
The GNU C Reference Manual

Trevis Rothwell
James Youngman

Copyright c© 2007-2015 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts and no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License.”

i

Table of Contents

Preface . 1
Credits . 1

1 Lexical Elements . 2
1.1 Identifiers . 2
1.2 Keywords . 2
1.3 Constants . 2

1.3.1 Integer Constants . 3
1.3.2 Character Constants . 3
1.3.3 Real Number Constants . 4
1.3.4 String Constants . 5

1.4 Operators . 6
1.5 Separators . 6
1.6 White Space . 6

2 Data Types . 8
2.1 Primitive Data Types . 8

2.1.1 Integer Types . 8
2.1.2 Real Number Types . 9
2.1.3 Complex Number Types . 10

2.1.3.1 Standard Complex Number Types 10
2.1.3.2 GNU Extensions for Complex Number Types 11

2.2 Enumerations . 11
2.2.1 Defining Enumerations . 11
2.2.2 Declaring Enumerations . 12

2.3 Unions . 12
2.3.1 Defining Unions . 12
2.3.2 Declaring Union Variables . 13

2.3.2.1 Declaring Union Variables at Definition 13
2.3.2.2 Declaring Union Variables After Definition 13
2.3.2.3 Initializing Union Members . 13

2.3.3 Accessing Union Members . 14
2.3.4 Size of Unions . 14

2.4 Structures . 15
2.4.1 Defining Structures . 15
2.4.2 Declaring Structure Variables . 15

2.4.2.1 Declaring Structure Variables at Definition 15
2.4.2.2 Declaring Structure Variables After Definition 16
2.4.2.3 Initializing Structure Members . 16

2.4.3 Accessing Structure Members . 17
2.4.4 Bit Fields . 18
2.4.5 Size of Structures . 19

ii

2.5 Arrays . 19
2.5.1 Declaring Arrays . 19
2.5.2 Initializing Arrays . 20
2.5.3 Accessing Array Elements . 21
2.5.4 Multidimensional Arrays . 21
2.5.5 Arrays as Strings . 21
2.5.6 Arrays of Unions . 22
2.5.7 Arrays of Structures . 23

2.6 Pointers . 23
2.6.1 Declaring Pointers . 23
2.6.2 Initializing Pointers . 24
2.6.3 Pointers to Unions . 24
2.6.4 Pointers to Structures . 25

2.7 Incomplete Types . 25
2.8 Type Qualifiers . 26
2.9 Storage Class Specifiers . 26
2.10 Renaming Types . 27

3 Expressions and Operators 28
3.1 Expressions . 28
3.2 Assignment Operators . 28
3.3 Incrementing and Decrementing . 29
3.4 Arithmetic Operators . 30
3.5 Complex Conjugation . 32
3.6 Comparison Operators . 32
3.7 Logical Operators . 33
3.8 Bit Shifting . 33
3.9 Bitwise Logical Operators . 34
3.10 Pointer Operators . 35
3.11 The sizeof Operator . 35
3.12 Type Casts . 36
3.13 Array Subscripts . 37
3.14 Function Calls as Expressions . 37
3.15 The Comma Operator . 37
3.16 Member Access Expressions . 38
3.17 Conditional Expressions . 38
3.18 Statements and Declarations in Expressions 39
3.19 Operator Precedence . 40
3.20 Order of Evaluation . 41

3.20.1 Side Effects . 41
3.20.2 Sequence Points . 41
3.20.3 Sequence Points Constrain Expressions 42
3.20.4 Sequence Points and Signal Delivery . 44

iii

4 Statements . 45
4.1 Labels . 45
4.2 Expression Statements . 45
4.3 The if Statement . 45
4.4 The switch Statement . 47
4.5 The while Statement . 48
4.6 The do Statement . 49
4.7 The for Statement . 49
4.8 Blocks . 51
4.9 The Null Statement . 52
4.10 The goto Statement . 52
4.11 The break Statement . 53
4.12 The continue Statement . 53
4.13 The return Statement . 54
4.14 The typedef Statement . 54

5 Functions . 56
5.1 Function Declarations . 56
5.2 Function Definitions . 56
5.3 Calling Functions . 57
5.4 Function Parameters . 58
5.5 Variable Length Parameter Lists . 59
5.6 Calling Functions Through Function Pointers 60
5.7 The main Function . 61
5.8 Recursive Functions . 62
5.9 Static Functions . 62
5.10 Nested Functions . 63

6 Program Structure and Scope 64
6.1 Program Structure . 64
6.2 Scope . 64

7 A Sample Program . 66
7.1 hello.c . 66
7.2 system.h . 69

Appendix A Overflow . 71
A.1 Basics of Integer Overflow . 71
A.2 Examples of Code Assuming Wraparound Overflow 71
A.3 Optimizations That Break Wraparound Arithmetic 73
A.4 Practical Advice for Signed Overflow Issues 74
A.5 Signed Integer Division and Integer Overflow 75

GNU Free Documentation License 76

Index . 84

Preface 1

Preface

This is a reference manual for the C programming language as implemented by the GNU
Compiler Collection (GCC). Specifically, this manual aims to document:

• The 1989 ANSI C standard, commonly known as “C89”

• The 1999 ISO C standard, commonly known as “C99”, to the extent that C99 is
implemented by GCC

• The current state of GNU extensions to standard C

This manual describes C89 as its baseline. C99 features and GNU extensions are explicitly
labeled as such.

By default, GCC will compile code as C89 plus GNU-specific extensions. Much of C99
is supported; once full support is available, the default compilation dialect will be C99
plus GNU-specific extensions. (Some of the GNU extensions to C89 ended up, sometimes
slightly modified, as standard language features in C99.)

The C language includes a set of preprocessor directives, which are used for things
such as macro text replacement, conditional compilation, and file inclusion. Although
normally described in a C language manual, the GNU C preprocessor has been thoroughly
documented in The C Preprocessor, a separate manual which covers preprocessing for C,
C++, and Objective-C programs, so it is not included here.

Credits

Thanks to everyone who has helped with editing, proofreading, ideas, typesetting, and ad-
ministrivia, including: Diego Andres Alvarez Marin, Nelson H. F. Beebe, Karl Berry, Robert
Chassell, Hanfeng Chen, Antonio Diaz Diaz, Andreas Foerster, Denver Gingerich, Lisa
Goldstein, Robert Hansen, Jean-Christophe Helary, Mogens Hetsholm, Teddy Hogeborn,
Joe Humphries, J. Wren Hunt, Adam Johansen, Vladimir Kadlec, Benjamin Kagia, Dright
Kayorent, Sugun Kedambadi, Felix Lee, Bjorn Liencres, Steve Morningthunder, Aljosha
Papsch, Matthew Plant, Richard Stallman, J. Otto Tennant, Ole Tetlie, Keith Thomp-
son, T.F. Torrey, James Youngman, and Steve Zachar. Trevis Rothwell serves as project
maintainer and, along with James Youngman, wrote the bulk of the text.

Some example programs are based on algorithms in Donald Knuth’s The Art of Com-
puter Programming.

Please send bug reports and suggestions to gnu-c-manual@gnu.org.

mailto:gnu-c-manual@gnu.org

Chapter 1: Lexical Elements 2

1 Lexical Elements

This chapter describes the lexical elements that make up C source code after preprocessing.
These elements are called tokens. There are five types of tokens: keywords, identifiers,
constants, operators, and separators. White space, sometimes required to separate tokens,
is also described in this chapter.

1.1 Identifiers

Identifiers are sequences of characters used for naming variables, functions, new data types,
and preprocessor macros. You can include letters, decimal digits, and the underscore char-
acter ‘_’ in identifiers.

The first character of an identifier cannot be a digit.

Lowercase letters and uppercase letters are distinct, such that foo and FOO are two
different identifiers.

When using GNU extensions, you can also include the dollar sign character ‘$’ in iden-
tifiers.

1.2 Keywords

Keywords are special identifiers reserved for use as part of the programming language itself.
You cannot use them for any other purpose.

Here is a list of keywords recognized by ANSI C89:

auto break case char const continue default do double else enum extern

float for goto if int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

ISO C99 adds the following keywords:

inline _Bool _Complex _Imaginary

and GNU extensions add these keywords:

__FUNCTION__ __PRETTY_FUNCTION__ __alignof __alignof__ __asm

__asm__ __attribute __attribute__ __builtin_offsetof __builtin_va_arg

__complex __complex__ __const __extension__ __func__ __imag __imag__

__inline __inline__ __label__ __null __real __real__

__restrict __restrict__ __signed __signed__ __thread __typeof

__volatile __volatile__

In both ISO C99 and C89 with GNU extensions, the following is also recognized as a
keyword:

restrict

1.3 Constants

A constant is a literal numeric or character value, such as 5 or ‘m’. All constants are of a
particular data type; you can use type casting to explicitly specify the type of a constant,
or let the compiler use the default type based on the value of the constant.

Chapter 1: Lexical Elements 3

1.3.1 Integer Constants

An integer constant is a sequence of digits, with an optional prefix to denote a number base.

If the sequence of digits is preceded by 0x or 0X (zero x or zero X), then the constant is
considered to be hexadecimal (base 16). Hexadecimal values may use the digits from 0 to
9, as well as the letters a to f and A to F. Here are some examples:

0x2f

0x88

0xAB43

0xAbCd

0x1

If the first digit is 0 (zero), and the next character is not ‘x’ or ‘X’, then the constant is
considered to be octal (base 8). Octal values may only use the digits from 0 to 7; 8 and 9
are not allowed. Here are some examples:

057

012

03

0241

In all other cases, the sequence of digits is assumed to be decimal (base 10). Decimal
values may use the digits from 0 to 9. Here are some examples:

459

23901

8

12

There are various integer data types, for short integers, long integers, signed integers,
and unsigned integers. You can force an integer constant to be of a long and/or unsigned
integer type by appending a sequence of one or more letters to the end of the constant:

u

U Unsigned integer type.

l

L Long integer type.

For example, 45U is an unsigned int constant. You can also combine letters: 45UL is
an unsigned long int constant. (The letters may be used in any order.)

Both ISO C99 and GNU C extensions add the integer types long long int and unsigned

long long int. You can use two ‘L’s to get a long long int constant; add a ‘U’ to that
and you have an unsigned long long int constant. For example: 45ULL.

1.3.2 Character Constants

A character constant is usually a single character enclosed within single quotation marks,
such as ’Q’. A character constant is of type int by default.

Some characters, such as the single quotation mark character itself, cannot be represented
using only one character. To represent such characters, there are several “escape sequences”
that you can use:

\\ Backslash character.

Chapter 1: Lexical Elements 4

\? Question mark character.

\’ Single quotation mark.

\" Double quotation mark.

\a Audible alert.

\b Backspace character.

\e <ESC> character. (This is a GNU extension.)

\f Form feed.

\n Newline character.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\o, \oo, \ooo

Octal number.

\xh, \xhh, \xhhh, ...

Hexadecimal number.

To use any of these escape sequences, enclose the sequence in single quotes, and treat it
as if it were any other character. For example, the letter m is ’m’ and the newline character
is ’\n’.

The octal number escape sequence is the backslash character followed by one, two, or
three octal digits (0 to 7). For example, 101 is the octal equivalent of 65, which is the ASCII
character ’A’. Thus, the character constant ’\101’ is the same as the character constant
’A’.

The hexadecimal escape sequence is the backslash character, followed by x and an un-
limited number of hexadecimal digits (0 to 9, and a to f or A to F).

While the length of possible hexadecimal digit strings is unlimited, the number of char-
acter constants in any given character set is not. (The much-used extended ASCII character
set, for example, has only 256 characters in it.) If you try to use a hexadecimal value that
is outside the range of characters, you will get a compile-time error.

1.3.3 Real Number Constants

A real number constant is a value that represents a fractional (floating point) number. It
consists of a sequence of digits which represents the integer (or “whole”) part of the number,
a decimal point, and a sequence of digits which represents the fractional part.

Either the integer part or the fractional part may be omitted, but not both. Here are
some examples:

Chapter 1: Lexical Elements 5

double a, b, c, d, e, f;

a = 4.7;

b = 4.;

c = 4;

d = .7;

e = 0.7;

(In the third assignment statement, the integer constant 4 is automatically converted from
an integer value to a double value.)

Real number constants can also be followed by e or E, and an integer exponent. The
exponent can be either positive or negative.

double x, y;

x = 5e2; /* x is 5 * 100, or 500.0. */

y = 5e-2; /* y is 5 * (1/100), or 0.05. */

You can append a letter to the end of a real number constant to cause it to be of a
particular type. If you append the letter F (or f) to a real number constant, then its type
is float. If you append the letter L (or l), then its type is long double. If you do not
append any letters, then its type is double.

1.3.4 String Constants

A string constant is a sequence of zero or more characters, digits, and escape sequences
enclosed within double quotation marks. A string constant is of type “array of characters”.
All string constants contain a null termination character (\0) as their last character. Strings
are stored as arrays of characters, with no inherent size attribute. The null termination
character lets string-processing functions know where the string ends.

Adjacent string constants are concatenated (combined) into one string, with the null
termination character added to the end of the final concatenated string.

A string cannot contain double quotation marks, as double quotation marks are used to
enclose the string. To include the double quotation mark character in a string, use the \"

escape sequence. You can use any of the escape sequences that can be used as character
constants in strings. Here are some example of string constants:

/* This is a single string constant. */

"tutti frutti ice cream"

/* These string constants will be concatenated, same as above. */

"tutti " "frutti" " ice " "cream"

/* This one uses two escape sequences. */

"\"hello, world!\""

Chapter 1: Lexical Elements 6

If a string is too long to fit on one line, you can use a backslash \ to break it up onto
separate lines.

"Today’s special is a pastrami sandwich on rye bread with \

a potato knish and a cherry soda."

Adjacent strings are automatically concatenated, so you can also have string constants span
multiple lines by writing them as separate, adjacent, strings. For example:

"Tomorrow’s special is a corned beef sandwich on "

"pumpernickel bread with a kasha knish and seltzer water."

is the same as

"Tomorrow’s special is a corned beef sandwich on \

pumpernickel bread with a kasha knish and seltzer water."

To insert a newline character into the string, so that when the string is printed it will
be printed on two different lines, you can use the newline escape sequence ‘\n’.

printf ("potato\nknish");

prints

potato

knish

1.4 Operators

An operator is a special token that performs an operation, such as addition or subtraction,
on either one, two, or three operands. Full coverage of operators can be found in a later
chapter. See Chapter 3 [Expressions and Operators], page 28.

1.5 Separators

A separator separates tokens. White space (see next section) is a separator, but it is not a
token. The other separators are all single-character tokens themselves:

() [] { } ; , . :

1.6 White Space

White space is the collective term used for several characters: the space character, the tab
character, the newline character, the vertical tab character, and the form-feed character.
White space is ignored (outside of string and character constants), and is therefore optional,
except when it is used to separate tokens. This means that

#include <stdio.h>

int

main()

{

printf("hello, world\n");

return 0;

}

and

Chapter 1: Lexical Elements 7

#include <stdio.h> int main(){printf("hello, world\n");

return 0;}

are functionally the same program.

Although you must use white space to separate many tokens, no white space is required
between operators and operands, nor is it required between other separators and that which
they separate.

/* All of these are valid. */

x++;

x ++ ;

x=y+z;

x = y + z ;

x=array[2];

x = array [2] ;

fraction=numerator / *denominator_ptr;

fraction = numerator / * denominator_ptr ;

Furthermore, wherever one space is allowed, any amount of white space is allowed.

/* These two statements are functionally identical. */

x++;

x

++ ;

In string constants, spaces and tabs are not ignored; rather, they are part of the string.
Therefore,

"potato knish"

is not the same as

"potato knish"

Chapter 2: Data Types 8

2 Data Types

2.1 Primitive Data Types

2.1.1 Integer Types

The integer data types range in size from at least 8 bits to at least 32 bits. The C99 standard
extends this range to include integer sizes of at least 64 bits. You should use integer types
for storing whole number values (and the char data type for storing characters). The sizes
and ranges listed for these types are minimums; depending on your computer platform,
these sizes and ranges may be larger.

