Sundial 1

Laurence D. Finston
Last updated: October 2, 2007

This document is part of GNU 3DLDF, a package for three-dimensional drawing
Copyright (c) 2007, 2008, 2009, 2010, 2011 The Free Software Foundation
GNU 3DLDF is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

GNU 3DLDF is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with GNU 3DLDF; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Perspective projection.

See following page for explanation.
 $g_{0} g_{1}$ represents the gnomon.
 whose center is also at the origin and whose sides are parallel to those of r_{0}.
Let r_{4} be a rectangle perpendicular to r_{1} such that the vertices q_{0} and q_{1} of r_{1} are the midpoints of the sides $q_{4} q_{5}$ and $q_{6} q_{7}$ of r_{4}.
Let r_{2} be the rectangle $q_{4} q_{6} q_{9} q_{8}$ such that the vectors $q_{8}-q_{4}$ and $q_{9}-q_{6}$ are vertical, i.e., their y-components are non-zero and their x and z components are 0 .
 projection of the gnomon $g_{0} g_{1}$ onto the plane of c_{0} at noon. (The section of this line within the circumference of c_{0} is drawn in blue.)
 the gnomon $g_{0} g_{1}$ onto the plane of r_{2} at noon.

 the projection of the gnomon $g_{0} g_{1}$ onto the plane of c_{0} at 1:00 PM .
 the rectangle r_{2}.
The line $q_{10} q_{16}$ thus represents the projection of the gnomon onto the plane of r_{2} at 1.00 PM .

 time division on the plane of r_{2}. The set of these lines on the plane of r_{2} would constitute the dial of a vertical sundial. They would radiate from q_{10}.

In addition, the intersection of a plane w_{n} representing a time division on c_{0} with any other plane v will also represent the corresponding time division on a dial lying in v.
 the point q_{6} and performing the same rotation on it. r_{3} was then rotated about the axis $q_{4} q_{17}$ by 5° (counterclockwise as seen when looking from q_{4} onto $q_{1} 7$).
 the gnomon onto the plane of r_{3} at 1.00 PM .

Parallel projection onto plane of equatorial dial.

Parallel projection onto the skew plane r3.

