division of Unicode into blocks of 256 characters. Hexadecimal is also simply shorter
than decimal. You can use decimal notation, too, but learning to use hexadecimal just
makes life easier with the Unicode standard. The U+HHHH notation uses hexadecimal, for
example.

The 0x prefix means a hexadecimal number, the digits are 0-9 and a-f (or A-F, case
doesn’t matter). Each hexadecimal digit represents four bits, or half a byte. print 0x...,

"\n" will show a hexadecimal number in decimal, and printf "%x\n", $decimal will show
a decimal number in hexadecimal. If you have just the "hex digits" of a hexadecimal
number, you can use the hex() function.

print 0x0009, "\n"; # 9

print 0x000a, "\n"; # 10

print 0x000f, "\n"; # 15

print 0x0010, "\n"; # 16

print 0x0011, "\n"; # 17

http://www.alanwood.net/unicode/
http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://www.cl.cam.ac.uk/~mgk25/unicode.html

print 0x0100, "\n"; # 256

print 0x0041, "\n"; # 65

printf "%x\n", 65; # 41

printf "%#x\n", 65; # 0x41

print hex("41"), "\n"; # 65

83.2.15 Further Resources

• Unicode Consortium

http://www.unicode.org/

• Unicode FAQ

http://www.unicode.org/unicode/faq/

• Unicode Glossary

http://www.unicode.org/glossary/

• Unicode Recommended Reading List

The Unicode Consortium has a list of articles and books, some of which give a much
more in depth treatment of Unicode: http://unicode.org/resources/readinglist.
html

• Unicode Useful Resources

http://www.unicode.org/unicode/onlinedat/resources.html

• Unicode and Multilingual Support in HTML, Fonts, Web Browsers and Other Appli-
cations

http://www.alanwood.net/unicode/

• UTF-8 and Unicode FAQ for Unix/Linux

http://www.cl.cam.ac.uk/~mgk25/unicode.html

• Legacy Character Sets

http://www.czyborra.com/ http://www.eki.ee/letter/

• You can explore various information from the Unicode data files using the
Unicode::UCD module.

83.3 UNICODE IN OLDER PERLS

If you cannot upgrade your Perl to 5.8.0 or later, you can still do some Unicode processing
by using the modules Unicode::String, Unicode::Map8, and Unicode::Map, available
from CPAN. If you have the GNU recode installed, you can also use the Perl front-end
Convert::Recode for character conversions.

The following are fast conversions from ISO 8859-1 (Latin-1) bytes to UTF-8 bytes and
back, the code works even with older Perl 5 versions.

ISO 8859-1 to UTF-8

s/([\x80-\xFF])/chr(0xC0|ord($1)>>6).chr(0x80|ord($1)&0x3F)/eg;

http://www.unicode.org/
http://www.unicode.org/unicode/faq/
http://www.unicode.org/glossary/
http://unicode.org/resources/readinglist.html
http://unicode.org/resources/readinglist.html
http://www.unicode.org/unicode/onlinedat/resources.html
http://www.alanwood.net/unicode/
http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://www.czyborra.com/
http://www.eki.ee/letter/

UTF-8 to ISO 8859-1

s/([\xC2\xC3])([\x80-\xBF])/chr(ord($1)<<6&0xC0|ord($2)&0x3F)/eg;

83.4 SEE ALSO

Section 84.1 [perlunitut NAME], page 1367, Section 81.1 [perlunicode NAME], page 1317,
Encode, open, utf8, bytes, Section 68.1 [perlretut NAME], page 1131, Section 69.1 [perlrun
NAME], page 1176, Unicode-Collate, Unicode-Normalize, Unicode-UCD

83.5 ACKNOWLEDGMENTS

Thanks to the kind readers of the perl5-porters@perl.org, perl-unicode@perl.org, linux-
utf8@nl.linux.org, and unicore@unicode.org mailing lists for their valuable feedback.

83.6 AUTHOR, COPYRIGHT, AND LICENSE

Copyright 2001-2011 Jarkko Hietaniemi <jhi@iki.fi>. Now maintained by Perl 5 Porters.

This document may be distributed under the same terms as Perl itself.

84 perlunitut

84.1 NAME

perlunitut - Perl Unicode Tutorial

84.2 DESCRIPTION

The days of just flinging strings around are over. It’s well established that modern programs
need to be capable of communicating funny accented letters, and things like euro symbols.
This means that programmers need new habits. It’s easy to program Unicode capable
software, but it does require discipline to do it right.

There’s a lot to know about character sets, and text encodings. It’s probably best to
spend a full day learning all this, but the basics can be learned in minutes.

These are not the very basics, though. It is assumed that you already know the differ-
ence between bytes and characters, and realise (and accept!) that there are many differ-
ent character sets and encodings, and that your program has to be explicit about them.
Recommended reading is "The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets (No Excuses!)" by Joel Spolsky,
at http://joelonsoftware.com/articles/Unicode.html.

This tutorial speaks in rather absolute terms, and provides only a limited view of the
wealth of character string related features that Perl has to offer. For most projects, this
information will probably suffice.

84.2.1 Definitions

It’s important to set a few things straight first. This is the most important part of this
tutorial. This view may conflict with other information that you may have found on the
web, but that’s mostly because many sources are wrong.

You may have to re-read this entire section a few times...

84.2.1.1 Unicode

Unicode is a character set with room for lots of characters. The ordinal value of a character
is called a code point. (But in practice, the distinction between code point and character
is blurred, so the terms often are used interchangeably.)

There are many, many code points, but computers work with bytes, and a byte has room
for only 256 values. Unicode has many more characters than that, so you need a method
to make these accessible.

Unicode is encoded using several competing encodings, of which UTF-8 is the most used.
In a Unicode encoding, multiple subsequent bytes can be used to store a single code point,
or simply: character.

84.2.1.2 UTF-8

UTF-8 is a Unicode encoding. Many people think that Unicode and UTF-8 are the same
thing, but they’re not. There are more Unicode encodings, but much of the world has
standardized on UTF-8.

http://joelonsoftware.com/articles/Unicode.html

UTF-8 treats the first 128 codepoints, 0..127, the same as ASCII. They take only one
byte per character. All other characters are encoded as two to four bytes using a complex
scheme. Fortunately, Perl handles this for us, so we don’t have to worry about this.

84.2.1.3 Text strings (character strings)

Text strings, or character strings are made of characters. Bytes are irrelevant here, and so
are encodings. Each character is just that: the character.

On a text string, you would do things like:

$text =~ s/foo/bar/;

if ($string =~ /^\d+$/) { ... }

$text = ucfirst $text;

my $character_count = length $text;

The value of a character (ord, chr) is the corresponding Unicode code point.

84.2.1.4 Binary strings (byte strings)

Binary strings, or byte strings are made of bytes. Here, you don’t have characters, just
bytes. All communication with the outside world (anything outside of your current Perl
process) is done in binary.

On a binary string, you would do things like:

my (@length_content) = unpack "(V/a)*", $binary;

$binary =~ s/\x00\x0F/\xFF\xF0/; # for the brave :)

print {$fh} $binary;

my $byte_count = length $binary;

84.2.1.5 Encoding

Encoding (as a verb) is the conversion from text to binary. To encode, you have to supply
the target encoding, for example iso-8859-1 or UTF-8. Some encodings, like the iso-8859
("latin") range, do not support the full Unicode standard; characters that can’t be repre-
sented are lost in the conversion.

84.2.1.6 Decoding

Decoding is the conversion from binary to text. To decode, you have to know what encoding
was used during the encoding phase. And most of all, it must be something decodable. It
doesn’t make much sense to decode a PNG image into a text string.

84.2.1.7 Internal format

Perl has an internal format, an encoding that it uses to encode text strings so it can store
them in memory. All text strings are in this internal format. In fact, text strings are never
in any other format!

You shouldn’t worry about what this format is, because conversion is automatically done
when you decode or encode.

84.2.2 Your new toolkit

Add to your standard heading the following line:

use Encode qw(encode decode);

Or, if you’re lazy, just:

use Encode;

84.2.3 I/O flow (the actual 5 minute tutorial)

The typical input/output flow of a program is:

1. Receive and decode

2. Process

3. Encode and output

If your input is binary, and is supposed to remain binary, you shouldn’t decode it to a
text string, of course. But in all other cases, you should decode it.

Decoding can’t happen reliably if you don’t know how the data was encoded. If you get
to choose, it’s a good idea to standardize on UTF-8.

my $foo = decode(’UTF-8’, get ’http://example.com/’);

my $bar = decode(’ISO-8859-1’, readline STDIN);

my $xyzzy = decode(’Windows-1251’, $cgi->param(’foo’));

Processing happens as you knew before. The only difference is that you’re now using
characters instead of bytes. That’s very useful if you use things like substr, or length.

It’s important to realize that there are no bytes in a text string. Of course, Perl has its
internal encoding to store the string in memory, but ignore that. If you have to do anything
with the number of bytes, it’s probably best to move that part to step 3, just after you’ve
encoded the string. Then you know exactly how many bytes it will be in the destination
string.

The syntax for encoding text strings to binary strings is as simple as decoding:

$body = encode(’UTF-8’, $body);

If you needed to know the length of the string in bytes, now’s the perfect time for that.
Because $body is now a byte string, length will report the number of bytes, instead of the
number of characters. The number of characters is no longer known, because characters
only exist in text strings.

my $byte_count = length $body;

And if the protocol you’re using supports a way of letting the recipient know which
character encoding you used, please help the receiving end by using that feature! For
example, E-mail and HTTP support MIME headers, so you can use the Content-Type

header. They can also have Content-Length to indicate the number of bytes, which is
always a good idea to supply if the number is known.

"Content-Type: text/plain; charset=UTF-8",

"Content-Length: $byte_count"

84.3 SUMMARY

Decode everything you receive, encode everything you send out. (If it’s text data.)

84.4 Q and A (or FAQ)

After reading this document, you ought to read Section 82.1 [perlunifaq NAME], page 1346
too, then Section 83.1 [perluniintro NAME], page 1352.

84.5 ACKNOWLEDGEMENTS

Thanks to Johan Vromans from Squirrel Consultancy. His UTF-8 rants during the Ams-
terdam Perl Mongers meetings got me interested and determined to find out how to use
character encodings in Perl in ways that don’t break easily.

Thanks to Gerard Goossen from TTY. His presentation "UTF-8 in the wild" (Dutch
Perl Workshop 2006) inspired me to publish my thoughts and write this tutorial.

Thanks to the people who asked about this kind of stuff in several Perl IRC channels,
and have constantly reminded me that a simpler explanation was needed.

Thanks to the people who reviewed this document for me, before it went public. They
are: Benjamin Smith, Jan-Pieter Cornet, Johan Vromans, Lukas Mai, Nathan Gray.

84.6 AUTHOR

Juerd Waalboer <#####@juerd.nl>

84.7 SEE ALSO

Section 82.1 [perlunifaq NAME], page 1346, Section 81.1 [perlunicode NAME], page 1317,
Section 83.1 [perluniintro NAME], page 1352, Encode

85 perlutil

85.1 NAME

perlutil - utilities packaged with the Perl distribution

85.2 DESCRIPTION

Along with the Perl interpreter itself, the Perl distribution installs a range of utilities on
your system. There are also several utilities which are used by the Perl distribution itself as
part of the install process. This document exists to list all of these utilities, explain what
they are for and provide pointers to each module’s documentation, if appropriate.

85.3 LIST OF UTILITIES

85.3.1 Documentation

perldoc

The main interface to Perl’s documentation is perldoc, although if you’re read-
ing this, it’s more than likely that you’ve already found it. perldoc will extract
and format the documentation from any file in the current directory, any Perl
module installed on the system, or any of the standard documentation pages,
such as this one. Use perldoc <name> to get information on any of the utilities
described in this document.

pod2man and pod2text

If it’s run from a terminal, perldoc will usually call pod2man to translate POD
(Plain Old Documentation - see Section 52.1 [perlpod NAME], page 900 for
an explanation) into a manpage, and then run man to display it; if man isn’t
available, pod2text will be used instead and the output piped through your
favourite pager.

pod2html

As well as these two, there is another converter: pod2html will produce HTML
pages from POD.

pod2usage

If you just want to know how to use the utilities described here, pod2usage will
just extract the "USAGE" section; some of the utilities will automatically call
pod2usage on themselves when you call them with -help.

podselect

pod2usage is a special case of podselect, a utility to extract named sec-
tions from documents written in POD. For instance, while utilities have "US-
AGE" sections, Perl modules usually have "SYNOPSIS" sections: podselect

-s "SYNOPSIS" ... will extract this section for a given file.

podchecker

If you’re writing your own documentation in POD, the podchecker utility will
look for errors in your markup.

splain

splain is an interface to Section 16.1 [perldiag NAME], page 137 - paste in
your error message to it, and it’ll explain it for you.

roffitall

The roffitall utility is not installed on your system but lives in the pod/

directory of your Perl source kit; it converts all the documentation from the
distribution to *roff format, and produces a typeset PostScript or text file of
the whole lot.

85.3.2 Converters

To help you convert legacy programs to more modern Perl, the pl2pm utility will help you
convert old-style Perl 4 libraries to new-style Perl5 modules.

85.3.3 Administration

libnetcfg

To display and change the libnet configuration run the libnetcfg command.

perlivp

The perlivp program is set up at Perl source code build time to test the Perl
version it was built under. It can be used after running make install (or your
platform’s equivalent procedure) to verify that perl and its libraries have been
installed correctly.

85.3.4 Development

There are a set of utilities which help you in developing Perl programs, and in particular,
extending Perl with C.

perlbug

perlbug is the recommended way to report bugs in the perl interpreter itself
or any of the standard library modules back to the developers; please read
through the documentation for perlbug thoroughly before using it to submit a
bug report.

perlbug

This program provides an easy way to send a thank-you message back to the
authors and maintainers of perl. It’s just perlbug installed under another
name.

h2ph

Back before Perl had the XS system for connecting with C libraries, program-
mers used to get library constants by reading through the C header files. You
may still see require ’syscall.ph’ or similar around - the .ph file should be
created by running h2ph on the corresponding .h file. See the h2ph documen-
tation for more on how to convert a whole bunch of header files at once.

c2ph and pstruct

c2ph and pstruct, which are actually the same program but behave differently
depending on how they are called, provide another way of getting at C with

Perl - they’ll convert C structures and union declarations to Perl code. This is
deprecated in favour of h2xs these days.

h2xs

h2xs converts C header files into XS modules, and will try and write as much
glue between C libraries and Perl modules as it can. It’s also very useful for
creating skeletons of pure Perl modules.

enc2xs

enc2xs builds a Perl extension for use by Encode from either Unicode Character
Mapping files (.ucm) or Tcl Encoding Files (.enc). Besides being used internally
during the build process of the Encode module, you can use enc2xs to add your
own encoding to perl. No knowledge of XS is necessary.

xsubpp

xsubpp is a compiler to convert Perl XS code into C code. It is typically run
by the makefiles created by ExtUtils-MakeMaker.

xsubpp will compile XS code into C code by embedding the constructs necessary
to let C functions manipulate Perl values and creates the glue necessary to let
Perl access those functions.

prove

prove is a command-line interface to the test-running functionality of
Test::Harness. It’s an alternative to make test.

corelist

A command-line front-end to Module::CoreList, to query what modules were
shipped with given versions of perl.

85.3.5 General tools

A few general-purpose tools are shipped with perl, mostly because they came along modules
included in the perl distribution.

piconv

piconv is a Perl version of iconv, a character encoding converter widely available
for various Unixen today. This script was primarily a technology demonstrator
for Perl v5.8.0, but you can use piconv in the place of iconv for virtually any
case.

ptar

ptar is a tar-like program, written in pure Perl.

ptardiff

ptardiff is a small utility that produces a diff between an extracted archive
and an unextracted one. (Note that this utility requires the Text::Diffmodule
to function properly; this module isn’t distributed with perl, but is available
from the CPAN.)

ptargrep

ptargrep is a utility to apply pattern matching to the contents of files in a tar
archive.

shasum

This utility, that comes with the Digest::SHA module, is used to print or verify
SHA checksums.

zipdetails

zipdetails displays information about the internal record structure of the zip
file. It is not concerned with displaying any details of the compressed data
stored in the zip file.

85.3.6 Installation

These utilities help manage extra Perl modules that don’t come with the perl distribution.

cpan

cpan is a command-line interface to CPAN.pm. It allows you to install modules
or distributions from CPAN, or just get information about them, and a lot more.
It is similar to the command line mode of the CPAN module,

perl -MCPAN -e shell

instmodsh

A little interface to ExtUtils::Installed to examine installed modules, validate
your packlists and even create a tarball from an installed module.

85.4 SEE ALSO

perldoc, pod2man, Section 52.1 [perlpod NAME], page 900, pod2html, pod2usage,
podselect, podchecker, splain, Section 16.1 [perldiag NAME], page 137,
roffitall|roffitall, File-Find, pl2pm, perlbug, h2ph, c2ph, h2xs, enc2xs, xsubpp,
cpan, instmodsh, piconv, prove, corelist, ptar, ptardiff, shasum, zipdetails

86 perlvar

86.1 NAME

perlvar - Perl predefined variables

86.2 DESCRIPTION

86.2.1 The Syntax of Variable Names

Variable names in Perl can have several formats. Usually, they must begin with a letter
or underscore, in which case they can be arbitrarily long (up to an internal limit of 251
characters) and may contain letters, digits, underscores, or the special sequence :: or ’. In
this case, the part before the last :: or ’ is taken to be a package qualifier ; see Section 40.1
[perlmod NAME], page 732.

Perl variable names may also be a sequence of digits or a single punctuation or control
character (with the literal control character form deprecated). These names are all reserved
for special uses by Perl; for example, the all-digits names are used to hold data captured
by backreferences after a regular expression match. Perl has a special syntax for the single-
control-character names: It understands ^X (caret X) to mean the control-X character. For
example, the notation $^W (dollar-sign caret W) is the scalar variable whose name is the
single character control-W. This is better than typing a literal control-W into your program.

Since Perl v5.6.0, Perl variable names may be alphanumeric strings that begin with a
caret (or a control character, but this form is deprecated). These variables must be written
in the form ${^Foo}; the braces are not optional. ${^Foo} denotes the scalar variable whose
name is a control-F followed by two o’s. These variables are reserved for future special uses
by Perl, except for the ones that begin with ^_ (control-underscore or caret-underscore).
No control-character name that begins with ^_ will acquire a special meaning in any future
version of Perl; such names may therefore be used safely in programs. $^_ itself, however,
is reserved.

Perl identifiers that begin with digits, control characters, or punctuation characters are
exempt from the effects of the package declaration and are always forced to be in package
main; they are also exempt from strict ’vars’ errors. A few other names are also exempt
in these ways:

ENV STDIN

INC STDOUT

ARGV STDERR

ARGVOUT

SIG

In particular, the special ${^_XYZ} variables are always taken to be in package main,
regardless of any package declarations presently in scope.

86.3 SPECIAL VARIABLES

The following names have special meaning to Perl. Most punctuation names have reasonable
mnemonics, or analogs in the shells. Nevertheless, if you wish to use long variable names,
you need only say:

use English;

at the top of your program. This aliases all the short names to the long names in the
current package. Some even have medium names, generally borrowed from awk. For more
info, please see English.

Before you continue, note the sort order for variables. In general, we first list the variables
in case-insensitive, almost-lexigraphical order (ignoring the { or ^ preceding words, as in
${^UNICODE} or $^T), although $_ and @_ move up to the top of the pile. For variables
with the same identifier, we list it in order of scalar, array, hash, and bareword.

86.3.1 General Variables

$ARG

$

The default input and pattern-searching space. The following pairs are equiv-
alent:

while (<>) {...} # equivalent only in while!

while (defined($_ = <>)) {...}

/^Subject:/

$_ =~ /^Subject:/

tr/a-z/A-Z/

$_ =~ tr/a-z/A-Z/

chomp

chomp($_)

Here are the places where Perl will assume $_ even if you don’t use it:

• The following functions use $_ as a default argument:

abs, alarm, chomp, chop, chr, chroot, cos, defined, eval, evalbytes, exp, fc,
glob, hex, int, lc, lcfirst, length, log, lstat, mkdir, oct, ord, pos, print, printf,
quotemeta, readlink, readpipe, ref, require, reverse (in scalar context only),
rmdir, say, sin, split (for its second argument), sqrt, stat, study, uc, ucfirst,
unlink, unpack.