While these ranges provide a natural ordering, the standard does not require that any
two types have a different range. For example, it is common for int and long to have
the same range. The standard even allows signed char and long to have the same range,
though such platforms are very unusual.

• signed char

The 8-bit signed char data type can hold integer values in the range of −128 to 127.

• unsigned char

The 8-bit unsigned char data type can hold integer values in the range of 0 to 255.

• char

Depending on your system, the char data type is defined as having the same range as
either the signed char or the unsigned char data type (they are three distinct types,
however). By convention, you should use the char data type specifically for storing
ASCII characters (such as ‘m’), including escape sequences (such as ‘\n’).

• short int

The 16-bit short int data type can hold integer values in the range of −32,768 to
32,767. You may also refer to this data type as short, signed short int, or signed
short.

• unsigned short int

The 16-bit unsigned short int data type can hold integer values in the range of 0 to
65,535. You may also refer to this data type as unsigned short.

• int

The 32-bit int data type can hold integer values in the range of −2,147,483,648 to
2,147,483,647. You may also refer to this data type as signed int or signed.

• unsigned int

The 32-bit unsigned int data type can hold integer values in the range of 0 to
4,294,967,295. You may also refer to this data type simply as unsigned.

• long int

The 32-bit long int data type can hold integer values in the range of at least
−2,147,483,648 to 2,147,483,647. (Depending on your system, this data type might be
64-bit, in which case its range is identical to that of the long long int data type.)
You may also refer to this data type as long, signed long int, or signed long.

• unsigned long int

The 32-bit unsigned long int data type can hold integer values in the range of at

Chapter 2: Data Types 9

least 0 to 4,294,967,295. (Depending on your system, this data type might be 64-bit,
in which case its range is identical to that of the unsigned long long int data type.)
You may also refer to this data type as unsigned long.

• long long int

The 64-bit long long int data type can hold integer values in the range of
−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. You may also refer to this
data type as long long, signed long long int or signed long long. This type is
not part of C89, but is both part of C99 and a GNU C extension.

• unsigned long long int

The 64-bit unsigned long long int data type can hold integer values in the range
of at least 0 to 18,446,744,073,709,551,615. You may also refer to this data type as
unsigned long long. This type is not part of C89, but is both part of C99 and a GNU
C extension.

Here are some examples of declaring and defining integer variables:

int foo;

unsigned int bar = 42;

char quux = ’a’;

The first line declares an integer named foo but does not define its value; it is left unini-
tialized, and its value should not be assumed to be anything in particular.

2.1.2 Real Number Types

There are three data types that represent fractional numbers. While the sizes and ranges
of these types are consistent across most computer systems in use today, historically the
sizes of these types varied from system to system. As such, the minimum and maximum
values are stored in macro definitions in the library header file float.h. In this section,
we include the names of the macro definitions in place of their possible values; check your
system’s float.h for specific numbers.

• float

The float data type is the smallest of the three floating point types, if they differ in
size at all. Its minimum value is stored in the FLT_MIN, and should be no greater than
1e-37. Its maximum value is stored in FLT_MAX, and should be no less than 1e37.

• double

The double data type is at least as large as the float type, and it may be larger. Its
minimum value is stored in DBL_MIN, and its maximum value is stored in DBL_MAX.

• long double

The long double data type is at least as large as the float type, and it may be larger.
Its minimum value is stored in LDBL_MIN, and its maximum value is stored in LDBL_MAX.

All floating point data types are signed; trying to use unsigned float, for example, will
cause a compile-time error.

Here are some examples of declaring and defining real number variables:

float foo;

double bar = 114.3943;

The first line declares a float named foo but does not define its value; it is left uninitialized,
and its value should not be assumed to be anything in particular.

Chapter 2: Data Types 10

The real number types provided in C are of finite precision, and accordingly, not all real
numbers can be represented exactly. Most computer systems that GCC compiles for use a
binary representation for real numbers, which is unable to precisely represent numbers such
as, for example, 4.2. For this reason, we recommend that you consider not comparing real
numbers for exact equality with the == operator, but rather check that real numbers are
within an acceptable tolerance.

There are other more subtle implications of these imprecise representations; for more
details, see David Goldberg’s paper What Every Computer Scientist Should Know About
Floating-Point Arithmetic and section 4.2.2 of Donald Knuth’s The Art of Computer Pro-
gramming.

2.1.3 Complex Number Types

GCC introduced some complex number types as an extension to C89. Similar features
were introduced in C991, but there were a number of differences. We describe the standard
complex number types first.

2.1.3.1 Standard Complex Number Types

Complex types were introduced in C99. There are three complex types:

float _Complex

double _Complex

long double _Complex

The names here begin with an underscore and an uppercase letter in order to avoid
conflicts with existing programs’ identifiers. However, the C99 standard header file
<complex.h> introduces some macros which make using complex types easier.

complex

Expands to _Complex. This allows a variable to be declared as double complex which
seems more natural.

I

A constant of type const float _Complex having the value of the imaginary unit
normally referred to as i.

The <complex.h> header file also declares a number of functions for performing compu-
tations on complex numbers, for example the creal and cimag functions which respectively
return the real and imaginary parts of a double complex number. Other functions are also
provided, as shown in this example:

#include <complex.h>

#include <stdio.h>

void example (void)

{

complex double z = 1.0 + 3.0*I;

printf ("Phase is %f, modulus is %f\n", carg (z), cabs (z));

}

1 C++ also has complex number support, but it is incompatible with the ISO C99 types

Chapter 2: Data Types 11

2.1.3.2 GNU Extensions for Complex Number Types

GCC also introduced complex types as a GNU extension to C89, but the spelling is different.
The floating-point complex types in GCC’s C89 extension are:

__complex__ float

__complex__ double

__complex__ long double

GCC’s extension allow for complex types other than floating-point, so that you can
declare complex character types and complex integer types; in fact __complex__ can be used
with any of the primitive data types. We won’t give you a complete list of all possibilities,
but here are some examples:

• __complex__ float

The __complex__ float data type has two components: a real part and an imaginary
part, both of which are of the float data type.

• __complex__ int

The __complex__ int data type also has two components: a real part and an imaginary
part, both of which are of the int data type.

To extract the real part of a complex-valued expression, use the keyword __real__,
followed by the expression. Likewise, use __imag__ to extract the imaginary part.

__complex__ float a = 4 + 3i;

float b = __real__ a; /* b is now 4. */

float c = __imag__ a; /* c is now 3. */

This example creates a complex floating point variable a, and defines its real part as 4
and its imaginary part as 3. Then, the real part is assigned to the floating point variable
b, and the imaginary part is assigned to the floating point variable c.

2.2 Enumerations

An enumeration is a custom data type used for storing constant integer values and referring
to them by names. By default, these values are of type signed int; however, you can use
the -fshort-enums GCC compiler option to cause the smallest possible integer type to be
used instead. Both of these behaviors conform to the C89 standard, but mixing the use of
these options within the same program can produce incompatibilities.

2.2.1 Defining Enumerations

You define an enumeration using the enum keyword, followed by the name of the enumeration
(this is optional), followed by a list of constant names (separated by commas and enclosed
in braces), and ending with a semicolon.

enum fruit {grape, cherry, lemon, kiwi};

That example defines an enumeration, fruit, which contains four constant integer val-
ues, grape, cherry, lemon, and kiwi, whose values are, by default, 0, 1, 2, and 3, respec-
tively. You can also specify one or more of the values explicitly:

enum more_fruit {banana = -17, apple, blueberry, mango};

Chapter 2: Data Types 12

That example defines banana to be −17, and the remaining values are incremented
by 1: apple is −16, blueberry is −15, and mango is -14. Unless specified otherwise, an
enumeration value is equal to one more than the previous value (and the first value defaults
to 0).

You can also refer to an enumeration value defined earlier in the same enumeration:

enum yet_more_fruit {kumquat, raspberry, peach,

plum = peach + 2};

In that example, kumquat is 0, raspberry is 1, peach is 2, and plum is 4.

You can’t use the same name for an enum as a struct or union in the same scope.

2.2.2 Declaring Enumerations

You can declare variables of an enumeration type both when the enumeration is defined
and afterward. This example declares one variable, named my_fruit of type enum fruit,
all in a single statement:

enum fruit {banana, apple, blueberry, mango} my_fruit;

while this example declares the type and variable separately:

enum fruit {banana, apple, blueberry, mango};

enum fruit my_fruit;

(Of course, you couldn’t declare it that way if you hadn’t named the enumeration.)

Although such variables are considered to be of an enumeration type, you can assign them
any value that you could assign to an int variable, including values from other enumerations.
Furthermore, any variable that can be assigned an int value can be assigned a value from
an enumeration.

However, you cannot change the values in an enumeration once it has been defined; they
are constant values. For example, this won’t work:

enum fruit {banana, apple, blueberry, mango};

banana = 15; /* You can’t do this! */

Enumerations are useful in conjunction with the switch statement, because the compiler
can warn you if you have failed to handle one of the enumeration values. Using the example
above, if your code handles banana, apple and mango only but not blueberry, GCC can
generate a warning.

2.3 Unions

A union is a custom data type used for storing several variables in the same memory space.
Although you can access any of those variables at any time, you should only read from one
of them at a time—assigning a value to one of them overwrites the values in the others.

2.3.1 Defining Unions

You define a union using the union keyword followed by the declarations of the union’s
members, enclosed in braces. You declare each member of a union just as you would
normally declare a variable—using the data type followed by one or more variable names
separated by commas, and ending with a semicolon. Then end the union definition with a
semicolon after the closing brace.

Chapter 2: Data Types 13

You should also include a name for the union between the union keyword and the opening
brace. This is syntactically optional, but if you leave it out, you can’t refer to that union
data type later on (without a typedef, see Section 4.14 [The typedef Statement], page 54).

Here is an example of defining a simple union for holding an integer value and a floating
point value:

union numbers

{

int i;

float f;

};

That defines a union named numbers, which contains two members, i and f, which are
of type int and float, respectively.

2.3.2 Declaring Union Variables

You can declare variables of a union type when both you initially define the union and after
the definition, provided you gave the union type a name.

2.3.2.1 Declaring Union Variables at Definition

You can declare variables of a union type when you define the union type by putting the
variable names after the closing brace of the union definition, but before the final semicolon.
You can declare more than one such variable by separating the names with commas.

union numbers

{

int i;

float f;

} first_number, second_number;

That example declares two variables of type union numbers, first_number and second_

number.

2.3.2.2 Declaring Union Variables After Definition

You can declare variables of a union type after you define the union by using the union

keyword and the name you gave the union type, followed by one or more variable names
separated by commas.

union numbers

{

int i;

float f;

};

union numbers first_number, second_number;

That example declares two variables of type union numbers, first_number and second_

number.

2.3.2.3 Initializing Union Members

You can initialize the first member of a union variable when you declare it:

Chapter 2: Data Types 14

union numbers

{

int i;

float f;

};

union numbers first_number = { 5 };

In that example, the i member of first_number gets the value 5. The f member is left
alone.

Another way to initialize a union member is to specify the name of the member to
initialize. This way, you can initialize whichever member you want to, not just the first one.
There are two methods that you can use—either follow the member name with a colon, and
then its value, like this:

union numbers first_number = { f: 3.14159 };

or precede the member name with a period and assign a value with the assignment operator,
like this:

union numbers first_number = { .f = 3.14159 };

You can also initialize a union member when you declare the union variable during the
definition:

union numbers

{

int i;

float f;

} first_number = { 5 };

2.3.3 Accessing Union Members

You can access the members of a union variable using the member access operator. You
put the name of the union variable on the left side of the operator, and the name of the
member on the right side.

union numbers

{

int i;

float f;

};

union numbers first_number;

first_number.i = 5;

first_number.f = 3.9;

Notice in that example that giving a value to the f member overrides the value stored
in the i member.

2.3.4 Size of Unions

This size of a union is equal to the size of its largest member. Consider the first union
example from this section:

Chapter 2: Data Types 15

union numbers

{

int i;

float f;

};

The size of the union data type is the same as sizeof (float), because the float type
is larger than the int type. Since all of the members of a union occupy the same memory
space, the union data type size doesn’t need to be large enough to hold the sum of all their
sizes; it just needs to be large enough to hold the largest member.

2.4 Structures

A structure is a programmer-defined data type made up of variables of other data types
(possibly including other structure types).

2.4.1 Defining Structures

You define a structure using the struct keyword followed by the declarations of the struc-
ture’s members, enclosed in braces. You declare each member of a structure just as you
would normally declare a variable—using the data type followed by one or more variable
names separated by commas, and ending with a semicolon. Then end the structure defini-
tion with a semicolon after the closing brace.

You should also include a name for the structure in between the struct keyword and
the opening brace. This is optional, but if you leave it out, you can’t refer to that structure
data type later on (without a typedef, see Section 4.14 [The typedef Statement], page 54).

Here is an example of defining a simple structure for holding the X and Y coordinates
of a point:

struct point

{

int x, y;

};

That defines a structure type named struct point, which contains two members, x and
y, both of which are of type int.

Structures (and unions) may contain instances of other structures and unions, but of
course not themselves. It is possible for a structure or union type to contain a field which
is a pointer to the same type (see Section 2.7 [Incomplete Types], page 25).

2.4.2 Declaring Structure Variables

You can declare variables of a structure type when both you initially define the structure
and after the definition, provided you gave the structure type a name.

2.4.2.1 Declaring Structure Variables at Definition

You can declare variables of a structure type when you define the structure type by putting
the variable names after the closing brace of the structure definition, but before the final
semicolon. You can declare more than one such variable by separating the names with
commas.

Chapter 2: Data Types 16

struct point

{

int x, y;

} first_point, second_point;

That example declares two variables of type struct point, first_point and second_

point.

2.4.2.2 Declaring Structure Variables After Definition

You can declare variables of a structure type after defining the structure by using the struct
keyword and the name you gave the structure type, followed by one or more variable names
separated by commas.

struct point

{

int x, y;

};

struct point first_point, second_point;

That example declares two variables of type struct point, first_point and second_

point.

2.4.2.3 Initializing Structure Members

You can initialize the members of a structure type to have certain values when you declare
structure variables.

If you do not initialize a structure variable, the effect depends on whether it has static
storage (see Section 2.9 [Storage Class Specifiers], page 26) or not. If it is, members with
integral types are initialized with 0 and pointer members are initialized to NULL; otherwise,
the value of the structure’s members is indeterminate.

One way to initialize a structure is to specify the values in a set of braces and separated
by commas. Those values are assigned to the structure members in the same order that the
members are declared in the structure in definition.

struct point

{

int x, y;

};

struct point first_point = { 5, 10 };

In that example, the x member of first_point gets the value 5, and the y member gets
the value 10.

Another way to initialize the members is to specify the name of the member to initialize.
This way, you can initialize the members in any order you like, and even leave some of them
uninitialized. There are two methods that you can use. The first method is available in
C99 and as a C89 extension in GCC:

struct point first_point = { .y = 10, .x = 5 };

You can also omit the period and use a colon instead of ‘=’, though this is a GNU C
extension:

Chapter 2: Data Types 17

struct point first_point = { y: 10, x: 5 };

You can also initialize the structure variable’s members when you declare the variable
during the structure definition:

struct point

{

int x, y;

} first_point = { 5, 10 };

You can also initialize fewer than all of a structure variable’s members:

struct pointy

{

int x, y;

char *p;

};

struct pointy first_pointy = { 5 };

Here, x is initialized with 5, y is initialized with 0, and p is initialized with NULL. The
rule here is that y and p are initialized just as they would be if they were static variables.

Here is another example that initializes a structure’s members which are structure vari-
ables themselves:

struct point

{

int x, y;

};

struct rectangle

{

struct point top_left, bottom_right;

};

struct rectangle my_rectangle = { {0, 5}, {10, 0} };

That example defines the rectangle structure to consist of two point structure vari-
ables. Then it declares one variable of type struct rectangle and initializes its members.
Since its members are structure variables, we used an extra set of braces surrounding the
members that belong to the point structure variables. However, those extra braces are not
necessary; they just make the code easier to read.