• All file tests (-f, -d) except for -t, which defaults to STDIN. See [perlfunc
-X], page 354

• The pattern matching operations m//, s/// and tr/// (aka y///) when
used without an =~ operator.

• The default iterator variable in a foreach loop if no other variable is
supplied.

• The implicit iterator variable in the grep() and map() functions.

• The implicit variable of given().

• The default place to put the next value or input record when a <FH>,
readline, readdir or each operation’s result is tested by itself as the sole
criterion of a while test. Outside a while test, this will not happen.

$_ is by default a global variable. However, as of perl v5.10.0, you can use
a lexical version of $_ by declaring it in a file or in a block with my. More-
over, declaring our $_ restores the global $_ in the current scope. Though this
seemed like a good idea at the time it was introduced, lexical $_ actually causes
more problems than it solves. If you call a function that expects to be passed
information via $_, it may or may not work, depending on how the function
is written, there not being any easy way to solve this. Just avoid lexical $_,
unless you are feeling particularly masochistic. For this reason lexical $_ is still
experimental and will produce a warning unless warnings have been disabled.
As with other experimental features, the behavior of lexical $_ is subject to
change without notice, including change into a fatal error.

Mnemonic: underline is understood in certain operations.

@ARG

@

Within a subroutine the array @_ contains the parameters passed to that sub-
routine. Inside a subroutine, @_ is the default array for the array operators
push, pop, shift, and unshift.

See Section 73.1 [perlsub NAME], page 1216.

$LIST SEPARATOR
$"

When an array or an array slice is interpolated into a double-quoted string or a
similar context such as /.../, its elements are separated by this value. Default
is a space. For example, this:

print "The array is: @array\n";

is equivalent to this:

print "The array is: " . join($", @array) . "\n";

Mnemonic: works in double-quoted context.

$PROCESS ID
$PID

$$

The process number of the Perl running this script. Though you can set this
variable, doing so is generally discouraged, although it can be invaluable for
some testing purposes. It will be reset automatically across fork() calls.

Note for Linux and Debian GNU/kFreeBSD users: Before Perl v5.16.0 perl
would emulate POSIX semantics on Linux systems using LinuxThreads, a par-
tial implementation of POSIX Threads that has since been superseded by the
Native POSIX Thread Library (NPTL).

LinuxThreads is now obsolete on Linux, and caching getpid() like this made
embedding perl unnecessarily complex (since you’d have to manually update
the value of $$), so now $$ and getppid() will always return the same values
as the underlying C library.

Debian GNU/kFreeBSD systems also used LinuxThreads up until and including
the 6.0 release, but after that moved to FreeBSD thread semantics, which are
POSIX-like.

To see if your system is affected by this discrepancy check if getconf GNU_

LIBPTHREAD_VERSION | grep -q NPTL returns a false value. NTPL threads pre-
serve the POSIX semantics.

Mnemonic: same as shells.

$PROGRAM NAME
$0

Contains the name of the program being executed.

On some (but not all) operating systems assigning to $0 modifies the argument
area that the ps program sees. On some platforms you may have to use special
ps options or a different ps to see the changes. Modifying the $0 is more
useful as a way of indicating the current program state than it is for hiding the
program you’re running.

Note that there are platform-specific limitations on the maximum length of $0.
In the most extreme case it may be limited to the space occupied by the original
$0.

In some platforms there may be arbitrary amount of padding, for example space
characters, after the modified name as shown by ps. In some platforms this
padding may extend all the way to the original length of the argument area, no
matter what you do (this is the case for example with Linux 2.2).

Note for BSD users: setting $0 does not completely remove "perl" from the
ps(1) output. For example, setting $0 to "foobar"may result in "perl: foobar

(perl)" (whether both the "perl: " prefix and the " (perl)" suffix are shown
depends on your exact BSD variant and version). This is an operating system
feature, Perl cannot help it.

In multithreaded scripts Perl coordinates the threads so that any thread may
modify its copy of the $0 and the change becomes visible to ps(1) (assuming
the operating system plays along). Note that the view of $0 the other threads
have will not change since they have their own copies of it.

If the program has been given to perl via the switches -e or -E, $0 will contain
the string "-e".

On Linux as of perl v5.14.0 the legacy process name will be set with prctl(2),
in addition to altering the POSIX name via argv[0] as perl has done since
version 4.000. Now system utilities that read the legacy process name such as
ps, top and killall will recognize the name you set when assigning to $0. The
string you supply will be cut off at 16 bytes, this is a limitation imposed by
Linux.

Mnemonic: same as sh and ksh.

$REAL GROUP ID
$GID

$(

The real gid of this process. If you are on a machine that supports membership
in multiple groups simultaneously, gives a space separated list of groups you
are in. The first number is the one returned by getgid(), and the subsequent
ones by getgroups(), one of which may be the same as the first number.

However, a value assigned to $(must be a single number used to set the real gid.
So the value given by $(should not be assigned back to $(without being forced
numeric, such as by adding zero. Note that this is different to the effective gid
($)) which does take a list.

You can change both the real gid and the effective gid at the same time by
using POSIX::setgid(). Changes to $(require a check to $! to detect any
possible errors after an attempted change.

Mnemonic: parentheses are used to group things. The real gid is the group you
left, if you’re running setgid.

$EFFECTIVE GROUP ID
$EGID

$)

The effective gid of this process. If you are on a machine that supports member-
ship in multiple groups simultaneously, gives a space separated list of groups you
are in. The first number is the one returned by getegid(), and the subsequent
ones by getgroups(), one of which may be the same as the first number.

Similarly, a value assigned to $) must also be a space-separated list of numbers.
The first number sets the effective gid, and the rest (if any) are passed to
setgroups(). To get the effect of an empty list for setgroups(), just repeat
the new effective gid; that is, to force an effective gid of 5 and an effectively
empty setgroups() list, say $) = "5 5" .

You can change both the effective gid and the real gid at the same time by
using POSIX::setgid() (use only a single numeric argument). Changes to $)

require a check to $! to detect any possible errors after an attempted change.

$<, $>, $(and $) can be set only on machines that support the corresponding
set[re][ug]id() routine. $(and $) can be swapped only on machines supporting
setregid().

Mnemonic: parentheses are used to group things. The effective gid is the group
that’s right for you, if you’re running setgid.

$REAL USER ID
$UID

$<

The real uid of this process. You can change both the real uid and the effective
uid at the same time by using POSIX::setuid(). Since changes to $< require
a system call, check $! after a change attempt to detect any possible errors.

Mnemonic: it’s the uid you came from, if you’re running setuid.

$EFFECTIVE USER ID
$EUID

$> >>

The effective uid of this process. For example:

$< = $>; # set real to effective uid

($<,$>) = ($>,$<); # swap real and effective uids

You can change both the effective uid and the real uid at the same time by
using POSIX::setuid(). Changes to $> require a check to $! to detect any
possible errors after an attempted change.

$< and $> can be swapped only on machines supporting setreuid().

Mnemonic: it’s the uid you went to, if you’re running setuid.

$SUBSCRIPT SEPARATOR
$SUBSEP

$;

The subscript separator for multidimensional array emulation. If you refer to
a hash element as

$foo{$x,$y,$z}

it really means

$foo{join($;, $x, $y, $z)}

But don’t put

@foo{$x,$y,$z} # a slice--note the @

which means

($foo{$x},$foo{$y},$foo{$z})

Default is "\034", the same as SUBSEP in awk. If your keys contain binary
data there might not be any safe value for $;.

Consider using "real" multidimensional arrays as described in Section 39.1 [per-
llol NAME], page 725.

Mnemonic: comma (the syntactic subscript separator) is a semi-semicolon.

$a

$b

Special package variables when using sort(), see 〈undefined〉 [perlfunc sort],
page 〈undefined〉. Because of this specialness $a and $b don’t need to be de-
clared (using use vars, or our()) even when using the strict ’vars’ pragma.
Don’t lexicalize them with my $a or my $b if you want to be able to use them
in the sort() comparison block or function.

%ENV

The hash %ENV contains your current environment. Setting a value in ENV

changes the environment for any child processes you subsequently fork() off.

As of v5.18.0, both keys and values stored in %ENV are stringified.

my $foo = 1;

$ENV{’bar’} = \$foo;

if(ref $ENV{’bar’}) {

say "Pre 5.18.0 Behaviour";

} else {

say "Post 5.18.0 Behaviour";

}

Previously, only child processes received stringified values:

my $foo = 1;

$ENV{’bar’} = \$foo;

Always printed ’non ref’

system($^X, ’-e’,

q/print (ref $ENV{’bar’} ? ’ref’ : ’non ref’) /);

This happens because you can’t really share arbitrary data structures with
foreign processes.

$OLD PERL VERSION
$]

The revision, version, and subversion of the Perl interpreter, represented as a
decimal of the form 5.XXXYYY, where XXX is the version / 1e3 and YYY is
the subversion / 1e6. For example, Perl v5.10.1 would be "5.010001".

This variable can be used to determine whether the Perl interpreter executing
a script is in the right range of versions:

warn "No PerlIO!\n" if $] lt ’5.008’;

When comparing $], string comparison operators are highly recommended.
The inherent limitations of binary floating point representation can sometimes
lead to incorrect comparisons for some numbers on some architectures.

See also the documentation of use VERSION and require VERSION for a conve-
nient way to fail if the running Perl interpreter is too old.

See [$^V], page 1385 for a representation of the Perl version as a version object,
which allows more flexible string comparisons.

The main advantage of $] over $^V is that it works the same on any version
of Perl. The disadvantages are that it can’t easily be compared to versions in
other formats (e.g. literal v-strings, "v1.2.3" or version objects) and numeric
comparisons can occasionally fail; it’s good for string literal version checks and
bad for comparing to a variable that hasn’t been sanity-checked.

Mnemonic: Is this version of perl in the right bracket?

$SYSTEM FD MAX
$^F

The maximum system file descriptor, ordinarily 2. System file descriptors are
passed to exec()ed processes, while higher file descriptors are not. Also, dur-
ing an open(), system file descriptors are preserved even if the open() fails
(ordinary file descriptors are closed before the open() is attempted). The close-
on-exec status of a file descriptor will be decided according to the value of $^F
when the corresponding file, pipe, or socket was opened, not the time of the
exec().

@F

The array @F contains the fields of each line read in when autosplit mode is
turned on. See Section 69.1 [perlrun NAME], page 1176 for the -a switch. This
array is package-specific, and must be declared or given a full package name if
not in package main when running under strict ’vars’.

@INC

The array @INC contains the list of places that the do EXPR, require, or use
constructs look for their library files. It initially consists of the arguments
to any -I command-line switches, followed by the default Perl library, probably
/usr/local/lib/perl, followed by ".", to represent the current directory. ("."
will not be appended if taint checks are enabled, either by -T or by -t.) If you
need to modify this at runtime, you should use the use lib pragma to get the
machine-dependent library properly loaded also:

use lib ’/mypath/libdir/’;

use SomeMod;

You can also insert hooks into the file inclusion system by putting Perl code
directly into @INC. Those hooks may be subroutine references, array references
or blessed objects. See [perlfunc require], page 437 for details.

%INC

The hash %INC contains entries for each filename included via the do, require,
or use operators. The key is the filename you specified (with module names
converted to pathnames), and the value is the location of the file found. The
require operator uses this hash to determine whether a particular file has
already been included.

If the file was loaded via a hook (e.g. a subroutine reference, see [perlfunc
require], page 437 for a description of these hooks), this hook is by default
inserted into %INC in place of a filename. Note, however, that the hook may
have set the %INC entry by itself to provide some more specific info.

$INPLACE EDIT
$^I

The current value of the inplace-edit extension. Use undef to disable inplace
editing.

Mnemonic: value of -i switch.

$^M

By default, running out of memory is an untrappable, fatal error. However, if
suitably built, Perl can use the contents of $^M as an emergency memory pool af-
ter die()ing. Suppose that your Perl were compiled with -DPERL_EMERGENCY_

SBRK and used Perl’s malloc. Then

$^M = ’a’ x (1 << 16);

would allocate a 64K buffer for use in an emergency. See the INSTALL file in
the Perl distribution for information on how to add custom C compilation flags
when compiling perl. To discourage casual use of this advanced feature, there
is no English long name for this variable.

This variable was added in Perl 5.004.

$OSNAME
$^O

The name of the operating system under which this copy of Perl was built,
as determined during the configuration process. For examples see Section 56.5
[perlport PLATFORMS], page 963.

The value is identical to $Config{’osname’}. See also Config and the -V
command-line switch documented in Section 69.1 [perlrun NAME], page 1176.

In Windows platforms, $^O is not very helpful: since it is always MSWin32,
it doesn’t tell the difference between 95/98/ME/NT/2000/XP/CE/.NET. Use
Win32::GetOSName() or Win32::GetOSVersion() (see Win32 and Section 56.1
[perlport NAME], page 951) to distinguish between the variants.

This variable was added in Perl 5.003.

%SIG

The hash %SIG contains signal handlers for signals. For example:

sub handler { # 1st argument is signal name

my($sig) = @_;

print "Caught a SIG$sig--shutting down\n";

close(LOG);

exit(0);

}

$SIG{’INT’} = \&handler;

$SIG{’QUIT’} = \&handler;

...

$SIG{’INT’} = ’DEFAULT’; # restore default action

$SIG{’QUIT’} = ’IGNORE’; # ignore SIGQUIT

Using a value of ’IGNORE’ usually has the effect of ignoring the signal, except
for the CHLD signal. See Section 36.1 [perlipc NAME], page 667 for more about
this special case.

Here are some other examples:

$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not

recommended)

$SIG{"PIPE"} = \&Plumber; # just fine; assume current

Plumber

$SIG{"PIPE"} = *Plumber; # somewhat esoteric

$SIG{"PIPE"} = Plumber(); # oops, what did Plumber()

return??

Be sure not to use a bareword as the name of a signal handler, lest you inad-
vertently call it.

If your system has the sigaction() function then signal handlers are installed
using it. This means you get reliable signal handling.

The default delivery policy of signals changed in Perl v5.8.0 from immedi-
ate (also known as "unsafe") to deferred, also known as "safe signals". See
Section 36.1 [perlipc NAME], page 667 for more information.

Certain internal hooks can be also set using the %SIG hash. The routine in-
dicated by $SIG{__WARN__} is called when a warning message is about to be
printed. The warning message is passed as the first argument. The presence
of a __WARN__ hook causes the ordinary printing of warnings to STDERR to be
suppressed. You can use this to save warnings in a variable, or turn warnings
into fatal errors, like this:

local $SIG{__WARN__} = sub { die $_[0] };

eval $proggie;

As the ’IGNORE’ hook is not supported by __WARN__, you can disable warnings
using the empty subroutine:

local $SIG{__WARN__} = sub {};

The routine indicated by $SIG{__DIE__} is called when a fatal exception is
about to be thrown. The error message is passed as the first argument. When
a __DIE__ hook routine returns, the exception processing continues as it would
have in the absence of the hook, unless the hook routine itself exits via a goto

&sub, a loop exit, or a die(). The __DIE__ handler is explicitly disabled during
the call, so that you can die from a __DIE__ handler. Similarly for __WARN__.

Due to an implementation glitch, the $SIG{__DIE__} hook is called even inside
an eval(). Do not use this to rewrite a pending exception in $@, or as a
bizarre substitute for overriding CORE::GLOBAL::die(). This strange action at
a distance may be fixed in a future release so that $SIG{__DIE__} is only called
if your program is about to exit, as was the original intent. Any other use is
deprecated.

__DIE__/__WARN__ handlers are very special in one respect: they may be called
to report (probable) errors found by the parser. In such a case the parser may
be in inconsistent state, so any attempt to evaluate Perl code from such a
handler will probably result in a segfault. This means that warnings or errors
that result from parsing Perl should be used with extreme caution, like this:

require Carp if defined $^S;

Carp::confess("Something wrong") if defined &Carp::confess;

die "Something wrong, but could not load Carp to give "

. "backtrace...\n\t"

. "To see backtrace try starting Perl with -MCarp switch";

Here the first line will load Carp unless it is the parser who called the handler.
The second line will print backtrace and die if Carp was available. The third
line will be executed only if Carp was not available.

Having to even think about the $^S variable in your exception handlers is simply
wrong. $SIG{__DIE__} as currently implemented invites grievous and difficult
to track down errors. Avoid it and use an END{} or CORE::GLOBAL::die
override instead.

See 〈undefined〉 [perlfunc die], page 〈undefined〉, 〈undefined〉 [perlfunc warn],
page 〈undefined〉, [perlfunc eval], page 377, and warnings for additional infor-
mation.

$BASETIME
$^T

The time at which the program began running, in seconds since the epoch
(beginning of 1970). The values returned by the -M, -A, and -C filetests are
based on this value.

$PERL VERSION
$^V

The revision, version, and subversion of the Perl interpreter, represented as a
version object.

This variable first appeared in perl v5.6.0; earlier versions of perl will see an
undefined value. Before perl v5.10.0 $^V was represented as a v-string rather
than a version object.

$^V can be used to determine whether the Perl interpreter executing a script is
in the right range of versions. For example:

warn "Hashes not randomized!\n" if !$^V or $^V lt v5.8.1

While version objects overload stringification, to portably convert $^V into its
string representation, use sprintf()’s "%vd" conversion, which works for both
v-strings or version objects:

printf "version is v%vd\n", $^V; # Perl’s version

See the documentation of use VERSION and require VERSION for a convenient
way to fail if the running Perl interpreter is too old.

See also $] for a decimal representation of the Perl version.

The main advantage of $^V over $] is that, for Perl v5.10.0 or later, it overloads
operators, allowing easy comparison against other version representations (e.g.
decimal, literal v-string, "v1.2.3", or objects). The disadvantage is that prior to
v5.10.0, it was only a literal v-string, which can’t be easily printed or compared.

Mnemonic: use ^V for a version object.

${^WIN32 SLOPPY STAT}
If this variable is set to a true value, then stat() on Windows will not try to
open the file. This means that the link count cannot be determined and file
attributes may be out of date if additional hardlinks to the file exist. On the
other hand, not opening the file is considerably faster, especially for files on
network drives.

This variable could be set in the sitecustomize.pl file to configure the local
Perl installation to use "sloppy" stat() by default. See the documentation
for -f in Section 69.3.3 [perlrun], page 1179 for more information about site
customization.

This variable was added in Perl v5.10.0.

$EXECUTABLE NAME
$^X

The name used to execute the current copy of Perl, from C’s argv[0] or (where
supported) /proc/self/exe.

Depending on the host operating system, the value of $^X may be a relative
or absolute pathname of the perl program file, or may be the string used to
invoke perl but not the pathname of the perl program file. Also, most operat-
ing systems permit invoking programs that are not in the PATH environment
variable, so there is no guarantee that the value of $^X is in PATH. For VMS,
the value may or may not include a version number.

You usually can use the value of $^X to re-invoke an independent copy of the
same perl that is currently running, e.g.,

@first_run = ‘$^X -le "print int rand 100 for 1..100"‘;

But recall that not all operating systems support forking or capturing of the
output of commands, so this complex statement may not be portable.

It is not safe to use the value of $^X as a path name of a file, as some operating
systems that have a mandatory suffix on executable files do not require use of
the suffix when invoking a command. To convert the value of $^X to a path
name, use the following statements:

Build up a set of file names (not command names).

use Config;

my $this_perl = $^X;

if ($^O ne ’VMS’) {

$this_perl .= $Config{_exe}

unless $this_perl =~ m/$Config{_exe}$/i;

}

Because many operating systems permit anyone with read access to the Perl
program file to make a copy of it, patch the copy, and then execute the copy,
the security-conscious Perl programmer should take care to invoke the installed
copy of perl, not the copy referenced by $^X. The following statements accom-
plish this goal, and produce a pathname that can be invoked as a command or
referenced as a file.

use Config;

my $secure_perl_path = $Config{perlpath};

if ($^O ne ’VMS’) {

$secure_perl_path .= $Config{_exe}

unless $secure_perl_path =~ m/$Config{_exe}$/i;

}

86.3.2 Variables related to regular expressions

Most of the special variables related to regular expressions are side effects. Perl sets these
variables when it has a successful match, so you should check the match result before using
them. For instance:

if(/P(A)TT(ER)N/) {

print "I found $1 and $2\n";

}

These variables are read-only and dynamically-scoped, unless we note otherwise.

The dynamic nature of the regular expression variables means that their value is limited
to the block that they are in, as demonstrated by this bit of code:

my $outer = ’Wallace and Grommit’;

my $inner = ’Mutt and Jeff’;

my $pattern = qr/(\S+) and (\S+)/;

sub show_n { print "\$1 is $1; \$2 is $2\n" }

{

OUTER:

show_n() if $outer =~ m/$pattern/;

INNER: {

show_n() if $inner =~ m/$pattern/;

}

show_n();

}

The output shows that while in the OUTER block, the values of $1 and $2 are from the
match against $outer. Inside the INNER block, the values of $1 and $2 are from the match
against $inner, but only until the end of the block (i.e. the dynamic scope). After the
INNER block completes, the values of $1 and $2 return to the values for the match against
$outer even though we have not made another match:

$1 is Wallace; $2 is Grommit

$1 is Mutt; $2 is Jeff

$1 is Wallace; $2 is Grommit

86.3.2.1 Performance issues

Traditionally in Perl, any use of any of the three variables $‘, $& or $’ (or their use English

equivalents) anywhere in the code, caused all subsequent successful pattern matches to
make a copy of the matched string, in case the code might subsequently access one of those
variables. This imposed a considerable performance penalty across the whole program, so
generally the use of these variables has been discouraged.

In Perl 5.6.0 the @- and @+ dynamic arrays were introduced that supply the indices of
successful matches. So you could for example do this:

$str =~ /pattern/;

print $‘, $&, $’; # bad: perfomance hit

print # good: no perfomance hit

substr($str, 0, $-[0]),

substr($str, $-[0], $+[0]-$-[0]),

substr($str, $+[0]);

In Perl 5.10.0 the /p match operator flag and the ${^PREMATCH}, ${^MATCH}, and
${^POSTMATCH} variables were introduced, that allowed you to suffer the penalties only
on patterns marked with /p.

In Perl 5.18.0 onwards, perl started noting the presence of each of the three variables
separately, and only copied that part of the string required; so in

$‘; $&; "abcdefgh" =~ /d/

perl would only copy the "abcd" part of the string. That could make a big difference in
something like

$str = ’x’ x 1_000_000;

$&; # whoops

$str =~ /x/g # one char copied a million times, not a million chars

In Perl 5.20.0 a new copy-on-write system was enabled by default, which finally fixes all
performance issues with these three variables, and makes them safe to use anywhere.

The Devel::NYTProf and Devel::FindAmpersand modules can help you find uses of
these problematic match variables in your code.

$<digits> ($1, $2, ...)
Contains the subpattern from the corresponding set of capturing parentheses
from the last successful pattern match, not counting patterns matched in nested
blocks that have been exited already.

These variables are read-only and dynamically-scoped.

Mnemonic: like \digits.

$MATCH

$&

The string matched by the last successful pattern match (not counting any
matches hidden within a BLOCK or eval() enclosed by the current BLOCK).

See Section 86.3.2.1 [Performance issues], page 1387 above for the serious per-
formance implications of using this variable (even once) in your code.

This variable is read-only and dynamically-scoped.

Mnemonic: like & in some editors.

${^MATCH}
This is similar to $& ($MATCH) except that it does not incur the performance
penalty associated with that variable.

See Section 86.3.2.1 [Performance issues], page 1387 above.

In Perl v5.18 and earlier, it is only guaranteed to return a defined value when
the pattern was compiled or executed with the /p modifier. In Perl v5.20, the
/p modifier does nothing, so ${^MATCH} does the same thing as $MATCH.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$PREMATCH
$‘

The string preceding whatever was matched by the last successful pattern
match, not counting any matches hidden within a BLOCK or eval enclosed
by the current BLOCK.

See Section 86.3.2.1 [Performance issues], page 1387 above for the serious per-
formance implications of using this variable (even once) in your code.

This variable is read-only and dynamically-scoped.

Mnemonic: ‘ often precedes a quoted string.

${^PREMATCH}
This is similar to $‘ ($PREMATCH) except that it does not incur the perfor-
mance penalty associated with that variable.

See Section 86.3.2.1 [Performance issues], page 1387 above.

In Perl v5.18 and earlier, it is only guaranteed to return a defined value when
the pattern was compiled or executed with the /p modifier. In Perl v5.20, the
/p modifier does nothing, so ${^PREMATCH} does the same thing as $PREMATCH.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$POSTMATCH
$’

The string following whatever was matched by the last successful pattern match
(not counting any matches hidden within a BLOCK or eval() enclosed by the
current BLOCK). Example:

local $_ = ’abcdefghi’;

/def/;

print "$‘:$&:$’\n"; # prints abc:def:ghi

See Section 86.3.2.1 [Performance issues], page 1387 above for the serious per-
formance implications of using this variable (even once) in your code.

This variable is read-only and dynamically-scoped.

Mnemonic: ’ often follows a quoted string.

${^POSTMATCH}
This is similar to $’ ($POSTMATCH) except that it does not incur the performance
penalty associated with that variable.

See Section 86.3.2.1 [Performance issues], page 1387 above.

In Perl v5.18 and earlier, it is only guaranteed to return a defined value when
the pattern was compiled or executed with the /pmodifier. In Perl v5.20, the /p
modifier does nothing, so ${^POSTMATCH} does the same thing as $POSTMATCH.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$LAST PAREN MATCH
$+

The text matched by the last bracket of the last successful search pattern. This
is useful if you don’t know which one of a set of alternative patterns matched.
For example:

/Version: (.*)|Revision: (.*)/ && ($rev = $+);

This variable is read-only and dynamically-scoped.

Mnemonic: be positive and forward looking.

$LAST SUBMATCH RESULT
$^N

The text matched by the used group most-recently closed (i.e. the group with
the rightmost closing parenthesis) of the last successful search pattern.

This is primarily used inside (?{...}) blocks for examining text recently
matched. For example, to effectively capture text to a variable (in addition to
$1, $2, etc.), replace (...) with

(?:(...)(?{ $var = $^N }))

By setting and then using $var in this way relieves you from having to worry
about exactly which numbered set of parentheses they are.

This variable was added in Perl v5.8.0.

Mnemonic: the (possibly) Nested parenthesis that most recently closed.

@LAST MATCH END
@+

This array holds the offsets of the ends of the last successful submatches in the
currently active dynamic scope. $+[0] is the offset into the string of the end of
the entire match. This is the same value as what the pos function returns when
called on the variable that was matched against. The nth element of this array
holds the offset of the nth submatch, so $+[1] is the offset past where $1 ends,
$+[2] the offset past where $2 ends, and so on. You can use $#+ to determine
how many subgroups were in the last successful match. See the examples given
for the @- variable.

This variable was added in Perl v5.6.0.

%LAST PAREN MATCH
%+

Similar to @+, the %+ hash allows access to the named capture buffers, should
they exist, in the last successful match in the currently active dynamic scope.

For example, $+{foo} is equivalent to $1 after the following match:

’foo’ =~ /(?<foo>foo)/;

The keys of the %+ hash list only the names of buffers that have captured (and
that are thus associated to defined values).

The underlying behaviour of %+ is provided by the Tie-Hash-NamedCapture

module.

Note: %- and %+ are tied views into a common internal hash associated with
the last successful regular expression. Therefore mixing iterative access to them
via each may have unpredictable results. Likewise, if the last successful match
changes, then the results may be surprising.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

@LAST MATCH START
@-

$-[0] is the offset of the start of the last successful match. $-[n] is the offset of
the start of the substring matched by n-th subpattern, or undef if the subpattern
did not match.

Thus, after a match against $_, $& coincides with substr $_, $-[0], $+[0] -

$-[0]. Similarly, $n coincides with substr $_, $-[n], $+[n] - $-[n] if $-[n]
is defined, and $+ coincides with substr $_, $-[$#-], $+[$#-] - $-[$#-].
One can use $#- to find the last matched subgroup in the last successful match.
Contrast with $#+, the number of subgroups in the regular expression. Compare
with @+.

This array holds the offsets of the beginnings of the last successful submatches
in the currently active dynamic scope. $-[0] is the offset into the string of the
beginning of the entire match. The nth element of this array holds the offset
of the nth submatch, so $-[1] is the offset where $1 begins, $-[2] the offset
where $2 begins, and so on.

After a match against some variable $var:

$‘ is the same as substr($var, 0, $-[0])

$& is the same as substr($var, $-[0], $+[0] - $-[0])

$’ is the same as substr($var, $+[0])

$1 is the same as substr($var, $-[1], $+[1] - $-[1])

$2 is the same as substr($var, $-[2], $+[2] - $-[2])

$3 is the same as substr($var, $-[3], $+[3] - $-[3])

This variable was added in Perl v5.6.0.

%LAST MATCH START
%-

Similar to %+, this variable allows access to the named capture groups in the
last successful match in the currently active dynamic scope. To each capture
group name found in the regular expression, it associates a reference to an array
containing the list of values captured by all buffers with that name (should there
be several of them), in the order where they appear.

Here’s an example:

if (’1234’ =~ /(?<A>1)(?2)(?<A>3)(?4)/) {

foreach my $bufname (sort keys %-) {

my $ary = $-{$bufname};

foreach my $idx (0..$#$ary) {

print "\$-{$bufname}[$idx] : ",

(defined($ary->[$idx])

? "’$ary->[$idx]’"

: "undef"),

"\n";

}

}

}

would print out:

$-{A}[0] : ’1’

$-{A}[1] : ’3’

$-{B}[0] : ’2’

$-{B}[1] : ’4’

The keys of the %- hash correspond to all buffer names found in the regular
expression.

The behaviour of %- is implemented via the Tie-Hash-NamedCapture module.

Note: %- and %+ are tied views into a common internal hash associated with
the last successful regular expression. Therefore mixing iterative access to them
via each may have unpredictable results. Likewise, if the last successful match
changes, then the results may be surprising.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$LAST REGEXP CODE RESULT
$^R

The result of evaluation of the last successful (?{ code }) regular expression
assertion (see Section 58.1 [perlre NAME], page 989). May be written to.

This variable was added in Perl 5.005.

${^RE DEBUG FLAGS}
The current value of the regex debugging flags. Set to 0 for no debug output
even when the re ’debug’ module is loaded. See re for details.

This variable was added in Perl v5.10.0.

${^RE TRIE MAXBUF}
Controls how certain regex optimisations are applied and how much memory
they utilize. This value by default is 65536 which corresponds to a 512kB
temporary cache. Set this to a higher value to trade memory for speed when
matching large alternations. Set it to a lower value if you want the optimisations
to be as conservative of memory as possible but still occur, and set it to a
negative value to prevent the optimisation and conserve the most memory.
Under normal situations this variable should be of no interest to you.

This variable was added in Perl v5.10.0.

86.3.3 Variables related to filehandles

Variables that depend on the currently selected filehandle may be set by calling an appro-
priate object method on the IO::Handle object, although this is less efficient than using
the regular built-in variables. (Summary lines below for this contain the word HANDLE.)
First you must say

use IO::Handle;

after which you may use either

method HANDLE EXPR

or more safely,

HANDLE->method(EXPR)

Each method returns the old value of the IO::Handle attribute. The methods each take
an optional EXPR, which, if supplied, specifies the new value for the IO::Handle attribute
in question. If not supplied, most methods do nothing to the current value–except for
autoflush(), which will assume a 1 for you, just to be different.

Because loading in the IO::Handle class is an expensive operation, you should learn
how to use the regular built-in variables.

A few of these variables are considered "read-only". This means that if you try to assign
to this variable, either directly or indirectly through a reference, you’ll raise a run-time
exception.

You should be very careful when modifying the default values of most special variables
described in this document. In most cases you want to localize these variables before
changing them, since if you don’t, the change may affect other modules which rely on the
default values of the special variables that you have changed. This is one of the correct
ways to read the whole file at once:

open my $fh, "<", "foo" or die $!;

local $/; # enable localized slurp mode

my $content = <$fh>;

close $fh;

But the following code is quite bad:

open my $fh, "<", "foo" or die $!;

undef $/; # enable slurp mode

my $content = <$fh>;

close $fh;

since some other module, may want to read data from some file in the default "line
mode", so if the code we have just presented has been executed, the global value of $/ is
now changed for any other code running inside the same Perl interpreter.

Usually when a variable is localized you want to make sure that this change affects the
shortest scope possible. So unless you are already inside some short {} block, you should
create one yourself. For example:

my $content = ’’;

open my $fh, "<", "foo" or die $!;

{

local $/;

$content = <$fh>;

}

close $fh;

Here is an example of how your own code can go broken:

for (1..3){

$\ = "\r\n";

nasty_break();

print "$_";

}

sub nasty_break {

$\ = "\f";

do something with $_

}

You probably expect this code to print the equivalent of

"1\r\n2\r\n3\r\n"

but instead you get:

"1\f2\f3\f"

Why? Because nasty_break() modifies $\ without localizing it first. The value you set
in nasty_break() is still there when you return. The fix is to add local() so the value
doesn’t leak out of nasty_break():

local $\ = "\f";

It’s easy to notice the problem in such a short example, but in more complicated code
you are looking for trouble if you don’t localize changes to the special variables.

$ARGV

Contains the name of the current file when reading from <>.

@ARGV

The array @ARGV contains the command-line arguments intended for the script.
$#ARGV is generally the number of arguments minus one, because $ARGV[0] is
the first argument, not the program’s command name itself. See [$0], page 1378
for the command name.

ARGV

The special filehandle that iterates over command-line filenames in @ARGV. Usu-
ally written as the null filehandle in the angle operator <>. Note that currently
ARGV only has its magical effect within the <> operator; elsewhere it is just
a plain filehandle corresponding to the last file opened by <>. In particular,
passing *ARGV as a parameter to a function that expects a filehandle may not
cause your function to automatically read the contents of all the files in @ARGV.

ARGVOUT
The special filehandle that points to the currently open output file when doing
edit-in-place processing with -i. Useful when you have to do a lot of insert-
ing and don’t want to keep modifying $_. See Section 69.1 [perlrun NAME],
page 1176 for the -i switch.

IO::Handle->output field separator(EXPR)
$OUTPUT FIELD SEPARATOR
$OFS

$,

The output field separator for the print operator. If defined, this value is printed
between each of print’s arguments. Default is undef.

You cannot call output_field_separator() on a handle, only as a static
method. See IO-Handle.

Mnemonic: what is printed when there is a "," in your print statement.

HANDLE->input line number(EXPR)
$INPUT LINE NUMBER
$NR

$.

Current line number for the last filehandle accessed.

Each filehandle in Perl counts the number of lines that have been read from it.
(Depending on the value of $/, Perl’s idea of what constitutes a line may not
match yours.) When a line is read from a filehandle (via readline() or <>), or
when tell() or seek() is called on it, $. becomes an alias to the line counter
for that filehandle.

You can adjust the counter by assigning to $., but this will not actually move
the seek pointer. Localizing $. will not localize the filehandle’s line count. In-
stead, it will localize perl’s notion of which filehandle $. is currently aliased
to.

$. is reset when the filehandle is closed, but not when an open filehandle is
reopened without an intervening close(). For more details, see Section 48.2.33
[perlop I/O Operators], page 844. Because <> never does an explicit close, line
numbers increase across ARGV files (but see examples in [perlfunc eof], page 376).

You can also use HANDLE->input_line_number(EXPR) to access the line counter
for a given filehandle without having to worry about which handle you last
accessed.

Mnemonic: many programs use "." to mean the current line number.

IO::Handle->input record separator(EXPR)
$INPUT RECORD SEPARATOR
$RS

$/

The input record separator, newline by default. This influences Perl’s idea of
what a "line" is. Works like awk’s RS variable, including treating empty lines
as a terminator if set to the null string (an empty line cannot contain any
spaces or tabs). You may set it to a multi-character string to match a multi-
character terminator, or to undef to read through the end of file. Setting it to
"\n\n" means something slightly different than setting to "", if the file contains
consecutive empty lines. Setting to "" will treat two or more consecutive empty
lines as a single empty line. Setting to "\n\n" will blindly assume that the next
input character belongs to the next paragraph, even if it’s a newline.

local $/; # enable "slurp" mode

local $_ = <FH>; # whole file now here

s/\n[\t]+/ /g;

Remember: the value of $/ is a string, not a regex. awk has to be better for
something. :-)

Setting $/ to a reference to an integer, scalar containing an integer, or scalar
that’s convertible to an integer will attempt to read records instead of lines, with
the maximum record size being the referenced integer number of characters. So
this:

local $/ = \32768; # or \"32768", or \$var_containing_32768

open my $fh, "<", $myfile or die $!;

local $_ = <$fh>;

will read a record of no more than 32768 characters from $fh. If you’re not
reading from a record-oriented file (or your OS doesn’t have record-oriented
files), then you’ll likely get a full chunk of data with every read. If a record
is larger than the record size you’ve set, you’ll get the record back in pieces.
Trying to set the record size to zero or less is deprecated and will cause $/ to
have the value of "undef", which will cause reading in the (rest of the) whole
file.

As of 5.19.9 setting $/ to any other form of reference will throw a fatal exception.
This is in preparation for supporting new ways to set $/ in the future.

On VMS only, record reads bypass PerlIO layers and any associated buffering,
so you must not mix record and non-record reads on the same filehandle. Record
mode mixes with line mode only when the same buffering layer is in use for both
modes.

You cannot call input_record_separator() on a handle, only as a static
method. See IO-Handle.

See also Section 56.3.1 [perlport Newlines], page 952. Also see [$.], page 1395.

Mnemonic: / delimits line boundaries when quoting poetry.

IO::Handle->output record separator(EXPR)
$OUTPUT RECORD SEPARATOR
$ORS

$\

The output record separator for the print operator. If defined, this value is
printed after the last of print’s arguments. Default is undef.

You cannot call output_record_separator() on a handle, only as a static
method. See IO-Handle.

Mnemonic: you set $\ instead of adding "\n" at the end of the print. Also, it’s
just like $/, but it’s what you get "back" from Perl.

HANDLE->autoflush(EXPR)
$OUTPUT AUTOFLUSH
$|

If set to nonzero, forces a flush right away and after every write or print on
the currently selected output channel. Default is 0 (regardless of whether the
channel is really buffered by the system or not; $| tells you only whether you’ve
asked Perl explicitly to flush after each write). STDOUT will typically be line
buffered if output is to the terminal and block buffered otherwise. Setting this
variable is useful primarily when you are outputting to a pipe or socket, such
as when you are running a Perl program under rsh and want to see the output
as it’s happening. This has no effect on input buffering. See [perlfunc getc],
page 388 for that. See [perlfunc select], page 443 on how to select the output
channel. See also IO-Handle.

Mnemonic: when you want your pipes to be piping hot.

${^LAST FH}
This read-only variable contains a reference to the last-read filehandle. This is
set by <HANDLE>, readline, tell, eof and seek. This is the same handle that
$. and tell and eof without arguments use. It is also the handle used when
Perl appends ", <STDIN> line 1" to an error or warning message.

This variable was added in Perl v5.18.0.

86.3.3.1 Variables related to formats

The special variables for formats are a subset of those for filehandles. See Section 24.1
[perlform NAME], page 343 for more information about Perl’s formats.

$ACCUMULATOR
$^A

The current value of the write() accumulator for format() lines. A format
contains formline() calls that put their result into $^A. After calling its for-
mat, write() prints out the contents of $^A and empties. So you never really
see the contents of $^A unless you call formline() yourself and then look at
it. See Section 24.1 [perlform NAME], page 343 and [perlfunc formline PIC-
TURE,LIST], page 387.