2.4.3 Accessing Structure Members

You can access the members of a structure variable using the member access operator. You
put the name of the structure variable on the left side of the operator, and the name of the
member on the right side.

Chapter 2: Data Types 18

struct point

{

int x, y;

};

struct point first_point;

first_point.x = 0;

first_point.y = 5;

You can also access the members of a structure variable which is itself a member of a
structure variable.

struct rectangle

{

struct point top_left, bottom_right;

};

struct rectangle my_rectangle;

my_rectangle.top_left.x = 0;

my_rectangle.top_left.y = 5;

my_rectangle.bottom_right.x = 10;

my_rectangle.bottom_right.y = 0;

2.4.4 Bit Fields

You can create structures with integer members of nonstandard sizes, called bit fields. You
do this by specifying an integer (int, char, long int, etc.) member as usual, and inserting
a colon and the number of bits that the member should occupy in between the member’s
name and the semicolon.

struct card

{

unsigned int suit : 2;

unsigned int face_value : 4;

};

That example defines a structure type with two bit fields, suit and face_value, which
take up 2 bits and 4 bits, respectively. suit can hold values from 0 to 3, and face_value

can hold values from 0 to 15. Notice that these bit fields were declared as unsigned int;
had they been signed integers, then their ranges would have been from −2 to 1, and from
−8 to 7, respectively.

More generally, the range of an unsigned bit field of N bits is from 0 to 2N − 1, and the
range of a signed bit field of N bits is from −(2N)/2 to ((2N)/2)− 1.

Bit fields can be specified without a name in order to control which actual bits within
the containing unit are used. However, the effect of this is not very portable and it is rarely
useful. You can also specify a bit field of size 0, which indicates that subsequent bit fields
not further bit fields should be packed into the unit containing the previous bit field. This
is likewise not generally useful.

Chapter 2: Data Types 19

You may not take the address of a bit field with the address operator & (see Section 3.10
[Pointer Operators], page 35).

2.4.5 Size of Structures

The size of a structure type is equal to the sum of the size of all of its members, possibly
including padding to cause the structure type to align to a particular byte boundary. The
details vary depending on your computer platform, but it would not be atypical to see
structures padded to align on four- or eight-byte boundaries. This is done in order to speed
up memory accesses of instances of the structure type.

As a GNU extension, GCC allows structures with no members. Such structures have
zero size.

If you wish to explicitly omit padding from your structure types (which may, in turn,
decrease the speed of structure memory accesses), then GCC provides multiple methods
of turning packing off. The quick and easy method is to use the -fpack-struct compiler
option. For more details on omitting packing, please see the GCC manual which corresponds
to your version of the compiler.

2.5 Arrays

An array is a data structure that lets you store one or more elements consecutively in
memory. In C, array elements are indexed beginning at position zero, not one.

2.5.1 Declaring Arrays

You declare an array by specifying the data type for its elements, its name, and the number
of elements it can store. Here is an example that declares an array that can store ten
integers:

int my_array[10];

For standard C code, the number of elements in an array must be positive.

As a GNU extension, the number of elements can be as small as zero. Zero-length arrays
are useful as the last element of a structure which is really a header for a variable-length
object:

struct line

{

int length;

char contents[0];

};

{

struct line *this_line = (struct line *)

malloc (sizeof (struct line) + this_length);

this_line -> length = this_length;

}

Another GNU extension allows you to declare an array size using variables, rather than
only constants. For example, here is a function definition that declares an array using its
parameter as the number of elements:

Chapter 2: Data Types 20

int

my_function (int number)

{

int my_array[number];

...;

}

2.5.2 Initializing Arrays

You can initialize the elements in an array when you declare it by listing the initializing
values, separated by commas, in a set of braces. Here is an example:

int my_array[5] = { 0, 1, 2, 3, 4 };

You don’t have to explicitly initialize all of the array elements. For example, this code
initializes the first three elements as specified, and then initializes the last two elements to
a default value of zero:

int my_array[5] = { 0, 1, 2 };

When using either ISO C99, or C89 with GNU extensions, you can initialize array
elements out of order, by specifying which array indices to initialize. To do this, include
the array index in brackets, and optionally the assignment operator, before the value. Here
is an example:

int my_array[5] = { [2] 5, [4] 9 };

Or, using the assignment operator:

int my_array[5] = { [2] = 5, [4] = 9 };

Both of those examples are equivalent to:

int my_array[5] = { 0, 0, 5, 0, 9 };

When using GNU extensions, you can initialize a range of elements to the same value, by
specifying the first and last indices, in the form [first] ... [last] . Here is an example:

int new_array[100] = { [0 ... 9] = 1, [10 ... 98] = 2, 3 };

That initializes elements 0 through 9 to 1, elements 10 through 98 to 2, and element 99
to 3. (You also could explicitly write [99] = 3.) Also, notice that you must have spaces on
both sides of the ‘...’.

If you initialize every element of an array, then you do not have to specify its size; its
size is determined by the number of elements you initialize. Here is an example:

int my_array[] = { 0, 1, 2, 3, 4 };

Although this does not explicitly state that the array has five elements using my_

array[5], it initializes five elements, so that is how many it has.

Alternately, if you specify which elements to initialize, then the size of the array is equal
to the highest element number initialized, plus one. For example:

int my_array[] = { 0, 1, 2, [99] = 99 };

In that example, only four elements are initialized, but the last one initialized is element
number 99, so there are 100 elements.

Chapter 2: Data Types 21

2.5.3 Accessing Array Elements

You can access the elements of an array by specifying the array name, followed by the
element index, enclosed in brackets. Remember that the array elements are numbered
starting with zero. Here is an example:

my_array[0] = 5;

That assigns the value 5 to the first element in the array, at position zero. You can treat
individual array elements like variables of whatever data type the array is made up of. For
example, if you have an array made of a structure data type, you can access the structure
elements like this:

struct point

{

int x, y;

};

struct point point_array[2] = { {4, 5}, {8, 9} };

point_array[0].x = 3;

2.5.4 Multidimensional Arrays

You can make multidimensional arrays, or “arrays of arrays”. You do this by adding an
extra set of brackets and array lengths for every additional dimension you want your array
to have. For example, here is a declaration for a two-dimensional array that holds five
elements in each dimension (a two-element array consisting of five-element arrays):

int two_dimensions[2][5] { {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10} };

Multidimensional array elements are accessed by specifying the desired index of both
dimensions:

two_dimensions[1][3] = 12;

In our example, two_dimensions[0] is itself an array. The element two_

dimensions[0][2] is followed by two_dimensions[0][3], not by two_dimensions[1][2].

2.5.5 Arrays as Strings

You can use an array of characters to hold a string (see Section 1.3.4 [String Constants],
page 5). The array may be built of either signed or unsigned characters.

When you declare the array, you can specify the number of elements it will have. That
number will be the maximum number of characters that should be in the string, including
the null character used to end the string. If you choose this option, then you do not have
to initialize the array when you declare it. Alternately, you can simply initialize the array
to a value, and its size will then be exactly large enough to hold whatever string you used
to initialize it.

There are two different ways to initialize the array. You can specify of comma-delimited
list of characters enclosed in braces, or you can specify a string literal enclosed in double
quotation marks.

Here are some examples:

Chapter 2: Data Types 22

char blue[26];

char yellow[26] = {’y’, ’e’, ’l’, ’l’, ’o’, ’w’, ’\0’};

char orange[26] = "orange";

char gray[] = {’g’, ’r’, ’a’, ’y’, ’\0’};

char salmon[] = "salmon";

In each of these cases, the null character \0 is included at the end of the string, even
when not explicitly stated. (Note that if you initialize a string using an array of individual
characters, then the null character is not guaranteed to be present. It might be, but such
an occurrence would be one of chance, and should not be relied upon.)

After initialization, you cannot assign a new string literal to an array using the assign-
ment operator. For example, this will not work :

char lemon[26] = "custard";

lemon = "steak sauce"; /* Fails! */

However, there are functions in the GNU C library that perform operations (including copy)
on string arrays. You can also change one character at a time, by accessing individual string
elements as you would any other array:

char name[] = "bob";

name[0] = ’r’;

It is possible for you to explicitly state the number of elements in the array, and then
initialize it using a string that has more characters than there are elements in the array.
This is not a good thing. The larger string will not override the previously specified size of
the array, and you will get a compile-time warning. Since the original array size remains,
any part of the string that exceeds that original size is being written to a memory location
that was not allocated for it.

2.5.6 Arrays of Unions

You can create an array of a union type just as you can an array of a primitive data type.

union numbers

{

int i;

float f;

};

union numbers number_array [3];

That example creates a 3-element array of union numbers variables called number_

array. You can also initialize the first members of the elements of a number array:

struct point point_array [3] = { {3}, {4}, {5} };

The additional inner grouping braces are optional.

After initialization, you can still access the union members in the array using the member
access operator. You put the array name and element number (enclosed in brackets) to the
left of the operator, and the member name to the right.

union numbers number_array [3];

number_array[0].i = 2;

Chapter 2: Data Types 23

2.5.7 Arrays of Structures

You can create an array of a structure type just as you can an array of a primitive data
type.

struct point

{

int x, y;

};

struct point point_array [3];

That example creates a 3-element array of struct point variables called point_array.
You can also initialize the elements of a structure array:

struct point point_array [3] = { {2, 3}, {4, 5}, {6, 7} };

As with initializing structures which contain structure members, the additional inner
grouping braces are optional. But, if you use the additional braces, then you can partially
initialize some of the structures in the array, and fully initialize others:

struct point point_array [3] = { {2}, {4, 5}, {6, 7} };

In that example, the first element of the array has only its x member initialized. Because
of the grouping braces, the value 4 is assigned to the x member of the second array element,
not to the y member of the first element, as would be the case without the grouping braces.

After initialization, you can still access the structure members in the array using the
member access operator. You put the array name and element number (enclosed in brackets)
to the left of the operator, and the member name to the right.

struct point point_array [3];

point_array[0].x = 2;

point_array[0].y = 3;

2.6 Pointers

Pointers hold memory addresses of stored constants or variables. For any data type, includ-
ing both primitive types and custom types, you can create a pointer that holds the memory
address of an instance of that type.

2.6.1 Declaring Pointers

You declare a pointer by specifying a name for it and a data type. The data type indicates
of what type of variable the pointer will hold memory addresses.

To declare a pointer, include the indirection operator (see Section 3.10 [Pointer Opera-
tors], page 35) before the identifier. Here is the general form of a pointer declaration:

data-type * name;

White space is not significant around the indirection operator:

data-type *name;

data-type* name;

Here is an example of declaring a pointer to hold the address of an int variable:

int *ip;

Be careful, though: when declaring multiple pointers in the same statement, you must
explicitly declare each as a pointer, using the indirection operator:

Chapter 2: Data Types 24

int *foo, *bar; /* Two pointers. */

int *baz, quux; /* A pointer and an integer variable. */

2.6.2 Initializing Pointers

You can initialize a pointer when you first declare it by specifying a variable address to store
in it. For example, the following code declares an int variable ‘i’, and a pointer which is
initialized with the address of ‘i’:

int i;

int *ip = &i;

Note the use of the address operator (see Section 3.10 [Pointer Operators], page 35),
used to get the memory address of a variable. After you declare a pointer, you do not use
the indirection operator with the pointer’s name when assigning it a new address to point
to. On the contrary, that would change the value of the variable that the points to, not the
value of the pointer itself. For example:

int i, j;

int *ip = &i; /* ‘ip’ now holds the address of ‘i’. */

ip = &j; /* ‘ip’ now holds the address of ‘j’. */

ip = &i; / ‘j’ now holds the address of ‘i’. */

The value stored in a pointer is an integral number: a location within the computer’s
memory space. If you are so inclined, you can assign pointer values explicitly using literal
integers, casting them to the appropriate pointer type. However, we do not recommend this
practice unless you need to have extremely fine-tuned control over what is stored in memory,
and you know exactly what you are doing. It would be all too easy to accidentally overwrite
something that you did not intend to. Most uses of this technique are also non-portable.

It is important to note that if you do not initialize a pointer with the address of some
other existing object, it points nowhere in particular and will likely make your program
crash if you use it (formally, this kind of thing is called undefined behavior).

2.6.3 Pointers to Unions

You can create a pointer to a union type just as you can a pointer to a primitive data type.

union numbers

{

int i;

float f;

};

union numbers foo = {4};

union numbers *number_ptr = &foo;

That example creates a new union type, union numbers, and declares (and initializes
the first member of) a variable of that type named foo. Finally, it declares a pointer to the
type union numbers, and gives it the address of foo.

You can access the members of a union variable through a pointer, but you can’t use
the regular member access operator anymore. Instead, you have to use the indirect member
access operator (see Section 3.16 [Member Access Expressions], page 38). Continuing with
the previous example, the following example will change the value of the first member of
foo:

Chapter 2: Data Types 25

number_ptr -> i = 450;

Now the i member in foo is 450.

2.6.4 Pointers to Structures

You can create a pointer to a structure type just as you can a pointer to a primitive data
type.

struct fish

{

float length, weight;

};

struct fish salmon = {4.3, 5.8};

struct fish *fish_ptr = &salmon;

That example creates a new structure type, struct fish, and declares (and initializes)
a variable of that type named salmon. Finally, it declares a pointer to the type struct

fish, and gives it the address of salmon.

You can access the members of a structure variable through a pointer, but you can’t use
the regular member access operator anymore. Instead, you have to use the indirect member
access operator (see Section 3.16 [Member Access Expressions], page 38). Continuing with
the previous example, the following example will change the values of the members of
salmon:

fish_ptr -> length = 5.1;

fish_ptr -> weight = 6.2;

Now the length and width members in salmon are 5.1 and 6.2, respectively.

2.7 Incomplete Types

You can define structures, unions, and enumerations without listing their members (or
values, in the case of enumerations). Doing so results in an incomplete type. You can’t
declare variables of incomplete types, but you can work with pointers to those types.

struct point;

At some time later in your program you will want to complete the type. You do this by
defining it as you usually would:

struct point

{

int x, y;

};

This technique is commonly used to for linked lists:

struct singly_linked_list

{

struct singly_linked_list *next;

int x;

/* other members here perhaps */

};

struct singly_linked_list *list_head;

Chapter 2: Data Types 26

2.8 Type Qualifiers

There are two type qualifiers that you can prepend to your variable declarations which
change how the variables may be accessed: const and volatile.

const causes the variable to be read-only; after initialization, its value may not be
changed.

const float pi = 3.14159f;

In addition to helping to prevent accidental value changes, declaring variables with const

can aid the compiler in code optimization.

volatile tells the compiler that the variable is explicitly changeable, and seemingly
useless accesses of the variable (for instance, via pointers) should not be optimized away.
You might use volatile variables to store data that is updated via callback functions or
signal handlers. Section 3.20.4 [Sequence Points and Signal Delivery], page 44.

volatile float currentTemperature = 40.0;

2.9 Storage Class Specifiers

There are four storage class specifiers that you can prepend to your variable declarations
which change how the variables are stored in memory: auto, extern, register, and static.

You use auto for variables which are local to a function, and whose values should be
discarded upon return from the function in which they are declared. This is the default
behavior for variables declared within functions.

void

foo (int value)

{

auto int x = value;

...

return;

}

register is nearly identical in purpose to auto, except that it also suggests to the
compiler that the variable will be heavily used, and, if possible, should be stored in a
register. You cannot use the address-of operator to obtain the address of a variable declared
with register. This means that you cannot refer to the elements of an array declared with
storage class register. In fact the only thing you can do with such an array is measure
its size with sizeof. GCC normally makes good choices about which values to hold in
registers, and so register is not often used.

static is essentially the opposite of auto: when applied to variables within a function
or block, these variables will retain their value even when the function or block is finished.
This is known as static storage duration.

int

sum (int x)

{

static int sumSoFar = 0;

sumSoFar = sumSoFar + x;

return sumSoFar;

}

Chapter 2: Data Types 27

You can also declare variables (or functions) at the top level (that is, not inside a function)
to be static; such variables are visible (global) to the current source file (but not other
source files). This gives an unfortunate double meaning to static; this second meaning is
known as static linkage. Two functions or variables having static linkage in separate files
are entirely separate; neither is visible outside the file in which it is declared.