IO::Handle->format formfeed(EXPR)
$FORMAT FORMFEED
$^L

What formats output as a form feed. The default is \f.

You cannot call format_formfeed() on a handle, only as a static method. See
IO-Handle.

HANDLE->format page number(EXPR)
$FORMAT PAGE NUMBER
$%

The current page number of the currently selected output channel.

Mnemonic: % is page number in nroff.

HANDLE->format lines left(EXPR)
$FORMAT LINES LEFT
$-

The number of lines left on the page of the currently selected output channel.

Mnemonic: lines on page - lines printed.

IO::Handle->format line break characters EXPR
$FORMAT LINE BREAK CHARACTERS
$:

The current set of characters after which a string may be broken to fill contin-
uation fields (starting with ^) in a format. The default is " \n-", to break on a
space, newline, or a hyphen.

You cannot call format_line_break_characters() on a handle, only as a
static method. See IO-Handle.

Mnemonic: a "colon" in poetry is a part of a line.

HANDLE->format lines per page(EXPR)
$FORMAT LINES PER PAGE
$=

The current page length (printable lines) of the currently selected output chan-
nel. The default is 60.

Mnemonic: = has horizontal lines.

HANDLE->format top name(EXPR)
$FORMAT TOP NAME
$^

The name of the current top-of-page format for the currently selected output
channel. The default is the name of the filehandle with _TOP appended. For
example, the default format top name for the STDOUT filehandle is STDOUT_TOP.

Mnemonic: points to top of page.

HANDLE->format name(EXPR)
$FORMAT NAME
$~

The name of the current report format for the currently selected output channel.
The default format name is the same as the filehandle name. For example, the
default format name for the STDOUT filehandle is just STDOUT.

Mnemonic: brother to $^.

86.3.4 Error Variables

The variables $@, $!, $^E, and $? contain information about different types of error condi-
tions that may appear during execution of a Perl program. The variables are shown ordered
by the "distance" between the subsystem which reported the error and the Perl process.
They correspond to errors detected by the Perl interpreter, C library, operating system, or
an external program, respectively.

To illustrate the differences between these variables, consider the following Perl expres-
sion, which uses a single-quoted string. After execution of this statement, perl may have
set all four special error variables:

eval q{

open my $pipe, "/cdrom/install |" or die $!;

my @res = <$pipe>;

close $pipe or die "bad pipe: $?, $!";

};

When perl executes the eval() expression, it translates the open(), <PIPE>, and close

calls in the C run-time library and thence to the operating system kernel. perl sets $! to
the C library’s errno if one of these calls fails.

$@ is set if the string to be eval-ed did not compile (this may happen if open or close
were imported with bad prototypes), or if Perl code executed during evaluation die()d.
In these cases the value of $@ is the compile error, or the argument to die (which will
interpolate $! and $?). (See also Fatal, though.)

Under a few operating systems, $^E may contain a more verbose error indicator, such
as in this case, "CDROM tray not closed." Systems that do not support extended error
messages leave $^E the same as $!.

Finally, $? may be set to non-0 value if the external program /cdrom/install fails. The
upper eight bits reflect specific error conditions encountered by the program (the program’s
exit() value). The lower eight bits reflect mode of failure, like signal death and core dump
information. See wait(2) for details. In contrast to $! and $^E, which are set only if error
condition is detected, the variable $? is set on each wait or pipe close, overwriting the old
value. This is more like $@, which on every eval() is always set on failure and cleared on
success.

For more details, see the individual descriptions at $@, $!, $^E, and $?.

${^CHILD ERROR NATIVE}
The native status returned by the last pipe close, backtick (‘‘) command,
successful call to wait() or waitpid(), or from the system() operator. On
POSIX-like systems this value can be decoded with the WIFEXITED, WEX-
ITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG and
WIFCONTINUED functions provided by the POSIX module.

Under VMS this reflects the actual VMS exit status; i.e. it is the same as $?
when the pragma use vmsish ’status’ is in effect.

This variable was added in Perl v5.10.0.

$EXTENDED OS ERROR
$^E

Error information specific to the current operating system. At the moment,
this differs from $! under only VMS, OS/2, and Win32 (and for MacPerl). On
all other platforms, $^E is always just the same as $!.

Under VMS, $^E provides the VMS status value from the last system error. This
is more specific information about the last system error than that provided by
$!. This is particularly important when $! is set to EVMSERR.

Under OS/2, $^E is set to the error code of the last call to OS/2 API either via
CRT, or directly from perl.

Under Win32, $^E always returns the last error information reported by the
Win32 call GetLastError() which describes the last error from within the
Win32 API. Most Win32-specific code will report errors via $^E. ANSI C and
Unix-like calls set errno and so most portable Perl code will report errors via
$!.

Caveats mentioned in the description of $! generally apply to $^E, also.

This variable was added in Perl 5.003.

Mnemonic: Extra error explanation.

$EXCEPTIONS BEING CAUGHT
$^S

Current state of the interpreter.

$^S State

--------- -------------------------------------

http://man.he.net/man2/wait

undef Parsing module, eval, or main program

true (1) Executing an eval

false (0) Otherwise

The first state may happen in $SIG{__DIE__} and $SIG{__WARN__} handlers.

The English name $EXCEPTIONS BEING CAUGHT is slightly misleading,
because the undef value does not indicate whether exceptions are being caught,
since compilation of the main program does not catch exceptions.

This variable was added in Perl 5.004.

$WARNING
$^W

The current value of the warning switch, initially true if -w was used, false
otherwise, but directly modifiable.

See also warnings.

Mnemonic: related to the -w switch.

${^WARNING BITS}
The current set of warning checks enabled by the use warnings pragma. It has
the same scoping as the $^H and %^H variables. The exact values are considered
internal to the warnings pragma and may change between versions of Perl.

This variable was added in Perl v5.6.0.

$OS ERROR
$ERRNO

$!

When referenced, $! retrieves the current value of the C errno integer vari-
able. If $! is assigned a numerical value, that value is stored in errno. When
referenced as a string, $! yields the system error string corresponding to errno.

Many system or library calls set errno if they fail, to indicate the cause of
failure. They usually do not set errno to zero if they succeed. This means
errno, hence $!, is meaningful only immediately after a failure:

if (open my $fh, "<", $filename) {

Here $! is meaningless.

...

}

else {

ONLY here is $! meaningful.

...

Already here $! might be meaningless.

}

Since here we might have either success or failure,

$! is meaningless.

Here, meaningless means that $! may be unrelated to the outcome of the
open() operator. Assignment to $! is similarly ephemeral. It can be used
immediately before invoking the die() operator, to set the exit value, or to

inspect the system error string corresponding to error n, or to restore $! to a
meaningful state.

Mnemonic: What just went bang?

%OS ERROR
%ERRNO

%!

Each element of %! has a true value only if $! is set to that value. For example,
$!{ENOENT} is true if and only if the current value of $! is ENOENT; that is, if
the most recent error was "No such file or directory" (or its moral equivalent:
not all operating systems give that exact error, and certainly not all languages).
To check if a particular key is meaningful on your system, use exists $!{the_

key}; for a list of legal keys, use keys %!. See Errno for more information, and
also see [$!], page 1400.

This variable was added in Perl 5.005.

$CHILD ERROR
$?

The status returned by the last pipe close, backtick (‘‘) command, successful
call to wait() or waitpid(), or from the system() operator. This is just the
16-bit status word returned by the traditional Unix wait() system call (or else
is made up to look like it). Thus, the exit value of the subprocess is really ($?
>> 8), and $? & 127 gives which signal, if any, the process died from, and $? &

128 reports whether there was a core dump.

Additionally, if the h_errno variable is supported in C, its value is returned via
$? if any gethost*() function fails.

If you have installed a signal handler for SIGCHLD, the value of $? will usually
be wrong outside that handler.

Inside an END subroutine $? contains the value that is going to be given to
exit(). You can modify $? in an END subroutine to change the exit status of
your program. For example:

END {

$? = 1 if $? == 255; # die would make it 255

}

Under VMS, the pragma use vmsish ’status’ makes $? reflect the actual
VMS exit status, instead of the default emulation of POSIX status; see [perlvms
$?], page 1424 for details.

Mnemonic: similar to sh and ksh.

$EVAL ERROR
$@

The Perl syntax error message from the last eval() operator. If $@ is the null
string, the last eval() parsed and executed correctly (although the operations
you invoked may have failed in the normal fashion).

Warning messages are not collected in this variable. You can, however, set up a
routine to process warnings by setting $SIG{__WARN__} as described in [%SIG],
page 1383.

Mnemonic: Where was the syntax error "at"?

86.3.5 Variables related to the interpreter state

These variables provide information about the current interpreter state.

$COMPILING
$^C

The current value of the flag associated with the -c switch. Mainly of use with
-MO=... to allow code to alter its behavior when being compiled, such as for
example to AUTOLOAD at compile time rather than normal, deferred loading.
Setting $^C = 1 is similar to calling B::minus_c.

This variable was added in Perl v5.6.0.

$DEBUGGING
$^D

The current value of the debugging flags. May be read or set. Like its command-
line equivalent, you can use numeric or symbolic values, eg $^D = 10 or $^D =

"st".

Mnemonic: value of -D switch.

${^ENCODING}
DEPRECATED!!!

The object reference to the Encode object that is used to convert the source
code to Unicode. Thanks to this variable your Perl script does not have to be
written in UTF-8. Default is undef.

Setting this variable to any other value than undef is deprecated due to fun-
damental defects in its design and implementation. It is planned to remove
it from a future Perl version. Its purpose was to allow your non-ASCII Perl
scripts to not have to be written in UTF-8; this was useful before editors that
worked on UTF-8 encoded text were common, but that was long ago. It causes
problems, such as affecting the operation of other modules that aren’t expecting
it, causing general mayhem. Its use can lead to segfaults.

If you need something like this functionality, you should use the encoding

pragma, which is also deprecated, but has fewer nasty side effects.

If you are coming here because code of yours is being adversely affected by
someone’s use of this variable, you can usually work around it by doing this:

local ${^ENCODING};

near the beginning of the functions that are getting broken. This undefines the
variable during the scope of execution of the including function.

This variable was added in Perl 5.8.2.

${^GLOBAL PHASE}
The current phase of the perl interpreter.

Possible values are:

CONSTRUCT
The PerlInterpreter* is being constructed via perl_construct.
This value is mostly there for completeness and for use via the un-
derlying C variable PL_phase. It’s not really possible for Perl code
to be executed unless construction of the interpreter is finished.

START

This is the global compile-time. That includes, basically, every
BEGIN block executed directly or indirectly from during the compile-
time of the top-level program.

This phase is not called "BEGIN" to avoid confusion with BEGIN-
blocks, as those are executed during compile-time of any compila-
tion unit, not just the top-level program. A new, localised compile-
time entered at run-time, for example by constructs as eval "use

SomeModule" are not global interpreter phases, and therefore aren’t
reflected by ${^GLOBAL_PHASE}.

CHECK

Execution of any CHECK blocks.

INIT

Similar to "CHECK", but for INIT-blocks, not CHECK blocks.

RUN

The main run-time, i.e. the execution of PL_main_root.

END

Execution of any END blocks.

DESTRUCT
Global destruction.

Also note that there’s no value for UNITCHECK-blocks. That’s because those
are run for each compilation unit individually, and therefore is not a global
interpreter phase.

Not every program has to go through each of the possible phases, but transition
from one phase to another can only happen in the order described in the above
list.

An example of all of the phases Perl code can see:

BEGIN { print "compile-time: ${^GLOBAL_PHASE}\n" }

INIT { print "init-time: ${^GLOBAL_PHASE}\n" }

CHECK { print "check-time: ${^GLOBAL_PHASE}\n" }

{

package Print::Phase;

sub new {

my ($class, $time) = @_;

return bless \$time, $class;

}

sub DESTROY {

my $self = shift;

print "$$self: ${^GLOBAL_PHASE}\n";

}

}

print "run-time: ${^GLOBAL_PHASE}\n";

my $runtime = Print::Phase->new(

"lexical variables are garbage collected before END"

);

END { print "end-time: ${^GLOBAL_PHASE}\n" }

our $destruct = Print::Phase->new(

"package variables are garbage collected after END"

);

This will print out

compile-time: START

check-time: CHECK

init-time: INIT

run-time: RUN

lexical variables are garbage collected before END: RUN

end-time: END

package variables are garbage collected after END: DESTRUCT

This variable was added in Perl 5.14.0.

$^H

WARNING: This variable is strictly for internal use only. Its availability, be-
havior, and contents are subject to change without notice.

This variable contains compile-time hints for the Perl interpreter. At the end
of compilation of a BLOCK the value of this variable is restored to the value
when the interpreter started to compile the BLOCK.

When perl begins to parse any block construct that provides a lexical scope
(e.g., eval body, required file, subroutine body, loop body, or conditional block),
the existing value of $^H is saved, but its value is left unchanged. When the
compilation of the block is completed, it regains the saved value. Between the
points where its value is saved and restored, code that executes within BEGIN
blocks is free to change the value of $^H.

This behavior provides the semantic of lexical scoping, and is used in, for in-
stance, the use strict pragma.

The contents should be an integer; different bits of it are used for different
pragmatic flags. Here’s an example:

sub add_100 { $^H |= 0x100 }

sub foo {

BEGIN { add_100() }

bar->baz($boon);

}

Consider what happens during execution of the BEGIN block. At this point
the BEGIN block has already been compiled, but the body of foo() is still
being compiled. The new value of $^H will therefore be visible only while the
body of foo() is being compiled.

Substitution of BEGIN { add_100() } block with:

BEGIN { require strict; strict->import(’vars’) }

demonstrates how use strict ’vars’ is implemented. Here’s a conditional
version of the same lexical pragma:

BEGIN {

require strict; strict->import(’vars’) if $condition

}

This variable was added in Perl 5.003.

%^H

The %^H hash provides the same scoping semantic as $^H. This makes it useful
for implementation of lexically scoped pragmas. See Section 57.1 [perlpragma
NAME], page 986. All the entries are stringified when accessed at runtime, so
only simple values can be accommodated. This means no pointers to objects,
for example.

When putting items into %^H, in order to avoid conflicting with other users of
the hash there is a convention regarding which keys to use. A module should
use only keys that begin with the module’s name (the name of its main package)
and a "/" character. For example, a module Foo::Bar should use keys such as
Foo::Bar/baz.

This variable was added in Perl v5.6.0.

${^OPEN}
An internal variable used by PerlIO. A string in two parts, separated by a \0

byte, the first part describes the input layers, the second part describes the
output layers.

This variable was added in Perl v5.8.0.

$PERLDB
$^P

The internal variable for debugging support. The meanings of the various bits
are subject to change, but currently indicate:

0x01

Debug subroutine enter/exit.

0x02

Line-by-line debugging. Causes DB::DB() subroutine to be called
for each statement executed. Also causes saving source code lines
(like 0x400).

0x04

Switch off optimizations.

0x08

Preserve more data for future interactive inspections.

0x10

Keep info about source lines on which a subroutine is defined.

0x20

Start with single-step on.

0x40

Use subroutine address instead of name when reporting.

0x80

Report goto &subroutine as well.

0x100

Provide informative "file" names for evals based on the place they
were compiled.

0x200

Provide informative names to anonymous subroutines based on the
place they were compiled.

0x400

Save source code lines into @{"_<$filename"}.

0x800

When saving source, include evals that generate no subroutines.

0x1000

When saving source, include source that did not compile.

Some bits may be relevant at compile-time only, some at run-time only. This is a
new mechanism and the details may change. See also Section 13.1 [perldebguts
NAME], page 90.

${^TAINT}
Reflects if taint mode is on or off. 1 for on (the program was run with -T), 0
for off, -1 when only taint warnings are enabled (i.e. with -t or -TU).

This variable is read-only.

This variable was added in Perl v5.8.0.

${^UNICODE}
Reflects certain Unicode settings of Perl. See Section 69.1 [perlrun NAME],
page 1176 documentation for the -C switch for more information about the
possible values.

This variable is set during Perl startup and is thereafter read-only.

This variable was added in Perl v5.8.2.

${^UTF8CACHE}
This variable controls the state of the internal UTF-8 offset caching code. 1
for on (the default), 0 for off, -1 to debug the caching code by checking all its
results against linear scans, and panicking on any discrepancy.

This variable was added in Perl v5.8.9. It is subject to change or removal
without notice, but is currently used to avoid recalculating the boundaries of
multi-byte UTF-8-encoded characters.

${^UTF8LOCALE}
This variable indicates whether a UTF-8 locale was detected by perl at startup.
This information is used by perl when it’s in adjust-utf8ness-to-locale mode (as
when run with the -CL command-line switch); see Section 69.1 [perlrun NAME],
page 1176 for more info on this.

This variable was added in Perl v5.8.8.

86.3.6 Deprecated and removed variables

Deprecating a variable announces the intent of the perl maintainers to eventually remove the
variable from the language. It may still be available despite its status. Using a deprecated
variable triggers a warning.

Once a variable is removed, its use triggers an error telling you the variable is unsup-
ported.

See Section 16.1 [perldiag NAME], page 137 for details about error messages.

$#

$# was a variable that could be used to format printed numbers. After a
deprecation cycle, its magic was removed in Perl v5.10.0 and using it now
triggers a warning: $# is no longer supported.

This is not the sigil you use in front of an array name to get the last index, like
$#array. That’s still how you get the last index of an array in Perl. The two
have nothing to do with each other.

Deprecated in Perl 5.

Removed in Perl v5.10.0.

$*

$* was a variable that you could use to enable multiline matching. After a
deprecation cycle, its magic was removed in Perl v5.10.0. Using it now triggers
a warning: $* is no longer supported. You should use the /s and /m regexp
modifiers instead.

Deprecated in Perl 5.

Removed in Perl v5.10.0.

$[

This variable stores the index of the first element in an array, and of the first
character in a substring. The default is 0, but you could theoretically set it to
1 to make Perl behave more like awk (or Fortran) when subscripting and when
evaluating the index() and substr() functions.

As of release 5 of Perl, assignment to $[is treated as a compiler directive, and
cannot influence the behavior of any other file. (That’s why you can only assign
compile-time constants to it.) Its use is highly discouraged.

Prior to Perl v5.10.0, assignment to $[could be seen from outer lexical scopes
in the same file, unlike other compile-time directives (such as strict). Using
local() on it would bind its value strictly to a lexical block. Now it is always
lexically scoped.

As of Perl v5.16.0, it is implemented by the arybase module. See arybase for
more details on its behaviour.

Under use v5.16, or no feature "array_base", $[no longer has any effect,
and always contains 0. Assigning 0 to it is permitted, but any other value will
produce an error.

Mnemonic: [begins subscripts.

Deprecated in Perl v5.12.0.

87 perlvms

87.1 NAME

perlvms - VMS-specific documentation for Perl

87.2 DESCRIPTION

Gathered below are notes describing details of Perl 5’s behavior on VMS. They are a sup-
plement to the regular Perl 5 documentation, so we have focussed on the ways in which
Perl 5 functions differently under VMS than it does under Unix, and on the interactions
between Perl and the rest of the operating system. We haven’t tried to duplicate complete
descriptions of Perl features from the main Perl documentation, which can be found in the
[.pod] subdirectory of the Perl distribution.

We hope these notes will save you from confusion and lost sleep when writing Perl scripts
on VMS. If you find we’ve missed something you think should appear here, please don’t
hesitate to drop a line to vmsperl@perl.org.

87.3 Installation

Directions for building and installing Perl 5 can be found in the file README.vms in the main
source directory of the Perl distribution.

87.4 Organization of Perl Images

87.4.1 Core Images

During the build process, three Perl images are produced. Miniperl.Exe is an executable
image which contains all of the basic functionality of Perl, but cannot take advantage of Perl
XS extensions and has a hard-wired list of library locations for loading pure-Perl modules.
It is used extensively to build and test Perl and various extensions, but is not installed.

Most of the complete Perl resides in the shareable image PerlShr.Exe, which provides
a core to which the Perl executable image and all Perl extensions are linked. It is generally
located via the logical name PERLSHR. While it’s possible to put the image in SYS$SHARE

to make it loadable, that’s not recommended. And while you may wish to INSTALL the
image for performance reasons, you should not install it with privileges; if you do, the result
will not be what you expect as image privileges are disabled during Perl start-up.