Uninitialized variables that are declared as extern are given default values of 0, 0.0, or
NULL, depending on the type. Uninitialized variables that are declared as auto or register
(including the default usage of auto) are left uninitialized, and hence should not be assumed
to hold any particular value.

extern is useful for declaring variables that you want to be visible to all source files
that are linked into your project. You cannot initialize a variable in an extern declaration,
as no space is actually allocated during the declaration. You must make both an extern

declaration (typically in a header file that is included by the other source files which need to
access the variable) and a non-extern declaration which is where space is actually allocated
to store the variable. The extern declaration may be repeated multiple times.

extern int numberOfClients;

...

int numberOfClients = 0;

See Chapter 6 [Program Structure and Scope], page 64, for related information.

2.10 Renaming Types

Sometimes it is convenient to give a new name to a type. You can do this using the typedef
statement. See Section 4.14 [The typedef Statement], page 54, for more information.

Chapter 3: Expressions and Operators 28

3 Expressions and Operators

3.1 Expressions

An expression consists of at least one operand and zero or more operators. Operands are
typed objects such as constants, variables, and function calls that return values. Here are
some examples:

47

2 + 2

cosine(3.14159) /* We presume this returns a floating point value. */

Parentheses group subexpressions:

(2 * ((3 + 10) - (2 * 6)))

Innermost expressions are evaluated first. In the above example, 3 + 10 and 2 * 6 evaluate
to 13 and 12, respectively. Then 12 is subtracted from 13, resulting in 1. Finally, 1 is
multiplied by 2, resulting in 2. The outermost parentheses are completely optional.

An operator specifies an operation to be performed on its operand(s). Operators may
have one, two, or three operands, depending on the operator.

3.2 Assignment Operators

Assignment operators store values in variables. C provides several variations of assignment
operators.

The standard assignment operator = simply stores the value of its right operand in the
variable specified by its left operand. As with all assignment operators, the left operand
(commonly referred to as the “lvalue”) cannot be a literal or constant value.

int x = 10;

float y = 45.12 + 2.0;

int z = (2 * (3 + function ()));

struct foo {

int bar;

int baz;

} quux = {3, 4};

Note that, unlike the other assignment operators described below, you can use the plain
assignment operator to store values of a structure type.

Compound assignment operators perform an operation involving both the left and right
operands, and then assign the resulting expression to the left operand. Here is a list of the
compound assignment operators, and a brief description of what they do:

• +=

Adds the two operands together, and then assign the result of the addition to the left
operand.

• -=

Subtract the right operand from the left operand, and then assign the result of the
subtraction to the left operand.

Chapter 3: Expressions and Operators 29

• *=

Multiply the two operands together, and then assign the result of the multiplication to
the left operand.

• /=

Divide the left operand by the right operand, and assign the result of the division to
the left operand.

• %=

Perform modular division on the two operands, and assign the result of the division to
the left operand.

• <<=

Perform a left shift operation on the left operand, shifting by the number of bits
specified by the right operand, and assign the result of the shift to the left operand.

• >>=

Perform a right shift operation on the left operand, shifting by the number of bits
specified by the right operand, and assign the result of the shift to the left operand.

• &=

Perform a bitwise conjunction operation on the two operands, and assign the result of
the operation to the left operand.

• ^=

Performs a bitwise exclusive disjunction operation on the two operands, and assign the
result of the operation to the left operand.

• |=

Performs a bitwise inclusive disjunction operation on the two operands, and assign the
result of the operation to the left operand.

Here is an example of using one of the compound assignment operators:

x += y;

Since there are no side effects wrought by evaluating the variable x asn an lvalue, the above
code produces the same result as:

x = x + y;

3.3 Incrementing and Decrementing

The increment operator ++ adds 1 to its operand. The operand must be a either a variable
of one of the primitive data types, a pointer, or an enumeration variable. You can apply
the increment operator either before or after the operand. Here are some examples:

Chapter 3: Expressions and Operators 30

char w = ’1’;

int x = 5;

char y = ’B’;

float z = 5.2;

int *p = &x;

++w; /* w is now the character ‘2’ (not the value 2). */

x++; /* x is now 6. */

++y; /* y is now ‘C’ (on ASCII systems). */

z++; /* z is now 6.2. */

++p; /* p is now &x + sizeof(int). */

(Note that incrementing a pointer only makes sense if you have reason to believe that the
new pointer value will be a valid memory address.)

A prefix increment adds 1 before the operand is evaluated. A postfix increment adds
1 after the operand is evaluated. In the previous examples, changing the position of the
operator would make no difference. However, there are cases where it does make a difference:

int x = 5;

printf ("%d \n", x++); /* Print x and then increment it. */

/* x is now equal to 6. */

printf ("%d \n", ++x); /* Increment x and then print it. */

The output of the above example is:

5

7

Likewise, you can subtract 1 from an operand using the decrement operator:

int x = 5;

x--; /* x is now 4. */

The concepts of prefix and postfix application apply here as with the increment operator.

3.4 Arithmetic Operators

C provides operators for standard arithmetic operations: addition, subtraction, multiplica-
tion, and division, along with modular division and negation. Usage of these operators is
straightforward; here are some examples:

/* Addition. */

x = 5 + 3;

y = 10.23 + 37.332;

quux_pointer = foo_pointer + bar_pointer;

/* Subtraction. */

x = 5 - 3;

y = 57.223 - 10.903;

quux_pointer = foo_pointer - bar_pointer;

You can add and subtract memory pointers, but you cannot multiply or divide them.

Chapter 3: Expressions and Operators 31

/* Multiplication. */

x = 5 * 3;

y = 47.4 * 1.001;

/* Division. */

x = 5 / 3;

y = 940.0 / 20.2;

Integer division of positive values truncates towards zero, so 5/3 is 1. However, if ei-
ther operand is negative, the direction of rounding is implementation-defined. Section A.5
[Signed Integer Division], page 75 for information about overflow in signed integer division.

You use the modulus operator % to obtain the remainder produced by dividing its two
operands. You put the operands on either side of the operator, and it does matter which
operand goes on which side: 3 % 5 and 5 % 3 do not have the same result. The operands
must be expressions of a primitive data type.

/* Modular division. */

x = 5 % 3;

y = 74 % 47;

Modular division returns the remainder produced after performing integer division on the
two operands. The operands must be of a primitive integer type.

/* Negation. */

int x = -5;

float y = -3.14159;

If the operand you use with the negative operator is of an unsigned data type, then the
result cannot negative, but rather is the maximum value of the unsigned data type, minus
the value of the operand.

Many systems use twos-complement arithmetic, and on such systems the most negative
value a signed type can hold is further away from zero than the most positive value. For
example, on one platform, this program:

#include <limits.h>

#include <stdio.h>

int main (int argc, char *argv[])

{

int x;

x = INT_MAX;

printf("INT_MAX = %d\n", x);

x = INT_MIN;

printf("INT_MIN = %d\n", x);

x = -x;

printf("-INT_MIN = %d\n", x);

return 0;

}

Produces this output:

INT_MAX = 2147483647

INT_MIN = -2147483648

-INT_MIN = -2147483648

Chapter 3: Expressions and Operators 32

Trivially, you can also apply a positive operator to a numeric expression:

int x = +42;

Numeric values are assumed to be positive unless explicitly made negative, so this operator
has no effect on program operation.

3.5 Complex Conjugation

As a GNU extension, you can use the complex conjugation operator ~ to perform complex
conjugation on its operand — that is, it reverses the sign of its imaginary component. The
operand must be an expression of a complex number type. Here is an example:

__complex__ int x = 5 + 17i;

printf ("%d \n", (x * ~x));

Since an imaginary number (a + bi) multiplied by its conjugate is equal to a2 + b2, the
above printf statement will print 314, which is equal to 25 + 289.

3.6 Comparison Operators

You use the comparison operators to determine how two operands relate to each other: are
they equal to each other, is one larger than the other, is one smaller than the other, and
so on. When you use any of the comparison operators, the result is either 1 or 0, meaning
true or false, respectively.

(In the following code examples, the variables x and y stand for any two expressions of
arithmetic types, or pointers.)

The equal-to operator == tests its two operands for equality. The result is 1 if the
operands are equal, and 0 if the operands are not equal.

if (x == y)

puts (‘‘x is equal to y’’);

else

puts (‘‘x is not equal to y’’);

The not-equal-to operator != tests its two operands for inequality. The result is 1 if the
operands are not equal, and 0 if the operands are equal.

if (x != y)

puts (‘‘x is not equal to y’’);

else

puts (‘‘x is equal to y’’);

Comparing floating-point values for exact equality or inequality can produce unexpected
results. Section 2.1.2 [Real Number Types], page 9 for more information.

You can compare function pointers for equality or inequality; the comparison tests if two
function pointers point to the same function or not.

Beyond equality and inequality, there are operators you can use to test if one value is less
than, greater than, less-than-or-equal-to, or greater-than-or-equal-to another value. Here
are some code samples that exemplify usage of these operators:

if (x < y)

puts (‘‘x is less than y’’);

Chapter 3: Expressions and Operators 33

if (x <= y)

puts (‘‘x is less than or equal to y’’);

if (x > y)

puts (‘‘x is greater than y’’);

if (x >= y)

puts (‘‘x is greater than or equal to y’’);

3.7 Logical Operators

Logical operators test the truth value of a pair of operands. Any nonzero expression is
considered true in C, while an expression that evaluates to zero is considered false.

The logical conjunction operator && tests if two expressions are both true. If the first
expression is false, then the second expression is not evaluated.

if ((x == 5) && (y == 10))

printf (‘‘x is 5 and y is 10’’);

The logical conjunction operator || tests if at least one of two expressions it true. If the
first expression is true, then the second expression is not evaluated.

if ((x == 5) || (y == 10))

printf (‘‘x is 5 or y is 10’’);

You can prepend a logical expression with a negation operator ! to flip the truth value:

if (!(x == 5))

printf (‘‘x is not 5’’);

Since the second operand in a logical expression pair is not necessarily evaluated, you
can write code with perhaps unintuitive results:

if (foo && x++)

bar();

If foo is ever zero, then not only would bar not be called, but x would not be incremented.
If you intend to increment x regardless of the value of foo, you should do so outside of the
conjunction expression.

3.8 Bit Shifting

You use the left-shift operator << to shift its first operand’s bits to the left. The second
operand denotes the number of bit places to shift. Bits shifted off the left side of the value
are discarded; new bits added on the right side will all be 0.

x = 47; /* 47 is 00101111 in binary. */

x << 1; /* 00101111 << 1 is 01011110. */

Similarly, you use the right-shift operator >> to shift its first operand’s bits to the right.
Bits shifted off the right side are discarded; new bits added on the left side are usually 0,
but if the first operand is a signed negative value, then the added bits will be either 0 or
whatever value was previously in the leftmost bit position.

x = 47; /* 47 is 00101111 in binary. */

x >> 1; /* 00101111 >> 1 is 00010111. */

For both << and >>, if the second operand is greater than the bit-width of the first
operand, or the second operand is negative, the behavior is undefined.

Chapter 3: Expressions and Operators 34

You can use the shift operators to perform a variety of interesting hacks. For example,
given a date with the day of the month numbered as d, the month numbered as m, and the
year y, you can store the entire date in a single number x:

int d = 12;

int m = 6;

int y = 1983;

int x = ((y << 4) + m) << 5) + d;

You can then extract the original day, month, and year out of x using a combination of
shift operators and modular division:

d = x % 32;

m = (x >> 5) % 16;

y = x >> 9;

3.9 Bitwise Logical Operators

C provides operators for performing bitwise conjunction, inclusive disjunction, exclusive
disjunction, and negation (complement).

Biwise conjunction examines each bit in its two operands, and when two corresponding
bits are both 1, the resulting bit is 1. All other resulting bits are 0. Here is an example of
how this works, using binary numbers:

11001001 & 10011011 = 10001001

Bitwise inclusive disjunction examines each bit in its two operands, and when two cor-
responding bits are both 0, the resulting bit is 0. All other resulting bits are 1.

11001001 | 10011011 = 11011011

Bitwise exclusive disjunction examines each bit in its two operands, and when two cor-
responding bits are different, the resulting bit is 1. All other resulting bits are 0.

11001001 ^ 10011011 = 01010010

Bitwise negation reverses each bit in its operand:

~11001001 = 00110110

In C, you can only use these operators with operands of an integer (or character) type,
and for maximum portability, you should only use the bitwise negation operator with un-
signed integer types. Here are some examples of using these operators in C code:

unsigned int foo = 42;

unsigned int bar = 57;

unsigned int quux;

quux = foo & bar;

quux = foo | bar;

quux = foo ^ bar;

quux = ~foo;

Chapter 3: Expressions and Operators 35

3.10 Pointer Operators

You can use the address operator & to obtain the memory address of an object.

int x = 5;

int *pointer_to_x = &x;

It is not necessary to use this operator to obtain the address of a function, although you
can:

extern int foo (void);

int (*fp1) (void) = foo; /* fp1 points to foo */

int (*fp2) (void) = &foo; /* fp2 also points to foo */

Function pointers and data pointers are not compatible, in the sense that you cannot
expect to store the address of a function into a data pointer, and then copy that into a
function pointer and call it successfully. It might work on some systems, but it’s not a
portable technique.

As a GNU extension to C89, you can also obtain the address of a label with the label
address operator &&. The result is a void* pointer which can be used with goto. See
Section 4.10 [The goto Statement], page 52.

Given a memory address stored in a pointer, you can use the indirection operator * to
obtain the value stored at the address. (This is called dereferencing the pointer.)

int x = 5;

int y;

int *ptr;

ptr = &x; /* ptr now holds the address of x. */

y = *ptr; /* y gets the value stored at the address
stored in ptr. */

Avoid using dereferencing pointers that have not been initialized to a known memory loca-
tion.

3.11 The sizeof Operator

You can use the sizeof operator to obtain the size (in bytes) of the data type of its operand.
The operand may be an actual type specifier (such as int or float), as well as any valid
expression. When the operand is a type name, it must be enclosed in parentheses. Here are
some examples:

size_t a = sizeof(int);

size_t b = sizeof(float);

size_t c = sizeof(5);

size_t d = sizeof(5.143);

size_t e = sizeof a;

The result of the sizeof operator is of a type called size_t, which is defined in the
header file <stddef.h>. size_t is an unsigned integer type, perhaps identical to unsigned

int or unsigned long int; it varies from system to system.

The size_t type is often a convenient type for a loop index, since it is guaranteed to be
able to hold the number of elements in any array; this is not the case with int, for example.

Chapter 3: Expressions and Operators 36

The sizeof operator can be used to automatically compute the number of elements in
an array:

#include <stddef.h>

#include <stdio.h>

static const int values[] = { 1, 2, 48, 681 };

#define ARRAYSIZE(x) (sizeof x/sizeof x[0])

int main (int argc, char *argv[])

{

size_t i;

for (i = 0; i < ARRAYSIZE(values); i++)

{

printf("%d\n", values[i]);

}

return 0;

}

There are two cases where this technique does not work. The first is where the array
element has zero size (GCC supports zero-sized structures as a GNU extension). The second
is where the array is in fact a function parameter (see Section 5.4 [Function Parameters],
page 58).

3.12 Type Casts

You can use a type cast to explicitly cause an expression to be of a specified data type. A
type cast consists of a type specifier enclosed in parentheses, followed by an expression. To
ensure proper casting, you should also enclose the expression that follows the type specifier
in parentheses. Here is an example:

float x;

int y = 7;

int z = 3;

x = (float) (y / z);

In that example, since y and z are both integers, integer division is performed, and even
though x is a floating-point variable, it receives the value 2. Explicitly casting the result of
the division to float does no good, because the computed value of y/z is already 2.

To fix this problem, you need to convert one of the operands to a floating-point type
before the division takes place:

float x;

int y = 7;

int z = 3;

x = (y / (float)z);

Here, a floating-point value close to 2.333. . . is assigned to x.

Type casting only works with scalar types (that is, integer, floating-point or pointer
types). Therefore, this is not allowed:

Chapter 3: Expressions and Operators 37

struct fooTag { /* members ... */ };

struct fooTag foo;

unsigned char byteArray[8];

foo = (struct fooType) byteArray; /* Fail! */

3.13 Array Subscripts

You can access array elements by specifying the name of the array, and the array subscript
(or index, or element number) enclosed in brackets. Here is an example, supposing an
integer array called my_array:

my_array[0] = 5;

The array subscript expression A[i] is defined as being identical to the expression
(*((A)+(i))). This means that many uses of an array name are equivalent to a pointer
expression. It also means that you cannot subscript an array having the register storage
class.

3.14 Function Calls as Expressions

A call to any function which returns a value is an expression.

int function(void);

...

a = 10 + function();

3.15 The Comma Operator

You use the comma operator , to separate two (ostensibly related) expressions. For instance,
the first expression might produce a value that is used by the second expression:

x++, y = x * x;

More commonly, the comma operator is used in for statements, like this:

/* Using the comma operator in a for statement. */

for (x = 1, y = 10; x <=10 && y >=1; x++, y--)

{

...

}

This lets you conveniently set, monitor, and modify multiple control expressions for the for
statement.

A comma is also used to separate function parameters; however, this is not the comma
operator in action. In fact, if the comma operator is used as we have discussed here in
a function call, then the compiler will interpret that as calling the function with an extra
parameter.

If you want to use the comma operator in a function argument, you need to put parenthe-
ses around it. That’s because commas in a function argument list have a different meaning:
they separate arguments. Thus,

Chapter 3: Expressions and Operators 38

foo (x, y=47, x, z);

is interpreted as a function call with four arguments, but

foo (x, (y=47, x), z);

is a function call with just three arguments. (The second argument is (y=47, x).)

3.16 Member Access Expressions

You can use the member access operator . to access the members of a structure or union
variable. You put the name of the structure variable on the left side of the operator, and
the name of the member on the right side.

struct point

{

int x, y;

};

struct point first_point;

first_point.x = 0;

first_point.y = 5;

You can also access the members of a structure or union variable via a pointer by using
the indirect member access operator ->. x->y is equivalent to (*x).y.

struct fish

{

int length, weight;

};

struct fish salmon;

struct fish *fish_pointer = &salmon;

fish_pointer->length = 3;

fish_pointer->weight = 9;

See Section 2.6 [Pointers], page 23.

3.17 Conditional Expressions

You use the conditional operator to cause the entire conditional expression to evaluate to
either its second or its third operand, based on the truth value of its first operand. Here’s
an example:

a ? b : c

If expression a is true, then expression b is evaluated and the result is the value of b.
Otherwise, expression c is evaluated and the result is c.

Expressions b and c must be compatible. That is, they must both be

1. arithmetic types

2. compatible struct or union types

Chapter 3: Expressions and Operators 39

3. pointers to compatible types (one of which might be the NULL pointer)

Alternatively, one operand is a pointer and the other is a void* pointer.

Here is an example

a = (x == 5) ? y : z;

Here, if x equals 5, then a will receive the value of y. Otherwise, a will receive the value
of z. This can be considered a shorthand method for writing a simple if. . .else statement.
The following example will accomplish the same task as the previous one:

if (x == 5)

a = y;

else

a = z;

If the first operand of the conditional operator is true, then the third operand is never
evaluated. Similarly, if the first operand is false, then the second operand is never evaluated.
The first operand is always evaluated.

3.18 Statements and Declarations in Expressions

As a GNU C extension, you can build an expression using compound statement enclosed
in parentheses. This allows you to included loops, switches, and local variables within an
expression.

Recall that a compound statement (also known as a block) is a sequence of statements
surrounded by braces. In this construct, parentheses go around the braces. Here is an
example:

({ int y = function (); int z;

if (y > 0) z = y;

else z = - y;

z; })

That is a valid (though slightly more complex than necessary) expression for the absolute
value of function ().

The last thing in the compound statement should be an expression followed by a semi-
colon; the value of this subexpression serves as the value of the entire construct. (If you use
some other kind of statement last within the braces, the construct has type void, and thus
effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate
each operand exactly once). For example, the “maximum” function is commonly defined
as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the operand has side
effects. In GNU C, if you know the type of the operands (here let’s assume int), you can
define the macro safely as follows:

#define maxint(a,b) \

({int _a = (a), _b = (b); _a > _b ? _a : _b; })

If you don’t know the type of the operand, you can still do this, but you must use typeof
expressions or type naming.

Chapter 3: Expressions and Operators 40

Embedded statements are not allowed in constant expressions, such as the value of an
enumeration constant, the width of a bit field, or the initial value of a static variable.

3.19 Operator Precedence

When an expression contains multiple operators, such as a + b * f(), the operators are
grouped based on rules of precedence. For instance, the meaning of that expression is to
call the function f with no arguments, multiply the result by b, then add that result to a.
That’s what the C rules of operator precedence determine for this expression.

The following is a list of types of expressions, presented in order of highest precedence
first. Sometimes two or more operators have equal precedence; all those operators are
applied from left to right unless stated otherwise.

1. Function calls, array subscripting, and membership access operator expressions.

2. Unary operators, including logical negation, bitwise complement, increment, decre-
ment, unary positive, unary negative, indirection operator, address operator, type cast-
ing, and sizeof expressions. When several unary operators are consecutive, the later
ones are nested within the earlier ones: !-x means !(-x).

3. Multiplication, division, and modular division expressions.

4. Addition and subtraction expressions.

5. Bitwise shifting expressions.

6. Greater-than, less-than, greater-than-or-equal-to, and less-than-or-equal-to
expressions.

7. Equal-to and not-equal-to expressions.

8. Bitwise AND expressions.

9. Bitwise exclusive OR expressions.

10. Bitwise inclusive OR expressions.

11. Logical AND expressions.

12. Logical OR expressions.

13. Conditional expressions (using ?:). When used as subexpressions, these are evaluated
right to left.

14. All assignment expressions, including compound assignment. When multiple assign-
ment statements appear as subexpressions in a single larger expression, they are eval-
uated right to left.

15. Comma operator expressions.

The above list is somewhat dry and is apparently straightforward, but it does hide some
pitfalls. Take this example:

foo = *p++;

Here p is incremented as a side effect of the expression, but foo takes the value of *(p++)
rather than (*p)++, since the unary operators bind right to left. There are other examples
of potential surprises lurking behind the C precedence table. For this reason if there is the
slightest risk of the reader misunderstanding the meaning of the program, you should use
parentheses to make your meaning clear.

Chapter 3: Expressions and Operators 41

3.20 Order of Evaluation

In C you cannot assume that multiple subexpressions are evaluated in the order that seems
natural. For instance, consider the expression ++a * f(). Does this increment a before or
after calling the function f? The compiler could do it in either order, so you cannot make
assumptions.

This manual explains the semantics of the C language in the abstract. However, an
actual compiler translates source code into specific actions in an actual computer, and may
re-order operations for the sake of efficiency. The correspondence between the program you
write and the things the computer actually does are specified in terms of side effects and
sequence points.

3.20.1 Side Effects

A side effect is one of the following:

1. accessing a volatile object

2. modifying an object

3. modifying a file

4. a call to a function which performs any of the above side effects

These are essentially the externally-visible effects of running a program. They are called
side effects because they are effects of expression evalation beyond the expression’s actual
resulting value.

The compiler is allowed to perform the operations of your program in an order different
to the order implied by the source of your program, provided that in the end all the nec-
essary side effects actually take place. The compiler is also allowed to entirely omit some
operations; for example it’s allowed to skip evaluating part of an expression if it can be
certain that the value is not used and evaluating that part of the expression won’t produce
any needed side effects.

3.20.2 Sequence Points

Another requirement on the compiler is that side effects should take place in the correct
order. In order to provide this without over-constraining the compiler, the C89 and C90
standards specify a list of sequence points. A sequence point is one of the following:

1. a call to a function (after argument evaluation is complete)

2. the end of the left-hand operand of the and operator &&

3. the end of the left-hand operand of the or operator ||

4. the end of the left-hand operand of the comma operator ,

5. the end of the first operand of the ternary operator a ? b : c

6. the end of a full declarator1

7. the end of an initialisation expression

8. the end of an expression statement (i.e. an expression followed by ;)

9. the end of the controlling expression of an if or switch statement

1 a full declarator is a declaration of a function or an object which is not part of another object

Chapter 3: Expressions and Operators 42

10. the end of the controlling expression of a while or dostatement

11. the end of any of the three controlling expressions of a for statement

12. the end of the expression in a return statement

13. immediately before the return of a library function

14. after the actions associated with an item of formatted I/O (as used for example with
the strftime or the printf and scanf famlies of functions).

15. immediately before and after a call to a comparison function (as called for example by
qsort)

At a sequence point, all the side effects of previous expression evaluations must be
complete, and no side effects of later evaluations may have taken place.

This may seem a little hard to grasp, but there is another way to consider this. Imagine
you wrote a library (some of whose functions are external and perhaps others not) and
compiled it, allowing someone else to call one of your functions from their code. The
definitions above ensure that, at the time they call your function, the data they pass in
has values which are consistent with the behaviour specified by the abstract machine, and
any data returned by your function has a state which is also consistent with the abstract
machine. This includes data accessible via pointers (i.e. not just function parameters and
identifiers with external linkage).

The above is a slight simplification, since compilers exist that perform whole-program
optimisation at link time. Importantly however, although they might perform optimisations,
the visible side effects of the program must be the same as if they were produced by the
abstract machine.

3.20.3 Sequence Points Constrain Expressions

The code fragment

i = i + 1;

is quite normal and no doubt occurs in many programs. However, the quite similar code
fragment

i = ++i + 1;

is a little harder to understand; what is the final value of i? The C standards (both C89
and C99) both forbid this construct in conforming programs.

Between two sequence points,

1. an object may have its stored value modified at most once by the evaluation of an
expression

2. the prior value of the object shall be read only to determine the value to be stored.

The first of these two conditions forbids expressions like foo(x=2, ++x). The second
condition forbids expressions like a[i++] = i.

int x=0; foo(++x, ++x)

Not allowed in a conforming program; modifies x twice before argument evalu-
ation is complete.

int x=0; bar((++x,++x))

Allowed; the function bar takes one argument (the value 2 is passed here), and
there is a sequence point at the comma operator.

Chapter 3: Expressions and Operators 43

*p++ || *p++

Allowed; there is a sequence point at ||.

int x = 1, y = x++;

Allowed; there is a sequence point after the full declarator of x.

x=2; x++; Allowed; there is a sequence point at the end of the first expression statement.

if (x++ > MAX) x = 0;

Allowed; there is a sequence point at the end of the controlling expression of
the if2.

(x=y) ? ++x : x--;

Allowed; there is a sequence point before the ?, and only one of the two following
expressions is evaluated.

int *p=malloc(sizeof(*p)), *q=p; *p=foo(); bar((*p)++,(*q)++);

Not allowed; the object at p is being modified twice before the evaluation of
the arguments to bar is complete. The fact that this is done once via p and
once via q is irrelevant, since they both point to the same object.

Let’s go back to the example we used to introduce the problem of the order of evaluation,
++a * f(). Suppose the code actually looks like this:

static int a = 1;

static int f (void)

{

a = 100;

return 3;

}

int foo (void)

{

return ++a * f();

}

Is this code allowed in a standard-conforming program? Although the expression in foo

modifies a twice, this is not a problem. Let’s look at the two possible cases.

The right operand f() is evaluated first
Since f returns a value other than void, it must contain a return statement.
Therefore, there is a sequence point at the end of the return expression. That
comes between the modification to a that f makes and the evaluation of the
left operand.

The left operand ++a is evaluated first
First, a is incremented. Then the arguments to f are evaluated (there are zero
of them). Then there is a sequence point before f is actually called.

2 However if for example MAX is INT_MAX and x is of type int, we clearly have a problem with overflow.
See Appendix A [Overflow], page 71.

Chapter 3: Expressions and Operators 44

So, we see that our program is standard-conforming. Notice that the above argument
does not actually depend on the details of the body of the function f. It only depends on
the function containing something ending in a sequence point – in our example this is a
return statement, but an expression statement or a full declarator would do just as well.

However, the result of executing this code depends on the order of evaluation of the
operands of *. If the left-hand operand is evaluated first, foo returns 6. Otherwise, it
returns 303. The C standard does not specify in which order the operands should be
evaluated, and also does not require an implementation either to document the order or
even to stick to one order. The effect of this code is unspecified, meaning that one of several
specific things will happen, but the C standards do not say which.

3.20.4 Sequence Points and Signal Delivery

Signals are mainly documented in the GNU C Library manual rather than this document,
even though the C standards consider the compiler and the C library together to be “the
implementation”.

When a signal is received, this will happen between sequence points. Side effects on
volatile objects prior to the previous sequence point will have occurred, but other updates
may not have occurred yet. This even applies to straight assignments, such as x=0;, because
the code generated for that statement may require more than one instruction, meaning that
it can be interrupted part-way through by the delivery of a signal.

The C standard is quite restrictive about what data access can occur within a signal
handler. They can of course use auto variables, but in terms of reading or writing other
objects, they must be volatile sig_atomic_t. The volatile type qualifier ensures that
access to the variable in the other parts of the program doesn’t span sequence points and
the use of the sig_atomic_t type ensures that changes to the variable are atomic with
respect to signal delivery.

The POSIX standard also allows a small number of library functions to be called from
a signal handler. These functions are referred to as the set of async-signal-safe functions.
If your program is intended to run on a POSIX system but not on other systems, you can
safely call these from your signal handler too.

Chapter 4: Statements 45

4 Statements

You write statements to cause actions and to control flow within your programs. You can
also write statements that do not do anything at all, or do things that are uselessly trivial.

4.1 Labels

You can use labels to identify a section of source code for use with a later goto (see
Section 4.10 [The goto Statement], page 52). A label consists of an identifier (such as those
used for variable names) followed by a colon. Here is an example:

treet:

You should be aware that label names do not interfere with other identifier names:

int treet = 5; /* treet the variable. */

treet: /* treet the label. */

The ISO C standard mandates that a label must be followed by at least one statement,
possibly a null statement (see Section 4.9 [The Null Statement], page 52). GCC will compile
code that does not meet this requirement, but be aware that if you violate it, your code
may have portability issues.

4.2 Expression Statements

You can turn any expression into a statement by adding a semicolon to the end of the
expression. Here are some examples:

5;

2 + 2;

10 >= 9;

In each of those, all that happens is that each expression is evaluated. However, they
are useless because they do not store a value anywhere, nor do they actually do anything,
other than the evaluation itself. The compiler is free to ignore such statements.

Expression statements are only useful when they have some kind of side effect, such as
storing a value, calling a function, or (this is esoteric) causing a fault in the program. Here
are some more useful examples:

x++;

y = x + 25;

puts ("Hello, user!");

*cucumber;

The last of those statements, *cucumber;, could potentially cause a fault in the program
if the value of cucumber is both not a valid pointer and has been declared as volatile.

4.3 The if Statement

You can use the if statement to conditionally execute part of your program, based on the
truth value of a given expression. Here is the general form of an if statement:

if (test)

then-statement

else

else-statement

Chapter 4: Statements 46

If test evaluates to true, then then-statement is executed and else-statement is not. If
test evaluates to false, then else-statement is executed and then-statement is not. The else
clause is optional.

Here is an actual example:

if (x == 10)

puts ("x is 10");

If x == 10 evaluates to true, then the statement puts ("x is 10"); is executed. If x ==

10 evaluates to false, then the statement puts ("x is 10"); is not executed.