Finally, Perl.Exe is an executable image containing the main entry point for Perl, as
well as some initialization code. It should be placed in a public directory, and made world
executable. In order to run Perl with command line arguments, you should define a foreign
command to invoke this image.

87.4.2 Perl Extensions

Perl extensions are packages which provide both XS and Perl code to add new functionality
to perl. (XS is a meta-language which simplifies writing C code which interacts with Perl,
see perlxs for more details.) The Perl code for an extension is treated like any other

library module - it’s made available in your script through the appropriate use or require
statement, and usually defines a Perl package containing the extension.

The portion of the extension provided by the XS code may be connected to the rest of
Perl in either of two ways. In the static configuration, the object code for the extension
is linked directly into PerlShr.Exe, and is initialized whenever Perl is invoked. In the
dynamic configuration, the extension’s machine code is placed into a separate shareable
image, which is mapped by Perl’s DynaLoader when the extension is used or required in
your script. This allows you to maintain the extension as a separate entity, at the cost of
keeping track of the additional shareable image. Most extensions can be set up as either
static or dynamic.

The source code for an extension usually resides in its own directory. At least three
files are generally provided: Extshortname.xs (where Extshortname is the portion of the
extension’s name following the last ::), containing the XS code, Extshortname.pm, the Perl
library module for the extension, and Makefile.PL, a Perl script which uses the MakeMaker
library modules supplied with Perl to generate a Descrip.MMS file for the extension.

87.4.3 Installing static extensions

Since static extensions are incorporated directly into PerlShr.Exe, you’ll have to rebuild
Perl to incorporate a new extension. You should edit the main Descrip.MMS or Makefile
you use to build Perl, adding the extension’s name to the ext macro, and the extension’s
object file to the extobj macro. You’ll also need to build the extension’s object file, either
by adding dependencies to the main Descrip.MMS, or using a separate Descrip.MMS for the
extension. Then, rebuild PerlShr.Exe to incorporate the new code.

Finally, you’ll need to copy the extension’s Perl library module to the [.Extname] sub-
directory under one of the directories in @INC, where Extname is the name of the extension,
with all :: replaced by . (e.g. the library module for extension Foo::Bar would be copied
to a [.Foo.Bar] subdirectory).

87.4.4 Installing dynamic extensions

In general, the distributed kit for a Perl extension includes a file named Makefile.PL, which
is a Perl program which is used to create a Descrip.MMS file which can be used to build
and install the files required by the extension. The kit should be unpacked into a directory
tree not under the main Perl source directory, and the procedure for building the extension
is simply

$ perl Makefile.PL ! Create Descrip.MMS

$ mmk ! Build necessary files

$ mmk test ! Run test code, if supplied

$ mmk install ! Install into public Perl tree

VMS support for this process in the current release of Perl is sufficient to handle most
extensions. (See the MakeMaker documentation for more details on installation options for
extensions.)

• the [.Lib.Auto.Arch$PVersExtname] subdirectory of one of the directories in @INC

(where PVers is the version of Perl you’re using, as supplied in $], with ’.’ converted
to ’ ’), or

• one of the directories in @INC, or

• a directory which the extensions Perl library module passes to the DynaLoader when
asking it to map the shareable image, or

• Sys$Share or Sys$Library.

If the shareable image isn’t in any of these places, you’ll need to define a logical name
Extshortname, where Extshortname is the portion of the extension’s name after the last ::,
which translates to the full file specification of the shareable image.

87.5 File specifications

87.5.1 Syntax

We have tried to make Perl aware of both VMS-style and Unix-style file specifications wher-
ever possible. You may use either style, or both, on the command line and in scripts, but
you may not combine the two styles within a single file specification. VMS Perl interprets
Unix pathnames in much the same way as the CRTL (e.g. the first component of an ab-
solute path is read as the device name for the VMS file specification). There are a set of
functions provided in the VMS::Filespec package for explicit interconversion between VMS
and Unix syntax; its documentation provides more details.

We’ve tried to minimize the dependence of Perl library modules on Unix syntax, but you
may find that some of these, as well as some scripts written for Unix systems, will require
that you use Unix syntax, since they will assume that ’/’ is the directory separator, etc. If
you find instances of this in the Perl distribution itself, please let us know, so we can try to
work around them.

Also when working on Perl programs on VMS, if you need a syntax in a specific operating
system format, then you need either to check the appropriate DECC$ feature logical, or
call a conversion routine to force it to that format.

The feature logical name DECC$FILENAME UNIX REPORT modifies traditional Perl
behavior in the conversion of file specifications from Unix to VMS format in order to follow
the extended character handling rules now expected by the CRTL. Specifically, when this
feature is in effect, the ./.../ in a Unix path is now translated to [.^.^.^.] instead of the
traditional VMS [...]. To be compatible with what MakeMaker expects, if a VMS path
cannot be translated to a Unix path, it is passed through unchanged, so unixify("[...]")
will return [...].

There are several ambiguous cases where a conversion routine cannot determine whether
an input filename is in Unix format or in VMS format, since now both VMS and Unix file
specifications may have characters in them that could be mistaken for syntax delimiters of
the other type. So some pathnames simply cannot be used in a mode that allows either
type of pathname to be present. Perl will tend to assume that an ambiguous filename is in
Unix format.

Allowing "." as a version delimiter is simply incompatible with determining whether a
pathname is in VMS format or in Unix format with extended file syntax. There is no way
to know whether "perl-5.8.6" is a Unix "perl-5.8.6" or a VMS "perl-5.8;6" when passing it
to unixify() or vmsify().

The DECC$FILENAME UNIX REPORT logical name controls how Perl in-
terprets filenames to the extent that Perl uses the CRTL internally for many

purposes, and attempts to follow CRTL conventions for reporting filenames. The
DECC$FILENAME UNIX ONLY feature differs in that it expects all filenames passed to
the C run-time to be already in Unix format. This feature is not yet supported in Perl
since Perl uses traditional OpenVMS file specifications internally and in the test harness,
and it is not yet clear whether this mode will be useful or useable. The feature logical
name DECC$POSIX COMPLIANT PATHNAMES is new with the RMS Symbolic Link
SDK and included with OpenVMS v8.3, but is not yet supported in Perl.

87.5.2 Filename Case

Perl enables DECC$EFS CASE PRESERVE and DECC$ARGV PARSE STYLE by de-
fault. Note that the latter only takes effect when extended parse is set in the process in
which Perl is running. When these features are explicitly disabled in the environment or the
CRTL does not support them, Perl follows the traditional CRTL behavior of downcasing
command-line arguments and returning file specifications in lower case only.

N. B. It is very easy to get tripped up using a mixture of other programs, external
utilities, and Perl scripts that are in varying states of being able to handle case preservation.
For example, a file created by an older version of an archive utility or a build utility such as
MMK or MMS may generate a filename in all upper case even on an ODS-5 volume. If this
filename is later retrieved by a Perl script or module in a case preserving environment, that
upper case name may not match the mixed-case or lower-case expectations of the Perl code.
Your best bet is to follow an all-or-nothing approach to case preservation: either don’t use
it at all, or make sure your entire toolchain and application environment support and use
it.

OpenVMS Alpha v7.3-1 and later and all version of OpenVMS I64 support case sen-
sitivity as a process setting (see SET PROCESS /CASE_LOOKUP=SENSITIVE). Perl does not
currently support case sensitivity on VMS, but it may in the future, so Perl programs
should use the File::Spec->case_tolerant method to determine the state, and not the
$^O variable.

87.5.3 Symbolic Links

When built on an ODS-5 volume with symbolic links enabled, Perl by default supports
symbolic links when the requisite support is available in the filesystem and CRTL (generally
64-bit OpenVMS v8.3 and later). There are a number of limitations and caveats to be aware
of when working with symbolic links on VMS. Most notably, the target of a valid symbolic
link must be expressed as a Unix-style path and it must exist on a volume visible from your
POSIX root (see the SHOW ROOT command in DCL help). For further details on symbolic
link capabilities and requirements, see chapter 12 of the CRTL manual that ships with
OpenVMS v8.3 or later.

87.5.4 Wildcard expansion

File specifications containing wildcards are allowed both on the command line and within
Perl globs (e.g. <*.c>). If the wildcard filespec uses VMS syntax, the resultant filespecs will
follow VMS syntax; if a Unix-style filespec is passed in, Unix-style filespecs will be returned.
Similar to the behavior of wildcard globbing for a Unix shell, one can escape command line
wildcards with double quotation marks " around a perl program command line argument.
However, owing to the stripping of " characters carried out by the C handling of argv you

will need to escape a construct such as this one (in a directory containing the files PERL.C,
PERL.EXE, PERL.H, and PERL.OBJ):

$ perl -e "print join(’ ’,@ARGV)" perl.*

perl.c perl.exe perl.h perl.obj

in the following triple quoted manner:

$ perl -e "print join(’ ’,@ARGV)" """perl.*"""

perl.*

In both the case of unquoted command line arguments or in calls to glob() VMS
wildcard expansion is performed. (csh-style wildcard expansion is available if you use
File::Glob::glob.) If the wildcard filespec contains a device or directory specification,
then the resultant filespecs will also contain a device and directory; otherwise, device and
directory information are removed. VMS-style resultant filespecs will contain a full device
and directory, while Unix-style resultant filespecs will contain only as much of a direc-
tory path as was present in the input filespec. For example, if your default directory is
Perl Root:[000000], the expansion of [.t]*.* will yield filespecs like "perl root:[t]base.dir",
while the expansion of t/*/* will yield filespecs like "t/base.dir". (This is done to match
the behavior of glob expansion performed by Unix shells.)

Similarly, the resultant filespec will contain the file version only if one was present in the
input filespec.

87.5.5 Pipes

Input and output pipes to Perl filehandles are supported; the "file name" is passed to
lib$spawn() for asynchronous execution. You should be careful to close any pipes you have
opened in a Perl script, lest you leave any "orphaned" subprocesses around when Perl exits.

You may also use backticks to invoke a DCL subprocess, whose output is used as the
return value of the expression. The string between the backticks is handled as if it were the
argument to the system operator (see below). In this case, Perl will wait for the subprocess
to complete before continuing.

The mailbox (MBX) that perl can create to communicate with a pipe defaults to a
buffer size of 8192 on 64-bit systems, 512 on VAX. The default buffer size is adjustable
via the logical name PERL MBX SIZE provided that the value falls between 128 and the
SYSGEN parameter MAXBUF inclusive. For example, to set the mailbox size to 32767 use
$ENV{’PERL_MBX_SIZE’} = 32767; and then open and use pipe constructs. An alternative
would be to issue the command:

$ Define PERL_MBX_SIZE 32767

before running your wide record pipe program. A larger value may improve performance
at the expense of the BYTLM UAF quota.

87.6 PERL5LIB and PERLLIB

The PERL5LIB and PERLLIB logical names work as documented in Section 1.1 [perl
NAME], page 1, except that the element separator is ’|’ instead of ’:’. The directory
specifications may use either VMS or Unix syntax.

87.7 The Perl Forked Debugger

The Perl forked debugger places the debugger commands and output in a separate X-11
terminal window so that commands and output from multiple processes are not mixed
together.

Perl on VMS supports an emulation of the forked debugger when Perl is run on a VMS
system that has X11 support installed.

To use the forked debugger, you need to have the default display set to an X-11 Server
and some environment variables set that Unix expects.

The forked debugger requires the environment variable TERM to be xterm, and the envi-
ronment variable DISPLAY to exist. xterm must be in lower case.

$define TERM "xterm"

$define DISPLAY "hostname:0.0"

Currently the value of DISPLAY is ignored. It is recommended that it be set to be the
hostname of the display, the server and screen in Unix notation. In the future the value of
DISPLAY may be honored by Perl instead of using the default display.

It may be helpful to always use the forked debugger so that script I/O is separated from
debugger I/O. You can force the debugger to be forked by assigning a value to the logical
name <PERLDB PIDS> that is not a process identification number.

$define PERLDB_PIDS XXXX

87.8 PERL VMS EXCEPTION DEBUG

The PERL VMS EXCEPTION DEBUG being defined as "ENABLE" will cause the VMS
debugger to be invoked if a fatal exception that is not otherwise handled is raised. The
purpose of this is to allow debugging of internal Perl problems that would cause such a
condition.

This allows the programmer to look at the execution stack and variables to find out the
cause of the exception. As the debugger is being invoked as the Perl interpreter is about to
do a fatal exit, continuing the execution in debug mode is usually not practical.

Starting Perl in the VMS debugger may change the program execution profile in a way
that such problems are not reproduced.

The kill function can be used to test this functionality from within a program.

In typical VMS style, only the first letter of the value of this logical name is actually
checked in a case insensitive mode, and it is considered enabled if it is the value "T","1"
or "E".

This logical name must be defined before Perl is started.

87.9 Command line

87.9.1 I/O redirection and backgrounding

Perl for VMS supports redirection of input and output on the command line, using a subset
of Bourne shell syntax:

• <file reads stdin from file,

• >file writes stdout to file,

• >>file appends stdout to file,

• 2>file writes stderr to file,

• 2>>file appends stderr to file, and

• 2>&1 redirects stderr to stdout.

In addition, output may be piped to a subprocess, using the character ’|’. Anything after
this character on the command line is passed to a subprocess for execution; the subprocess
takes the output of Perl as its input.

Finally, if the command line ends with ’&’, the entire command is run in the background
as an asynchronous subprocess.

87.9.2 Command line switches

The following command line switches behave differently under VMS than described in
Section 69.1 [perlrun NAME], page 1176. Note also that in order to pass uppercase switches
to Perl, you need to enclose them in double-quotes on the command line, since the CRTL
downcases all unquoted strings.

On newer 64 bit versions of OpenVMS, a process setting now controls if the quoting is
needed to preserve the case of command line arguments.

-i

If the -i switch is present but no extension for a backup copy is given, then
inplace editing creates a new version of a file; the existing copy is not deleted.
(Note that if an extension is given, an existing file is renamed to the backup
file, as is the case under other operating systems, so it does not remain as a
previous version under the original filename.)

-S

If the "-S" or -"S" switch is present and the script name does not contain
a directory, then Perl translates the logical name DCL$PATH as a searchlist,
using each translation as a directory in which to look for the script. In addition,
if no file type is specified, Perl looks in each directory for a file matching the
name specified, with a blank type, a type of .pl, and a type of .com, in that
order.

-u

The -u switch causes the VMS debugger to be invoked after the Perl program
is compiled, but before it has run. It does not create a core dump file.

87.10 Perl functions

As of the time this document was last revised, the following Perl functions were implemented
in the VMS port of Perl (functions marked with * are discussed in more detail below):

file tests*, abs, alarm, atan, backticks*, binmode*, bless,

caller, chdir, chmod, chown, chomp, chop, chr,

close, closedir, cos, crypt*, defined, delete, die, do, dump*,

each, endgrent, endpwent, eof, eval, exec*, exists, exit, exp,

fileno, flock getc, getgrent*, getgrgid*, getgrnam, getlogin,

getppid, getpwent*, getpwnam*, getpwuid*, glob, gmtime*, goto,

grep, hex, ioctl, import, index, int, join, keys, kill*,

last, lc, lcfirst, lchown*, length, link*, local, localtime, log,

lstat, m//, map, mkdir, my, next, no, oct, open, opendir, ord,

pack, pipe, pop, pos, print, printf, push, q//, qq//, qw//,

qx//*, quotemeta, rand, read, readdir, readlink*, redo, ref,

rename, require, reset, return, reverse, rewinddir, rindex,

rmdir, s///, scalar, seek, seekdir, select(internal),

select (system call)*, setgrent, setpwent, shift, sin, sleep,

socketpair, sort, splice, split, sprintf, sqrt, srand, stat,

study, substr, symlink*, sysread, system*, syswrite, tell,

telldir, tie, time, times*, tr///, uc, ucfirst, umask,

undef, unlink*, unpack, untie, unshift, use, utime*,

values, vec, wait, waitpid*, wantarray, warn, write, y///

The following functions were not implemented in the VMS port, and calling them pro-
duces a fatal error (usually) or undefined behavior (rarely, we hope):

chroot, dbmclose, dbmopen, fork*, getpgrp, getpriority,

msgctl, msgget, msgsend, msgrcv, semctl,

semget, semop, setpgrp, setpriority, shmctl, shmget,

shmread, shmwrite, syscall

The following functions are available on Perls compiled with Dec C 5.2 or greater and
running VMS 7.0 or greater:

truncate

The following functions are available on Perls built on VMS 7.2 or greater:

fcntl (without locking)

The following functions may or may not be implemented, depending on what type of
socket support you’ve built into your copy of Perl:

accept, bind, connect, getpeername,

gethostbyname, getnetbyname, getprotobyname,

getservbyname, gethostbyaddr, getnetbyaddr,

getprotobynumber, getservbyport, gethostent,

getnetent, getprotoent, getservent, sethostent,

setnetent, setprotoent, setservent, endhostent,

endnetent, endprotoent, endservent, getsockname,

getsockopt, listen, recv, select(system call)*,

send, setsockopt, shutdown, socket

The following function is available on Perls built on 64 bit OpenVMS v8.2 with hard
links enabled on an ODS-5 formatted build disk. CRTL support is in principle available as
of OpenVMS v7.3-1, and better configuration support could detect this.

link

The following functions are available on Perls built on 64 bit OpenVMS v8.2 and later.
CRTL support is in principle available as of OpenVMS v7.3-2, and better configuration
support could detect this.

getgrgid, getgrnam, getpwnam, getpwuid,

setgrent, ttyname

The following functions are available on Perls built on 64 bit OpenVMS v8.2 and later.

statvfs, socketpair

File tests

The tests -b, -B, -c, -C, -d, -e, -f, -o, -M, -s, -S, -t, -T, and -z work as
advertised. The return values for -r, -w, and -x tell you whether you can
actually access the file; this may not reflect the UIC-based file protections.
Since real and effective UIC don’t differ under VMS, -O, -R, -W, and -X are
equivalent to -o, -r, -w, and -x. Similarly, several other tests, including -A,
-g, -k, -l, -p, and -u, aren’t particularly meaningful under VMS, and the
values returned by these tests reflect whatever your CRTL stat() routine does
to the equivalent bits in the st mode field. Finally, -d returns true if passed
a device specification without an explicit directory (e.g. DUA1:), as well as if
passed a directory.

There are DECC feature logical names AND ODS-5 volume attributes that also
control what values are returned for the date fields.

Note: Some sites have reported problems when using the file-access tests (-r,
-w, and -x) on files accessed via DEC’s DFS. Specifically, since DFS does not
currently provide access to the extended file header of files on remote volumes,
attempts to examine the ACL fail, and the file tests will return false, with $!

indicating that the file does not exist. You can use stat on these files, since
that checks UIC-based protection only, and then manually check the appropriate
bits, as defined by your C compiler’s stat.h, in the mode value it returns, if
you need an approximation of the file’s protections.

backticks

Backticks create a subprocess, and pass the enclosed string to it for execution
as a DCL command. Since the subprocess is created directly via lib$spawn(),
any valid DCL command string may be specified.

binmode FILEHANDLE
The binmode operator will attempt to insure that no translation of carriage
control occurs on input from or output to this filehandle. Since this involves
reopening the file and then restoring its file position indicator, if this function
returns FALSE, the underlying filehandle may no longer point to an open file,
or may point to a different position in the file than before binmode was called.

Note that binmode is generally not necessary when using normal filehandles; it
is provided so that you can control I/O to existing record-structured files when
necessary. You can also use the vmsfopen function in the VMS::Stdio extension
to gain finer control of I/O to files and devices with different record structures.

crypt PLAINTEXT, USER
The crypt operator uses the sys$hash_password system service to generate
the hashed representation of PLAINTEXT. If USER is a valid username, the
algorithm and salt values are taken from that user’s UAF record. If it is not,

then the preferred algorithm and a salt of 0 are used. The quadword encrypted
value is returned as an 8-character string.