Here is an example using else:

if (x == 10)

puts ("x is 10");

else

puts ("x is not 10");

You can use a series of if statements to test for multiple conditions:

if (x == 1)

puts ("x is 1");

else if (x == 2)

puts ("x is 2");

else if (x == 3)

puts ("x is 3");

else

puts ("x is something else");

This function calculates and displays the date of Easter for the given year y:

void

easterDate (int y)

{

int n = 0;

int g = (y % 19) + 1;

int c = (y / 100) + 1;

int x = ((3 * c) / 4) - 12;

int z = (((8 * c) + 5) / 25) - 5;

int d = ((5 * y) / 4) - x - 10;

int e = ((11 * g) + 20 + z - x) % 30;

if (((e == 25) && (g > 11)) || (e == 24))

e++;

n = 44 - e;

if (n < 21)

n += 30;

n = n + 7 - ((d + n) % 7);

if (n > 31)

Chapter 4: Statements 47

printf ("Easter: %d April %d", n - 31, y);

else

printf ("Easter: %d March %d", n, y);

}

4.4 The switch Statement

You can use the switch statement to compare one expression with others, and then execute
a series of sub-statements based on the result of the comparisons. Here is the general form
of a switch statement:

switch (test)

{

case compare-1:

if-equal-statement-1

case compare-2:

if-equal-statement-2

...

default:

default-statement

}

The switch statement compares test to each of the compare expressions, until it finds
one that is equal to test. Then, the statements following the successful case are executed.
All of the expressions compared must be of an integer type, and the compare-N expressions
must be of a constant integer type (e.g., a literal integer or an expression built of literal
integers).

Optionally, you can specify a default case. If test doesn’t match any of the specific
cases listed prior to the default case, then the statements for the default case are executed.
Traditionally, the default case is put after the specific cases, but that isn’t required.

switch (x)

{

case 0:

puts ("x is 0");

break;

case 1:

puts ("x is 1");

break;

default:

puts ("x is something else");

break;

}

Notice the usage of the break statement in each of the cases. This is because, once a
matching case is found, not only are its statements executed, but so are the statements for
all following cases:

Chapter 4: Statements 48

int x = 0;

switch (x)

{

case 0:

puts ("x is 0");

case 1:

puts ("x is 1");

default:

puts ("x is something else");

}

The output of that example is:

x is 0

x is 1

x is something else

This is often not desired. Including a break statement at the end of each case redirects
program flow to after the switch statement.

As a GNU C extension, you can also specify a range of consecutive integer values in a
single case label, like this:

case low ... high:

This has the same effect as the corresponding number of individual case labels, one for
each integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case ’A’ ... ’Z’:

Be careful to include spaces around the ...; otherwise it may be parsed incorrectly when
you use it with integer values. For example, write this:

case 1 ... 5:

instead of this:

case 1...5:

It is common to use a switch statement to handle various possible values of errno. In
this case a portable program should watch out for the possibility that two macros for errno
values in fact have the same value, for example EWOULDBLOCK and EAGAIN.

4.5 The while Statement

The while statement is a loop statement with an exit test at the beginning of the loop.
Here is the general form of the while statement:

while (test)

statement

The while statement first evaluates test. If test evaluates to true, statement is executed,
and then test is evaluated again. statement continues to execute repeatedly as long as test
is true after each execution of statement.

This example prints the integers from zero through nine:

Chapter 4: Statements 49

int counter = 0;

while (counter < 10)

printf ("%d ", counter++);

A break statement can also cause a while loop to exit.

4.6 The do Statement

The do statement is a loop statement with an exit test at the end of the loop. Here is the
general form of the do statement:

do

statement

while (test);

The do statement first executes statement. After that, it evaluates test. If test is true,
then statement is executed again. statement continues to execute repeatedly as long as test
is true after each execution of statement.

This example also prints the integers from zero through nine:

int x = 0;

do

printf ("%d ", x++);

while (x < 10);

A break statement can also cause a do loop to exit.

4.7 The for Statement

The for statement is a loop statement whose structure allows easy variable initialization,
expression testing, and variable modification. It is very convenient for making counter-
controlled loops. Here is the general form of the for statement:

for (initialize; test; step)

statement

The for statement first evaluates the expression initialize. Then it evaluates the expres-
sion test. If test is false, then the loop ends and program control resumes after statement.
Otherwise, if test is true, then statement is executed. Finally, step is evaluated, and the
next iteration of the loop begins with evaluating test again.

Most often, initialize assigns values to one or more variables, which are generally used as
counters, test compares those variables to a predefined expression, and step modifies those
variables’ values. Here is another example that prints the integers from zero through nine:

int x;

for (x = 0; x < 10; x++)

printf ("%d ", x);

First, it evaluates initialize, which assigns x the value 0. Then, as long as x is less than
10, the value of x is printed (in the body of the loop). Then x is incremented in the step
clause and the test re-evaluated.

All three of the expressions in a for statement are optional, and any combination of
the three is valid. Since the first expression is evaluated only once, it is perhaps the most
commonly omitted expression. You could also write the above example as:

Chapter 4: Statements 50

int x = 1;

for (; x <= 10; x++)

printf ("%d ", x);

In this example, x receives its value prior to the beginning of the for statement.

If you leave out the test expression, then the for statement is an infinite loop (unless
you put a break or goto statement somewhere in statement). This is like using 1 as test;
it is never false.

This for statement starts printing numbers at 1 and then continues indefinitely, always
printing x incremented by 1:

for (x = 1; ; x++)

printf ("%d ", x);

If you leave out the step expression, then no progress is made toward completing the
loop—at least not as is normally expected with a for statement.

This example prints the number 1 over and over, indefinitely:

for (x = 1; x <= 10;)

printf ("%d ", x);

Perhaps confusingly, you cannot use the comma operator (see Section 3.15 [The Comma
Operator], page 37) for monitoring multiple variables in a for statement, because as usual
the comma operator discards the result of its left operand. This loop:

int x, y;

for (x = 1, y = 10; x <= 10, y >= 1; x+=2, y--)

printf ("%d %d\n", x, y);

Outputs:

1 10

3 9

5 8

7 7

9 6

11 5

13 4

15 3

17 2

19 1

If you need to test two conditions, you will need to use the && operator:

int x, y;

for (x = 1, y = 10; x <= 10 && y >= 1; x+=2, y--)

printf ("%d %d\n", x, y);

A break statement can also cause a for loop to exit.

Here is an example of a function that computes the summation of squares, given a
starting integer to square and an ending integer to square:

Chapter 4: Statements 51

int

sum_of_squares (int start, int end)

{

int i, sum = 0;

for (i = start; i <= end; i++)

sum += i * i;

return sum;

}

4.8 Blocks

A block is a set of zero or more statements enclosed in braces. Blocks are also known as
compound statements. Often, a block is used as the body of an if statement or a loop
statement, to group statements together.

for (x = 1; x <= 10; x++)

{

printf ("x is %d\n", x);

if ((x % 2) == 0)

printf ("%d is even\n", x);

else

printf ("%d is odd\n", x);

}

You can also put blocks inside other blocks:

for (x = 1; x <= 10; x++)

{

if ((x % 2) == 0)

{

printf ("x is %d\n", x);

printf ("%d is even\n", x);

}

else

{

printf ("x is %d\n", x);

printf ("%d is odd\n", x);

}

}

You can declare variables inside a block; such variables are local to that block. In C89,
declarations must occur before other statements, and so sometimes it is useful to introduce
a block simply for this purpose:

{

int x = 5;

printf ("%d\n", x);

}

printf ("%d\n", x); /* Compilation error! x exists only
in the preceding block. */

Chapter 4: Statements 52

4.9 The Null Statement

The null statement is merely a semicolon alone.

;

A null statement does not do anything. It does not store a value anywhere. It does not
cause time to pass during the execution of your program.

Most often, a null statement is used as the body of a loop statement, or as one or more
of the expressions in a for statement. Here is an example of a for statement that uses the
null statement as the body of the loop (and also calculates the integer square root of n, just
for fun):

for (i = 1; i*i < n; i++)

;

Here is another example that uses the null statement as the body of a for loop and also
produces output:

for (x = 1; x <= 5; printf ("x is now %d\n", x), x++)

;

A null statement is also sometimes used to follow a label that would otherwise be the
last thing in a block.

4.10 The goto Statement

You can use the goto statement to unconditionally jump to a different place in the program.
Here is the general form of a goto statement:

goto label;

You have to specify a label to jump to; when the goto statement is executed, program
control jumps to that label. See Section 4.1 [Labels], page 45. Here is an example:

goto end_of_program;

...

end_of_program:

The label can be anywhere in the same function as the goto statement that jumps to it,
but a goto statement cannot jump to a label in a different function.

You can use goto statements to simulate loop statements, but we do not recommend
it—it makes the program harder to read, and GCC cannot optimize it as well. You should
use for, while, and do statements instead of goto statements, when possible.

As an extension, GCC allows a goto statement to jump to an address specified by a
void* variable. To make this work, you also need to take the address of a label by using
the unary operator && (not &). Here is a contrived example:

Chapter 4: Statements 53

enum Play { ROCK=0, PAPER=1, SCISSORS=2 };

enum Result { WIN, LOSE, DRAW };

static enum Result turn (void)

{

const void * const jumptable[] = {&&rock, &&paper, &&scissors};

enum Play opp; /* opponent’s play */

goto *jumptable[select_option (&opp)];

rock:

return opp == ROCK ? DRAW : (opp == PAPER ? LOSE : WIN);

paper:

return opp == ROCK ? WIN : (opp == PAPER ? DRAW : LOSE);

scissors:

return opp == ROCK ? LOSE : (opp == PAPER ? WIN : DRAW);

}

4.11 The break Statement

You can use the break statement to terminate a while, do, for, or switch statement. Here
is an example:

int x;

for (x = 1; x <= 10; x++)

{

if (x == 8)

break;

else

printf ("%d ", x);

}

That example prints numbers from 1 to 7. When x is incremented to 8, x == 8 is true,
so the break statement is executed, terminating the for loop prematurely.

If you put a break statement inside of a loop or switch statement which itself is inside
of a loop or switch statement, the break only terminates the innermost loop or switch

statement.

4.12 The continue Statement

You can use the continue statement in loops to terminate an iteration of the loop and
begin the next iteration. Here is an example:

for (x = 0; x < 100; x++)

{

if (x % 2 == 0)

continue;

else

sum_of_odd_numbers + = x;

}

If you put a continue statement inside a loop which itself is inside a loop, then it affects
only the innermost loop.

Chapter 4: Statements 54

4.13 The return Statement

You can use the return statement to end the execution of a function and return program
control to the function that called it. Here is the general form of the return statement:

return return-value;

return-value is an optional expression to return. If the function’s return type is void,
then it is invalid to return an expression. You can, however, use the return statement
without a return value.

If the function’s return type is not the same as the type of return-value, and automatic
type conversion cannot be performed, then returning return-value is invalid.

If the function’s return type is not void and no return value is specified, then the return
statement is valid unless the function is called in a context that requires a return value. For
example:

x = cosine (y);

In that case, the function cosine was called in a context that required a return value,
so the value could be assigned to x.

Even in contexts where a return value is not required, it is a bad idea for a non-void
function to omit the return value. With GCC, you can use the command line option
-Wreturn-type to issue a warning if you omit the return value in such functions.

Here are some examples of using the return statement, in both a void and non-void
function:

void

print_plus_five (int x)

{

printf ("%d ", x + 5);

return;

}

int

square_value (int x)

{

return x * x;

}

4.14 The typedef Statement

You can use the typedef statement to create new names for data types. Here is the general
form of the typedef statement:

typedef old-type-name new-type-name

old-type-name is the existing name for the type, and may consist of more than one
token (e.g., unsigned long int). new-type-name is the resulting new name for the type,
and must be a single identifier. Creating this new name for the type does not cause the old
name to cease to exist. Here are some examples:

typedef unsigned char byte_type;

typedef double real_number_type;

Chapter 4: Statements 55

In the case of custom data types, you can use typedef to make a new name for the type
while defining the type:

typedef struct fish

{

float weight;

float length;

float probability_of_being_caught;

} fish_type;

To make a type definition of an array, you first provide the type of the element, and then
establish the number of elements at the end of the type definition:

typedef char array_of_bytes [5];

array_of_bytes five_bytes = {0, 1, 2, 3, 4};

When selecting names for types, you should avoid ending your type names with a _t

suffix. The compiler will allow you to do this, but the POSIX standard reserves use of the
_t suffix for standard library type names.

Chapter 5: Functions 56

5 Functions

You can write functions to separate parts of your program into distinct subprocedures. To
write a function, you must at least create a function definition. It is a good idea also to have
an explicit function declaration; you don’t have to, but if you leave it out, then the default
implicit declaration might not match the function itself, and you will get some compile-time
warnings.

Every program requires at least one function, called main. That is where the program’s
execution begins.

5.1 Function Declarations

You write a function declaration to specify the name of a function, a list of parameters,
and the function’s return type. A function declaration ends with a semicolon. Here is the
general form:

return-type function-name (parameter-list);

return-type indicates the data type of the value returned by the function. You can
declare a function that doesn’t return anything by using the return type void.

function-name can be any valid identifier (see Section 1.1 [Identifiers], page 2).

parameter-list consists of zero or more parameters, separated by commas. A typical
parameter consists of a data type and an optional name for the parameter. You can also
declare a function that has a variable number of parameters (see Section 5.5 [Variable
Length Parameter Lists], page 59), or no parameters using void. Leaving out parameter-
list entirely also indicates no parameters, but it is better to specify it explicitly with void.

Here is an example of a function declaration with two parameters:

int foo (int, double);

If you include a name for a parameter, the name immediately follows the data type, like
this:

int foo (int x, double y);

The parameter names can be any identifier (see Section 1.1 [Identifiers], page 2), and if
you have more than one parameter, you can’t use the same name more than once within a
single declaration. The parameter names in the declaration need not match the names in
the definition.

You should write the function declaration above the first use of the function. You can
put it in a header file and use the #include directive to include that function declaration
in any source code files that use the function.

5.2 Function Definitions

You write a function definition to specify what a function actually does. A function def-
inition consists of information regarding the function’s name, return type, and types and
names of parameters, along with the body of the function. The function body is a series of
statements enclosed in braces; in fact it is simply a block (see Section 4.8 [Blocks], page 51).

Here is the general form of a function definition:

Chapter 5: Functions 57

return-type

function-name (parameter-list)

{

function-body

}

return-type and function-name are the same as what you use in the function declaration
(see Section 5.1 [Function Declarations], page 56).

parameter-list is the same as the parameter list used in the function declaration (see
Section 5.1 [Function Declarations], page 56), except you must include names for the pa-
rameters in a function definition.

Here is an simple example of a function definition—it takes two integers as its parameters
and returns the sum of them as its return value:

int

add_values (int x, int y)

{

return x + y;

}

For compatibility with the original design of C, you can also specify the type of the
function parameters after the closing parenthesis of the parameter list, like this:

int

add_values (x, y)

int x, int y;

{

return x + y;

}

However, we strongly discourage this style of coding; it can cause subtle problems with type
casting, among other problems.

5.3 Calling Functions

You can call a function by using its name and supplying any needed parameters. Here is
the general form of a function call:

function-name (parameters)

A function call can make up an entire statement, or it can be used as a subexpression.
Here is an example of a standalone function call:

foo (5);

In that example, the function ‘foo’ is called with the parameter 5.

Here is an example of a function call used as a subexpression:

a = square (5);

Supposing that the function ‘square’ squares its parameter, the above example assigns the
value 25 to a.

If a parameter takes more than one argument, you separate parameters with commas:

a = quux (5, 10);

Chapter 5: Functions 58

5.4 Function Parameters

Function parameters can be any expression—a literal value, a value stored in variable, an
address in memory, or a more complex expression built by combining these.

Within the function body, the parameter is a local copy of the value passed into the
function; you cannot change the value passed in by changing the local copy.

int x = 23;

foo (x);

...

/* Definition for function foo. */

int foo (int a)

{

a = 2 * a;

return a;

}

In that example, even though the parameter a is modified in the function ‘foo’, the variable
x that is passed to the function does not change. If you wish to use the function to change the
original value of x, then you would have to incorporate the function call into an assignment
statement:

x = foo (x);

If the value that you pass to a function is a memory address (that is, a pointer), then
you can access (and change) the data stored at the memory address. This achieves an effect
similar to pass-by-reference in other languages, but is not the same: the memory address
is simply a value, just like any other value, and cannot itself be changed. The difference
between passing a pointer and passing an integer lies in what you can do using the value
within the function.

Here is an example of calling a function with a pointer parameter:

void

foo (int *x)

{

*x = *x + 42;

}

...

int a = 15;

foo (&a);

The formal parameter for the function is of type pointer-to-int, and we call the function
by passing it the address of a variable of type int. By dereferencing the pointer within
the function body, we can both see and change the value stored in the address. The above
changes the value of a to ‘57’.

Even if you don’t want to change the value stored in the address, passing the address of
a variable rather than the variable itself can be useful if the variable type is large and you
need to conserve memory space or limit the performance impact of parameter copying. For
example:

Chapter 5: Functions 59

struct foo

{

int x;

float y;

double z;

};

void bar (const struct foo *a);

In this case, unless you are working on a computer with very large memory addresses, it
will take less memory to pass a pointer to the structure than to pass an instance of the
structure.

One type of parameter that is always passed as a pointer is any sort of array:

void foo (int a[]);

...

int x[100];

foo (x);

In this example, calling the function foo with the parameter a does not copy the entire
array into a new local parameter within foo; rather, it passes x as a pointer to the first
element in x. Be careful, though: within the function, you cannot use sizeof to determine
the size of the array x—sizeof instead tells you the size of the pointer x. Indeed, the above
code is equivalent to:

void foo (int *a);

...

int x[100];

foo (x);

Explicitly specifying the length of the array in the parameter declaration will not help. If
you really need to pass an array by value, you can wrap it in a struct, though doing this
will rarely be useful (passing a const-qualified pointer is normally sufficient to indicate that
the caller should not modify the array).

5.5 Variable Length Parameter Lists

You can write a function that takes a variable number of arguments; these are called variadic
functions. To do this, the function needs to have at least one parameter of a known data
type, but the remaining parameters are optional, and can vary in both quantity and data
type.

You list the initial parameters as normal, but then after that, use an ellipsis: ‘...’. Here
is an example function prototype:

int add_multiple_values (int number, ...);

To work with the optional parameters in the function definition, you need to use macros
that are defined in the library header file ‘<stdarg.h>’, so you must #include that file.
For a detailed description of these macros, see The GNU C Library manual’s section on
variadic functions.

Here is an example:

Chapter 5: Functions 60

int

add_multiple_values (int number, ...)

{

int counter, total = 0;

/* Declare a variable of type ‘va_list’. */

va_list parameters;

/* Call the ‘va_start’ function. */

va_start (parameters, number);

for (counter = 0; counter < number; counter++)

{

/* Get the values of the optional parameters. */

total += va_arg (parameters, int);

}

/* End use of the ‘parameters’ variable. */

va_end (parameters);

return total;

}

To use optional parameters, you need to have a way to know how many there are. This
can vary, so it can’t be hard-coded, but if you don’t know how many optional parameters
you have, then you could have difficulty knowing when to stop using the ‘va_arg’ function.
In the above example, the first parameter to the ‘add_multiple_values’ function, ‘number’,
is the number of optional parameters actually passed. So, we might call the function like
this:

sum = add_multiple_values (3, 12, 34, 190);

The first parameter indicates how many optional parameters follow it.

Also, note that you don’t actually need to use ‘va_end’ function. In fact, with GCC it
doesn’t do anything at all. However, you might want to include it to maximize compatibility
with other compilers.

See Section “Variadic Functions” in The GNU C Library Reference Manual.

5.6 Calling Functions Through Function Pointers

You can also call a function identified by a pointer. The indirection operator * is optional
when doing this.

#include <stdio.h>

void foo (int i)

{

printf ("foo %d!\n", i);

}

Chapter 5: Functions 61

void bar (int i)

{

printf ("%d bar!\n", i);

}

void message (void (*func)(int), int times)

{

int j;

for (j=0; j<times; ++j)

func (j); /* (*func) (j); would be equivalent. */

}

void example (int want_foo)

{

void (*pf)(int) = &bar; /* The & is optional. */

if (want_foo)

pf = foo;

message (pf, 5);

}

5.7 The main Function

Every program requires at least one function, called ‘main’. This is where the program
begins executing. You do not need to write a declaration or prototype for main, but you do
need to define it.

The return type for main is always int. You do not have to specify the return type for
main, but you can. However, you cannot specify that it has a return type other than int.

In general, the return value from main indicates the program’s exit status. A value of zero
or EXIT SUCCESS indicates success and EXIT FAILURE indicates an error. Otherwise,
the significance of the value returned is implementation-defined.

Reaching the } at the end of main without a return, or executing a return statement
with no value (that is, return;) are both equivalent. In C89, the effect of this is undefined,
but in C99 the effect is equivalent to return 0;.

You can write your main function to have no parameters (that is, as int main (void),
or to accept parameters from the command line. Here is a very simple main function with
no parameters:

int

main (void)

{

puts ("Hi there!");

return 0;

}

To accept command line parameters, you need to have two parameters in the main func-
tion, int argc followed by char *argv[]. You can change the names of those parameters,
but they must have those data types—int and array of pointers to char. argc is the
number of command line parameters, including the name of the program itself. argv is an

Chapter 5: Functions 62

array of the parameters, as character strings. argv[0], the first element in the array, is the
name of the program as typed at the command line1; any following array elements are the
parameters that followed the name of the program.

Here is an example main function that accepts command line parameters, and prints out
what those parameters are:

int

main (int argc, char *argv[])

{

int counter;

for (counter = 0; counter < argc; counter++)

printf ("%s\n", argv[counter]);

return 0;

}

5.8 Recursive Functions

You can write a function that is recursive—a function that calls itself. Here is an example
that computes the factorial of an integer:

int

factorial (int x)

{

if (x < 1)

return 1;

else

return (x * factorial (x - 1));

}

Be careful that you do not write a function that is infinitely recursive. In the above
example, once x is 1, the recursion stops. However, in the following example, the recursion
does not stop until the program is interrupted or runs out of memory:

int

watermelon (int x)

{

return (watermelon (x));

}

Functions can also be indirectly recursive, of course.

5.9 Static Functions

You can define a function to be static if you want it to be callable only within the source
file where it is defined:

1 Rarely, argv[0] can be a null pointer (in this case argc is 0) or argv[0][0] can be the null character.
In any case, argv[argc] is a null pointer.

Chapter 5: Functions 63

static int

foo (int x)

{

return x + 42;

}

This is useful if you are building a reusable library of functions and need to include some
subroutines that should not be callable by the end user.

Functions which are defined in this way are said to have static linkage. Unfortunately
the static keyword has multiple meanings; Section 2.9 [Storage Class Specifiers], page 26.

5.10 Nested Functions

As a GNU C extension, you can define functions within other functions, a technique known
as nesting functions.

Here is an example of a tail-recursive factorial function, defined using a nested function:

int

factorial (int x)

{

int

factorial_helper (int a, int b)

{

if (a < 1)

{

return b;

}

else

{

return factorial_helper ((a - 1), (a * b));

}

}

return factorial_helper (x, 1);

}

Note that nested functions must be defined along with variable declarations at the be-
ginning of a function, and all other statements follow.

Chapter 6: Program Structure and Scope 64

6 Program Structure and Scope

Now that we have seen all of the fundamental elements of C programs, it’s time to look at
the big picture.

6.1 Program Structure

A C program may exist entirely within a single source file, but more commonly, any non-
trivial program will consist of several custom header files and source files, and will also
include and link with files from existing libraries.

By convention, header files (with a “.h” extension) contain variable and function dec-
larations, and source files (with a “.c” extension) contain the corresponding definitions.
Source files may also store declarations, if these declarations are not for objects which need
to be seen by other files. However, header files almost certainly should not contain any
definitions.

For example, if you write a function that computes square roots, and you wanted this
function to be accessible to files other than where you define the function, then you would
put the function declaration into a header file (with a “.h” file extension):

/* sqrt.h */

double

computeSqrt (double x);

This header file could be included by other source files which need to use your function, but
do not need to know how it was implemented.

The implementation of the function would then go into a corresponding source file (with
a “.c” file extension):

/* sqrt.c */

#include "sqrt.h"

double

computeSqrt (double x)

{

double result;

...

return result;

}

6.2 Scope

Scope refers to what parts of the program can “see” a declared object. A declared object
can be visible only within a particular function, or within a particular file, or may be visible
to an entire set of files by way of including header files and using extern declarations.

Unless explicitly stated otherwise, declarations made at the top-level of a file (i.e., not
within a function) are visible to the entire file, including from within functions, but are not
visible outside of the file.

Declarations made within functions are visible only within those functions.

Chapter 6: Program Structure and Scope 65

A declaration is not visible to declarations that came before it; for example:

int x = 5;

int y = x + 10;

will work, but:

int x = y + 10;

int y = 5;

will not.

See Section 2.9 [Storage Class Specifiers], page 26, for more information on changing the
scope of declared objects. Also see Section 5.9 [Static Functions], page 62.

Chapter 7: A Sample Program 66

7 A Sample Program

To conclude our description of C, here is a complete program written in C, consisting of both
a C source file and a header file. This program is an expanded version of the quintessential
“hello world” program, and serves as an example of how to format and structure C code for
use in programs for FSF Project GNU. (You can always download the most recent version
of this program, including sample makefiles and other examples of how to produce GNU
software, from http://www.gnu.org/software/hello.)

This program uses features of the preprocessor; for a description of preprocessor macros,
see The C Preprocessor, available as part of the GCC documentation.

7.1 hello.c
/* hello.c -- print a greeting message and exit.

Copyright (C) 1992, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,

2005, 2006, 2007 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3, or (at your option)

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */

#include <config.h>

#include "system.h"

/* String containing name the program is called with. */

const char *program_name;

static const struct option longopts[] =

{

{ "greeting", required_argument, NULL, ’g’ },

{ "help", no_argument, NULL, ’h’ },

{ "next-generation", no_argument, NULL, ’n’ },

{ "traditional", no_argument, NULL, ’t’ },

{ "version", no_argument, NULL, ’v’ },

{ NULL, 0, NULL, 0 }

};

static void print_help (void);

static void print_version (void);

int

main (int argc, char *argv[])

{

int optc;

int t = 0, n = 0, lose = 0;

Chapter 7: A Sample Program 67

const char *greeting = NULL;

program_name = argv[0];

/* Set locale via LC_ALL. */

setlocale (LC_ALL, "");

#if ENABLE_NLS

/* Set the text message domain. */

bindtextdomain (PACKAGE, LOCALEDIR);

textdomain (PACKAGE);

#endif

/* Even exiting has subtleties. The /dev/full device on GNU/Linux

can be used for testing whether writes are checked properly. For

instance, hello >/dev/full should exit unsuccessfully. On exit,

if any writes failed, change the exit status. This is

implemented in the Gnulib module "closeout". */

atexit (close_stdout);

while ((optc = getopt_long (argc, argv, "g:hntv", longopts, NULL)) != -1)

switch (optc)

{

/* One goal here is having --help and --version exit immediately,

per GNU coding standards. */

case ’v’:

print_version ();

exit (EXIT_SUCCESS);

break;

case ’g’:

greeting = optarg;

break;

case ’h’:

print_help ();

exit (EXIT_SUCCESS);

break;

case ’n’:

n = 1;

break;

case ’t’:

t = 1;

break;

default:

lose = 1;

break;

}

if (lose || optind < argc)

{

/* Print error message and exit. */

if (optind < argc)

fprintf (stderr, _("%s: extra operand: %s\n"),

program_name, argv[optind]);

fprintf (stderr, _("Try ‘%s --help’ for more information.\n"),

program_name);

exit (EXIT_FAILURE);

}

Chapter 7: A Sample Program 68

/* Print greeting message and exit. */

if (t)

printf (_("hello, world\n"));

else if (n)

/* TRANSLATORS: Use box drawing characters or other fancy stuff

if your encoding (e.g., UTF-8) allows it. If done so add the

following note, please:

[Note: For best viewing results use a UTF-8 locale, please.]

*/

printf (_("\

+---------------+\n\

| Hello, world! |\n\

+---------------+\n\

"));

else

{

if (!greeting)

greeting = _("Hello, world!");

puts (greeting);

}

exit (EXIT_SUCCESS);

}

/* Print help info. This long message is split into

several pieces to help translators be able to align different

blocks and identify the various pieces. */

static void

print_help (void)

{

/* TRANSLATORS: --help output 1 (synopsis)

no-wrap */

printf (_("\

Usage: %s [OPTION]...\n"), program_name);

/* TRANSLATORS: --help output 2 (brief description)

no-wrap */

fputs (_("\

Print a friendly, customizable greeting.\n"), stdout);

puts ("");

/* TRANSLATORS: --help output 3: options 1/2

no-wrap */

fputs (_("\

-h, --help display this help and exit\n\

-v, --version display version information and exit\n"), stdout);

puts ("");

/* TRANSLATORS: --help output 4: options 2/2

no-wrap */

fputs (_("\

Chapter 7: A Sample Program 69

-t, --traditional use traditional greeting format\n\

-n, --next-generation use next-generation greeting format\n\

-g, --greeting=TEXT use TEXT as the greeting message\n"), stdout);

printf ("\n");

/* TRANSLATORS: --help output 5 (end)

TRANSLATORS: the placeholder indicates the bug-reporting address

for this application. Please add _another line_ with the

address for translation bugs.

no-wrap */

printf (_("\

Report bugs to <%s>.\n"), PACKAGE_BUGREPORT);

}

/* Print version and copyright information. */

static void

print_version (void)

{

printf ("hello (GNU %s) %s\n", PACKAGE, VERSION);

/* xgettext: no-wrap */

puts ("");

/* It is important to separate the year from the rest of the message,

as done here, to avoid having to retranslate the message when a new

year comes around. */

printf (_("\

Copyright (C) %s Free Software Foundation, Inc.\n\

License GPLv3+: GNU GPL version 3 or later\

<http://gnu.org/licenses/gpl.html>\n\

This is free software: you are free to change and redistribute it.\n\

There is NO WARRANTY, to the extent permitted by law.\n"),

"2007");

}

7.2 system.h
/* system.h: system-dependent declarations; include this first.

Copyright (C) 1996, 2005, 2006, 2007 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3, or (at your option)

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */

#ifndef HELLO_SYSTEM_H

Chapter 7: A Sample Program 70

#define HELLO_SYSTEM_H

/* Assume ANSI C89 headers are available. */

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/* Use POSIX headers. If they are not available, we use the substitute

provided by gnulib. */

#include <getopt.h>

#include <unistd.h>

/* Internationalization. */

#include "gettext.h"

#define _(str) gettext (str)

#define N_(str) gettext_noop (str)

/* Check for errors on write. */

#include "closeout.h"

#endif /* HELLO_SYSTEM_H */

Appendix A: Overflow 71

Appendix A Overflow

[This appendix, written principally by Paul Eggert, is from the GNU Autoconf manual. We
thought that it would be helpful to include here. –TJR]

In practice many portable C programs assume that signed integer overflow wraps around
reliably using two’s complement arithmetic. Yet the C standard says that program behavior
is undefined on overflow, and in a few cases C programs do not work on some modern
implementations because their overflows do not wrap around as their authors expected.
Conversely, in signed integer remainder, the C standard requires overflow behavior that is
commonly not implemented.

A.1 Basics of Integer Overflow

In languages like C, unsigned integer overflow reliably wraps around; e.g., UINT_MAX + 1

yields zero. This is guaranteed by the C standard and is portable in practice, unless you
specify aggressive, nonstandard optimization options suitable only for special applications.

In contrast, the C standard says that signed integer overflow leads to undefined behavior
where a program can do anything, including dumping core or overrunning a buffer. The
misbehavior can even precede the overflow. Such an overflow can occur during addition,
subtraction, multiplication, division, and left shift.

Despite this requirement of the standard, many C programs assume that signed integer
overflow silently wraps around modulo a power of two, using two’s complement arithmetic,
so long as you cast the resulting value to a signed integer type or store it into a signed
integer variable. If you use conservative optimization flags, such programs are generally
portable to the vast majority of modern platforms, with a few exceptions discussed later.

For historical reasons the C standard also allows implementations with ones’ complement
or signed magnitude arithmetic, but it is safe to assume two’s complement nowadays.

Also, overflow can occur when converting an out-of-range value to a signed integer type.
Here a standard implementation must define what happens, but this might include raising
an exception. In practice all known implementations support silent wraparound in this case,
so you need not worry about other possibilities.