The value returned by crypt may be compared against the encrypted password
from the UAF returned by the getpw* functions, in order to authenticate users.
If you’re going to do this, remember that the encrypted password in the UAF
was generated using uppercase username and password strings; you’ll have to
upcase the arguments to crypt to insure that you’ll get the proper value:

sub validate_passwd {

my($user,$passwd) = @_;

my($pwdhash);

if (!($pwdhash = (getpwnam($user))[1]) ||

$pwdhash ne crypt("\U$passwd","\U$name")) {

intruder_alert($name);

}

return 1;

}

die

die will force the native VMS exit status to be an SS$ ABORT code if neither
of the $! or $? status values are ones that would cause the native status to
be interpreted as being what VMS classifies as SEVERE ERROR severity for
DCL error handling.

When PERL_VMS_POSIX_EXIT is active (see [$?], page 1424 below), the native
VMS exit status value will have either one of the $! or $? or $^E or the Unix
value 255 encoded into it in a way that the effective original value can be
decoded by other programs written in C, including Perl and the GNV package.
As per the normal non-VMS behavior of die if either $! or $? are non-zero,
one of those values will be encoded into a native VMS status value. If both
of the Unix status values are 0, and the $^E value is set one of ERROR or
SEVERE ERROR severity, then the $^E value will be used as the exit code
as is. If none of the above apply, the Unix value of 255 will be encoded into a
native VMS exit status value.

Please note a significant difference in the behavior of die in the PERL_VMS_

POSIX_EXIT mode is that it does not force a VMS SEVERE ERROR status
on exit. The Unix exit values of 2 through 255 will be encoded in VMS status
values with severity levels of SUCCESS. The Unix exit value of 1 will be encoded
in a VMS status value with a severity level of ERROR. This is to be compatible
with how the VMS C library encodes these values.

The minimum severity level set by die in PERL_VMS_POSIX_EXIT mode may
be changed to be ERROR or higher in the future depending on the results of
testing and further review.

See [$?], page 1424 for a description of the encoding of the Unix value to produce
a native VMS status containing it.

dump

Rather than causing Perl to abort and dump core, the dump operator invokes
the VMS debugger. If you continue to execute the Perl program under the

debugger, control will be transferred to the label specified as the argument to
dump, or, if no label was specified, back to the beginning of the program. All
other state of the program (e.g. values of variables, open file handles) are not
affected by calling dump.

exec LIST

A call to exec will cause Perl to exit, and to invoke the command given as
an argument to exec via lib$do_command. If the argument begins with ’@’ or
’$’ (other than as part of a filespec), then it is executed as a DCL command.
Otherwise, the first token on the command line is treated as the filespec of an
image to run, and an attempt is made to invoke it (using .Exe and the process
defaults to expand the filespec) and pass the rest of exec’s argument to it as
parameters. If the token has no file type, and matches a file with null type,
then an attempt is made to determine whether the file is an executable image
which should be invoked using MCR or a text file which should be passed to DCL
as a command procedure.

fork

While in principle the fork operator could be implemented via (and with the
same rather severe limitations as) the CRTL vfork() routine, and while some
internal support to do just that is in place, the implementation has never been
completed, making fork currently unavailable. A true kernel fork() is ex-
pected in a future version of VMS, and the pseudo-fork based on interpreter
threads may be available in a future version of Perl on VMS (see Section 23.1
[perlfork NAME], page 337). In the meantime, use system, backticks, or piped
filehandles to create subprocesses.

getpwent

getpwnam

getpwuid

These operators obtain the information described in Section 25.1 [perlfunc
NAME], page 351, if you have the privileges necessary to retrieve the named
user’s UAF information via sys$getuai. If not, then only the $name, $uid, and
$gid items are returned. The $dir item contains the login directory in VMS
syntax, while the $comment item contains the login directory in Unix syntax.
The $gcos item contains the owner field from the UAF record. The $quota

item is not used.

gmtime

The gmtime operator will function properly if you have a working CRTL
gmtime() routine, or if the logical name SYS$TIMEZONE DIFFERENTIAL
is defined as the number of seconds which must be added to UTC to yield
local time. (This logical name is defined automatically if you are running a
version of VMS with built-in UTC support.) If neither of these cases is true, a
warning message is printed, and undef is returned.

kill

In most cases, kill is implemented via the undocumented system service
$SIGPRC, which has the same calling sequence as $FORCEX, but throws an ex-
ception in the target process rather than forcing it to call $EXIT. Generally
speaking, kill follows the behavior of the CRTL’s kill() function, but un-
like that function can be called from within a signal handler. Also, unlike the
kill in some versions of the CRTL, Perl’s kill checks the validity of the signal
passed in and returns an error rather than attempting to send an unrecognized
signal.

Also, negative signal values don’t do anything special under VMS; they’re just
converted to the corresponding positive value.

qx//

See the entry on backticks above.

select (system call)
If Perl was not built with socket support, the system call version of select is
not available at all. If socket support is present, then the system call version of
select functions only for file descriptors attached to sockets. It will not provide
information about regular files or pipes, since the CRTL select() routine does
not provide this functionality.

stat EXPR
Since VMS keeps track of files according to a different scheme than Unix, it’s
not really possible to represent the file’s ID in the st_dev and st_ino fields
of a struct stat. Perl tries its best, though, and the values it uses are pretty
unlikely to be the same for two different files. We can’t guarantee this, though,
so caveat scriptor.

system LIST
The system operator creates a subprocess, and passes its arguments to the
subprocess for execution as a DCL command. Since the subprocess is created
directly via lib$spawn(), any valid DCL command string may be specified. If
the string begins with ’@’, it is treated as a DCL command unconditionally.
Otherwise, if the first token contains a character used as a delimiter in file
specification (e.g. : or]), an attempt is made to expand it using a default type
of .Exe and the process defaults, and if successful, the resulting file is invoked
via MCR. This allows you to invoke an image directly simply by passing the
file specification to system, a common Unixish idiom. If the token has no file
type, and matches a file with null type, then an attempt is made to determine
whether the file is an executable image which should be invoked using MCR or a
text file which should be passed to DCL as a command procedure.

If LIST consists of the empty string, system spawns an interactive DCL sub-
process, in the same fashion as typing SPAWN at the DCL prompt.

Perl waits for the subprocess to complete before continuing execution in the
current process. As described in Section 25.1 [perlfunc NAME], page 351, the
return value of system is a fake "status" which follows POSIX semantics unless
the pragma use vmsish ’status’ is in effect; see the description of $? in this
document for more detail.

time

The value returned by time is the offset in seconds from 01-JAN-1970 00:00:00
(just like the CRTL’s times() routine), in order to make life easier for code
coming in from the POSIX/Unix world.

times

The array returned by the times operator is divided up according to the same
rules the CRTL times() routine. Therefore, the "system time" elements will
always be 0, since there is no difference between "user time" and "system"

time under VMS, and the time accumulated by a subprocess may or may not
appear separately in the "child time" field, depending on whether times()

keeps track of subprocesses separately. Note especially that the VAXCRTL (at
least) keeps track only of subprocesses spawned using fork() and exec(); it
will not accumulate the times of subprocesses spawned via pipes, system(), or
backticks.

unlink LIST
unlink will delete the highest version of a file only; in order to delete all versions,
you need to say

1 while unlink LIST;

You may need to make this change to scripts written for a Unix system which
expect that after a call to unlink, no files with the names passed to unlink

will exist. (Note: This can be changed at compile time; if you use Config and
$Config{’d_unlink_all_versions’} is define, then unlink will delete all
versions of a file on the first call.)

unlink will delete a file if at all possible, even if it requires changing file pro-
tection (though it won’t try to change the protection of the parent directory).
You can tell whether you’ve got explicit delete access to a file by using the
VMS::Filespec::candelete operator. For instance, in order to delete only
files to which you have delete access, you could say something like

sub safe_unlink {

my($file,$num);

foreach $file (@_) {

next unless VMS::Filespec::candelete($file);

$num += unlink $file;

}

$num;

}

(or you could just use VMS::Stdio::remove, if you’ve installed the VMS::Stdio
extension distributed with Perl). If unlink has to change the file protection to
delete the file, and you interrupt it in midstream, the file may be left intact,
but with a changed ACL allowing you delete access.

This behavior of unlink is to be compatible with POSIX behavior and not
traditional VMS behavior.

utime LIST
This operator changes only the modification time of the file (VMS revision
date) on ODS-2 volumes and ODS-5 volumes without access dates enabled. On
ODS-5 volumes with access dates enabled, the true access time is modified.

waitpid PID,FLAGS
If PID is a subprocess started by a piped open() (see open), waitpid will
wait for that subprocess, and return its final status value in $?. If PID is a
subprocess created in some other way (e.g. SPAWNed before Perl was invoked),
waitpid will simply check once per second whether the process has completed,
and return when it has. (If PID specifies a process that isn’t a subprocess of
the current process, and you invoked Perl with the -w switch, a warning will be
issued.)

Returns PID on success, -1 on error. The FLAGS argument is ignored in all
cases.

87.11 Perl variables

The following VMS-specific information applies to the indicated "special" Perl variables,
in addition to the general information in Section 86.1 [perlvar NAME], page 1375. Where
there is a conflict, this information takes precedence.

%ENV

The operation of the %ENV array depends on the translation of the logical name
PERL_ENV_TABLES. If defined, it should be a search list, each element of which
specifies a location for %ENV elements. If you tell Perl to read or set the element
$ENV{name}, then Perl uses the translations of PERL_ENV_TABLES as follows:

CRTL ENV
This string tells Perl to consult the CRTL’s internal environ array
of key-value pairs, using name as the key. In most cases, this con-
tains only a few keys, but if Perl was invoked via the C exec[lv]e()

function, as is the case for some embedded Perl applications or when
running under a shell such as GNV bash, the environ array may
have been populated by the calling program.

CLISYM [LOCAL]
A string beginning with CLISYM_tells Perl to consult the CLI’s sym-
bol tables, using name as the name of the symbol. When reading an
element of %ENV, the local symbol table is scanned first, followed by
the global symbol table.. The characters following CLISYM_ are sig-
nificant when an element of %ENV is set or deleted: if the complete
string is CLISYM_LOCAL, the change is made in the local symbol
table; otherwise the global symbol table is changed.

Any other string
If an element of PERL_ENV_TABLES translates to any other string,
that string is used as the name of a logical name table, which is
consulted using name as the logical name. The normal search order
of access modes is used.

PERL_ENV_TABLES is translated once when Perl starts up; any changes you make
while Perl is running do not affect the behavior of %ENV. If PERL_ENV_TABLES
is not defined, then Perl defaults to consulting first the logical name tables
specified by LNM$FILE_DEV, and then the CRTL environ array. This default
order is reversed when the logical name GNV$UNIX_SHELL is defined, such as
when running under GNV bash.

In all operations on %ENV, the key string is treated as if it were entirely
uppercase, regardless of the case actually specified in the Perl expression.

When an element of %ENV is read, the locations to which PERL_ENV_TABLES

points are checked in order, and the value obtained from the first successful
lookup is returned. If the name of the %ENV element contains a semi-colon, it
and any characters after it are removed. These are ignored when the CRTL
environ array or a CLI symbol table is consulted. However, the name is looked
up in a logical name table, the suffix after the semi-colon is treated as the
translation index to be used for the lookup. This lets you look up successive
values for search list logical names. For instance, if you say

$ Define STORY once,upon,a,time,there,was

$ perl -e "for ($i = 0; $i <= 6; $i++) " -

_$ -e "{ print $ENV{’story;’.$i},’ ’}"

Perl will print ONCE UPON A TIME THERE WAS, assuming, of course, that PERL_

ENV_TABLES is set up so that the logical name story is found, rather than a
CLI symbol or CRTL environ element with the same name.

When an element of %ENV is set to a defined string, the corresponding definition
is made in the location to which the first translation of PERL_ENV_TABLES points.
If this causes a logical name to be created, it is defined in supervisor mode.
(The same is done if an existing logical name was defined in executive or kernel
mode; an existing user or supervisor mode logical name is reset to the new
value.) If the value is an empty string, the logical name’s translation is defined
as a single NUL (ASCII \0) character, since a logical name cannot translate to
a zero-length string. (This restriction does not apply to CLI symbols or CRTL
environ values; they are set to the empty string.)

When an element of %ENV is set to undef, the element is looked up as if it
were being read, and if it is found, it is deleted. (An item "deleted" from the
CRTL environ array is set to the empty string.) Using delete to remove an
element from %ENV has a similar effect, but after the element is deleted, another
attempt is made to look up the element, so an inner-mode logical name or a
name in another location will replace the logical name just deleted. In either
case, only the first value found searching PERL ENV TABLES is altered. It
is not possible at present to define a search list logical name via %ENV.

The element $ENV{DEFAULT} is special: when read, it returns Perl’s current
default device and directory, and when set, it resets them, regardless of the
definition of PERL_ENV_TABLES. It cannot be cleared or deleted; attempts to do
so are silently ignored.

Note that if you want to pass on any elements of the C-local environ array to a
subprocess which isn’t started by fork/exec, or isn’t running a C program, you

can "promote" them to logical names in the current process, which will then
be inherited by all subprocesses, by saying

foreach my $key (qw[C-local keys you want promoted]) {

my $temp = $ENV{$key}; # read from C-local array

$ENV{$key} = $temp; # and define as logical name

}

(You can’t just say $ENV{$key} = $ENV{$key}, since the Perl optimizer is smart
enough to elide the expression.)

Don’t try to clear %ENV by saying %ENV = ();, it will throw a fatal error. This
is equivalent to doing the following from DCL:

DELETE/LOGICAL *

You can imagine how bad things would be if, for example, the SYS$MANAGER
or SYS$SYSTEM logical names were deleted.

At present, the first time you iterate over %ENV using keys, or values, you
will incur a time penalty as all logical names are read, in order to fully populate
%ENV. Subsequent iterations will not reread logical names, so they won’t be
as slow, but they also won’t reflect any changes to logical name tables caused
by other programs.

You do need to be careful with the logical names representing process-
permanent files, such as SYS$INPUT and SYS$OUTPUT. The translations for
these logical names are prepended with a two-byte binary value (0x1B 0x00)
that needs to be stripped off if you want to use it. (In previous versions of
Perl it wasn’t possible to get the values of these logical names, as the null byte
acted as an end-of-string marker)

$!

The string value of $! is that returned by the CRTL’s strerror() function, so it
will include the VMS message for VMS-specific errors. The numeric value of $!
is the value of errno, except if errno is EVMSERR, in which case $! contains
the value of vaxc$errno. Setting $! always sets errno to the value specified. If
this value is EVMSERR, it also sets vaxc$errno to 4 (NONAME-F-NOMSG),
so that the string value of $! won’t reflect the VMS error message from before
$! was set.

$^E

This variable provides direct access to VMS status values in vaxc$errno, which
are often more specific than the generic Unix-style error messages in $!. Its nu-
meric value is the value of vaxc$errno, and its string value is the corresponding
VMS message string, as retrieved by sys$getmsg(). Setting $^E sets vaxc$errno
to the value specified.

While Perl attempts to keep the vaxc$errno value to be current, if errno is not
EVMSERR, it may not be from the current operation.

$?

The "status value" returned in $? is synthesized from the actual exit status of
the subprocess in a way that approximates POSIX wait(5) semantics, in order to

allow Perl programs to portably test for successful completion of subprocesses.
The low order 8 bits of $? are always 0 under VMS, since the termination status
of a process may or may not have been generated by an exception.

The next 8 bits contain the termination status of the program.

If the child process follows the convention of C programs compiled with the
POSIX EXIT macro set, the status value will contain the actual value of 0 to
255 returned by that program on a normal exit.

With the POSIX EXIT macro set, the Unix exit value of zero is represented
as a VMS native status of 1, and the Unix values from 2 to 255 are encoded by
the equation:

VMS_status = 0x35a000 + (unix_value * 8) + 1.

And in the special case of Unix value 1 the encoding is:

VMS_status = 0x35a000 + 8 + 2 + 0x10000000.

For other termination statuses, the severity portion of the subprocess’s exit
status is used: if the severity was success or informational, these bits are all 0;
if the severity was warning, they contain a value of 1; if the severity was error or
fatal error, they contain the actual severity bits, which turns out to be a value
of 2 for error and 4 for severe error. Fatal is another term for the severe error
status.

As a result, $? will always be zero if the subprocess’s exit status indicated
successful completion, and non-zero if a warning or error occurred or a program
compliant with encoding POSIX EXIT values was run and set a status.

How can you tell the difference between a non-zero status that is the
result of a VMS native error status or an encoded Unix status? You can
not unless you look at the ${^CHILD ERROR NATIVE} value. The
${^CHILD ERROR NATIVE} value returns the actual VMS status value and
check the severity bits. If the severity bits are equal to 1, then if the numeric
value for $? is between 2 and 255 or 0, then $? accurately reflects a value
passed back from a Unix application. If $? is 1, and the severity bits indicate
a VMS error (2), then $? is from a Unix application exit value.

In practice, Perl scripts that call programs that return POSIX EXIT type
status values will be expecting those values, and programs that call traditional
VMS programs will either be expecting the previous behavior or just checking
for a non-zero status.

And success is always the value 0 in all behaviors.

When the actual VMS termination status of the child is an error, internally
the $! value will be set to the closest Unix errno value to that error so that
Perl scripts that test for error messages will see the expected Unix style error
message instead of a VMS message.

Conversely, when setting $? in an END block, an attempt is made to convert
the POSIX value into a native status intelligible to the operating system upon
exiting Perl. What this boils down to is that setting $? to zero results in the
generic success value SS$ NORMAL, and setting $? to a non-zero value results
in the generic failure status SS$ ABORT. See also [perlport exit], page 973.

With the PERL_VMS_POSIX_EXIT logical name defined as "ENABLE", setting
$? will cause the new value to be encoded into $^E so that either the original
parent or child exit status values 0 to 255 can be automatically recovered by C
programs expecting POSIX EXIT behavior. If both a parent and a child exit
value are non-zero, then it will be assumed that this is actually a VMS native
status value to be passed through. The special value of 0xFFFF is almost a
NOOP as it will cause the current native VMS status in the C library to become
the current native Perl VMS status, and is handled this way as it is known to
not be a valid native VMS status value. It is recommend that only values in
the range of normal Unix parent or child status numbers, 0 to 255 are used.

The pragma use vmsish ’status’ makes $? reflect the actual VMS exit status
instead of the default emulation of POSIX status described above. This pragma
also disables the conversion of non-zero values to SS$ ABORT when setting $?

in an END block (but zero will still be converted to SS$ NORMAL).

Do not use the pragma use vmsish ’status’ with PERL_VMS_POSIX_EXIT en-
abled, as they are at times requesting conflicting actions and the consequence
of ignoring this advice will be undefined to allow future improvements in the
POSIX exit handling.

In general, with PERL_VMS_POSIX_EXIT enabled, more detailed information will
be available in the exit status for DCL scripts or other native VMS tools, and
will give the expected information for Posix programs. It has not been made
the default in order to preserve backward compatibility.

N.B. Setting DECC$FILENAME_UNIX_REPORT implicitly enables PERL_VMS_

POSIX_EXIT.

$|

Setting $| for an I/O stream causes data to be flushed all the way to disk on
each write (i.e. not just to the underlying RMS buffers for a file). In other
words, it’s equivalent to calling fflush() and fsync() from C.

87.12 Standard modules with VMS-specific differences

87.12.1 SDBM File

SDBM File works properly on VMS. It has, however, one minor difference. The database
directory file created has a .sdbm_dir extension rather than a .dir extension. .dir files are
VMS filesystem directory files, and using them for other purposes could cause unacceptable
problems.

87.13 Revision date

Please see the git repository for revision history.