A.2 Examples of Code Assuming Wraparound Overflow

There has long been a tension between what the C standard requires for signed integer
overflow, and what C programs commonly assume. The standard allows aggressive opti-
mizations based on assumptions that overflow never occurs, but many practical C programs
rely on overflow wrapping around. These programs do not conform to the standard, but
they commonly work in practice because compiler writers are understandably reluctant to
implement optimizations that would break many programs, unless perhaps a user specifies
aggressive optimization.

The C Standard says that if a program has signed integer overflow its behavior is un-
defined, and the undefined behavior can even precede the overflow. To take an extreme
example:

if (password == expected_password)

allow_superuser_privileges ();

Appendix A: Overflow 72

else if (counter++ == INT_MAX)

abort ();

else

printf ("%d password mismatches\n", counter);

If the int variable counter equals INT_MAX, counter++ must overflow and the behavior is
undefined, so the C standard allows the compiler to optimize away the test against INT_
MAX and the abort call. Worse, if an earlier bug in the program lets the compiler deduce
that counter == INT_MAX or that counter previously overflowed, the C standard allows
the compiler to optimize away the password test and generate code that allows superuser
privileges unconditionally.

Despite this requirement by the standard, it has long been common for C code to assume
wraparound arithmetic after signed overflow, and all known practical C implementations
support some C idioms that assume wraparound signed arithmetic, even if the idioms do
not conform strictly to the standard. If your code looks like the following examples it will
almost surely work with real-world compilers.

Here is an example derived from the 7th Edition Unix implementation of atoi (1979-
01-10):

char *p;

int f, n;

...

while (*p >= ’0’ && *p <= ’9’)

n = n * 10 + *p++ - ’0’;

return (f ? -n : n);

Even if the input string is in range, on most modern machines this has signed overflow when
computing the most negative integer (the -n overflows) or a value near an extreme integer
(the first + overflows).

Here is another example, derived from the 7th Edition implementation of rand (1979-01-
10). Here the programmer expects both multiplication and addition to wrap on overflow:

static long int randx = 1;

...

randx = randx * 1103515245 + 12345;

return (randx >> 16) & 077777;

In the following example, derived from the GNU C Library 2.5 implementation of mktime
(2006-09-09), the code assumes wraparound arithmetic in + to detect signed overflow:

time_t t, t1, t2;

int sec_requested, sec_adjustment;

...

t1 = t + sec_requested;

t2 = t1 + sec_adjustment;

if (((t1 < t) != (sec_requested < 0))

|| ((t2 < t1) != (sec_adjustment < 0)))

return -1;

If your code looks like these examples, it is probably safe even though it does not strictly
conform to the C standard. This might lead one to believe that one can generally assume
wraparound on overflow, but that is not always true, as can be seen in the next section.

Appendix A: Overflow 73

A.3 Optimizations That Break Wraparound Arithmetic

Compilers sometimes generate code that is incompatible with wraparound integer arith-
metic. A simple example is an algebraic simplification: a compiler might translate (i *

2000) / 1000 to i * 2 because it assumes that i * 2000 does not overflow. The transla-
tion is not equivalent to the original when overflow occurs: e.g., in the typical case of 32-bit
signed two’s complement wraparound int, if i has type int and value 1073742, the original
expression returns −2147483 but the optimized version returns the mathematically correct
value 2147484.

More subtly, loop induction optimizations often exploit the undefined behavior of signed
overflow. Consider the following contrived function sumc:

int

sumc (int lo, int hi)

{

int sum = 0;

int i;

for (i = lo; i <= hi; i++)

sum ^= i * 53;

return sum;

}

To avoid multiplying by 53 each time through the loop, an optimizing compiler might
internally transform sumc to the equivalent of the following:

int

transformed_sumc (int lo, int hi)

{

int sum = 0;

int hic = hi * 53;

int ic;

for (ic = lo * 53; ic <= hic; ic += 53)

sum ^= ic;

return sum;

}

This transformation is allowed by the C standard, but it is invalid for wraparound arithmetic
when INT_MAX / 53 < hi, because then the overflow in computing expressions like hi * 53

can cause the expression i <= hi to yield a different value from the transformed expression
ic <= hic.

For this reason, compilers that use loop induction and similar techniques often do not
support reliable wraparound arithmetic when a loop induction variable like ic is involved.
Since loop induction variables are generated by the compiler, and are not visible in the
source code, it is not always trivial to say whether the problem affects your code.

Hardly any code actually depends on wraparound arithmetic in cases like these, so in
practice these loop induction optimizations are almost always useful. However, edge cases
in this area can cause problems. For example:

int j;

for (j = 1; 0 < j; j *= 2)

test (j);

Appendix A: Overflow 74

Here, the loop attempts to iterate through all powers of 2 that int can represent, but the
C standard allows a compiler to optimize away the comparison and generate an infinite
loop, under the argument that behavior is undefined on overflow. As of this writing this
optimization is not done by any production version of GCC with ‘-O2’, but it might be
performed by other compilers, or by more aggressive GCC optimization options, and the
GCC developers have not decided whether it will continue to work with GCC and ‘-O2’.

A.4 Practical Advice for Signed Overflow Issues

Ideally the safest approach is to avoid signed integer overflow entirely. For example, instead
of multiplying two signed integers, you can convert them to unsigned integers, multiply the
unsigned values, then test whether the result is in signed range.

Rewriting code in this way will be inconvenient, though, particularly if the signed values
might be negative. Also, it may hurt performance. Using unsigned arithmetic to check for
overflow is particularly painful to do portably and efficiently when dealing with an integer
type like uid_t whose width and signedness vary from platform to platform.

Furthermore, many C applications pervasively assume wraparound behavior and typi-
cally it is not easy to find and remove all these assumptions. Hence it is often useful to
maintain nonstandard code that assumes wraparound on overflow, instead of rewriting the
code. The rest of this section attempts to give practical advice for this situation.

If your code wants to detect signed integer overflow in sum = a + b, it is generally safe
to use an expression like (sum < a) != (b < 0).

If your code uses a signed loop index, make sure that the index cannot overflow, along
with all signed expressions derived from the index. Here is a contrived example of problem-
atic code with two instances of overflow.

for (i = INT_MAX - 10; i <= INT_MAX; i++)

if (i + 1 < 0)

{

report_overflow ();

break;

}

Because of the two overflows, a compiler might optimize away or transform the two com-
parisons in a way that is incompatible with the wraparound assumption.

If your code uses an expression like (i * 2000) / 1000 and you actually want the mul-
tiplication to wrap around on overflow, use unsigned arithmetic to do it, e.g., ((int) (i *

2000u)) / 1000.

If your code assumes wraparound behavior and you want to insulate it against any GCC

optimizations that would fail to support that behavior, you should use GCC’s ‘-fwrapv’
option, which causes signed overflow to wrap around reliably (except for division and re-
mainder, as discussed in the next section).

If you need to port to platforms where signed integer overflow does not reliably wrap
around (e.g., due to hardware overflow checking, or to highly aggressive optimizations), you
should consider debugging with GCC’s ‘-ftrapv’ option, which causes signed overflow to
raise an exception.

Appendix A: Overflow 75

A.5 Signed Integer Division and Integer Overflow

Overflow in signed integer division is not always harmless: for example, on CPUs of the
i386 family, dividing INT_MIN by -1 yields a SIGFPE signal which by default terminates the
program. Worse, taking the remainder of these two values typically yields the same signal
on these CPUs, even though the C standard requires INT_MIN % -1 to yield zero because
the expression does not overflow.

GNU Free Documentation License 76

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

GNU Free Documentation License 77

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 78

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

GNU Free Documentation License 79

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 80

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

GNU Free Documentation License 81

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

GNU Free Documentation License 82

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

GNU Free Documentation License 83

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 84

Index

A
accessing array elements . 21
accessing structure members 17
accessing union members . 14
arithmetic operators . 30
array elements, accessing . 21
array subscripts . 37
arrays . 19
arrays as strings . 21
arrays of structures . 23
arrays of unions . 22
arrays, declaring . 19
arrays, initializing . 20
arrays, multidimensional . 21
assignment operators . 28
auto storage class specifier . 26

B
bit fields . 18
bit shifting . 33
bitwise logical operators . 34
blocks . 51
break statement . 53

C
calling functions . 57
casts . 36
char data type . 8
character constants . 3
comma operator . 37
comparison operators . 32
complex conjugation . 32
complex number types . 10
compound statements . 51
conditional expressions . 38
conjugation . 32
const type qualifier . 26
constants . 2
constants, character . 3
constants, floating point . 4
constants, integer . 3
constants, real number . 4
continue statement . 53

D
data types . 8
data types, array . 19
data types, complex number 10
data types, enumeration . 11
data types, floating point . 9
data types, integer . 8

data types, pointer . 23
data types, primitive . 8
data types, real number . 9
data types, structure . 15
data types, union . 12
declarations inside expressions 39
declarations, function . 56
declaring arrays . 19
declaring enumerations . 12
declaring pointers . 23
declaring string arrays . 21
declaring structure variables 15
declaring structure variables after definition 16
declaring structure variables at definition 15
declaring union variables . 13
declaring union variables after definition 13
declaring union variables at definition 13
decrement operator . 29
defining enumerations . 11
defining structures . 15
defining unions . 12
definitions, function . 56
division, integer . 75
do statement . 49
double data type . 9

E
else statements . 45
enumerations . 11
enumerations, declaring . 12
enumerations, defining . 11
enumerations, incomplete . 25
exit status . 61
EXIT_FAILURE . 61
EXIT_SUCCESS . 61
expression statements . 45
expressions . 28
expressions containing statements 39
expressions, conditional . 38
extern storage class specifier 26

F
fields, bit . 18
float data type . 9
floating point constants . 4
floating point types . 9
for statement . 49
function calls, as expressions 37
function declarations . 56
function definitions . 56
function parameter lists, variable length 59
function parameters . 58

Index 85

function pointers, calling through 60
function, main . 61
functions . 56
functions, calling . 57
functions, nested . 63
functions, recursive . 62
functions, static . 62

G
goto statement . 52

H
hello program . 66
hello.c . 66

I
identifiers . 2
if statements . 45
incomplete types . 25
increment operator . 29
indirect member access operator 38
initializing arrays . 20
initializing pointers . 24
initializing string arrays . 21
initializing structure members 16
initializing union members . 13
int data type . 8
integer constants . 3
integer overflow . 71, 74
integer types . 8

K
keywords . 2

L
labeled statements . 45
labels . 45
lexical elements . 2
logical operators . 33
logical operators, bitwise . 34
long double data type . 9
long int data type . 8
long long int data type . 9
loop induction . 73

M
macros, statements in expressions 39
main function . 61
member access expressions . 38
multidimensional arrays . 21

N
nested functions . 63
null statement . 52

O
operator precedence . 40
operator, decrement . 29
operator, increment . 29
operators . 28
operators as lexical elements . 6
operators, arithmetic . 30
operators, assignment . 28
operators, comparison . 32
overflow, signed integer . 71, 74

P
parameters lists, variable length 59
parameters, function . 58
pointer operators . 35
pointers . 23
pointers to structures . 25
pointers to unions . 24
pointers, declaring . 23
pointers, initializing . 24
precedence, operator . 40
preface . 1
primitive data types . 8
program structure . 64

Q
qualifiers, type . 26

R
real number constants . 4
real number types . 9
recursive functions . 62
register storage class specifier 26
renaming types . 27
return statement . 54
return value of main . 61

S
sample program . 66
scope . 64
separators . 6
sequence point . 41
shifting . 33
short int data type . 8
side effect . 41
side effects, macro argument 39
signed char data type . 8
signed integer overflow . 71, 74

Index 86

size of structures . 19
size of unions . 14
sizeof operator . 35
specifiers, storage class . 26
statement, null . 52
statements . 45
statements inside expressions 39
statements, expression . 45
statements, labeled . 45
static functions . 62
static linkage . 62
static storage class specifier 26
storage class specifiers . 26
string arrays, declaring . 21
string arrays, initializing . 21
string constants . 5
string literals . 5
strings, arrays as . 21
structure members, accessing 17
structure members, initializing 16
structure variables, declaring 15
structure variables, declaring after definition . . . 16
structure variables, declaring at definition 15
structure, program . 64
structures . 15
structures, arrays of . 23
structures, defining . 15
structures, incomplete . 25
structures, pointers to . 25
structures, size of . 19
switch statement . 47
system.h . 69

T
ternary operator . 38
type casts . 36
type qualifiers . 26
typedef statement . 54
types . 8
types, array . 19
types, complex number . 10

types, enumeration . 11
types, floating point . 9
types, incomplete . 25
types, integer . 8
types, pointer . 23
types, primitive . 8
types, real number . 9
types, renaming . 27
types, structure . 15
types, union . 12

U
union members, accessing . 14
union members, initializing . 13
union variables, declaring . 13
union variables, declaring after definition 13
union variables, declaring at definition 13
unions . 12
unions, arrays of . 22
unions, defining . 12
unions, incomplete . 25
unions, pointers to . 24
unions, size of . 14
unsigned char data type . 8
unsigned int data type . 8
unsigned long int data type 8
unsigned long long int data type 9
unsigned short int data type 8
unspecified behaviour . 44

V
variable length parameter lists 59
volatile type qualifier . 26

W
while statement . 48
white space . 6
wraparound arithmetic . 71, 74

	Preface
	Credits

	Lexical Elements
	Identifiers
	Keywords
	Constants
	Integer Constants
	Character Constants
	Real Number Constants
	String Constants

	Operators
	Separators
	White Space

	Data Types
	Primitive Data Types
	Integer Types
	Real Number Types
	Complex Number Types
	Standard Complex Number Types
	GNU Extensions for Complex Number Types

	Enumerations
	Defining Enumerations
	Declaring Enumerations

	Unions
	Defining Unions
	Declaring Union Variables
	Declaring Union Variables at Definition
	Declaring Union Variables After Definition
	Initializing Union Members

	Accessing Union Members
	Size of Unions

	Structures
	Defining Structures
	Declaring Structure Variables
	Declaring Structure Variables at Definition
	Declaring Structure Variables After Definition
	Initializing Structure Members

	Accessing Structure Members
	Bit Fields
	Size of Structures

	Arrays
	Declaring Arrays
	Initializing Arrays
	Accessing Array Elements
	Multidimensional Arrays
	Arrays as Strings
	Arrays of Unions
	Arrays of Structures

	Pointers
	Declaring Pointers
	Initializing Pointers
	Pointers to Unions
	Pointers to Structures

	Incomplete Types
	Type Qualifiers
	Storage Class Specifiers
	Renaming Types

	Expressions and Operators
	Expressions
	Assignment Operators
	Incrementing and Decrementing
	Arithmetic Operators
	Complex Conjugation
	Comparison Operators
	Logical Operators
	Bit Shifting
	Bitwise Logical Operators
	Pointer Operators
	The sizeof Operator
	Type Casts
	Array Subscripts
	Function Calls as Expressions
	The Comma Operator
	Member Access Expressions
	Conditional Expressions
	Statements and Declarations in Expressions
	Operator Precedence
	Order of Evaluation
	Side Effects
	Sequence Points
	Sequence Points Constrain Expressions
	Sequence Points and Signal Delivery

	Statements
	Labels
	Expression Statements
	The if Statement
	The switch Statement
	The while Statement
	The do Statement
	The for Statement
	Blocks
	The Null Statement
	The goto Statement
	The break Statement
	The continue Statement
	The return Statement
	The typedef Statement

	Functions
	Function Declarations
	Function Definitions
	Calling Functions
	Function Parameters
	Variable Length Parameter Lists
	Calling Functions Through Function Pointers
	The main Function
	Recursive Functions
	Static Functions
	Nested Functions

	Program Structure and Scope
	Program Structure
	Scope

	A Sample Program
	hello.c
	system.h

	Overflow
	Basics of Integer Overflow
	Examples of Code Assuming Wraparound Overflow
	Optimizations That Break Wraparound Arithmetic
	Practical Advice for Signed Overflow Issues
	Signed Integer Division and Integer Overflow

	GNU Free Documentation License
	Index