87.14 AUTHOR

Charles Bailey bailey@cor.newman.upenn.edu Craig Berry craigberry@mac.com Dan Sug-
alski dan@sidhe.org John Malmberg wb8tyw@qsl.net

	perl
	NAME
	SYNOPSIS
	GETTING HELP
	Overview
	Tutorials
	Reference Manual
	Internals and C Language Interface
	Miscellaneous
	Language-Specific
	Platform-Specific
	Stubs for Deleted Documents

	DESCRIPTION
	AVAILABILITY
	ENVIRONMENT
	AUTHOR
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS
	NOTES

	perlapio
	NAME
	SYNOPSIS
	DESCRIPTION
	Co-existence with stdio
	"Fast gets" Functions
	Other Functions

	perlartistic
	NAME
	SYNOPSIS
	DESCRIPTION
	The "Artistic License"
	Preamble
	Definitions
	Conditions

	perlbook
	NAME
	DESCRIPTION
	The most popular books
	References
	Tutorials
	Task-Oriented
	Special Topics
	Free (as in beer) books
	Other interesting, non-Perl books
	A note on freshness
	Get your book listed

	perlboot
	NAME
	DESCRIPTION

	perlbot
	NAME
	DESCRIPTION

	perlcall
	NAME
	DESCRIPTION
	THE CALL_ FUNCTIONS
	FLAG VALUES
	G_VOID
	G_SCALAR
	G_ARRAY
	G_DISCARD
	G_NOARGS
	G_EVAL
	G_KEEPERR
	Determining the Context

	EXAMPLES
	No Parameters, Nothing Returned
	Passing Parameters
	Returning a Scalar
	Returning a List of Values
	Returning a List in a Scalar Context
	Returning Data from Perl via the Parameter List
	Using G_EVAL
	Using G_KEEPERR
	Using call_sv
	Using call_argv
	Using call_method
	Using GIMME_V
	Using Perl to Dispose of Temporaries
	Strategies for Storing Callback Context Information
	Alternate Stack Manipulation
	Creating and Calling an Anonymous Subroutine in C

	LIGHTWEIGHT CALLBACKS
	SEE ALSO
	AUTHOR
	DATE

	perlcheat
	NAME
	DESCRIPTION
	The sheet

	ACKNOWLEDGEMENTS
	AUTHOR
	SEE ALSO

	perlclib
	NAME
	DESCRIPTION
	Conventions
	File Operations
	File Input and Output
	File Positioning
	Memory Management and String Handling
	Character Class Tests
	stdlib.h functions
	Miscellaneous functions

	SEE ALSO

	perlcommunity
	NAME
	DESCRIPTION
	Where to Find the Community
	Mailing Lists and Newsgroups
	IRC
	Websites
	News sites
	Forums

	User Groups
	Workshops
	Hackathons
	Conventions
	Calendar of Perl Events

	AUTHOR

	perldata
	NAME
	DESCRIPTION
	Variable names
	Identifier parsing
	Context
	Scalar values
	Scalar value constructors
	Special floating point: infinity (Inf) and not-a-number (NaN)
	Version Strings
	Special Literals
	Barewords
	Array Interpolation

	List value constructors
	Subscripts
	Multi-dimensional array emulation
	Slices
	Key/Value Hash Slices
	Index/Value Array Slices

	Typeglobs and Filehandles

	SEE ALSO

	perldbmfilter
	NAME
	SYNOPSIS
	DESCRIPTION
	The Filter
	An Example: the NULL termination problem.
	Another Example: Key is a C int.

	SEE ALSO
	AUTHOR

	perldebguts
	NAME
	DESCRIPTION
	Debugger Internals
	Writing Your Own Debugger
	Environment Variables
	Debugger Internal Variables
	Debugger Customization Functions

	Frame Listing Output Examples
	Debugging Regular Expressions
	Compile-time Output
	Types of Nodes
	Run-time Output

	Debugging Perl Memory Usage
	Using $ENV{PERL_DEBUG_MSTATS}

	SEE ALSO

	perldebtut
	NAME
	DESCRIPTION
	use strict
	Looking at data and -w and v
	help
	Stepping through code
	Placeholder for a, w, t, T
	REGULAR EXPRESSIONS
	OUTPUT TIPS
	CGI
	GUIs
	SUMMARY
	SEE ALSO
	AUTHOR
	CONTRIBUTORS

	perldebug
	NAME
	DESCRIPTION
	The Perl Debugger
	Calling the Debugger
	Debugger Commands
	Configurable Options
	Debugger Input/Output
	Debugging Compile-Time Statements
	Debugger Customization
	Readline Support / History in the Debugger
	Editor Support for Debugging
	The Perl Profiler

	Debugging Regular Expressions
	Debugging Memory Usage
	SEE ALSO
	BUGS

	perldiag
	NAME
	DESCRIPTION
	SEE ALSO

	perldsc
	NAME
	DESCRIPTION
	REFERENCES
	COMMON MISTAKES
	CAVEAT ON PRECEDENCE
	WHY YOU SHOULD ALWAYS use strict
	DEBUGGING
	CODE EXAMPLES
	ARRAYS OF ARRAYS
	Declaration of an ARRAY OF ARRAYS
	Generation of an ARRAY OF ARRAYS
	Access and Printing of an ARRAY OF ARRAYS

	HASHES OF ARRAYS
	Declaration of a HASH OF ARRAYS
	Generation of a HASH OF ARRAYS
	Access and Printing of a HASH OF ARRAYS

	ARRAYS OF HASHES
	Declaration of an ARRAY OF HASHES
	Generation of an ARRAY OF HASHES
	Access and Printing of an ARRAY OF HASHES

	HASHES OF HASHES
	Declaration of a HASH OF HASHES
	Generation of a HASH OF HASHES
	Access and Printing of a HASH OF HASHES

	MORE ELABORATE RECORDS
	Declaration of MORE ELABORATE RECORDS
	Declaration of a HASH OF COMPLEX RECORDS
	Generation of a HASH OF COMPLEX RECORDS

	Database Ties
	SEE ALSO
	AUTHOR

	perldtrace
	NAME
	SYNOPSIS
	DESCRIPTION
	HISTORY
	PROBES
	EXAMPLES
	REFERENCES
	SEE ALSO
	AUTHORS

	perlebcdic
	NAME
	DESCRIPTION
	COMMON CHARACTER CODE SETS
	ASCII
	ISO 8859
	Latin 1 (ISO 8859-1)
	EBCDIC
	The 13 variant characters
	EBCDIC code sets recognized by Perl

	Unicode code points versus EBCDIC code points
	Unicode and UTF
	Using Encode

	SINGLE OCTET TABLES
	Table in hex, sorted in 1047 order

	IDENTIFYING CHARACTER CODE SETS
	CONVERSIONS
	utf8::unicode_to_native() and utf8::native_to_unicode()
	tr///
	iconv
	C RTL

	OPERATOR DIFFERENCES
	FUNCTION DIFFERENCES
	REGULAR EXPRESSION DIFFERENCES
	SOCKETS
	SORTING
	Ignore ASCII vs. EBCDIC sort differences.
	Use a sort helper function
	MONO CASE then sort data (for non-digits, non-underscore)
	Perform sorting on one type of platform only.

	TRANSFORMATION FORMATS
	URL decoding and encoding
	uu encoding and decoding
	Quoted-Printable encoding and decoding
	Caesarean ciphers

	Hashing order and checksums
	I18N AND L10N
	MULTI-OCTET CHARACTER SETS
	OS ISSUES
	OS/400
	OS/390, z/OS
	POSIX-BC?

	BUGS
	SEE ALSO
	REFERENCES
	HISTORY
	AUTHOR

	perlembed
	NAME
	DESCRIPTION
	PREAMBLE
	ROADMAP
	Compiling your C program
	Adding a Perl interpreter to your C program
	Calling a Perl subroutine from your C program
	Evaluating a Perl statement from your C program
	Performing Perl pattern matches and substitutions from your C program
	Fiddling with the Perl stack from your C program
	Maintaining a persistent interpreter
	Execution of END blocks
	$0 assignments
	Maintaining multiple interpreter instances
	Using Perl modules, which themselves use C libraries, from your C program
	Using embedded Perl with POSIX locales

	Hiding Perl_
	MORAL
	AUTHOR
	COPYRIGHT

	perlexperiment
	NAME
	DESCRIPTION
	Current experiments
	Accepted features
	Removed features

	SEE ALSO
	AUTHORS
	COPYRIGHT
	LICENSE

	perlfilter
	NAME
	DESCRIPTION
	CONCEPTS
	USING FILTERS
	WRITING A SOURCE FILTER
	WRITING A SOURCE FILTER IN C
	CREATING A SOURCE FILTER AS A SEPARATE EXECUTABLE
	WRITING A SOURCE FILTER IN PERL
	USING CONTEXT: THE DEBUG FILTER
	CONCLUSION
	LIMITATIONS
	THINGS TO LOOK OUT FOR
	REQUIREMENTS
	AUTHOR
	Copyrights

	perlfork
	NAME
	SYNOPSIS
	DESCRIPTION
	Behavior of other Perl features in forked pseudo-processes
	Resource limits
	Killing the parent process
	Lifetime of the parent process and pseudo-processes

	CAVEATS AND LIMITATIONS
	PORTABILITY CAVEATS
	BUGS
	AUTHOR
	SEE ALSO

	perlform
	NAME
	DESCRIPTION
	Text Fields
	Numeric Fields
	The Field @* for Variable-Width Multi-Line Text
	The Field ^* for Variable-Width One-line-at-a-time Text
	Specifying Values
	Using Fill Mode
	Suppressing Lines Where All Fields Are Void
	Repeating Format Lines
	Top of Form Processing
	Format Variables

	NOTES
	Footers
	Accessing Formatting Internals

	WARNINGS

	perlfunc
	NAME
	DESCRIPTION
	Perl Functions by Category
	Portability
	Alphabetical Listing of Perl Functions
	Non-function Keywords by Cross-reference
	perldata
	perlmod
	perlobj
	perlop
	perlsub
	perlsyn

	perlgit
	NAME
	DESCRIPTION
	CLONING THE REPOSITORY
	WORKING WITH THE REPOSITORY
	Finding out your status
	Patch workflow
	Committing your changes
	Sending patch emails
	A note on derived files
	Cleaning a working directory
	Bisecting
	Topic branches and rewriting history
	Grafts

	WRITE ACCESS TO THE GIT REPOSITORY
	Accepting a patch
	Committing to blead
	On merging and rebasing
	Committing to maintenance versions
	Merging from a branch via GitHub
	Using a smoke-me branch to test changes
	A note on camel and dromedary

	perlgpl
	NAME
	SYNOPSIS
	DESCRIPTION
	GNU GENERAL PUBLIC LICENSE

	perlguts
	NAME
	DESCRIPTION
	Variables
	Datatypes
	What is an "IV"?
	Working with SVs
	Offsets
	What's Really Stored in an SV?
	Working with AVs
	Working with HVs
	Hash API Extensions
	AVs, HVs and undefined values
	References
	Blessed References and Class Objects
	Creating New Variables
	Reference Counts and Mortality
	Stashes and Globs
	Double-Typed SVs
	Read-Only Values
	Copy on Write
	Magic Variables
	Assigning Magic
	Magic Virtual Tables
	Finding Magic
	Understanding the Magic of Tied Hashes and Arrays
	Localizing changes

	Subroutines
	XSUBs and the Argument Stack
	Autoloading with XSUBs
	Calling Perl Routines from within C Programs
	Putting a C value on Perl stack
	Scratchpads
	Scratchpads and recursion

	Memory Allocation
	Allocation
	Reallocation
	Moving

	PerlIO
	Compiled code
	Code tree
	Examining the tree
	Compile pass 1: check routines
	Compile pass 1a: constant folding
	Compile pass 2: context propagation
	Compile pass 3: peephole optimization
	Pluggable runops
	Compile-time scope hooks

	Examining internal data structures with the dump functions
	How multiple interpreters and concurrency are supported
	Background and PERL_IMPLICIT_CONTEXT
	So what happened to dTHR?
	How do I use all this in extensions?
	Should I do anything special if I call perl from multiple threads?
	Future Plans and PERL_IMPLICIT_SYS

	Internal Functions
	Formatted Printing of IVs, UVs, and NVs
	Pointer-To-Integer and Integer-To-Pointer
	Exception Handling
	Source Documentation
	Backwards compatibility

	Unicode Support
	What is Unicode, anyway?
	How can I recognise a UTF-8 string?
	How does UTF-8 represent Unicode characters?
	How does Perl store UTF-8 strings?
	How do I convert a string to UTF-8?
	How do I compare strings?
	Is there anything else I need to know?

	Custom Operators
	AUTHORS
	SEE ALSO

	perlhack
	NAME
	DESCRIPTION
	SUPER QUICK PATCH GUIDE
	BUG REPORTING
	PERL 5 PORTERS
	perl-changes mailing list
	#p5p on IRC

	GETTING THE PERL SOURCE
	Read access via Git
	Read access via the web
	Read access via rsync
	Write access via git

	PATCHING PERL
	Submitting patches
	Getting your patch accepted
	Patch style
	Commit message
	Comments, Comments, Comments
	Style
	Test suite

	Patching a core module
	Updating perldelta
	What makes for a good patch?
	Does the concept match the general goals of Perl?
	Where is the implementation?
	Backwards compatibility
	Could it be a module instead?
	Is the feature generic enough?
	Does it potentially introduce new bugs?
	How big is it?
	Does it preclude other desirable features?
	Is the implementation robust?
	Is the implementation generic enough to be portable?
	Is the implementation tested?
	Is there enough documentation?
	Is there another way to do it?
	Does it create too much work?
	Patches speak louder than words

	TESTING
	Special make test targets
	Parallel tests
	Running tests by hand
	Using t/harness for testing
	Other environment variables that may influence tests

	Performance testing

	MORE READING FOR GUTS HACKERS
	CPAN TESTERS AND PERL SMOKERS
	WHAT NEXT?
	"The Road goes ever on and on, down from the door where it began."
	Metaphoric Quotations

	AUTHOR

	perlhacktips
	NAME
	DESCRIPTION
	COMMON PROBLEMS
	Perl environment problems
	Portability problems
	Problematic System Interfaces
	Security problems

	DEBUGGING
	Poking at Perl
	Using a source-level debugger
	gdb macro support
	Dumping Perl Data Structures
	Using gdb to look at specific parts of a program
	Using gdb to look at what the parser/lexer are doing

	SOURCE CODE STATIC ANALYSIS
	lint, splint
	Coverity
	cpd (cut-and-paste detector)
	gcc warnings
	Warnings of other C compilers

	MEMORY DEBUGGERS
	valgrind
	AddressSanitizer

	PROFILING
	Gprof Profiling
	GCC gcov Profiling

	MISCELLANEOUS TRICKS
	PERL_DESTRUCT_LEVEL
	PERL_MEM_LOG
	DDD over gdb
	C backtrace
	Poison
	Read-only optrees
	When is a bool not a bool?
	The .i Targets

	AUTHOR

	perlhacktut
	NAME
	DESCRIPTION
	EXAMPLE OF A SIMPLE PATCH
	Writing the patch
	Testing the patch
	Documenting the patch
	Submit

	AUTHOR

	perlhist
	NAME
	DESCRIPTION
	INTRODUCTION
	THE KEEPERS OF THE PUMPKIN
	PUMPKIN?

	THE RECORDS
	SELECTED RELEASE SIZES
	SELECTED PATCH SIZES
	The patch-free era

	THE KEEPERS OF THE RECORDS

	perlinterp
	NAME
	DESCRIPTION
	ELEMENTS OF THE INTERPRETER
	Startup
	Parsing
	Optimization
	Running
	Exception handing
	INTERNAL VARIABLE TYPES

	OP TREES
	STACKS
	Argument stack
	Mark stack
	Save stack

	MILLIONS OF MACROS
	FURTHER READING

	perlintro
	NAME
	DESCRIPTION
	What is Perl?
	Running Perl programs
	Safety net
	Basic syntax overview
	Perl variable types
	Variable scoping
	Conditional and looping constructs
	Builtin operators and functions
	Files and I/O
	Regular expressions
	Writing subroutines
	OO Perl
	Using Perl modules

	AUTHOR

	perliol
	NAME
	SYNOPSIS
	DESCRIPTION
	History and Background
	Basic Structure
	Layers vs Disciplines
	Data Structures
	Functions and Attributes
	Per-instance Data
	Layers in action.
	Per-instance flag bits
	Methods in Detail
	Utilities
	Implementing PerlIO Layers
	Core Layers
	Extension Layers

	TODO

	perlipc
	NAME
	DESCRIPTION
	Signals
	Handling the SIGHUP Signal in Daemons
	Deferred Signals (Safe Signals)

	Named Pipes
	Using open() for IPC
	Filehandles
	Background Processes
	Complete Dissociation of Child from Parent
	Safe Pipe Opens
	Avoiding Pipe Deadlocks
	Bidirectional Communication with Another Process
	Bidirectional Communication with Yourself

	Sockets: Client/Server Communication
	Internet Line Terminators
	Internet TCP Clients and Servers
	Unix-Domain TCP Clients and Servers

	TCP Clients with IO::Socket
	A Simple Client
	A Webget Client
	Interactive Client with IO::Socket

	TCP Servers with IO::Socket
	UDP: Message Passing
	SysV IPC
	NOTES
	BUGS
	AUTHOR
	SEE ALSO

	perllexwarn
	NAME
	DESCRIPTION

	perllocale
	NAME
	DESCRIPTION
	WHAT IS A LOCALE
	PREPARING TO USE LOCALES
	USING LOCALES
	The "use locale" pragma
	The setlocale function
	Finding locales
	LOCALE PROBLEMS
	Testing for broken locales
	Temporarily fixing locale problems
	Permanently fixing locale problems
	Permanently fixing your system's locale configuration
	Fixing system locale configuration
	The localeconv function
	I18N::Langinfo

	LOCALE CATEGORIES
	Category LC_COLLATE: Collation
	Category LC_CTYPE: Character Types
	Category LC_NUMERIC: Numeric Formatting
	Category LC_MONETARY: Formatting of monetary amounts
	LC_TIME
	Other categories

	SECURITY
	ENVIRONMENT
	Examples

	NOTES
	String eval and LC_NUMERIC
	Backward compatibility
	I18N:Collate obsolete
	Sort speed and memory use impacts
	Freely available locale definitions
	I18n and l10n
	An imperfect standard

	Unicode and UTF-8
	BUGS
	Broken systems

	SEE ALSO
	HISTORY

	perllol
	NAME
	DESCRIPTION
	Declaration and Access of Arrays of Arrays
	Growing Your Own
	Access and Printing
	Slices

	SEE ALSO
	AUTHOR

	perlmod
	NAME
	DESCRIPTION
	Is this the document you were after?
	Packages
	Symbol Tables
	BEGIN, UNITCHECK, CHECK, INIT and END
	Perl Classes
	Perl Modules
	Making your module threadsafe

	SEE ALSO

	perlmodinstall
	NAME
	DESCRIPTION
	PREAMBLE

	PORTABILITY
	HEY
	AUTHOR
	COPYRIGHT

	perlmodstyle
	NAME
	INTRODUCTION
	QUICK CHECKLIST
	Before you start
	The API
	Stability
	Documentation
	Release considerations

	BEFORE YOU START WRITING A MODULE
	Has it been done before?
	Do one thing and do it well
	What's in a name?
	Get feedback before publishing

	DESIGNING AND WRITING YOUR MODULE
	To OO or not to OO?
	Designing your API
	Strictness and warnings
	Backwards compatibility
	Error handling and messages

	DOCUMENTING YOUR MODULE
	POD
	README, INSTALL, release notes, changelogs

	RELEASE CONSIDERATIONS
	Version numbering
	Pre-requisites
	Testing
	Packaging
	Licensing

	COMMON PITFALLS
	Reinventing the wheel
	Trying to do too much
	Inappropriate documentation

	SEE ALSO
	AUTHOR

	perlmroapi
	NAME
	DESCRIPTION
	Callbacks
	Caching
	Examples
	AUTHORS

	perlnewmod
	NAME
	DESCRIPTION
	Warning
	What should I make into a module?
	Step-by-step: Preparing the ground
	Step-by-step: Making the module
	Step-by-step: Distributing your module

	AUTHOR
	SEE ALSO

	perlnumber
	NAME
	SYNOPSIS
	DESCRIPTION
	Storing numbers
	Numeric operators and numeric conversions
	Flavors of Perl numeric operations
	AUTHOR
	SEE ALSO

	perlobj
	NAME
	DESCRIPTION
	An Object is Simply a Data Structure
	Objects Are Blessed; Variables Are Not

	A Class is Simply a Package
	A Method is Simply a Subroutine
	Method Invocation >>
	Inheritance
	How SUPER is Resolved
	Multiple Inheritance
	Method Resolution Order
	Method Resolution Caching

	Writing Constructors
	Attributes
	Writing Accessors

	An Aside About Smarter and Safer Code
	Method Call Variations
	Method Names as Strings
	Class Names as Strings
	Subroutine References as Methods
	Deferencing Method Call
	Method Calls on Filehandles

	Invoking Class Methods
	Indirect Object Syntax

	bless, blessed, and ref
	The UNIVERSAL Class
	AUTOLOAD
	Destructors
	Global Destruction

	Non-Hash Objects
	Inside-Out objects
	Pseudo-hashes

	SEE ALSO

	perlootut
	NAME
	DATE
	DESCRIPTION
	OBJECT-ORIENTED FUNDAMENTALS
	Object
	Class
	Blessing
	Constructor

	Methods
	Attributes
	Polymorphism
	Inheritance
	Overriding methods and method resolution

	Encapsulation
	Composition
	Roles
	When to Use OO

	PERL OO SYSTEMS
	Moose
	Moo

	Class::Accessor
	Class::Tiny
	Role::Tiny
	OO System Summary
	Other OO Systems

	CONCLUSION

	perlop
	NAME
	DESCRIPTION
	Operator Precedence and Associativity
	Terms and List Operators (Leftward)
	The Arrow Operator >>
	Auto-increment and Auto-decrement
	Exponentiation
	Symbolic Unary Operators
	Binding Operators
	Multiplicative Operators
	Additive Operators
	Shift Operators > >>>
	Named Unary Operators
	Relational Operators
	Equality Operators
	Smartmatch Operator
	Smartmatching of Objects

	Bitwise And
	Bitwise Or and Exclusive Or
	C-style Logical And
	C-style Logical Or
	Logical Defined-Or
	Range Operators
	Conditional Operator
	Assignment Operators
	Comma Operator
	List Operators (Rightward)
	Logical Not
	Logical And
	Logical or and Exclusive Or
	C Operators Missing From Perl
	Quote and Quote-like Operators
	Regexp Quote-Like Operators
	Quote-Like Operators
	Gory details of parsing quoted constructs
	I/O Operators
	Constant Folding
	No-ops
	Bitwise String Operators
	Integer Arithmetic
	Floating-point Arithmetic
	Bigger Numbers

	perlopentut
	NAME
	DESCRIPTION
	Opening Text Files
	Opening Text Files for Reading
	Opening Text Files for Writing

	Opening Binary Files
	Opening Pipes
	Low-level File Opens via sysopen
	SEE ALSO
	AUTHOR and COPYRIGHT

	perlpacktut
	NAME
	DESCRIPTION
	The Basic Principle
	Packing Text
	Packing Numbers
	Integers
	Unpacking a Stack Frame
	How to Eat an Egg on a Net
	Byte-order modifiers
	Floating point Numbers

	Exotic Templates
	Bit Strings
	Uuencoding
	Doing Sums
	Unicode
	Another Portable Binary Encoding

	Template Grouping
	Lengths and Widths
	String Lengths
	Dynamic Templates
	Counting Repetitions
	Intel HEX

	Packing and Unpacking C Structures
	The Alignment Pit
	Dealing with Endian-ness
	Alignment, Take 2
	Alignment, Take 3
	Pointers for How to Use Them

	Pack Recipes
	Funnies Section
	Authors

	perlperf
	NAME
	DESCRIPTION
	OVERVIEW
	ONE STEP SIDEWAYS
	ONE STEP FORWARD
	ANOTHER STEP SIDEWAYS

	GENERAL GUIDELINES
	BENCHMARKS
	Assigning and Dereferencing Variables.
	Search and replace or tr

	PROFILING TOOLS
	Devel::DProf
	Devel::Profiler
	Devel::SmallProf
	Devel::FastProf
	Devel::NYTProf

	SORTING
	LOGGING
	Logging if DEBUG (constant)

	POSTSCRIPT
	SEE ALSO
	PERLDOCS
	MAN PAGES
	MODULES
	URLS

	AUTHOR

	perlpod
	NAME
	DESCRIPTION
	Ordinary Paragraph
	Verbatim Paragraph
	Command Paragraph
	Formatting Codes
	The Intent
	Embedding Pods in Perl Modules
	Hints for Writing Pod

	SEE ALSO
	AUTHOR

	perlpodspec
	NAME
	DESCRIPTION
	Pod Definitions
	Pod Commands
	Pod Formatting Codes
	Notes on Implementing Pod Processors
	About L<...> Codes
	About =over...=back Regions
	About Data Paragraphs and "=begin/=end" Regions
	SEE ALSO
	AUTHOR

	perlpodstyle
	NAME
	DESCRIPTION
	SEE ALSO
	AUTHOR
	COPYRIGHT AND LICENSE

	perlpolicy
	NAME
	DESCRIPTION
	GOVERNANCE
	Perl 5 Porters

	MAINTENANCE AND SUPPORT
	BACKWARD COMPATIBILITY AND DEPRECATION
	Terminology

	MAINTENANCE BRANCHES
	Getting changes into a maint branch

	CONTRIBUTED MODULES
	A Social Contract about Artistic Control

	DOCUMENTATION
	STANDARDS OF CONDUCT
	CREDITS

	perlport
	NAME
	DESCRIPTION
	ISSUES
	Newlines
	Numbers endianness and Width
	Files and Filesystems
	System Interaction
	Command names versus file pathnames
	Networking
	Interprocess Communication (IPC)
	External Subroutines (XS)
	Standard Modules
	Time and Date
	Character sets and character encoding
	Internationalisation
	System Resources
	Security
	Style

	CPAN Testers
	PLATFORMS
	Unix
	DOS and Derivatives
	VMS
	VOS
	EBCDIC Platforms
	Acorn RISC OS
	Other perls

	FUNCTION IMPLEMENTATIONS
	Alphabetical Listing of Perl Functions

	Supported Platforms
	EOL Platforms
	(Perl 5.20)
	(Perl 5.14)
	(Perl 5.12)

	Supported Platforms (Perl 5.8)
	SEE ALSO
	AUTHORS / CONTRIBUTORS

	perlpragma
	NAME
	DESCRIPTION
	A basic example
	Key naming
	Implementation details

	perlre
	NAME
	DESCRIPTION
	Modifiers
	/x
	Character set modifiers
	/l
	/u
	/d
	/a (and /aa)
	Which character set modifier is in effect?
	Character set modifier behavior prior to Perl 5.14

	Regular Expressions
	Metacharacters
	Quantifiers
	Escape sequences
	Character Classes and other Special Escapes
	Assertions
	Capture groups

	Quoting metacharacters
	Extended Patterns
	Special Backtracking Control Verbs
	Backtracking
	Version 8 Regular Expressions
	Warning on \1 Instead of $1
	Repeated Patterns Matching a Zero-length Substring
	Combining RE Pieces
	Creating Custom RE Engines
	Embedded Code Execution Frequency
	PCRE/Python Support

	BUGS
	SEE ALSO

	perlreapi
	NAME
	DESCRIPTION
	Callbacks
	comp
	exec
	intuit
	checkstr
	free
	Numbered capture callbacks
	numbered_buff_FETCH
	numbered_buff_STORE
	numbered_buff_LENGTH

	Named capture callbacks
	named_buff
	named_buff_iter

	qr_package
	dupe
	op_comp

	The REGEXP structure
	engine
	mother_re
	extflags
	minlen minlenret
	gofs
	substrs
	nparens, lastparen, and lastcloseparen
	intflags
	pprivate
	swap
	offs
	precomp prelen
	paren_names
	substrs
	subbeg sublen saved_copy suboffset subcoffset
	wrapped wraplen
	seen_evals
	refcnt

	HISTORY
	AUTHORS
	LICENSE

	perlrebackslash
	NAME
	DESCRIPTION
	The backslash
	All the sequences and escapes
	Character Escapes
	Fixed characters
	Example
	Control characters
	Example
	Named or numbered characters and character sequences
	Example
	Octal escapes
	Examples (assuming an ASCII platform)
	Disambiguation rules between old-style octal escapes and backreferences
	Hexadecimal escapes
	Examples (assuming an ASCII platform)

	Modifiers
	Examples

	Character classes
	Unicode classes

	Referencing
	Absolute referencing
	Examples
	Relative referencing
	Examples
	Named referencing
	Examples

	Assertions
	Examples

	Misc
	Examples

	perlrecharclass
	NAME
	DESCRIPTION
	The dot
	Backslash sequences
	\N
	Digits
	Word characters
	Whitespace
	Unicode Properties
	Examples

	Bracketed Character Classes
	Special Characters Inside a Bracketed Character Class
	Character Ranges
	Negation
	Backslash Sequences
	POSIX Character Classes
	Negation of POSIX character classes
	[= =] and [. .]
	Examples
	Extended Bracketed Character Classes

	perlref
	NAME
	NOTE
	DESCRIPTION
	Making References
	Using References
	Circular References
	Symbolic references
	Not-so-symbolic references
	Pseudo-hashes: Using an array as a hash
	Function Templates

	WARNING
	Postfix Dereference Syntax
	Postfix Reference Slicing

	Assigning to References
	SEE ALSO

	perlreftut
	NAME
	DESCRIPTION
	Who Needs Complicated Data Structures?
	The Solution
	Syntax
	Making References
	Make Rule 1

	Using References
	Use Rule 1
	Use Rule 2

	An Example
	Arrow Rule

	Solution
	The Rest
	Summary
	Credits
	Distribution Conditions

	perlreguts
	NAME
	DESCRIPTION
	OVERVIEW
	A quick note on terms
	What is a regular expression engine?
	Structure of a Regexp Program
	High Level
	Regops
	What regop is next?

	Process Overview
	Compilation
	Parsing for size
	Parsing for construction
	Parse Call Graph and a Grammar
	Parsing complications
	Debug Output
	Peep-hole Optimisation and Analysis

	Execution
	Start position and no-match optimisations
	Program execution

	MISCELLANEOUS
	Unicode and Localisation Support
	Base Structures
	Perl's pprivate structure

	SEE ALSO
	AUTHOR
	LICENCE
	REFERENCES

	perlrepository
	NAME
	DESCRIPTION

	perlrequick
	NAME
	DESCRIPTION
	The Guide
	Simple word matching
	Using character classes
	Matching this or that
	Grouping things and hierarchical matching
	Extracting matches
	Matching repetitions
	More matching
	Search and replace
	The split operator
	use re 'strict'

	BUGS
	SEE ALSO
	AUTHOR AND COPYRIGHT
	Acknowledgments

	perlreref
	NAME
	DESCRIPTION
	OPERATORS
	SYNTAX
	ESCAPE SEQUENCES
	CHARACTER CLASSES
	ANCHORS
	QUANTIFIERS
	EXTENDED CONSTRUCTS
	VARIABLES
	FUNCTIONS
	TERMINOLOGY
	Titlecase
	Foldcase

	AUTHOR
	SEE ALSO
	THANKS

	perlretut
	NAME
	DESCRIPTION
	Part 1: The basics
	Simple word matching
	Using character classes
	Matching this or that
	Grouping things and hierarchical matching
	Extracting matches
	Backreferences
	Relative backreferences
	Named backreferences
	Alternative capture group numbering
	Position information
	Non-capturing groupings
	Matching repetitions
	Possessive quantifiers
	Building a regexp
	Using regular expressions in Perl
	Prohibiting substitution
	Global matching
	Search and replace
	The split function

	Part 2: Power tools
	More on characters, strings, and character classes
	Compiling and saving regular expressions
	Composing regular expressions at runtime
	Embedding comments and modifiers in a regular expression
	Looking ahead and looking behind
	Using independent subexpressions to prevent backtracking
	Conditional expressions
	Defining named patterns
	Recursive patterns
	A bit of magic: executing Perl code in a regular expression
	Backtracking control verbs
	Pragmas and debugging

	BUGS
	SEE ALSO
	AUTHOR AND COPYRIGHT
	Acknowledgments

	perlrun
	NAME
	SYNOPSIS
	DESCRIPTION
	#! and quoting on non-Unix systems
	Location of Perl
	Command Switches

	ENVIRONMENT

	perlsec
	NAME
	DESCRIPTION
	SECURITY VULNERABILITY CONTACT INFORMATION
	SECURITY MECHANISMS AND CONCERNS
	Taint mode
	Laundering and Detecting Tainted Data
	Switches On the "#!" Line
	Taint mode and @INC
	Cleaning Up Your Path
	Security Bugs
	Protecting Your Programs
	Unicode
	Algorithmic Complexity Attacks

	SEE ALSO

	perlsource
	NAME
	DESCRIPTION
	FINDING YOUR WAY AROUND
	C code
	Core modules
	Tests
	Documentation
	Hacking tools and documentation
	Build system
	AUTHORS
	MANIFEST

	perlstyle
	NAME
	DESCRIPTION

	perlsub
	NAME
	SYNOPSIS
	DESCRIPTION
	Signatures
	Private Variables via my()
	Persistent Private Variables
	Persistent variables via state()
	Persistent variables with closures

	Temporary Values via local()
	Grammatical note on local()
	Localization of special variables
	Localization of globs
	Localization of elements of composite types
	Localized deletion of elements of composite types

	Lvalue subroutines
	Lexical Subroutines
	state sub vs my sub
	our subroutines

	Passing Symbol Table Entries (typeglobs)
	When to Still Use local()
	Pass by Reference
	Prototypes
	Constant Functions
	Overriding Built-in Functions
	Autoloading
	Subroutine Attributes

	SEE ALSO

	perlsyn
	NAME
	DESCRIPTION
	Declarations
	Comments
	Simple Statements
	Truth and Falsehood
	Statement Modifiers
	Compound Statements
	Loop Control
	For Loops
	Foreach Loops
	Basic BLOCKs
	Switch Statements
	Goto
	The Ellipsis Statement
	PODs: Embedded Documentation
	Plain Old Comments (Not!)
	Experimental Details on given and when
	Breaking out
	Fall-through
	Return value
	Switching in a loop
	Differences from Perl 6

	perlthrtut
	NAME
	DESCRIPTION
	What Is A Thread Anyway?
	Threaded Program Models
	Boss/Worker
	Work Crew
	Pipeline

	What kind of threads are Perl threads?
	Thread-Safe Modules
	Thread Basics
	Basic Thread Support
	A Note about the Examples
	Creating Threads
	Waiting For A Thread To Exit
	Ignoring A Thread
	Process and Thread Termination

	Threads And Data
	Shared And Unshared Data
	Thread Pitfalls: Races

	Synchronization and control
	Controlling access: lock()
	A Thread Pitfall: Deadlocks
	Queues: Passing Data Around
	Semaphores: Synchronizing Data Access
	Basic semaphores
	Advanced Semaphores
	Waiting for a Condition
	Giving up control

	General Thread Utility Routines
	What Thread Am I In?
	Thread IDs
	Are These Threads The Same?
	What Threads Are Running?

	A Complete Example
	Different implementations of threads
	Performance considerations
	Process-scope Changes
	Thread-Safety of System Libraries
	Conclusion
	SEE ALSO
	Bibliography
	Introductory Texts
	OS-Related References
	Other References

	Acknowledgements
	AUTHOR
	Copyrights

	perltie
	NAME
	SYNOPSIS
	DESCRIPTION
	Tying Scalars
	Tying Arrays
	Tying Hashes
	Tying FileHandles
	UNTIE this
	The untie Gotcha

	SEE ALSO
	BUGS
	AUTHOR

	perltodo
	NAME
	DESCRIPTION

	perltooc
	NAME
	DESCRIPTION

	perltoot
	NAME
	DESCRIPTION

	perltrap
	NAME
	DESCRIPTION
	Awk Traps
	C/C++ Traps
	JavaScript Traps
	Sed Traps
	Shell Traps
	Perl Traps

	perlunicode
	NAME
	DESCRIPTION
	Important Caveats
	Byte and Character Semantics
	ASCII Rules versus Unicode Rules
	Extended Grapheme Clusters (Logical characters)
	Unicode Character Properties
	General_Category
	Bidirectional Character Types
	Scripts
	Use of the "Is" Prefix
	Blocks
	Other Properties

	User-Defined Character Properties
	User-Defined Case Mappings (for serious hackers only)
	Character Encodings for Input and Output
	Unicode Regular Expression Support Level
	Unicode Encodings
	Noncharacter code points
	Beyond Unicode code points
	Security Implications of Unicode
	Unicode in Perl on EBCDIC
	Locales
	When Unicode Does Not Happen
	The "Unicode Bug"
	Forcing Unicode in Perl (Or Unforcing Unicode in Perl)
	Using Unicode in XS
	Hacking Perl to work on earlier Unicode versions (for very serious hackers only)
	Porting code from perl-5.6.X

	BUGS
	Interaction with Extensions
	Speed

	SEE ALSO

	perlunifaq
	NAME
	Q and A
	perlunitut isn't really a Unicode tutorial, is it?
	What character encodings does Perl support?
	Which version of perl should I use?
	What about binary data, like images?
	When should I decode or encode?
	What if I don't decode?
	What if I don't encode?
	Is there a way to automatically decode or encode?
	What if I don't know which encoding was used?
	Can I use Unicode in my Perl sources?
	Data::Dumper doesn't restore the UTF8 flag; is it broken?
	Why do regex character classes sometimes match only in the ASCII range?
	Why do some characters not uppercase or lowercase correctly?
	How can I determine if a string is a text string or a binary string?
	How do I convert from encoding FOO to encoding BAR?
	What are decode_utf8 and encode_utf8?
	What is a "wide character"?

	INTERNALS
	What is "the UTF8 flag"?
	What about the use bytes pragma?
	What about the use encoding pragma?
	What is the difference between :encoding and :utf8?
	What's the difference between UTF-8 and utf8?
	I lost track; what encoding is the internal format really?

	AUTHOR
	SEE ALSO

	perluniintro
	NAME
	DESCRIPTION
	Unicode
	Perl's Unicode Support
	Perl's Unicode Model
	Unicode and EBCDIC
	Creating Unicode
	Earlier releases caveats

	Handling Unicode
	Legacy Encodings
	Unicode I/O
	Displaying Unicode As Text
	Special Cases
	Advanced Topics
	Miscellaneous
	Questions With Answers
	Hexadecimal Notation
	Further Resources

	UNICODE IN OLDER PERLS
	SEE ALSO
	ACKNOWLEDGMENTS
	AUTHOR, COPYRIGHT, AND LICENSE

	perlunitut
	NAME
	DESCRIPTION
	Definitions
	Unicode
	UTF-8
	Text strings (character strings)
	Binary strings (byte strings)
	Encoding
	Decoding
	Internal format

	Your new toolkit
	I/O flow (the actual 5 minute tutorial)

	SUMMARY
	Q and A (or FAQ)
	ACKNOWLEDGEMENTS
	AUTHOR
	SEE ALSO

	perlutil
	NAME
	DESCRIPTION
	LIST OF UTILITIES
	Documentation
	Converters
	Administration
	Development
	General tools
	Installation

	SEE ALSO

	perlvar
	NAME
	DESCRIPTION
	The Syntax of Variable Names

	SPECIAL VARIABLES
	General Variables
	Variables related to regular expressions
	Performance issues

	Variables related to filehandles
	Variables related to formats

	Error Variables
	Variables related to the interpreter state
	Deprecated and removed variables

	perlvms
	NAME
	DESCRIPTION
	Installation
	Organization of Perl Images
	Core Images
	Perl Extensions
	Installing static extensions
	Installing dynamic extensions

	File specifications
	Syntax
	Filename Case
	Symbolic Links
	Wildcard expansion
	Pipes

	PERL5LIB and PERLLIB
	The Perl Forked Debugger
	PERL_VMS_EXCEPTION_DEBUG
	Command line
	I/O redirection and backgrounding
	Command line switches

	Perl functions
	Perl variables
	Standard modules with VMS-specific differences
	SDBM_File

	Revision date
	AUTHOR

